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Abstract

The rapid advancements in machine learning necessitate parallel improve-1

ments in the size and quality of domain-specific datasets, especially in2

fields like materials science, where such datasets are often lacking due to3

the unstructured nature of real-world information. Despite the wealth of4

knowledge generated in this domain, much of it remains underutilized as5

experimental data is often buried in charts. In this paper, we curate two new6

benchmarks and introduce Relative Coordinate-Label Similarity (RCLS),7

a novel metric for measuring the state-of-the-art in extracting materials8

science data from scientific figures. We find that existing pretrained image-9

to-text Transformer based models for chart-to-table translation struggle10

with the diverse and complex nature of materials science figures, leading to11

issues such as inconsistent extraction of axis labels, irregular presentation12

of tabular data, and the omission of critical elements like legend labels13

from charts. We further fine-tune LLaMA 3.2-Vision 11B model to enhance14

its performance. Our study focuses on two subdomains of materials sci-15

ence, demonstrating both the successes and ongoing challenges in using16

multimodal models to extract scientific chart data.17

1 Introduction18

Extracting information from scientific charts and figures is a critical but challenging task19

for enabling large-scale information extraction in materials science (Schilling-Wilhelmi20

et al., 2025; Sayeed et al., 2023). Reasoning on visual-language tasks, such as chart-to-table21

conversion, has gained significant attention in recent literature due to its potential for22

structuring complex visual data (Huang et al., 2024; Islam et al., 2024). Zaki et al. (2022)23

demonstrated the utility of WebPlotDigitizer V4 (Automeris, 2024), an open-source tool24

that converts data from plots into numerical values (Zaki et al., 2022). However, this tool25

requires the manual processing of images, limiting its scalability and efficiency.26

LLMs have shown promise in visual reasoning tasks (Achiam et al., 2023; Seitl et al., 2024; Xu27

et al., 2024), but they often struggle with understanding charts (Mukhopadhyay et al., 2024).28

Their effectiveness in extracting structured information from domain-specific scientific29

charts remains an underexplored area. This work seeks to bridge this gap by focusing on30

the extraction of information from materials science charts.31

Several recent works have explored information extraction from scientific charts and fig-32

ures. DePlot (Liu et al., 2022) transforms the image of a plot or chart to a linearized table,33

but has limitations in translating to out-of-distribution data (Nowak et al., 2024). MatViX34

(Khalighinejad et al., 2024) proposes a multimodal information extraction framework for35

visually rich scientific articles, demonstrating the potential for extracting key insights from36

figures in the domain of materials science. However, MatViX does not directly evaluate the37

task of chart-to-table conversion, limiting its utility for complete numerical data extraction.38

Taniguchi & Lindsey (2025) highlight limitations when it comes to extracting detailed spec-39

tral information from charts (Taniguchi & Lindsey, 2025). Similarly, ChartX and ChartVLM40

(Xia et al., 2024) introduce chart reasoning models and benchmarks, though their datasets41

predominantly feature generic, domain-agnostic charts, lacking the complexity of materials42

science figures.43
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Existing methods largely overlook the diversity and complexity of scientific figures. Using44

the exemplar of the domain of materials science, visuals often represent multi-dimensional45

experimental conditions, material properties, or processing parameters. To address this,46

we evaluate information extraction models on a curated dataset of materials science charts47

and introduce strategies to improve performance in this domain. The resulting tabular48

data can then be used to prompt LLMs for data restructuring (Circi et al., 2024) or question49

answering as shown in DePlot.50

In this work, we aim to advance information extraction from materials science figures by:51

1. Introducing two diverse datasets of real materials science charts, PolyCompChar-52

tIE and MetalThermoChartIE, for evaluating chart-to-table conversion models,53

addressing the current lack of domain-specific benchmarks (Dredze et al., 2024).54

2. Proposing a new evaluation metric, Relative Coordinate-Label Similarity (RCLS),55

designed specifically to assess numerical data extraction accuracy from scatterplot56

charts.57

3. Providing insights into the limitations of existing visual-language models in han-58

dling complex materials science figures and outlining future directions for perfor-59

mance improvement.60

2 Related Work61

2.1 Datasets and Tasks62

Several chart-focused datasets have been proposed to support visual-language reasoning,63

including PlotQA (Methani et al., 2020), ChartQA (Masry et al., 2022), and FigureQA (Kahou64

et al., 2017). FigureQA consists of over 1 million procedurally generated synthetic figures65

alongside yes/no questions pertaining to chart features and data. However, this data66

lacks real-world visual complexity and has labels that are only useful for QA tasks, failing67

to extend to the chart-to-table task. PlotQA improved upon FigureQA by incorporating68

real plot images extracted from scientific documents from sources such as arXiv, as well69

as including the underlying chart metadata which permits use for the chart-to-table task.70

However, these figures remain largely generic and do not incorporate the domain-specific71

complexity associated with materials science figures. ChartQA provides a large set of72

synthetic and real-world chart question-answering data, for use in learning and evaluating73

model performance on a greater variety of visual-language tasks for bar, line, and pie74

charts, such as chart summarization, chart-to-code generation, and open-ended question75

answering. While this dataset reflects a greater diversity of real-world chart examples and76

can be evaluated on a more comprehensive set of tasks, a representative real-world dataset77

that tests existing and future models’ capabilities in extracting tabular data from complex78

materials science figures, particularly scatter-plots, is still missing from the literature.79

2.2 Benchmarks80

Recent efforts have sought to standardize evaluation across visual reasoning tasks.81

MaCBench (Alampara et al., 2024) introduces a multimodal benchmark covering scien-82

tific text, laboratory scenes, and microscopy, but includes limited chart-based reasoning.83

Wu et al. (2024) introduced VISCO, a benchmark testing self-improvement in visual reason-84

ing, further revealing the limitations of current visual-language models on complex data85

visualizations. Islam et al. (2024) provide an extensive evaluation of large vision-language86

models(LVLMs) across many chart reasoning tasks, including chart-to-table extraction, us-87

ing metrics such as Relative Number Set Similarity (RNSS) and Relative Mapping Similarity88

(RMS) discussed later. While these benchmarks effectively evaluate generic chart datasets89

on a number of tasks, they do not address the unique challenges posed in chart-to-table90

conversion for our more complex materials science figures. To bridge this gap, we propose91

a new evaluation metric, Relative Coordinate-Label Similarity (RCLS), which measures the92

accuracy of coordinate-value and label matching in reconstructed tables, providing a more93

rigorous assessment of chart-to-table extraction performance.94
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2.3 Models95

Early approaches to chart understanding and visual reasoning tasks used static visual-96

language pipelines, but recent work has been largely dominated by end-to-end transformer-97

architecture models. DePlot (Liu et al., 2022) uses a visual encoder and text decoder to map98

plots directly to tables. However, its performance degrades greatly on out-of-distribution99

data (Nowak et al., 2024). UniChart and ChartLLaMA (Xia et al., 2024) leverage fine-tuned100

LLMs to perform visual reasoning tasks on charts, but rely heavily on datasets with simple101

charts and clear numerical overlays, greatly reducing the difficulty of data point extraction.102

Large Vision-Language Models (LVLMs), such as GPT-4V (Achiam et al., 2023), Claude103

3.5 and Gemini have demonstrated strong capabilities in chart reasoning tasks (Anthropic,104

2024; DeepMind, 2024; Islam et al., 2024), but still struggle with precise numerical extraction105

and semantic hallucination, particularly when figures do not contain explicitly labeled data106

points. These limitations are exacerbated in materials science figures, where layout, symbol107

density, and overlapping data points demand more specialized training and evaluation108

procedures, demonstrating the need for domain-specific model development.109

3 MatSci Chart Information Extraction Benchmark110

In this section, we describe our problem, dataset preparation, and evaluation metrics.111

3.1 Problem Definition112

In this work, we focus on the extraction of tabular data from materials science charts,113

specifically those related to polymer composites and thermophysical property data of metal114

systems. These charts typically represent a material property value, such as electrical115

conductivity or tensile strength, on the y-axis, and a variable that affects this property, such116

as temperature, pressure, or compositional data, on the x-axis. Each scatter plot’s set of data117

points has varying density, clarity, and size. Additionally, these plots frequently include118

categorical labels that provide further contextual information. These labels are indicated119

through various visual elements, such as different colors, shapes of point marks, or string120

labels, and may represent distinct experimental conditions, experiment numbers, additional121

factors affecting the property, or citations of data points sourced from other studies. Our122

goal is to extract the x and y axis labels, the numerical coordinate values for each data point123

on the x and y axes, and any corresponding labels. An example can be seen in Figure 3.124

Figure 1: Illustration of the chart-to-table extraction task. Left: A masterials science scatter
plot showing strain-to-break (%) versus volume percentage of rubbery interlayer for two
sample categories (20k20k and 40k40k). Right: The extracted data in tabular format with
column headers and values organized by x-axis values, y-axis values, and categorical labels.

3.2 Dataset Generation125

We introduce two datasets from distinct domains within materials science: polymer com-126

posites and thermophysical property data of metal systems. These are annotated by humans127

using WebPlotDigitizer manually. The average number of data points per chart is 17.11, with128

the minimum number of data points being 3 and the maximum number of data points being129
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73. For charts that include categorical labels—providing further contextual information for130

specific data points—the average number of unique labels is 3.40. The dataset includes 52131

charts with categorical labels and 24 charts without labels.132

Polymer composite article charts. (PolyCompChartIE) This dataset consists of 77 charts133

extracted from research articles in the domain of polymer composites. These charts are used134

exclusively for testing purposes, providing a benchmark to evaluate the effectiveness of our135

methods in this specific context.136

Thermophysical property data of metal systems article charts. (MetalThermoChartIE) This137

dataset consists of 620 charts sourced from articles focused on thermophysical properties of138

metal systems. We divide this dataset into training, validation, and testing subsets with a139

split of 60%, 20%, and 20%, respectively. In the test set, the average number of data points140

per chart is 31.17, with the minimum number of points being 3 and the maximum number141

of points being 134. For charts that include categorical labels, the average number of unique142

labels is 3.53. The dataset includes 58 charts with categorical labels and 66 charts without143

labels.144

Plot recreation using GPT-4o for code generation.145

The articles in our dataset span publications from 1920 to 2018, resulting in a wide range146

of image qualities. Older plots, often hand-drawn, exhibit significant noise, which poses147

challenges for automated data extraction. To address this, we sought to recreate the original148

charts programmatically, generating high-quality, standardized visualizations.149

We employed GPT-4o to reconstruct the provided plots using Python and Matplotlib. Prior150

research (Zhang et al., 2024) indicates that vision-language models (VLMs) struggle to infer151

exact numerical values without access to raw data in a human evaluation. To mitigate152

this, we included tabular annotations of the raw data in the input, ensuring a more faithful153

reproduction of the original plots. The prompt, which incorporates a chain-of-thought154

approach, is provided in section A.1. The model-generated code was then executed to155

produce the visualizations.156

To further refine the results for the test set, we implemented an iterative improvement157

process. We supplied the model with the original chart, the initial generated plot, and the158

corresponding code, prompting it to enhance the accuracy and fidelity of the reproduction.159

The prompt can be found in section A.1. An example illustrating the original plot, the160

initially generated plot, and the improved version can be found in subsection A.2. Each161

version was manually reviewed, and the most representative plot was selected. In cases162

where the complexity of the figure—such as highly irregular phase diagrams—exceeded the163

model’s capability, the generated plots were discarded.164

For the PolyCompChartIE dataset, 68 out of 77 plots were successfully reconstructed, while165

for the MetalThermoChartIE dataset, 93 out of 124 plots were accurately regenerated. This166

reconstructed dataset enables us to assess information extraction performance on both167

idealized, noise-free plots and original, often degraded scientific charts. The recreated charts168

will be made publicly available, providing a valuable resource for the community. However,169

the original charts remain subject to copyright restrictions and cannot be widely shared.170

3.3 Evaluation171

Some prior research has been conducted in constructing metrics for evaluating table similar-172

ity. Namely, Liu et al. (2022) have proposed Relative Mapping Similarity (RMS). RMS makes173

key improvements in incorporating positional relationships between numerical data points,174

accepting more flexibility in table representation, and reflecting losses in both precision and175

recall over a previous metric proposed in (Luo et al., 2021) and introduced in (Masry et al.,176

2022) named Relative Number Set Similarity (RNSS). However, because RMS was primarily used177

with bar and pie charts, it treats tables as an unordered set of mappings from column and178

row headers to single values, a structure that does not transfer sensibly to scatter plots. We179

formally introduce Row-Wise Mapping Similarity (RWMS), a metric found in the google-research180

GitHub repository associated with (Liu et al., 2022) but not explicitly described in the corre-181

sponding publication. While RWMS is well-suited for comparing tables derived from scatter182
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plots, its current implementation relies on a relative distance calculation that introduces bias183

based on chart axis ranges and inconsistently credits errors at different relative distances184

(See Figure 3). To address these issues, we propose a new metric, Relative Coordinate-Label185

Similarity (RCLS), which we formally define in the following section alongside a detailed186

comparison with RWMS.187

Row-Wise Mapping Similarity (RWMS). With this metric, a table is viewed as an unordered188

collection of row objects, written as pi = (p1
i , p2

i , . . . , pn
i ) and ti = (t1

i , t2
i , . . . , tm

i ) for each189

row in the predicted table P = {pi}1≤i≤N and the target table T = {tj}1≤j≤M, respectively.190

To calculate the distance Dθ between numerical values, the entries’ difference is normalized191

by the target value: Dθ(p, t) = min(1, ∥p − t∥/∥t∥). Distances above a certain threshold θ192

are set to 1, the maximum value. Textual entries are compared using Normalized Levenshtein193

Distance (NLϕ), where distance scores above ϕ are set to 1, the maximum value, restricting194

matching to text pairs with sufficient similarity. If the number of elements in p, n, is not195

equal to the number of elements in t, m, a row-similarity score of 0 is returned. Otherwise,196

the row similarity score is calculated as the product of each element-wise comparison,197

Sϕ,θ(p, t) =
K

∏
k=1

L

∏
l=1

(
1 − NLϕ(pk, tk)

)
(1 − Dθ(pl , tl)) ,

for a (p, t) pair with K textual entries and L numerical entries. Using the cost function198

(1 − Sϕ,θ) across the set of all possible (p, t) combinations produces an M × N similarity199

matrix, with which we can identify the minimal cost matching X ∈ RM×N between the row200

objects (in the form of a binary matrix). The precision and recall are then calculated as:201

RWMSprecision =
∑N

i=1 ∑M
j=1 XijSϕ,θ(pi, tj)

N
, (1)

RWMSrecall =
∑N

i=1 ∑M
j=1 XijSϕ,θ(pi, tj)

M
. (2)

The F1 score is recorded as the harmonic mean of the precision and recall. This metric also202

”considers the table and its transposition and returns the one with a higher RMSF1 score”.203

The RWMS metric has a couple of important limitations. Using a wide range of values for p204

and t in the calculation of Dθ quickly reveals that this method is heavily biased in favor of205

larger values relative to the range of the chart. For example, on a chart whose values range206

from 0 to 100, a prediction of 2 against a target of 1 would result in a relative distance of 1,207

whereas a prediction of 99 against a target of 100, equivalent in error magnitude, receives a208

relative distance of 0.01. While both of these predictions are relatively accurate given the209

wide range of the chart, only one is considered a match. This bias skews evaluation greatly210

based on distribution of points on the chart, and this becomes a substantial issue when211

evaluating charts of diverse x and y axis ranges.212

Furthermore, for our specific chart type of interest, scatter plots, comparing numerical213

values on an element basis does not treat errors of the same two-dimensional magnitude214

consistently. A prediction-target row pair that is within the relative error threshold θ in215

both x and y directions individually may or may not be within that relative error threshold216

when treated as a pair of (x, y) coordinates, a more intuitive and appropriate data structure217

for scatterplot points. We argue that our metric RCLS addresses these concerns and is more218

suitable for scatter plot data table comparison.219

Relative Coordinate-Label Similarity (RCLS). To address these limitations, we propose RCLS,220

which also views tables as unordered collections of row objects. However, the structure of221

our scatter plot data is largely consistent. In order to reflect x and y values appropriately222

corresponding to their axis labels as well as the legend label corresponding to each point, we223

adopted the convention of using the first column for the x-axis label and x values, the second224

column for the y-axis label and y values, and the third column for the legend labels, if they225

exist, for individual points. This convention addresses the frequent use of legend labels in226

scatter plots, which essentially create a third degree of freedom. It can be tempting to use this227

label as an additional column header, to avoid repeating it for many coordinates. However,228
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this style of annotation prevents us from correctly aligning the x- and y-axis labels, and229

thus using the label on a row basis is ideal. With this convention, it is useful notation230

to denote these row entries as pi = (pi[x, y], li), where pi[x, y] indicates a coordinate pair231

and li represents its corresponding textual label, left as ‘’ if none exists in the particular232

chart. In addition, a ”headers” row entry is added, written as ph = (px
h , py

h) and th = (tx
h , ty

h)233

for prediction headers and target headers respectively, containing two elements, the x-axis234

label and y-axis label. Calculation of distance between textual entries remains the same as235

with RWMS, using the Normalized Levenshtein Distance (NLϕ). The distance between pi(x, y)236

and ti(x, y) is calculated using the 2-dimensional Euclidean distance formula, with the x237

and y contributions being normalized by xrange = xmax − xmin and yrange = ymax − ymin238

respectively:239

Dθ(p, t) =

√(
tx − px

xrange

)2
+

(
ty − py

yrange

)2
.

Using the Euclidean distance formula ensures that the threshold θ for coordinate similarity240

is applied radially, rather than first in the x direction, and then in the y direction, which241

creates a rectangular acceptable error bound. Additionally, normalizing by the x and y242

ranges instead of the singular target value improves consistency in comparison of data243

points in different locations within a single chart as well as for diverse chart axis ranges.244

Illustration of the comparison of error bounds between RWMS and RCLS can be seen in245

subsection A.4.246

We compute the similarity score between two row objects as Sϕ,θ = (1 − NLϕ)(1 − Dθ), such247

that when both labels and coordinates are similar, Sϕ,θ is close to 1. The prediction and target248

”headers” are also compared, and given a similarity score Sϕ,θ = (1 − NLϕ(px
h, tx

h))(1 −249

NLϕ(py
h, ty

h)). We then construct the minimal cost matching X ∈ RM×N as in RWMS, and250

calculate the RCLSprecision and RCLSrecall using equations (1), (2). As before, the RCLSF1 score251

is the harmonic mean of the precision and recall. We found that comparing transpositions252

with our style of annotation did not improve any of these metrics through genuine table253

similarity, thus we do not compare table transpositions when computing RCLS.254

Number-Only Evaluation. The problem of information extraction from materials science255

scatter plots has two primary extraction goals: To accurately extract the numerical data-256

points, and to extract the textual elements, namely the axis labels and legend labels. While257

the previously presented metric RCLS incorporates both of these in its evaluation, it does not258

provide a clear indication of the specific performance of either of these two tasks individually.259

Cliche et al. (2017) introduced a metric which looks only at numerical datapoint extraction,260

viewing tables as an unordered list of coordinates written as pi = (px
i , py

i ) and tj = (tx
j , ty

j )261

for each row in the predicted table P = {pi}1≤i≤N and the target table T = {tj}1≤j≤M,262

respectively. The pair of distances Dx =
|Xpred−Xtrue|

∆Xtrue
and Dy =

|Ypred−Ytrue|
∆Ytrue

are computed263

for all possible prediction-target pairs, and pairings with Dx ≤ 0.02 and Dy ≤ 0.02 are264

considered true positives. Firstly, the target points’ nearest neighbor predictions are selected265

and true positives are determined. If a target prediction pair satisfies the true positive266

conditions, both are removed from the set to ensure each prediction is counted at most once.267

This process is repeated for remaining points until none satisfy the true positive conditions,268

or there are no more points. Finally, the precision, recall, and F1 are computed as TP/N,269

TP/M, and their harmonic mean, respectively.270

To better understand sources of error and model performance, we introduce a modification271

of RCLS called Relative Coordinate Similarity (RCS) which also views tables as unordered272

lists of coordinates, but utilizes the distance formula described in RCLS. Header rows are273

not compared with RCS, and the similarity score is defined as Sϕ,θ = 1 − Dθ , where Dθ274

is calculated using the same distance formula as in RCLS. Once again, the minimal cost275

matching is performed and the RCSprecision, RCSrecall, RCLSF1 are calculated with equations276

(1), (2), and their harmonic mean, respectively.277
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4 Experiment278

We test GPT-4o, o1, LLaMA 3.2-Vision 11B and 90B, and Qwen 2.5 VL models. The prompt279

used to extract the tabular data from charts can be found in section A.1. We find that both280

the Llama and Qwen models are unable to reliably produce CSVs. We parse their outputs281

using Gemini 2.0 Flash-Lite. We create a training set based on 75% of our original chart282

images.283

We used OpenAI API to prompt the o1 and GPT-4o models. For GPT-4o model, we set the284

maximum token size to 4096.285

PolyCompChartIE MetalThermoChartIE

Original Chart (76) Recreated Chart (68) Original Chart (124) Recreated Chart (93)

Model P R F1 P R F1 P R F1 P R F1

o1 45.08 48.81 46.30 - - - 23.37 20.98 20.59 - - -
GPT-4o 41.01 35.46 36.36 43.40 38.89 39.77 28.76 15.50 18.14 42.27 22.60 25.67

(Models using Gemini for CSV extraction):

LLaMa 3.1 Vision 11B + Finetune 40.83 41.08 39.72 - - - 66.55 42.63 48.11 - - -
LLaMa 3.1 Vision 11B 42.02 44.99 42.50 - - - 43.79 45.12 42.71 - - -
Qwen2.5-VL 44.62 48.02 45.01 - - - 46.02 46.94 45.00 - - -

Table 1: Precision (P), Recall (R), and F1-score (F1) for different models on the PolyCompChar-
tIE and MetalThermoChartIE datasets, comparing original and recreated charts. ”Models
using Gemini for CSV Extraction” means that we used Gemini 2.0 Flash-Lite to parse out-
puts from Llama and Qwen into CSVs, since they did not reliably produce outputs in the
correct format.
For PolyCompChartIE, we evaluate models on all 76 test images. Please see table Table 2 for
a numbers-only comparison, which improves the results significantly and shows that Qwen
is primarily out-performing Llama on text extraction, rather than information extraction

from the plotted points themselves.

To understand the difference between the original charts and the recreated ones, we used286

the GPT-4o model. We observe that the recreated charts scored higher in both of the datasets.287

With the MetalThermoChartIE dataset specifically, we observe significant improvement from288

18.14 F1 score to 25.67, likely due to this dataset’s increased diversity and generally higher289

average number of data points. The o1 model performed the best on the PolyCompChartIE290

set. When we finetune the LLaMa 3.1 Vision 11B model on the MetalThermoChartIE training291

set, we obtain the highest F1 score of 48.11. Notably, the Qwen2.5-VL model’s performance292

is very close to that of the best models, even the finetuned LlaMa Model, in both datasets.293

5 Discussion294

5.1 Error analysis295

Two examples from the MetalThermoChartIE dataset highlighting the challenges faced by296

GPT-4o model can be found in Figure 2. A primary source of error in the use of LVLMs297

for the chart-to-table task is numerical data point extraction. While LVLMs show strong298

capabilities in extracting the textual components of our materials science figures, namely299

the axis labels and legend labels, they frequently hallucinate and omit data points, generally300

predicting them at convenient intervals along the x-axis, such as the tick marks, and pro-301

viding y-coordinates that reflect the general trend of the data, i.e. whether it is increasing302

or decreasing, often in a linear fashion, but not fine extraction. Additionally, data points303

that are clustered tightly or overlapping are generally not recorded, leading to incomplete304

extracted data tables.305

We observe substantial performance improvements after finetuning Llama 3.1 Vision 11B,306

even on a limited number of domain-specific training samples. This suggests a lack of307

7



Under review as a conference paper at COLM 2025

Figure 2: Examples showing GPT-4o data extraction challenges on the MetalThermoChartIE
dataset. Top: While GPT-4o correctly identifies axis labels, it incorrectly linearizes the scat-
tered data points. Bottom: GPT-4o accurately reproduces axis labels and legend information
but introduces numerical inaccuracies in the extracted data values.

complex scientific charts in Llama’s pre-training and finetuning data. This may be expected308

as materials science chart data is often subject to copyrights, can be difficult to acquire, and309

currently requires intensive manual annotation. This highlights a significant opportunity for310

synthetic data generation to bridge this gap and enhance model capabilities for this domain.311

5.2 Original chart vs recreated code generated chart312

Through human evaluation, we found that GPT-4o performs well in generating code to accu-313

rately recreate charts when the underlying data is provided. However, in some cases the gen-314

erated plots contained errors that altered the visual representation of the data—potentially315

compromising accurate information extraction. As a result, 8 charts were removed from316

the PolyCompChartIE dataset, and 31 charts were excluded from the PolyCompChartIE317

dataset.318

6 Conclusion319

Extracting data locked in complex materials science charts remains challenging, even for320

frontier models like GPT-4o and o1. To address this, we introduced two domain-specific321

benchmarks and the RCLS metric tailored for scatter plot evaluation. Our evaluation322

revealed that current vision language models struggle with the noise and diversity of323

real-world scientific charts, exhibiting numerical and labeling inaccuracies, although per-324

formance improves markedly on cleaner, recreated versions. We observe that fine-tuning325

Llama 3.1 Vision 11B brought large performance gains even with limited data. Our work326

provides essential insights and resources that support the development of more accurate327

extraction methods—ultimately contributing to accelerated materials discovery through328

improved automation.329
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A Appendix419

A.1 Prompts420

Prompt for Chart Recreation Below, we provide the prompt used to initially re-create421

charts.422

423

Chart Recreation Prompt

This is a data visualization figure from an academic paper. Please write Python code
to draw the exact same plot as this one and save it as a PNG file with 300dpi.

Here are the specific x and y values for the datapoints included in the fig-
ure with their corresponding labels, if it exists:

{datapoints}

Let’s think step-by-step.
424

Prompt for Chart Refinement Below is the prompt used to refine re-created charts.425

426

Recreated Chart Refining Prompt

I have written a Python script to generate a plot that matches the original plot I
provided. However, the output plot does not look identical to the original. Please
review the differences between the two plots and modify the code to ensure the
generated plot matches the original in every detail. Pay attention to aspects like
marker size, color, line thickness, grid style, axis labels, data labels and their position,
positions of the ticks on the axes, figure dimensions, and any other visual elements.

Original code:
{code}

Please provide the updated code to make the generated plot match the original plot
exactly.

427
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Chart information extraction prompt The prompt below was used to extract data from428

charts.429

430

Chart Information Extraction Prompt

Extract the numerical data from the figures in image format.
The aim is to convert the plots into CSV tables. The input plots are coming from
materials
science articles and may include line graphs, scatter plots, or bar charts.

For each input image:
1. Identify the x and y axis labels.
2. Extract data points from the plot. The data points do not need to align with the
ticks
in the axis. I want to include all the data points that appear in the plot.
3. If there are multiple data series in a single plot, identify and label them.

The output should be a CSV file, formatted as follows:
- First row: x-axis label, y-axis label
- Subsequent rows: x value, y value, series label (if applicable)

If there’s no series label for a data point, the output should have only 2
columns.

Example output 1:
Graphene nanoplatelet (wt%),Flexural modulus (GPa),Series
0,3.1,GnP-C750/epoxy
3,3.2,GnP-C750/epoxy
5,3.25,GnP-C750/epoxy
0.5,3.1,GnP-5/epoxy
3.7,3.6,GnP-5/epoxy
4.6,3.9,GnP-5/epoxy

Example output 2:
SiO2 content (wt0,375
1,408
2,435
5,480
10,435
15,425

431
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A.2 Example of recreating the original plot using code generated by GPT-4o.432

Figure 3: Illustration of chart recreation using code. Left: Original materials science chart
from the MetalThermoChartIE dataset. Middle: Initial chart generated after providing
GPT-4o with the underlying numerical data. Note the incorrect colors and extraneous
rectangle around the legend. Right: Improved chart after feeding back the original plot and
initial generated chart to the model, which corrected the colors and legend presentation.

A.3 Evaluating only the numerical extraction433

PolyCompChartIE MetalThermoChartIE

Original Chart Recreated Chart Original Chart Recreated Chart

Model P R F1 P R F1 P R F1 P R F1

o1 50.31 54.84 51.63 - - - 36.59 30.90 31.12 - - -
GPT-4o 44.71 37.16 38.42 50.08 41.14 42.88 36.39 17.32 20.81 44.95 21.93 25.40

(Models using Gemini for CSV extraction):

LLaMa 3.1 Vision 11B + Finetune 52.39 51.81 51.93 - - - 73.40 50.62 58.17 - - -
LLaMa 3.1 Vision 11B 53.08 55.96 53.9 - - X 56.96 53.84 54.24 - - -
Qwen2.5-VL 53.76 58.44 55.38 - - - 56.97 56.22 55.51 - - -

Table 2: Precision (P), Recall (R), and F1-score (F1) for different models on the PolyCompChar-
tIE and MetalThermoChartIE datasets, comparing original and recreated charts. Only x axis
values and y axis values are evaluated.
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A.4 Comparison of error bounds434

Figure 4: Comparison of error bounds between RWMS (left) and RCLS (right) metrics.
RWMS applies rectangular error bounds with normalization relative to target values, result-
ing in inconsistent matching that favors points in the upper-right corner. RCLS implements
circular error bounds using Euclidean distance with normalization based on axis ranges,
ensuring consistent treatment of all data points regardless of their position on the plot.

A.5 Annotation protocol435

The MetalThermoChartIE dataset was digitized over several months using Engauge Digi-436

tizer (https://digitizer.sourceforge.net), with each chart taking 10–60 minutes depending437

on complexity. Annotations include both axis-referenced and pixel-referenced coordinates,438

with every file independently reviewed and approved by a second person. We use the axis439

referenced annotations for our task.440

The process of creating the PolyCompChartIE dataset was similar to that of the MetalTher-441

moChartIE dataset. An online tool called WebPlotDigitizer Automeris (2024) was used. To442

use the tool, we manually entered the minimum and maximum values for the x and y axes,443

and clicked on their corresponding locations on the image of the figure. We then clicked444

on each of the datapoints, so that the tool would populate an excel file of the datapoints445

interpolated using the human provided bounds. Finally, we manually entered the legend446

label, if present in the figure, for each (x, y) coordinate. This process takes approximately 15447

minutes per chart, representing a difficult bottleneck in the curation of highly complex and448

domain specific datasets where the underlying data is not available.449

A.6 Finetuning hyperparameters450

Data Usage451

• 50 training steps, equivalent to approximately 5 shuffled epochs452

• 372 training samples and 124 validation samples from MetalThermoChartIE453

• The last 124 samples were held out as a test set454

• Global batch size: 32455

• Image preprocessing: MllamaImageProcessor defaults for normalization, padding,456

and rescaling457
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Optimization458

• Optimizer: AdamW459

• β1 = 0.9, β2 = 0.999460

• Epsilon: 1 × 10−8
461

• Gradient accumulators in FP32462

• Learning rate: constant 5 × 10−5 with a 20-step warmup463

• Weight decay: dynamic (1 × 10−2× learning rate)464

• Gradient clipping: global norm of 1.0465

• Mixed precision: FP16 forward pass, FP32 backward pass466

Parameter-Efficient Fine-Tuning (PEFT with LoRA)467

• LoRA rank: 16468

• Alpha: 32469

• Dropout: 0.05470

• Target modules: Query, Key, Value, and Head-Mixing Output projections471

• Bias: none (matching LLaMA-3 configuration)472

Exploration Space473

We also explored the following hyperparameter combinations:474

• Epochs: {3, 5, 10}475

• Batch size: {16, 32, 64}476

• Learning rate: {5 × 10−4, 5 × 10−5}477

• LoRA rank: {8, 16}478

The best performance on validation data was obtained using 5 epochs, a batch size of 32, a479

learning rate of 5 × 10−5, and a LoRA rank of 16.480
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