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Abstract

For many complex systems the parametric form of the differential equation might
be unknown or infeasible to determine. Earlier works have explored to model the
unknown ODE system with a Gaussian Process model, however, the application has
been limited to a low dimensional data setting. We propose a novel framework by
combining a generative and a Bayesian nonparametric model. Our model learns a
physically meaningful latent representation (position, momentum) and solves in the
latent space an ODE system. The use of GP allows us to account for uncertainty as
well as to extend our work with informative priors. We demonstrate our framework
on an image rotation dataset. The method demonstrates its ability to learn dynamics
from high dimensional data and we obtain state-of-the-art performance compared
to earlier GP-based ODEs models on dynamic forecasting.

1 Introduction

One of the main properties of the physical world is that it evolves over time. This is often characterised
in the form of an ordinary differential equation (ODE). An autonomous ODE can be defined as:

ẋt :=
dxt

dt
= f(xt) (1)

with the evolution over time is specified as:

xT = x0 +

∫ T

0

f(xt)dt (2)

where the state of the system is captured by vector xt ∈ RD and it evolves in time t ∈ R+ from
an initial state x0 to a time point T following its time derivative f(xt). In our work f(·) denotes a
differential equation which could be first or second order. Traditionally the dynamics are defined by
expert knowledge of the system given prior observations and the parameters are found by numerical
optimization [3]. However, for many problems the functional (parametric) form of f might be
unknown. Hence, in recent years there has been growing amount of research that tries to learn the
underlying continuous-time dynamics from data [5, 19].

An increasingly popular research direction is to model the unknown ODE with a Gaussian Process
(GP) prior [10, 20, 25]:
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f(x) ∼ GP (0,K(x,x′)) (3)

where we assume zero-mean GPs for simplicity and the covariance matrix K(x,x′) fully specifies
the GP. In the remainder of this paper, we refer to ODE systems with GP priors as GP-ODEs.

The key property of GPs that make them applicable for learning unknown non-parametric ODE func-
tions is that they encode functions where similar states x,x′ induce similar differentials f(x), f(x′).
In particular, this similarity is captured by the kernel function K(x,x′), which also permits prior
knowledge embedding into the model.

In order to perform the integration in (2), the differential function f must be continuous, whereas
GPs are stochastic processes. This was first noticed by Heinonen et al. [10], who address the issue
by discarding the GP uncertainty in order to obtain a continuous function. Recently, Wilson et al.
[23] demonstrated that function-space sampling of GP posteriors is possible thanks to the Matheron’s
rule, which describes a decoupled sampling from the posterior by decomposing it into a prior and an
update term (for further details see Appendix A). Later, Hegde et al. [8], Yıldız et al. [25] showcased
that this framework allows for sampling ODE instantiations, or vector fields f , to simulate GP-ODE
systems.

Despite achieving state-of-the-art results, GP-ODE models are demonstrated on (i) low-dimensional
data settings, where the input is either some low dimension observations or simulation data of the
actual ODE system, and (ii) without the use of prior knowledge of the system, which is an integral
part of GP modeling. To the best of our knowledge, Solin et al. [20] is the only work in this line of
research that considers a high-dimensional data problem by employing variational auto-encoders
(VAEs) alongside a GP-ODE system. Yet, they do not train the feature encoder and dynamical model
in an end-to-end fashion, leading to sub-optimal performance. This is in stark contrast with static
VAE methods, which are proven to extract meaningful latent representations from high-dimensional
data, specifically due to joint training.

Similarly, this line of research lacks a principled investigation of meaningful priors induced on
GP-ODE systems, with an exception of [25] that modifies the right-hand-side of the ODE equation
(2) to incorporate domain specific knowledge. Since the neural network based ODE models have
been shown to benefit from inductive biases, such as second-order dynamics formulations [24], we
believe GP-ODEs can also be improved by stronger priors.

In this work, we propose VAE-GP-ODE, a probabilistic dynamic model that extends previous work by
learning dynamics from high-dimensional data with a structured GP prior. In particular, we propose
a VAE to embed the high-dimensional input into a latent space. Subsequently, we model the latent
space continuous-time dynamics with a GP. The use of a GP allows us to specify structural priors
over the model dynamics, hence, we are able to constrain our dynamics given prior knowledge of
the system. Our model is trained end-to-end using variational inference. We showcase our model’s
ability to learn, reproduce and forecast given a high-dimensional sequential input (image sequences).

2 Background

In this section, we review the standard VAE and Sparse Gaussian Process models.

2.1 Variational Auto-Encoders

The main task of an auto-encoder is to compress the input data x ∈ RD into a much lower dimensional
d ≪ D latent variable z ∈ Rd without loss of task-relevant information. Due to the non-linear
neural network likelihood mapping, pθ(x|z), the posterior in VAEs becomes intractable and hence
is approximated by an amortized variational distribution qϕ(z|x), where ϕ and θ are the parameters
of the encoders and decoders [13, 18]. In a VAE setting the model parameters ϕ are estimated via
variational inference, where the optimization task is to maximize the evidence lower bound (ELBO)
(4) or equivalently minimise the Kullback-Leibler divergence between the approximate and true
probability distribution.

2



log p(x) ≥ Ez∼qϕ(z|x)[log p(x|z)]− Ez∼qϕ(z|x)[log qϕ(z|x)− log p(z)]︸ ︷︷ ︸
ELBO

(4)

2.2 Sparse Gaussian Processes (SGPs)

GPs (3) define priors over functions. In this work, we consider priors on vector-valued functions
f : RD 7→ RD, which implies matrix-valued kernel functions K(x,x′) ∈ RD×D. While GPs
allow for handling uncertainties, their computational complexity grows cubically with the number
of input points. To tackle this, GPs are sparsified [15] by the introduction of inducing variables
U = (u1, . . . ,uJ)

T ∈ RJ×D and inducing locations M = (m1, . . . ,mJ)
T ∈ RJ×D such that

um = f(mj). In turn, the function values f(·) is evaluated conditioned on the inducing variables:

p(U) = N (U|0,KMM) (5)

p(f |U) = N (f |Avec(U),KXX −AKMMAT) (6)

where K is the covariance matrix for the given input and A = KXMK−1
MM. We have chosen to

follow the SGP framework as it allows us to utilise mini batching during training and hence use
stochastic gradient descent as an optimization algorithm.

3 Methods

We focus on problems where the goal is to learn an unknown ODE from a high-dimensional sequential
input given prior knowledge of the system. In the following sections we first describe the generative
and nonperametric Bayesian components of our model. Second, we define our optimisation objective
following variational inference principles.

3.1 VAE-GP-ODE Model

In our work we follow the generative model specification as first introduced by Chen et al. [5]. In
particular, our generative model involves latent variable(s) that correspond to the initial value(s) of
the ODE system as well as a differential function to be inferred. Inspired by Yildiz et al. [24], we
contrast first- and second-order ODE models, for which the corresponding latent variables are (a) the
initial position, or (b) the initial position and initial velocity. As such the generative model can be
expressed as follows (specifying for option (b), for option (a) ignore the velocity specification):

s0 ∼ p(s0) (7)
v0 ∼ p(v0) (8)

st = s0 +

∫ t

0

vτdτ (9)

vt = v0 +

∫ t

0

f(sτ ,vτ )dτ (10)

xi ∼ p(xi|si) i ∈ [0, N ] (11)

where the state position st and state velocity vt together form the latent state vector zt = (st,vt)
and N is the total number of steps in a trajectory. As it can be noted in Eq.11 the likelihood p(x|s)
only depends on the state position while velocity acts as an auxiliary variable driving the dynamics.

GPs as Nonparametric ODE model In our work we consider both first and second-order ODEs.
Second-order ODEs might be a favourable modelling choice as they are able to model higher
order dynamics as well as they can act as an useful inductive bias leading to major performance
improvements [7]. The first-order ODE follows Eq.1 while the second-order ODE has the following
form:
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Figure 1: Learning a vector field. From lelt to right: samples, learned field, divergence- and curl-free
components (kindly taken from [9]).

ẍt :=
d2xt

dt2
= f(xt, ẋt) (12)

In the case of a second-order ODE we decouple the ODE into two first-order ODEs:{
ṡt = vt

v̇t = f(st,vt)

[
sT
vT

]
=

[
s0
v0

]
+
∫ T

0

[
vt

f(st,vt)

]
dt (13)

where the derivative of position with respect to time ṡt is velocity and the derivative of velocity with
respect to time v̇t is acceleration. We model f(·) with a GP prior Eq.3. As the task at hand is to learn
dynamics from high-dimensional input we follow the sparse variational inference framework for GPs
using inducing variables [21].

Discussion on informative priors for GPs The differential function f(·) : RD 7→ RD defines a
vector field. Therefore, we model the vector field as a vector-valued GP [1]:

f ∼ GP (0,K) (14)

where K is an operator valued kernel, meaning that each entry is a matrix valued kernel K(x,x′) ∈
RD×D while the kernel matrix over data points X ∈ RN×D becomes K = (K(xi,xj))

N
i,j=1 ∈

RND×ND. As a baseline implementation we consider the identity decomposable kernel with a radial
basis function (rbf) scalar matrix:

Krbf(x,x
′) = σ2exp

(
−||x− x′||2

2l2

)
(15)

where l and σ2 are the kernel parameters, called lengthscale and variance, respectively. After which
we consider more complex operator valued kernels, such as, divergence-free kernel that assumes
stronger structural bias on the vector field:

Kdf(x,x
′) =

σ2
f

l2
e−

||x−x′||2

2l2

((
x− x′

l

)(
x− x′

l

)T

+

(
(D − 1)− ||x− x′||2

l2

)
· I

)
(16)

where D is the number of input dimensions (for more details see the Appendix C). The resulting
vector field does not have any sources or sinks and therefore can model real world fluid flow problems.
In principle, one can construct a covariance function that captures the known physical characteristic
of the underlying vector field (Fig. 1). The benefit of such an approach is that it reduces search space
of the true model, as well as makes the predictions aligned with the known physical properties of a
given system.
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3.2 Variational Inference

The joint probability model Given the generative model (7-11), the model unknowns are the
initial values z0, differential function f , inducing inputs Z and inducing outputs U. Overall, the full
joint distribution becomes:

p(x0:N , f , z0,U,Z) =

N∏
i=0

p(xi|f , z0)p(z0)p(f |U)p(U)p(Z) (17)

Due to non-linear likelihood mapping, the exact likelihood becomes intractable. Similar to previous
work [5, 24], we resort to variational inference that involves amortized inference for the initial values
and the mean-field inference framework for inducing variables [11].

Variational distributions Relying on the independence between initial values and dynamics we
propose the following posterior factorization:

q(f ,U, z0|x0:N ) = qenc(z0|x0:N )q(f ,U) (18)
= qenc(z0|x0:N )p(f |U)q(U), (19)

where the middle term was defined in (6). For initial values z0, we propose a position encoder
for the first-order method while second-order formulation requires one position encoder and one
velocity encoder. For the position encoder, the encoder takes as input only the first frame of the input
sequence, whereas for the velocity encoder we consider the first n frames, where n ≪ N with N
being the total sequence length. The variational encoding distribution is defined as

qenc(z0|x0:N ) = qenc

((
s0
v0

) ∣∣∣∣ x0:N

)
= N

((
µs(x0)

µv(x0:n)

)
,

(
diag(σs(x0)) 0

0 diag(σv(x0:n))

))
(20)

where µs, µv, σs, σv are encoding neural networks. The variational approximation of the vector field
is defined as

q(f) =

∫
p(f |U)q(U)dU (21)

where q(U) is a factorised Gaussian of the inducing variables across state dimensions

q(U) =

D∏
d=1

N(ud|md,Qd) (22)

with ud ∈ RJ , md ∈ RJ and Qd ∈ RJ×J . We finally note that the inducing locations Z are treated
as kernel hyperparameters [11].

Evidence lower bound Our goal is to learn the vector field f , the inducing points U, as well as the
parameters for the latent encoding z. Hence, the evidence lower bound (ELBO) becomes as follows:

log p(X) = log
∫ ∫ ∫

p(X|z0, f)p(z0)p(f |U)p(U)dz0dfdU (23)

= log

∫ ∫ ∫
q(f ,U, z0|X)

q(f ,U, z0|X)
p(X|z0, f)p(z0)p(f |U)p(U)dz0dfdU (24)

≥ Eq(f ,U,z0|X) [log p(X|z0, f)]︸ ︷︷ ︸
Lx

+Eqenc(z0|X)

[
log p(z0)

qenc(z0|X)

]
︸ ︷︷ ︸

Lz

+Eq(f ,U)

[
logp(f |U)p(U)

p(f |U)q(U)

]
︸ ︷︷ ︸

Lu

(25)
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where Lx is the likelihood term, Lz is the regularization KL term and Lu inducing KL term (for
details see Appendix B). The expected likelihood term Lx decomposes over time:

Lx =

N∑
i=1

Eq(f ,U,z0|x0:N ) log p(xi|f , z0). (26)

We compute the likelihood p(xi|f , z0) over the ODE state solution zi = z0 +
∫ ti
0

f(z(τ))dτ , which
later is mapped to the data space via the decoder. Since the expectation is not available in closed
form, we resort to Monte Carlo approximation, where we sample realizations of the vector field
fs ∼ q(fs) and the encoder distributions zs0 ∼ qenc(z

s
0|x0:m). Consequently, the likelihood term can

be approximated as

Lx ≈ 1

S

S∑
s=1

N∑
i=1

log p(xi|fs, zs0) =
1

S

S∑
s=1

N∑
i=1

log p(xi|dec(zsi )) (27)

4 Experiments

We showcase the performance of our model on rotating MNIST dataset [4]. The first goal of our
model is to showcase that GP-ODE type models are suitable for large-scale data, meaning that we are
able to successfully predict future frames given the initial frame x1 for 1st order ODEs or initial five
frames x1:5 for 2nd order ODE. The second goal is to constrain the dynamics given an informative
prior and thereby allowing to extrapolate to time points outside the training domain.

The model was implemented in PyTorch. The encoder, Gaussian process, and decoder parameters
were all jointly optimized using the Adam optimizer [12] with a learning rate of 0.001. For the
numerical solver, we used the torchdiffeq package [6]. An implementation of our experiments is
provided at https://github.com/IlzeAmandaA/VAE-GP-ODE.

Dataset For the rotating MNIST design, we follow the experimental set-up as introduced by Casale
et al. [4]. The dataset is created by rotating images of handwritten "3" digits. In total, we consider 16
rotation angles, 360 training sequences, and 40 test sequences. Each sequence starts with a random
initial angle (see Appendix D fig. 5). We set the latent dimensionality of the VAE to 6 and keep it
fixed across both first- and second-order ODE. We use a Bernoulli distribution for the reconstruction
likelihood as in [24]. We initialize the hyperparameters of the GP model to 2.0 (lengthscale) and 1.0
(variance), respectively.

Qualitative Analysis To analyse the performance of the model we demonstrate model’s predicition
in data space as in fig. 2. In addition, we visualize the latent trajectories z1:T (only position component
s1:T for second-order dynamics). For this, we map the six dimensional latent space into a 2D space
using principle component analysis (PCA). For example, fig. 3 shows the embedding, where each
color corresponds to a latent trajectory associated with a distinct data trajectory. For all latent space
plots, we double the integration time, i.e., rollouts with T = 32 time points.

Experimental Design We investigate 3 types of design choices: (i) pretrained VAE latent space,
(ii) 1st versus 2nd order ODE system, and (iii) informative prior (df-kernel).

4.1 Pretrained VAE Latent Space

To contrast our work to Solin et al. [20] we repeat their training set-up where the dynamics are learned
in a latent space that is induced by a separately trained VAE on the dataset. The results obtained
confirm our presupposition that training end-to-end is advantageous over decoupled training. When
the training is decoupled then the embeddings obtained are not constrained by the dynamics of the
observed process. Hence, the model is unsuccessful in learning the dynamics, see fig 2 ’Pretrained
VAE’. The qualitative observation matches the learned latent space where the predictions collapse to
the Gaussian prior (see fig. 3 ’Pretrained VAE’).
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Figure 2: Reconstructed test sequences. Top row: ground truth. Second row: Pretrained VAE (model
according to [20]). Bottom 3 rows: VAE-GP-ODE with varying order differential equation (1st or 2nd

order), and without (RBF kernel) or with (DF kernel) informative prior.
Conditioning: input for the encoder (1st ODE only x1, 2nd ODE x1:5 frames); Extrapolation: model’s
prediction within the training data sequence length (Tmax = 16); Forecasting: model’s prediction
outside the training data sequence length (T > 16).

Figure 3: Learned latent space. From left: Pretrained VAE [20]; 1st order ODE with RBF kernel; 2nd

order ODE with RBF; and 1st order ODE with DF kernel.
Each color corresponds to a latent trajectory associated with a distinct data sample. A circle indicates
the start of the trajectory and the subsequent stars a subsequent time point up until T=32.

4.2 First versus Second Order ODE

Table 1: MSE on test sequences (RBF
kernel)

VAE-GP-ODE MSE (std)
(RBF kernel)

1st ODE 0.047 (±0.13)
2nd ODE 0.041 (±0.12)

There are no major performance differences between the
1st and 2nd order ODE systems as shown in figure 2. Both
models successfully perform an extrapolation up to the
time period T = 16, confirming model’s flexibility to learn
dynamics for both 1st and 2nd order ODE formulations.
With respect to mean square error (MSE) both implemen-
tation choices achieve similar performance (see table 1).
Important to note that neither of the models is able to fore-
cast to time points outside the training regime (see fig. 2,
section Forecasting) with the 1st ODE model capturing half
a rotation and the 2nd ODE model only the first few angles as T > 16. This observation comes in
line with the learned latent vector field as seen in figure 3. The learned latent space has not captured
the rotational dynamics. Therefore, when the trajectory is forecasted beyond the training time points,
the model is unable to repeat the rotation perfectly.

4.3 Informative Prior

In order to bridge the gap between the unobserved true and the inferred dynamics, we set the kernel of
the GP-ODE model to have divergence-free (DF) properties. We only investigate the 1st ODE model
since the DF kernel input and output dimensions must match. The obtained results show that adding
an informative prior to the GP-ODE model is beneficial (see fig. 2). The DF kernel specification
constraints the latent space, therefore, the resulting model is able to better forecast outside the training
regime T > 16. This is confirmed by investigating the latent space which now forms a loop with an
increased prediction horizon, in contrast to the results obtained by the RBF kernel where the latent
space does not capture the full rotation (see fig. 3). This is of importance, as the training data contains
only a single rotation, so there is no information in the data itself that after T > 16 the rotation should
continue, but by specifying an informative prior (DF kernel) the model has learned exactly this. As a
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consequence, the model is able to forecast to time points far in the future, for example see figure 4
where the model is able to forecast even for 10 ∗ T (T = 16) time points.

Figure 4: Forecasting to 10× T (T = 16) future frames with 1st ODE DF kernel model.

5 Discussion

In the present work, we introduce end-to-end GP-ODE models for continuous-time dynamic modeling
for high-dimensional data. We propose a generative model for latent feature extraction in combination
with a nonparametric Bayesian model for learning the differential equation. As shown in the results our
framework obtains state-of-the-art extrapolation performance on high-dimensional image sequences,
as well as is able to forecast to time points well beyond the training regime when an informative prior
is specified. To our knowledge, this is the first work that successfully applies GP-ODE type model
for learning dynamics from high dimensional data with physics inspired informative priors in an
end-to-end fashion.

In contrast to earlier works [7, 24] we do not observe a performance improvement with an explicit
second order bias. We conjecture that the benefits of 2nd ODE systems might be dataset-dependent.
More concretely, a second order model for rotating MNIST dataset corresponds to learning dynamics
in a polar coordinate system where the latent states correspond to the angular position and angular
velocity. Therefore, a 1st ODE model might learn the dynamics in some other coordinate space, e.g.,
Euclidean space. Such an interpretation would also explain the differences in latent trajectories as
seen in figure 3: For the 1st ODE system, the state of the system is some coordinate in the latent plane,
hence, the velocity changes are less identifiable. For the 2nd ODE system, the visualized state is the
angular position, which follows an almost linear trend matching the constant rotation speed of the
data trajectories.

Moreover, even though the model is successful in constraining the dynamics given an informative
prior, the obtained performance is sensitive to the hyperparameter initialization of the GP kernel.
Even for a slightly different initialization (variance 0.7, lengthscale kept unchanged) the model learns
to a certain extent a different latent state, resulting in forecasting with varying quality (see Appendix
D fig. 6, fig. 7). This could be partly accounted by the PCA transformation to 2d space, however it
also indicates that the current method is lacking some additional constraint as multiple alternative
latent space representations are seen as equally likely by the model. Similarly, if the dataset is
constrainted to only have a fixed initial angle, the model does not learn the rotation in the latent space
and is therefore unable to forecast (see Appendix D, fig. 8, fig.9). In our future work we are planning
to address this by adjusting the model design.

Additional future research direction could be to look into alternative informative priors. For example,
for the given dataset perhaps a positive-curl kernel would bring even further performance improve-
ments. Similarly, a combination of curl- and divergence-free kernels could also be of interest. On the
more theoretical side it could be investigated whether the approximation methods used for efficient
sampling from the posterior do not detrimentally affect the assumed physical constraints of the kernel.
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Appendix A Decoupled Sampling

Matheron’s Rule describes that given two jointly Gaussian random variables a and b, the random
variable a conditional on b = β is equal in distribution to

(a|b = β)
d
= a+ Cov(a,b)Cov(b,b)−1(β − b). (28)

For a GP defined as f ∼ GP (0, k) with a marginal fm = f(Z) and the process conditioned on
fm = u the above is as follows (Corollary 2 Wilson et al. [23]),

(f |u)(·)︸ ︷︷ ︸
posterior

d
= f(·)︸︷︷︸

prior

+ k(·, Z)K−1
m,m(u− fm)︸ ︷︷ ︸
update

. (29)

Consequently, sampling from the posterior can be decoupled in a prior and an updated term. Further-
more, Wilson et al. [23] propose to use different bases for the prior and update terms. In particular,
they propose to use Fourier basis functions for the prior term and canonical basis for the update term
(as summarised by Hegde et al. [8])

f(x)|u︸ ︷︷ ︸
posterior

≈
F∑
i=1

wiϕi(x)︸ ︷︷ ︸
prior

+

M∑
j=1

νjK(x, zj)︸ ︷︷ ︸
udpate

, (30)

where F is the number of Fourier bases ϕi(·) used with wi ∼ N(0, 1) [16], and K(·, zj) is the
kernel function with ν = K(Z,Z)−1(u−Φw),Φ = ϕ(Z) ∈ RM×F ,w ∈ RF . For the experiment
presented we compute the features maps for the RBF kernel and the divergence-free kernel as
described in the following 2 paragaraphs.

RBF Kernel We compute the feature maps for the RBF kernel as ϕi(x) =

√
σ2
f

F cos(xTωi + b)

where ωi is sampled proportional to the spectral density of the rbf kernel ωi ∼ N(0,Λ−1), Λ =
diag(l21, l

2
2, . . . , l

2
D) is a diagonal matrix of the lengthscale parameters of the kernel and σ2

f is the
signal variance parameter.

Divergence-Free Kernel For the divergence-free kernel we compute the feature maps as specified
by Brault et al. [2]

ϕi(x) =

√
σ2
f

F

(
cos(⟨x, ωi⟩+ b)B(ωi)
sin(⟨x, ωi⟩+ b)B(ωi)

)
, (31)

where B(ω) = I||ω|| − ωωT

||ω||2 and ω ∼ N(0,Λ−1).

Appendix B Detailed Derivations

ELBO With the above variational model specification we can derive the following evidence lower
bound
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log p(X) = log
∫ ∫ ∫

p(X|z0, f)p(z0)p(f |U)p(U)dz0dfdU (32)

= log
∫ ∫ ∫

q(f ,U, z0|X)

q(f ,U, z0|X)
p(X|z0, f)p(z0)p(f |U)p(U)dz0dfdU (33)

≥ Eq(f ,U,z0|X)log
[
p(X|z0,f)p(z0)p(f |U)p(U)

q(z0|X)q(f ,U)

]
(34)

≥ Eq(f ,U,z0|X)

[
log p(X|z0, f) + log p(z0)

q(z0|X) + logp(f |U)p(U)
p(f |U)q(U)

]
(35)

≥ Eq(f ,U,z0|X) [log p(X|z0, f)]︸ ︷︷ ︸
Lx

+Eq(z0|X)

[
log p(z0)

q(z0|X)

]
︸ ︷︷ ︸

Lz

+Eq(f ,U)

[
logp(f |U)p(U)

p(f |U)q(U)

]
︸ ︷︷ ︸

Lu

(36)

Hence the ELBO decomposes as

L = Lx + Lz + Lu (37)

Regularization Term The regularization term Lz corresponds to KL divergence between the
encoding distribution and the prior on the latent space.

Lz = Eq(z0|X)log
p(z0)

q(z0|X)
(38)

= −KL [qenc(z0|x0:N )||p(z0)] (39)

Inducing KL The Lu corresponds to the KL divergence between the variational posterior and the
prior distribution of inducing values. This term can be derived analytically as the KL between two
multivariate Gaussians.

Lu = Eq(f ,U)log
p(f |U)p(U)

p(f |U)q(U)
(40)

= −KL [q(U)||p(U)] (41)

Appendix C Kernel Specifications

Divergence-free kernel In the same way as Gaussian distributions are closed under linear trans-
formations, Gaussian Processes are closed under linear operators [17]. An example of such linear
operator could be differentiation or integration (for further details see [22]). Using this property
we can construct new covariance functions. One of such functions is a divergence-free covariance
function.

In particular, a vector field g(u) is known to be solenoidal if it can written as the curl of another
vector field f(u)

g(u) = ∇× f(u) (42)

We model the vector field f(u) with a GP, where each component fi(u) is a GP with a squared
exponential covariance function (RBF kernel)

f(u) ∼ GP (0, krbf(u,u
′)) (43)
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The resulting covariance function of g(u) is given by

K(x, x′) =
σ2
f

l2
e−

||x−x′||2

2l2

((
x− x′

l

)(
x− x′

l

)T

+

(
(n− 1)− ||x− x′||2

l2

)
· I

)
(44)

where n is the dimension of the physical space. For a complete derivation see Wahlström [22]
Appendix A. Important note on the above kernel is that it is only divergence-free analytically, in fact
[14] has shown that the numerical divergence is non-zero.

Appendix D Supplementary Results DF-Kernel

Training Data For all experiments we used rotating MNIST dataset with random initial angle
rotation. All sequences were still kept the same length T = 16 as the dataset follows a circular
rotation.

Figure 5: Example dataset (random inital angle)

Different Initialization Hyperparameters initialized to 0.7 variance and 2.0 lengthscale. Model
trained for 20’000 epochs.

Figure 6: Extrapolation to T=32 with DF-kernel (first-order ODE)

Figure 7: Latent space (first-order ODE) with DF-kernel

Fixed initial angle If the dataset is constrained to have all sequences with the same initial angle
then the model is unsuccessful to learn the rotation in the latent space. Training settings: variance 1.0,
lengthscale 2.0, df-kernel, and 5000 training epochs.

Figure 8: Extrapolation to T=32 with DF-kernel (first-order ODE) with fixed angle training data
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Figure 9: Latent space (first-order ODE) with DF-kernel with fixed angle training data
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