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Abstract

When training neural networks with custom objectives, such as ranking losses and
shortest-path losses, a common problem is that they are, per se, non-differentiable.
A popular approach is to continuously relax the objectives to provide gradients, en-
abling learning. However, such differentiable relaxations are often non-convex and
can exhibit vanishing and exploding gradients, making them (already in isolation)
hard to optimize. Here, the loss function poses the bottleneck when training a
deep neural network. We present Newton Losses, a method for improving the
performance of existing hard to optimize losses by exploiting their second-order
information via their empirical Fisher and Hessian matrices. Instead of training the
neural network with second-order techniques, we only utilize the loss function’s
second-order information to replace it by a Newton Loss, while training the network
with gradient descent. This makes our method computationally efficient. We apply
Newton Losses to eight differentiable algorithms for sorting and shortest-paths,
achieving significant improvements for less-optimized differentiable algorithms,
and consistent improvements, even for well-optimized differentiable algorithms.

1 Introduction

Traditionally, fully-supervised classification and regression learning relies on convex loss functions
such as MSE or cross-entropy, which are easy-to-optimize in isolation. However, the need for
large amounts of ground truth annotations is a limitation of fully-supervised learning; thus, weakly-
supervised learning with non-trivial objectives [1]–[7] has gained popularity. Rather than using
fully annotated data, these approaches utilize problem-specific algorithmic knowledge incorporated
into the loss function via a continuous relaxation. For example, instead of supervising ground truth
values, supervision can be given in the form of ordering information (ranks), e.g., based on human
preferences [8], [9]. However, incorporating such knowledge into the loss can make it difficult to
optimize, e.g., by making the loss non-convex in the model output, introducing bad local minima, and
importantly leading to vanishing as well as exploding gradients, slowing down training [10], [11].

Loss functions that integrate problem-specific knowledge can range from rather simple contrastive
losses [12] to rather complex losses that require the integration of differentiable algorithms [2], [7], [8],
[11], [13]. In this work, we primarily focus on the (harder) latter category, which allows for solving
specialized tasks such as inverse rendering [14]–[16], learning-to-rank [2], [5], [8], [11], [17]–[20],
self-supervised learning [3], differentiation of optimizers [21], [22], and top-k supervision [2], [5],
[23]. In this paper, we summarize these loss functions under the umbrella of algorithmic losses [24]
as they introduce algorithmic knowledge via continuous relaxations into the training objective.
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While the success of neural network training is primarily due to the backpropagation algorithm and
stochastic gradient descent (SGD), there is also a promising line of work on second-order optimization
for neural network training [25]–[33]. Compared to first-order methods like SGD, second-order
optimization methods exhibit improved convergence rates and therefore require fewer training steps;
however, they have two major limitations [31], namely (i) computing the inverse of the curvature
matrix for a large and deep neural network is computationally substantially more expensive than
simply computing the gradient with backpropagation, which makes second-order methods practically
inapplicable in many cases [34]; (ii) networks trained with second-order information have been
shown to exhibit reduced generalization capabilities [35].

Inspired by ideas from second-order optimization, in this work, we propose a novel method for incor-
porating second-order information into training with non-convex and hard to optimize algorithmic
losses. Loss functions are usually cheaper to evaluate than a neural network. Further, loss functions
operate on lower dimensional spaces than those spanned by the parameters of neural networks.
If the loss function becomes the bottleneck in the optimization process because it is difficult to
optimize, it suggests to use a stronger optimization method that requires fewer steps like second-
order optimization. However, as applying second-order methods to neural networks is expensive
and limits generalization, we want to train the neural network with first-order SGD. Therefore, we
propose Newton Losses, a method for locally approximating loss functions with a quadratic with
second-order Taylor expansion. Thereby, Newton Losses provides a (locally) convex loss leading to
better optimization behavior, while training the actual neural network with gradient descent.

For the quadratic approximation of the algorithmic losses, we propose two variants of Newton Losses:
(i) Hessian-based Newton Losses, which comprises a generally stronger method but requires an
estimate of the Hessian [31]. Depending on the choice of differentiable algorithm, choice of relaxation,
or its implementation, the Hessian may, however, not be available. Thus, we further relax the method to
(ii) empirical Fisher matrix-based Newton Losses, which derive the curvature information from the
empirical Fisher matrix [36], which depends only on the gradients. The empirical Fisher variant can
be easily implemented on top of existing algorithmic losses because it does not require to compute
their second derivatives, while the Hessian variant requires computation of second derivatives and
leads to greater improvements when available.

We evaluate Newton Losses for an array of eight families of algorithmic losses on two popular
algorithmic benchmarks: the four-digit MNIST sorting benchmark [37] and the Warcraft shortest-
path benchmark [22]. We find that Newton Losses leads to consistent performance improvements for
each of the algorithms—for some of the algorithms (those which suffer the most from vanishing and
exploding gradients) more than doubling the accuracy.

2 Background & Related Work

The related work comprises algorithmic supervision losses and second-order optimization methods.
To the best of our knowledge, this is the first work combining second-order optimization of loss
functions with first-order optimization of neural networks, especially for algorithmic losses.

Algorithmic Losses. Algorithmic losses, i.e., losses that contain some kind of algorithmic compo-
nent, have become quite popular in recent machine learning research. In the domain of recommender
systems, early learning-to-rank works already appeared in the 2000s [17], [18], [38], but more recently
Lee et al. [39] proposed differentiable ranking metrics, and Swezey et al. [8] proposed PiRank, which
relies on differentiable sorting. For differentiable sorting, an array of methods has been proposed in
recent years, which includes NeuralSort [37], SoftSort [40], Optimal Transport Sort [2], differentiable
sorting networks (DSN) [5], and the relaxed Bubble Sort algorithm [24]. Other works explore
differentiable sorting-based top-k for applications such as differentiable image patch selection [41],
differentiable k-nearest-neighbor [23], [37], top-k attention for machine translation [23], differen-
tiable beam search methods [23], [42], survival analysis [43], and self-supervised learning [7]. But
algorithmic losses are not limited to sorting: other works have considered learning shortest-paths [21],
[22], [24], [44], learning 3D shapes from images and silhouettes [14]–[16], [24], [45]–[47], learning
with combinatorial solvers for NP-hard problems [22], learning to classify handwritten characters
based on editing distances between strings [24], learning with differentiable physics simulations [48],
and learning protein structure with a differentiable simulator [49], among many others.
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Second-Order Optimization. Second-order methods have gained popularity in machine learning
due to their fast convergence properties when compared to first-order methods [25]. One alternative
to the vanilla Newton’s method are quasi-Newton methods, which, instead of computing an inverse
Hessian in the Newton step (which is expensive), approximate this curvature from the change in
gradients [31], [50], [51]. In addition, a number of new approximations to the pre-conditioning matrix
have been proposed in the literature, i.a., [26], [28], [52]–[54]. While the vanilla Newton method
relies on the Hessian, there are variants which use the empirical Fisher matrix, which can coincide in
specific cases with the Hessian, but generally exhibits somewhat different behavior. For an overview
and discussion of Fisher-based methods (including natural gradient descent), see [36], [55].

3 Newton Losses

3.1 Preliminaries

We consider the training of a neural network f(x; θ), where x ∈ Rn is the vector of inputs, θ ∈ Rd is
the vector of trainable parameters and y = f(x; θ) ∈ Rm is the vector of outputs. As per vectorization,
x = [x1, . . . , xN ]⊤ ∈ RN×n denotes a set of N input data points, and y = f(x; θ) ∈ RN×m denotes
the neural network outputs corresponding to the inputs. Further, let ℓ : RN×m → R denote the loss
function, and let the “label” information be implicitly encoded in ℓ. The reason for this choice of
implicit notation is that, for many algorithmic losses, it is not just a label, e.g., it can be ordinal
information between multiple data points or a set of encoded constraints. We assume the loss function
to be twice differentiable, but also present an extension for only once differentiable losses, as well as
non-differentiable losses via stochastic smoothing in the remainder of the paper.

Conventionally, the parameters θ are optimized using an iterative algorithm (e.g., SGD [56],
Adam [57], or Newton’s method [31]) that updates them repeatedly according to:

θt ← One optim. step of ℓ(f(x; θ)) wrt. θ at θ = θt−1 . (1)

However, in this work, we consider splitting this optimization update step into two alternating steps:

z⋆t ← One optim. step of ℓ(z) wrt. z at z = f(x; θt−1) , (2a)

θt ← One optim. step of 1
2∥z

⋆
t − f(x; θ)∥22 wrt. θ at θ = θt−1 . (2b)

More formally, this can also be expressed via a function ϕ( ·, ·, · ) that describes one update step (its
first argument is the objective to be minimized, its second argument is the variable to be optimized,
and its third argument is the starting value for the variable) as follows:

θt ← ϕ ( ℓ(f(x; θ)), θ, θt−1 ) (3)

And, for two update step functions ϕ1 and ϕ2, we can formalize (2) to

z⋆t ← ϕ1( ℓ(z), z, f(x; θt−1) ) , (4a)

θt ← ϕ2(
1
2∥z

⋆
t − f(x; θ)∥22, θ, θt−1 ) . (4b)

The purpose of the split is to enable us to use two different iterative optimization algorithms ϕ1 and
ϕ2. This is particularly interesting for optimization problems where the optimization of the loss
function ℓ is a difficult optimization problem. For standard convex losses like MSE or CE, gradient
descent is a perfectly sufficient choice for ϕ1 (MSE will recover the goal, and CE leads to outputs z⋆
that achieve a perfect argmax classification result). However, if there is the asymmetry of ℓ being
harder to optimize (requiring more steps), while (4a) being much cheaper per step compared to (4b),
then the optimization of the loss (4a) comprises a bottleneck compared to the optimization of the
neural network (4b). Such conditions are prevalent in the space of algorithmic supervision losses.

A similar split (for the case of splitting between the layers of a neural network, and using gradient
descent for both (2a) and (2b), i.e., the requirement of ϕ1 = ϕ2) is also utilized in the fields of
biologically plausible backpropagation [58]–[61] and proximal backpropagation [62], leading to
reparameterizations of backpropagation. For SGD, we show that (3) is exactly equivalent to (4) in
Lemma 2, and for a special case of Newton’s method, we show the equivalence in Lemma 3 in the
SM. Motivated by the equivalences under the split, in the following, we consider the case of ϕ1 ̸= ϕ2.
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3.2 Method

Equipped with the two-step optimization (2) / (4), we can introduce the idea behind Newton Losses:

We propose ϕ1 to be Newton’s method, while ϕ2 remains stochastic gradient descent.

In the following, we formulate how we can solve optimizing (2a) with Newton’s method, or, whenever
we do not have access to the Hessian of ℓ, using a step pre-conditioned via the empirical Fisher
matrix. This allows us to transform an original loss function ℓ into a Newton loss ℓ∗, which allows
optimizing ℓ∗ with gradient descent only while maintaining equivalence to the two-step idea, and
thereby making it suitable for common machine learning frameworks.

Newton’s method relies on a quadratic approximation of the loss function at location ȳ = f(x; θ)

ℓ̃ȳ(z) = ℓ(ȳ) + (z− ȳ)⊤∇ȳℓ(ȳ) +
1
2 (z− ȳ)⊤∇2

ȳℓ(ȳ) (z− ȳ) , (5)

and sets its derivative to 0 to find the location z⋆ of the stationary point of ℓ̃ȳ(z):

∇z⋆ ℓ̃ȳ(z
⋆) = 0 ⇔ ∇ȳℓ(ȳ) +∇2

ȳℓ(ȳ)(z
⋆ − ȳ) = 0 ⇔ z⋆ = ȳ − (∇2

ȳℓ(ȳ))
−1∇yℓ(ȳ). (6)

However, when ℓ is non-convex or the smallest eigenvalues of∇2
ȳℓ(ȳ) either become negative or zero,

this z⋆ may not be a good proxy for a minimum of ℓ, but may instead be any other stationary point or
lie far away from ȳ, leading to exploding gradients downstream. To resolve this issue, we introduce
Tikhonov regularization [63] with a strength of λ, which leads to a well-conditioned curvature matrix:

z⋆ = ȳ − (∇2
ȳℓ(ȳ) + λ · I)−1∇ȳℓ(ȳ) . (7)

Using z⋆, we can plug the solution into (2b) to find the Newton loss ℓ∗ and compute its derivative as

ℓ∗z⋆(y) = 1
2 (z

⋆ − y)⊤(z⋆ − y) = 1
2 ∥z

⋆ − y∥22 and ∇yℓ
∗
z⋆(y) = y − z⋆ . (8)

Here, as in Section 3.1, y = f(x, θ). Via this construction, we obtain the Newton loss ℓ∗z⋆ , a new
convex loss, which itself has a gradient that corresponds to one Newton step of the original loss. In
particular, on y, one gradient descent step on the Newton loss (8) reduces to

y ← y − η · ∇yℓ
∗
z⋆(y) = y − η · (y − z⋆) = y − η · (∇2

yℓ(y) + λ · I)−1∇yℓ(y) , (9)

which is exactly one step of Newton’s method on y. Thus, we can optimize the Newton loss
ℓ∗z⋆(f(x; θ)) with gradient descent, and obtain equivalence to the proposed concept.

In the following definition, we summarize the resulting equations that define the Newton loss ℓ∗z⋆ .
Definition 1 (Newton Losses (Hessian)). For a loss function ℓ and a given current parameter vector θ,
we define the Hessian-based Newton loss via the empirical Hessian as

ℓ∗z⋆(y) = 1
2∥z

⋆ − y∥22 where z⋆i = ȳi −
(

1
N

∑N
j=1∇

2
ȳj
ℓ(ȳ) + λI

)−1

∇ȳi
ℓ(ȳ) (10)

for all i ∈ {1, ..., N} and ȳ = f(x; θ).

We remark that computing and inverting the Hessian of the loss function is usually computationally
efficient. (We remind the reader that the Hessian of the loss function is the second derivative wrt. the
inputs of the loss function and we further remind that the inputs to the loss are not the neural network
parameters / weights.) Whenever the Hessian matrix of the loss function is not available, whether it
may be due to limitations of a differentiable algorithm, large computational cost, lack of a respective
implementation of the second derivative, etc., we may resort to using the empirical Fisher matrix
(i.e., the second uncentered moments of the gradients) as a source for curvature information. We
remark that the empirical Fisher matrix is not the same as the Fisher information matrix [36], and that
the Fisher information matrix is generally not available for algorithmic losses. While the empirical
Fisher matrix, as a source for curvature information, may be of lower quality than the Hessian matrix,
it has the advantage that it can be computed from the gradients, i.e.,

F = Ex

[
∇f(x,θ) ℓ(f(x, θ)) · ∇f(x,θ) ℓ(f(x, θ))

⊤] . (11)

This means that, assuming a moderate dimension of the prediction space m, computing the empirical
Fisher comes at no significant overhead and may, conveniently, be performed in-place as we discuss
later. Again, we regularize the matrix via Tikhonov regularization with strength λ and can, accordingly,
define the empirical Fisher-based Newton loss as follows.
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Algorithm 1 Training with a Newton Loss

# Python style pseudo-code
model = ... # neural network
loss = ... # original loss fn
optimizer = ... # optim. of model
tik_l = ... # hyperparameter

for data, label in data_loader:
# apply a neural network model
y = model(data)

# compute gradient of orig. loss
grad = gradient(loss(y, label), y)
# compute Hessian (or alt. Fisher)
hess = hessian(loss(y, label), y)

# compute the projected optimum
z_star = (y - grad @ inverse(hess

+ tik_l * eye(g.shape[1]))).detach()

# compute the Newton loss
l = MSELoss()(y, z_star)

# backpropagate and optim. step
l.backward()
optimizer.step()

Algorithm 2 Training with InjectFisher

# implements the Fisher-based Newton
# loss via an injected modification
# of the backward pass:
class InjectFisher(AutoGradFunction):

def forward(ctx, x, tik_l):
assert len(x.shape) == 2
ctx.tik_l = tik_l
return x

def backward(ctx, g):
fisher = g.T @ g * g.shape[0]
input_grad = g @ inverse(fisher

+ ctx.tik_l * eye(g.shape[1]))
return input_grad, None

for data, label in data_loader:
# apply a neural network model
y = model(data)
# inject the Fisher backward mod.
y = InjectFisher.apply(y, tik_l)
# compute the original loss
l = loss(y, label)
# backpropagate and optim. step
l.backward()
optimizer.step()

Definition 2 (Newton Loss (Fisher)). For a loss function ℓ, and a given current parameter vector θ,
we define the empirical Fisher-based Newton loss as

ℓ∗z⋆(y) = 1
2∥z

⋆ − y∥22 where z⋆i = ȳi −
(

1
N

∑N
j=1∇ȳj

ℓ(ȳ)∇ȳj
ℓ(ȳ)⊤+λI

)−1

∇ȳi
ℓ(ȳ)

for all i ∈ {1, ..., N} and ȳ = f(x; θ).

Before continuing with the implementation, integration, and further computational considerations, we
can make an interesting observation. In the case of using the trivial MSE loss, i.e., ℓ(y) = 1

2∥y−y⋆∥22
where y⋆ denotes a ground truth, the Newton loss collapses to the original MSE loss. This illustrates
that Newton Losses requires non-trivial original losses. Another interesting aspect is the arising
fixpoint—the Newton loss of a Newton loss is equivalent to a simple Newton loss.

3.3 Implementation

After introducing Newton Losses, in this section, we discuss aspects of implementation and illustrate
its implementations in Algorithms 1 and 2. Whenever we have access to the Hessian matrix of the
algorithmic loss function, it is generally favorable to utilize the Hessian-based approach (Algo. 1 /
Def. 1), whereas we can utilize the empirical Fisher-based approach (Algo. 2 / Def. 2) in any case.

In Algorithm 1, the difference to regular training is that we use the original loss only for the
computation of the gradient (grad) and the Hessian matrix (hess) of the original loss. Then we
compute z⋆ (z_star). Here, depending on the automatic differentiation framework, we need to ensure
not to backpropagate through the target z_star, which may be achieved, e.g., via “.detach()”
or “.stop_gradient()”, depending on the choice of library. Finally, the Newton loss l may be
computed as the squared / MSE loss between the model output y and z_star and an optimization
step on l may be performed. We note that, while we use a label from our data_loader, this label
may be empty or an abstract piece of information for the differentiable algorithm; in our experiments,
we use ordinal relationships between data points as well as shortest-paths on graphs.

In Algorithm 2, we show how to apply the empirical Fisher-based Newton Losses. In particular, due
to the empirical Fisher matrix depending only on the gradient, we can compute it in-place during the
backward pass / backpropagation, which makes this variant particularly simple and efficient to apply.
This can be achieved via an injection of a custom gradient right before applying the original loss,
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which replaces the gradient in-place by a gradient that corresponds to Definition 2. The injection is
performed by the InjectFisher function, which corresponds to an identity during the forward pass
but replaces the gradient by the gradient of the respective empirical Fisher-based Newton loss.

In both cases, the only additional hyperparameter to specify is the Tikonov regularization strength
λ (tik_l). λ heavily depends on the algorithmic loss function, particularly, on the magnitude of
gradients provided by the algorithmic loss, which may vary drastically between different methods
and implementations. Other factors may be the choice of Hessian / Fisher, the dimension of outputs
m, the batch size N . Notably, for very large λ, the direction of the gradient becomes more similar to
regular gradient descent, and for smaller λ, the effect of Newton Losses increases. We provide an
ablation study for λ in Section 4.3.

4 Experiments1

For the experiments, we apply Newton Losses to eight methods for differentiable algorithms and
evaluate them on two established benchmarks for algorithmic supervision, i.e., problems where
an algorithm is applied to the predictions of a model and only the outputs of the algorithm are
supervised. Specifically, we focus on the tasks of ranking supervision and shortest-path supervision
because they each have a range of established methods for evaluating our approach. In ranking
supervision, only the relative order of a set of samples is known, while their absolute values remain
unsupervised. The established benchmark for differentiable sorting and ranking algorithms is the
multi-digit MNIST sorting benchmark [2], [5], [11], [37], [40]. In shortest-path supervision, only
the shortest-path of a graph is supervised, while the underlying cost matrix remains unsupervised.
The established benchmark for differentiable shortest-path algorithms is the Warcraft shortest-path
benchmark [21], [22], [24]. As these tasks require backpropagating through conventionally non-
differentiable algorithms, the respective approaches make the ranking or shortest-path algorithms
differentiable such that they can be used as part of the loss.

4.1 Ranking Supervision

In this section, we explore ranking supervision [37] with an array of differentiable sorting-based
losses. Here, we use the four-digit MNIST sorting benchmark [37], where sets of n four-digit MNIST
images are given, and the supervision is the relative order of these images corresponding to the
displayed value, while the absolute values remain unsupervised. The goal is to learn a CNN that maps
each image to a scalar value in an order preserving fashion. As losses, we use sorting supervision
losses based on the NeuralSort [37], the SoftSort [40], the logistic Differentiable Sorting Network [5],
and the monotonic Cauchy DSN [11]. NeuralSort and SoftSort work by mapping an input list
(or vector) of values to a differentiable permutation matrix that is row-stochastic and indicates the
order / ranking of the inputs. Differentiable Sorting Networks offer an alternative to NeuralSort and
SoftSort. DSNs are based on sorting networks, a classic family of sorting algorithms that operate by
conditionally swapping elements. By introducing perturbations, DSNs relax the conditional swap
operator to a differentiable conditional swap and thereby continuously relax the sorting and ranking
operators. We discuss the background of each of these diff. sorting and ranking algorithms in greater
detail in Supplementary Material B.

CNN
CNN
CNN
CNN
CNN

Diff.
Rank

Figure 1: Overview over ranking supervision with a differentiable
sorting / ranking algorithm. A set of input images is (element-
wise) processed by a CNN, producing a scalar for each image.
The scalars are sorted / ranked by the differentiable ranking
algorithm, which returns the differentiable permutation matrix,
which is compared to the ground truth permutation matrix.

Setups. The sorting supervision losses
are cross-entropy losses defined between
the differentiable permutation matrix
produced by a respective differentiable
sorting operator and the ground truth
permutation matrix corresponding to
a ground truth ranking. The Cauchy
DSN may be an exception to the hard
to optimize classification as it is quasi-
convex [11]. We evaluate the sorting
benchmark for numbers of elements to
be ranked n ∈ {5, 10} and use the per-
centage of rankings correctly identified

1Our implementation is openly available at github.com/Felix-Petersen/newton-losses.
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Table 1: Ranking supervision with differentiable sorting. The metric is the percentage of rankings correctly
identified (and individual element ranks correctly identified, in parentheses) avg. over 10 seeds. Statistically
significant improvements (sig. level 0.05) are indicated bold black; improved means are indicated in bold grey.

n = 5n = 5n = 5 NeuralSort [37] SoftSort [40] Logistic DSN [5] Cauchy DSN [11]

Baseline 71.33±2.05 (87.10±0.96) 70.70±2.60 (86.75±1.26) 53.56±18.04 (77.04±10.30) 85.09±0.77 (93.31±0.39)
NL (Hessian) 83.31±1.7083.31±1.7083.31±1.70 (92.54±0.7392.54±0.7392.54±0.73) 83.87±0.8183.87±0.8183.87±0.81 (92.72±0.3992.72±0.3992.72±0.39) 75.02±12.5975.02±12.5975.02±12.59 (88.53±06.0088.53±06.0088.53±06.00) 85.11±0.7885.11±0.7885.11±0.78 (93.31±0.34)
NL (Fisher) 83.93±0.6283.93±0.6283.93±0.62 (92.80±0.3092.80±0.3092.80±0.30) 84.03±0.5984.03±0.5984.03±0.59 (92.82±0.2492.82±0.2492.82±0.24) 63.11±30.6363.11±30.6363.11±30.63 (79.28±22.1679.28±22.1679.28±22.16) 84.95±0.79 (93.25±0.37)

n = 10n = 10n = 10 NeuralSort SoftSort Logistic DSN Cauchy DSN

Baseline 24.26±01.52 (74.47±0.83) 27.46±3.58 (76.02±1.92) 12.31±10.22 (58.81±16.79) 55.29±2.46 (87.06±0.85)
NL (Hessian) 48.76±05.8848.76±05.8848.76±05.88 (84.83±2.1384.83±2.1384.83±2.13) 55.07±1.0855.07±1.0855.07±1.08 (86.89±0.3186.89±0.3186.89±0.31) 42.14±22.3042.14±22.3042.14±22.30 (75.35±23.7775.35±23.7775.35±23.77) 56.49±1.0256.49±1.0256.49±1.02 (87.44±0.4087.44±0.4087.44±0.40)
NL (Fisher) 39.23±11.3839.23±11.3839.23±11.38 (81.14±4.9181.14±4.9181.14±4.91) 54.00±2.2454.00±2.2454.00±2.24 (86.56±0.6886.56±0.6886.56±0.68) 25.72±27.4225.72±27.4225.72±27.42 (52.18±36.51) 56.12±1.8656.12±1.8656.12±1.86 (87.35±0.6587.35±0.6587.35±0.65)

as well as percentage of individual element ranks correctly identified as evaluation metrics. For each
of the four original baseline methods, we compare it to two variants of their Newton losses: the
empirical Hessian and the empirical Fisher variant. For each setting, we train the CNN on 10 seeds
using the Adam optimizer [57] at a learning rate of 10−3 for 105 steps and batch size of 100.

Results. As displayed in Table 1, we can see that—for each original loss—Newton Losses improve
over their baselines. For NeuralSort, SoftSort, and Logistic DSNs, we find that using the Newton
losses substantially improves performance. Here, the reason is that these methods suffer from
vanishing and exploding gradients, especially for the more challenging case of n = 10. As expected,
we find that the Hessian Newton Loss leads to better results than the Fisher variant, except for
NeuralSort and SoftSort in the easy setting of n = 5, where the results are nevertheless quite
close. Monotonic differentiable sorting networks, i.e., the Cauchy DSNs, provide an improved
variant of DSNs, which have the property of quasi-convexity and have been shown to exhibit much
better training behavior out-of-the-box, which makes it very hard to improve upon the existing
results. Nevertheless, Hessian Newton Losses are on-par for the easy case of n = 5 and, notably,
improve the performance by more than 1% on the more challenging case of n = 10. To explore this
further, we additionally evaluate the Cauchy DSN for n = 15 (not displayed in the table): here, the
baseline achieves 30.84±2.74 (82.30±1.08), whereas, using NL (Fisher), we improve it to 32.30±1.22
(82.78±0.53), showing that the trend of increasing improvements with more challenging settings
(compared to smaller n) continues. Summarizing, we obtain strong improvements on losses that are
hard to optimize, while in already well-behaving cases the improvements are smaller. This perfectly
aligns with our goal of improving performance on losses that are hard to optimize.

4.2 Shortest-Path Supervision

Figure 2: 12× 12 Warcraft shortest-path problem. An input
terrain map (left), unsupervised ground truth cost embedding
(center) and ground truth supervised shortest path (right).

In this section, we apply Newton Losses
to the shortest-path supervision task of
the 12× 12 Warcraft shortest-path bench-
mark [21], [22], [24]. Here, 12× 12 War-
craft terrain maps are given as 96×96 RGB
images (e.g., Figure 2 left) and the supervi-
sion is the shortest path from the top left to
the bottom right (Figure 2 right) according
to a hidden cost embedding (Figure 2 cen-
ter). The hidden cost embedding is not available for training. The goal is to predict 12 × 12 cost
embeddings of the terrain maps such that the shortest path according to the predicted embedding
corresponds to the ground truth shortest path. Vlastelica et al. [22] have shown that integrating an
algorithm in the training pipeline substantially improves performance compared to only using a
neural network with an easy-to-optimize loss function, which has been confirmed by subsequent
work [21], [24]. For this task, we explore a set of families of algorithmic supervision approaches:
Relaxed Bellman-Ford [24] is a shortest-path algorithm relaxed via the AlgoVision framework, which
continuously relaxes algorithms by perturbing all accessed variables with logistic distributions and
approximating the expectation value in closed form. Stochastic Smoothing [64] is a sampling-based
differentiation method that can be used to relax, e.g., a shortest-path algorithm by perturbing the
input with probability distribution. Perturbed Optimizers with Fenchel-Young Losses [21] build on
stochastic smoothing and Fenchel-Young losses [65] and identify the argmax to be the differential
of max, which allows a simplification of stochastic smoothing, again applied, e.g., to shortest-path
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learning problems. We use the same hyperparameters as shared by previous works [21], [24]. In
particular, it is notable that, throughout the literature, the benchmark assumes a training duration of
50 epochs and a learning rate decay by a factor of 10 after 30 and 40 epochs each. Thus, we do not
deviate from these constraints.

4.2.1 Relaxed Bellman-Ford
Table 2: Shortest-path benchmark results for different variants of the
AlgoVision-relaxed Bellman-Ford algorithm [24]. The metric is the
percentage of perfect matches averaged over 10 seeds. Significant
improvements are bold black, and improved means are bold grey.

Variant For+L1 For+L2
2 While+L1 While+L2

2

Baseline 94.19±0.33 95.90±0.21 94.30±0.20 95.77±0.41

NL (Fisher) 94.52±0.3494.52±0.3494.52±0.34 96.08±0.4696.08±0.4696.08±0.46 94.47±0.3494.47±0.3494.47±0.34 95.94±0.2795.94±0.2795.94±0.27

The relaxed Bellman-Ford algo-
rithm [24] is a continuous relaxation
of the Bellman-Ford algorithm via the
AlgoVision library. To increase the
number of settings considered, we ex-
plore four sub-variants of the algo-
rithm: For+L1, For+L2

2, While+L1, and While+L2
2. Here, For / While refers to the distinction

between using a While and For loop in Bellman-Ford, while L1 vs. L2
2 refer to the choice of metric

between shortest paths. As computing the Hessian of the AlgoVision Bellman-Ford algorithm is
too expensive with the PyTorch implementation, for this evaluation, we restrict it to the empirical
Fisher-based Newton loss. The results displayed in Table 2. While the differences are rather small, as
the baseline here is already strong, we can observe improvements in all of the four settings and in one
case achieve a significant improvement. This can be attributed to (i) the high performance of the
baseline algorithm on this benchmark, and (ii) that only the empirical Fisher-based Newton loss is
available, which is not as strong as the Hessian variant.

4.2.2 Stochastic Smoothing

After discussing the analytical relaxation, we continue with stochastic smoothing approaches. First,
we consider stochastic smoothing [64], which allows perturbing the input of a function with an
exponential family distribution to estimate the gradient of the smoothed function. For a reference
on stochastic smoothing with a focus on differentiable algorithms, we refer to the author’s recent
work [44]. For the baseline, we apply stochastic smoothing to a hard non-differentiable Dijkstra
algorithm based loss function to relax it via Gaussian noise (“SS of loss”). We utilize variance
reduction via the method of covariates. As we detail in Supplementary Material B.4, stochastic
smoothing can also be used to estimate the Hessian of the smoothed function. Based on this result,
we can construct the Hessian-variant Newton loss. As an extension to stochastic smoothing, we apply
stochastic smoothing only to the non-differentiable Dijstra algorithm (thereby computing its Jacobian
matrix) but use a differentiable loss to compare the predicted relaxed shortest-path to the ground truth
shortest-path (“SS of algorithm”). In this case, the Hessian Newton loss is not applicable because the
output of the smoothed algorithm is high dimensional and the Hessian of the loss becomes intractable.
An extended discussion of the “SS of algorithm” fomulation can be found in SM B.4.1. Nevertheless,
we can apply the Fisher-based Newton loss. We evaluate both approaches for 3, 10, and 30 samples.

0 10 20 30 40 50
Epochs

55
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70

75

80
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 [%
]

NL (Hessian)
NL (Fisher)
Baseline

Figure 3: Test accuracy (perfect matches) plot for ‘SS
of loss’ with 10 samples on the Warcraft shortest-path
benchmark. Lines show the mean and shaded areas
show the 95% conf. intervals.

In Table 3, we can observe that Newton Losses
improves the results for stochastic smoothing in
each case with more than 3 samples. The reason
for the poor performance on 3 samples is that
the Hessian or empirical Fisher, respectively, is
estimated using only 3 samples, which makes the
estimate unstable. For 10 and 30 samples, the
performance improves compared to the original
method. In Figure 3, we display a respective ac-
curacy plot. When comparing “SS of loss” and
“SS of algorithm”, we can observe that the exten-
sion to smoothing only the algorithm improves
performance for at least 10 samples. Here, the
reason, again, is that smoothing the algorithm
itself requires estimating the Jacobian instead of
only the gradient; thus, a larger number of sam-
ples is necessary; however starting at 10 samples, smoothing the algorithm performs better, which
means that the approach is better at utilizing a given sample budget.
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Table 3: Shortest-path benchmark results for the stochastic smoothing of the loss (including the algorithm),
stochastic smoothing of the algorithm (excluding the loss), and perturbed optimizers with the Fenchel-Young
loss. The metric is the percentage of perfect matches averaged over 10 seeds. Significant improvements are bold
black, and improved means are bold grey.

Method SS of loss SS of algorithm PO w/ FY loss

# Samples 3 10 30 3 10 30 3 10 30

Baseline 62.83±5.2962.83±5.2962.83±5.29 77.01±2.18 85.48±1.23 57.55±4.5857.55±4.5857.55±4.58 78.70±1.90 87.26±1.50 80.64±0.75 80.39±0.57 80.71±1.28

NL (Hessian) 62.40±5.48 78.82±2.1278.82±2.1278.82±2.12 85.94±1.3385.94±1.3385.94±1.33 — — — 83.09±3.1183.09±3.1183.09±3.11 81.13±3.5881.13±3.5881.13±3.58 83.45±2.2183.45±2.2183.45±2.21

NL (Fisher) 58.80±5.10 78.74±1.6878.74±1.6878.74±1.68 86.10±0.6086.10±0.6086.10±0.60 53.82±8.45 79.24±1.7879.24±1.7879.24±1.78 87.41±1.1387.41±1.1387.41±1.13 80.70±0.6580.70±0.6580.70±0.65 80.37±0.98 80.45±0.78

4.2.3 Perturbed Optimizers with Fenchel-Young Losses

Perturbed optimizers with a Fenchel-Young loss [21] is a formulation of solving the shortest path
problem as an argmax problem, and differentiating this problem using stochastic smoothing-based
perturbations and a Fenchel-Young loss. By extending their formulation to computing the Hessian of
the Fenchel-Young loss, we can compute the Newton loss, and find that we can achieve improvements
of more than 2%. However, for Fenchel-Young losses, which are defined via their derivative, the
empirical Fisher is not particularly meaningful, leading to equivalent performance between the
baseline and the Fisher Newton loss. Berthet et al. [21] mention that their approach works well
for small numbers of samples, which we can confirm as seen in Table 3 where the accuracy is
similar for each number of samples. An interesting observation is that perturbed optimizers with
Fenchel-Young losses perform better than stochastic smoothing in the few-sample regime, whereas
stochastic smoothing performs better with larger numbers of samples.

4.3 Ablation Study

In this section, we present our ablation study for the (only) hyperparameter λ. λ is the strength of
the Tikhonov regularization (see, e.g., Equation 7, or tik_l in the algorithms). This parameter is
important for controlling the degree to which second-order information is used as well as regularizing
the curvature. For the ablation study, we use the experimental setting from Section 4.1 for NeuralSort
and SoftSort and n = 5. In particular, we consider 13 values for λ, exploring the range from 0.001
to 1000 and plot the element-wise ranking accuracy (individual element ranks correctly identified)
in Figure 4. We display the average over 10 seeds as well as each seed’s result individually with
low opacity. We can observe that Newton Losses are robust over many orders of magnitude for
the hyperparameter λ. Note the logarithmic axis for λ in Figure 4. In general, we observe that
choices within a few orders of magnitude around 1 are generally favorable. Further, we observe that
NeuralSort is more sensitive to drastic changes in λ compared to SoftSort.

4.4 Runtime Analysis

We provide tables with runtimes for the experiments in Supplementary Material D. We can observe
that the runtimes between the baseline and empirical Fisher-based Newton Losses are indistinguish-
able for all cases. For the analytical relaxations of differentiable sorting algorithms, where the
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Figure 4: Ablation study wrt. the Tikhonov regularization strength hyperparameter λ. Displayed is the element-
wise ranking accuracy (individual element ranks correctly identified), averaged over 10 seeds, and additionally
each seed with low opacity in the background. Left: NeuralSort. Right: SoftSort. Each for n = 5. Newton
Losses, and for both the Hessian and the Fisher variant, significantly improve over the baseline for up to (or
beyond) 6 orders of magnitude in variation of its hyperparameter λ. Note the logarithmic horizontal axis.
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computation of the Hessian can become expensive with automatic differentiation (i.e., without a cus-
tom derivation of the Hessian and without vectorized Hessian computation), we observed overheads
between 10% and 2.6×. For all stochastic approaches, we observe indistinguishable runtimes for
Hessian-based Newton Losses. In summary, applying the Fisher variant of Newton Losses has a
minimal computational overhead, whereas, for the Hessian variant, any overhead depends merely
on the computation of the Hessian of the algorithmic loss function. While, for differentiable algo-
rithms, the neural network’s output dimensionality or algorithm’s input dimensionality m is typically
moderately small to make the inversion of the Hessian or empirical Fisher cheap, when the output
dimensionality m becomes very large such that inversion of the empirical Fisher becomes expensive,
we refer to the Woodbury matrix identity [66], which allows simplifying the computation via its
low-rank decomposition. A corresponding deviation is included in SM F. Additionally, solver-based
inversion implementations can be used to make the inversion more efficient.

5 Conclusion

In this work, we focused on weakly-supervised learning problems that require integration of differ-
entiable algorithmic procedures in the loss function. This leads to non-convex loss functions that
exhibit vanishing and exploding gradients, making them hard to optimize. We proposed a novel
approach for improving performance of algorithmic losses building upon the curvature information
of the loss. For this, we split the optimization procedure into two steps: optimizing on the loss itself
using Newton’s method to mitigate vanishing and exploding gradients, and then optimizing the neural
network with gradient descent. We simplified this procedure via a transformation of an original
loss function into a Newton loss, which comes in two flavors: a Hessian variant for cases where the
Hessian is available and an empirical Fisher variant as an alternative. We evaluated Newton Losses
on a set of algorithmic supervision settings, demonstrating that the method can drastically improve
performance for weakly-performing differentiable algorithms. We hope that the community adapts
Newton Losses for learning with differentiable algorithms and see great potential for combining it
with future differentiable algorithms in unexplored territories of the space of differentiable relaxations,
algorithms, operators, and simulators.
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A Characterization of Meaningful Settings for Newton Losses

For practical purposes, to decide whether applying Newton Losses is expected to improve results, we
recommend that a loss ℓ fulfills the following 3 minimal criteria:

• (i) non-convex,
• (ii) smoothly differentiable,
• (iii) cannot be solved by a single GD step.

Regarding (ii), the stochastic smoothing formulation enables any non-differentiable function (such as
Shortest-paths as considered in this work) to become smoothly differentiable.

Regarding (iii), we note that, e.g., for the MSE loss, the optimum of the loss (when optimizing
loss inputs) can be found using a single step of GD (see last paragraph of Section 3.2). For the
cross-entropy classification loss, a single GD step leads to the correct class.

B Algorithmic Supervision Losses

In this section, we extend the discussion of SoftSort, DiffSort, AlgoVision, and stochastic smoothing.

B.1 SoftSort and NeuralSort

SoftSort [40] and NeuralSort [37] are prominent yet simple examples of a differentiable algorithm. In
the case of ranking supervision, they obtain an array or vector of scalars and return a row-stochastic
matrix called the differentiable permutation matrix P , which is a relaxation of the argsort operator.
Note that, in this case, a set of k inputs yields a scalar for each image and thereby y ∈ Rk. As a
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ground truth label, a ground truth permutation matrix Q is given and the loss between P and Q is
the binary cross entropy loss ℓSS(y) = BCE (P (y), Q) . Minimizing the loss enforces the order of
predictions y to correspond to the true order, which is the training objective. SoftSort is defined as

P (y) = softmax
(
−
∣∣y⊤ ⊖ sort(y)

∣∣ /τ) = softmax
(
−
∣∣y⊤ ⊖ Sy

∣∣ /τ) (12)

where τ is a temperature parameter, “sort” sorts the entries of a vector in non-ascending order, ⊖ is
the element-wise broadcasting subtraction, | · | is the element-wise absolute value, and “softmax” is
the row-wise softmax operator. NeuralSort is defined similarly and omitted for the sake of brevity. In
the limit of τ → 0, SoftSort and NeuralSort converge to the exact ranking permutation matrix [37],
[40]. A respective Newton loss can be implemented using automatic differentiation according to
Definition 1 or via the empirical Fisher matrix using Definition 2.

B.2 DiffSort

Differentiable sorting networks (DSN) [5], [11] offer a strong alternative to SoftSort and NeuralSort.
They are based on sorting networks, a classic family of sorting algorithms that operate by conditionally
swapping elements [67]. As the locations of the conditional swaps are pre-defined, they are suitable
for hardware implementations, which also makes them especially suited for continuous relaxation.
By perturbing a conditional swap with a distribution and solving for the expectation under this
perturbation in closed-form, we can differentiably sort a set of values and obtain a differentiable
doubly-stochastic permutation matrix P , which can be used via the BCE loss as in Section B.1. We
can obtain the respective Newton loss either via the Hessian computed via automatic differentiation
or via the Fisher matrix.

B.3 AlgoVision

AlgoVision [24] is a framework for continuously relaxing arbitrary simple algorithms by perturbing
all accessed variables with logistic distributions. The method approximates the expectation value
of the output of the algorithm in closed-form and does not require sampling. For shortest-path
supervision, we use a relaxation of the Bellman-Ford algorithm [68], [69] and compare the predicted
shortest path with the ground truth shortest path via an MSE loss. The input to the shortest path
algorithm is a cost embedding matrix predicted by a neural network.

B.4 Stochastic Smoothing

Another differentiation method is stochastic smoothing [64]. This method regularizes a non-
differentiable and discontinuous loss function ℓ(y) by randomly perturbing its input with random
noise ϵ (i.e., ℓ(y + ϵ)). The loss function is then approximated as ℓ(y) ≈ ℓϵ(y) = Eϵ[ℓ(y + ϵ)].
While ℓ may be non-differentiable, its smoothed stochastic counterpart ℓϵ is differentiable and the
corresponding gradient and Hessian can be estimated via the following result.

Lemma 1 (Exponential Family Smoothing, adapted from Lemma 1.5 in Abernethy et al. [64]). Given
a distribution over Rm with a probability density function µ of the form µ(ϵ) = exp(−ν(ϵ)) for any
twice-differentiable ν, then

∇ylϵ(y) = ∇yEϵ [ℓ(y + ϵ)] = Eϵ

[
ℓ(y + ϵ)∇ϵν(ϵ)

]
, (13)

∇2
y lϵ(y) = ∇2

yEϵ [ℓ(y + ϵ)] = Eϵ

[
ℓ(y + ϵ)

(
∇ϵν(ϵ)∇ϵν(ϵ)

⊤−∇2
ϵ ν(ϵ)

)]
. (14)

A variance-reduced form of (13) and (14) is

∇yEϵ [ℓ(y + ϵ)] = Eϵ

[
(ℓ(y + ϵ)− ℓ(y))∇ϵν(ϵ)

]
, (15)

∇2
yEϵ [ℓ(y + ϵ)] = Eϵ

[
(ℓ(y + ϵ)− ℓ(y))

(
∇ϵν(ϵ)∇ϵν(ϵ)

⊤−∇2
ϵν(ϵ)

)]
. (16)

In this work, we use this to estimate the gradient of the shortest path algorithm. By including the
second derivative, we extend the perturbed optimizer losses to Newton losses. This also lends itself
to full second-order optimization.
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B.4.1 SS of Algorithm

SS of algorithm is an extension of this formulation, where stochastic smoothing is used to compute
the Jacobian of the smoothed algorithm, e.g., f : R144 → R144 and the loss is, e.g., ℓ(y) =
MSE(f(y), label). Here, we can backpropagate through MSE and can apply stochastic smoothing
to f only. (The idea being that for many samples, it is better to estimate the Jacobian rather than the
gradient of smoothing the entire loss.) While computing the Jacobian of f is simple with stochastic
smoothing, the Hessian here would be of size 144×144×144×144, making it infeasible to estimate
this Hessian via sampling.

B.5 Perturbed Optimizers with Fenchel-Young Losses

Berthet et al. [21] build on stochastic smoothing and Fenchel-Young losses [65] to propose perturbed
optimizers with Fenchel-Young losses. For this, they use algorithms, like Dijkstra, to solve optimiza-
tion problems of the type maxw∈C⟨y, w⟩, where C denotes the feasible set, e.g., the set of valid paths.
Berthet et al. [21] identify the argmax to be the differential of max, which allows a simplification of
stochastic smoothing. By identifying similarities to Fenchel-Young losses, they find that the gradient
of their loss is

∇yℓ(y) = Eϵ

[
argmax

w∈C
⟨y + ϵ, w⟩

]
− w⋆ (17)

where w⋆ is the ground truth solution of the optimization problem (e.g., shortest path). This
formulation allows optimizing the model without the need for computing the actual value of the loss
function. Berthet et al. [21] find that the number of samples—surprisingly—only has a small impact
on performance, such that 3 samples were sufficient in many experiments, and in some cases even
a single sample was sufficient. In this work, we confirm this behavior and also compare it to plain
stochastic smoothing. We find that for perturbed optimizers, the number of samples barely impacts
performance, while for stochastic smoothing more samples always improve performance. If only few
samples can be afforded (like 10 or less), perturbed optimizers are better as they are more sample
efficient; however, when more samples are available, stochastic smoothing is superior as it can utilize
more samples better.

C Hyperparameters and Training Details

Sorting and ranking. 100,000 training steps with Adam and learning rate 0.001. Same convolu-
tional network as in all prior works on the benchmark: Two convolutional layers with a kernel size of
5x5, 32 and 64 channels respectively, each followed by a ReLU and MaxPool layer; after flattening,
this is followed by a fully connected layer with a size of 64, a ReLU layer, and a fully connected
output layer mapping to a scalar.

• NeuralSort

– Temperature τ = 1.0 [Best for baseline from grid 0.001, 0.01, 0.1, 1, 10]

• SoftSort

– Temperature τ = 0.1 [Best for baseline from grid 0.001, 0.01, 0.1, 1, 10]

• Logistic DSN

– Type: odd_even
– Inverse temperature

* For n = 5: β = 10 [Best for baseline from grid 10, 15, 20]
* For n = 10: β = 10 [Best for baseline from grid 10, 20, 40]

• Cauchy DSN

– Type: odd_even
– Inverse temperature

* For n = 5: β = 10 [Best for baseline from grid 10, 100]
* For n = 10: β = 100 [Best for baseline from grid 10, 100]
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Shortest-path. Model, Optimizer, LR schedule, and epochs same as in prior work: First block of
ResNet18, Adam optimizer, training duration of 50 epochs, and a learning rate decay by a factor of
10 after 30 and 40 epochs each.

• AlgoVision:

– β = 10

– n_iter=18
(number iterations in for loop / max num iteration in algovision while loop)

– t_conorm='probabilistic'
– Initial learning rate, for each (as it varies between for/while loop and L1/L2 loss),

best among [1, 0.33, 0.1, 0.033, 0.01, 0.0033, 0.001].

• SS of loss / algorithm:

– Distribution: Gaussian with σ = 0.1
[best σ on factor 10 exponential grid for baseline]

– Initial LR: 0.001

• PO / FY loss:

– Distribution: Gaussian with σ = 0.1
[best σ on factor 10 exponential grid for baseline]

– Initial LR: 0.01

C.1 Hyperparameter λ

For the experiments in the tables, select λ based one seed from the grid λ ∈
[0.001, 0.01, 0.1, 1, 10, 100, 100, 1000, 3000]. For the experiments in Tables 2 and 5, we present
the values in the Tables 4 and 5, respectively. For the experiments in Table 2, we use a Tikhonov
regularization strength of λ = 1000 for the L1 variants and λ = 3000 for the L2

2 variants.

Table 4: Tikhonov regularization strengths λ for the experiment in Table 1.

n = 5 n = 10

NeuralSort SoftSort Logistic DSN Cauchy DSN NeuralSort SoftSort Logistic DSN Cauchy DSN

NL (Hessian) λ = 0.01 λ = 10 λ = 0.1 λ = 0.1 λ = 0.01 λ = 1 λ = 0.1 λ = 0.1
NL (Fisher) λ = 0.1 λ = 10 λ = 0.1 λ = 0.1 λ = 100 λ = 100 λ = 0.1 λ = 0.1

Table 5: Tikhonov regularization strengths λ for the experiment in Table 3.

Loss SS of loss SS of algorithm PO w/ FY loss
# Samples 3 10 30 3 10 30 3 10 30

NL (Hessian) λ = 1000 λ = 1000 λ = 1000 — — — λ = 1000 λ = 1000 λ = 1000
NL (Fisher) λ = 0.1 λ = 0.1 λ = 0.1 λ = 1000 λ = 1000 λ = 1000 λ = 1000 λ = 1000 λ = 1000

C.2 List of Assets

• Multi-digit MNIST [37], which builds on MNIST [70] [MIT License / CC License]

• Warcraft shortest-path data set [22] [MIT License]

• PyTorch [71] [BSD 3-Clause License]

D Runtimes
In this supplementary material, we provide and discuss runtimes for the experiments. All times are of
full training on a single A6000 GPU.

In the differentiable sorting and ranking experiment, as shown in Table 6, we observe that the runtime
from regular training compared to the Newton loss with the Fisher is only marginally increased. This
is because computing the Fisher and inverting it is very inexpensive. We observe that the Newton loss
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with the Hessian, however, is more expensive: due to the implementation of the differentiable sorting
and ranking operators, we compute the Hessian by differentiating each element of the gradient, which
makes this process fairly expensive. An improved implementation could make this process much
faster. Nevertheless, there is always some overhead to computing the Hessian compared to the Fisher.

Table 6: Runtimes [h:mm] for the differentiable sorting results corresponding to Table 1.

n = 5 n = 10

DSN NeuralSort SoftSort DSN NeuralSort SoftSort

Baseline 1:10 1:02 1:01 1:43 1:27 1:24
NL (Hessian) 2:24 1:07 1:10 6:17 1:42 1:40
NL (Fisher) 1:11 1:03 1:02 1:44 1:27 1:25

In Table 7, we show the runtimes for the shortest-path experiment with AlgoVision. Here, we observe
that the runtime overhead is very small.

Table 7: Runtimes [h:mm] for the shortest-path results corresponding to Table 2.

Algorithm Loop For While
Loss L1 L2

2 L1 L2
2

Baseline 0:10 0:10 0:15 0:15
NL (Fisher) 0:10 0:11 0:15 0:15

In Table 8, we show the runtimes for the shortest-path experiment with stochastic methods. Here, we
observe that the runtime overhead is also very small. Here, the Hessian is also cheap to compute as it
is not computed with automatic differentiation.

Table 8: Runtimes [h:mm] for the shortest-path results corresponding to Table 3.

Loss SS of loss SS of algorithm PO w/ FY loss
# Samples 3 10 30 3 10 30 3 10 30

Baseline 0:15 0:23 0:53 0:15 0:23 0:53 0:11 0:19 0:49
NL (Hessian) 0:15 0:23 0:53 − − − 0:11 0:19 0:50
NL (Fisher) 0:15 0:23 0:54 0:15 0:23 0:53 0:11 0:19 0:50
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Figure 5: Training time plot corresponding to Figure 3: Test accuracy (perfect matches) plot for ‘SS of loss’
with 10 samples on the Warcraft shortest-path benchmark.

E Equivalences under the Split

Using gradient descent step according to (1) is equivalent to using two gradient steps of the alternating
scheme (2), namely one step for (2a) and one step for (2b). This has also been considered by [62] in
a different context.
Lemma 2 (Gradient Descent Step Equality between (1) and (2a)+(2b)). A gradient descent step
according to (1) with arbitrary step size η coincides with two gradient descent steps, one according to
(2a) and one according to (2b), where the optimization over θ has a step size of η and the optimization
over z has a unit step size.
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Proof. Let θ ∈ Θ be the current parameter vector and let z = f(x; θ). Then the gradient descent
steps according to (2a) and (2b) with step sizes 1 and η > 0 are expressed as

z ← z−∇z ℓ(z) = f(x; θ)−∇f ℓ(f(x; θ)) (18)

θ ← θ − η∇θ
1
2∥z− f(x; θ)∥22

= θ − η
∂ f(x; θ)

∂ θ
· (f(x; θ)− z) . (19)

Combining (18) and (19) leads to

θ ← θ − η
∂ f(x; θ)

∂ θ
·(f(x; θ)−f(x; θ)+∇f ℓ(f(x; θ)))

= θ − η∇θ ℓ(f(x; θ)), (20)

which is exactly a gradient descent step starting at θ ∈ Θ with step size η.

Moreover, we show that a corresponding equality also holds for a special case of the Newton step.
Lemma 3 (Newton Step Equality between (1) and (2a)+(2b) for m = 1). In the case of m = 1 (i.e.,
a one-dimensional output), a Newton step according to (1) with arbitrary step size η coincides with
two Newton steps, one according to (2a) and one according to (2b), where the optimization over θ
has a step size of η and the optimization over z has a unit step size.

Proof. Let θ ∈ Θ be the current parameter vector and let z = f(x; θ). Then applying Newton steps
according to (2a) and (2b) leads to

z← z− (∇2
z ℓ(z))

−1∇z ℓ(z)

= f(x; θ)− (∇2
f ℓ(f(x; θ)))

−1∇f ℓ(f(x; θ)) (21)

θ ← θ − η

(
∇2

θ

1

2
∥z− f(x; θ)∥22

)−1

∇θ
1

2
∥z− f(x; θ)∥22 (22)

= θ − η

(
∂

∂θ

[
∂ f(x; θ)

∂ θ
· (f(x; θ)− z)

])−1
∂ f(x; θ)

∂ θ
· (f(x; θ)− z) (23)

= θ − η

(
∂

∂θ

[
∂ f(x; θ)

∂ θ

]
(f(x; θ)−z)+

(
∂ f(x; θ)

∂ θ

)2)−1
∂ f(x; θ)

∂ θ
· (f(x; θ)− z)

Inserting (21), we can rephrase the update above as

θ ← θ − η

(
∂

∂θ

[
∂ f(x; θ)

∂ θ

]
(∇2

f ℓ(f(x; θ)))
−1∇f ℓ(f(x; θ)) +

(
∂ f(x; θ)

∂ θ

)2)−1

· ∂ f(x; θ)

∂ θ
· (∇2

f ℓ(f(x; θ)))
−1∇f ℓ(f(x; θ))

(24)

By applying the chain rule twice, we further obtain

∇2
θℓ(f(x; θ)) =

∂

∂θ

[
∂ f(x; θ)

∂ θ
∇f ℓ(f(x; θ))

]
=

∂

∂θ

[
∂ f(x; θ)

∂ θ

]
∇f ℓ(f(x; θ)) +

∂ f(x; θ)

∂ θ

∂

∂θ
∇f ℓ(f(x; θ))

=
∂

∂θ

[
∂ f(x; θ)

∂ θ

]
∇f ℓ(f(x; θ)) +

∂ f(x; θ)

∂ θ
∇f

∂

∂θ
ℓ(f(x; θ))

=
∂

∂θ

[
∂ f(x; θ)

∂ θ

]
∇f ℓ(f(x; θ)) +

(
∂ f(x; θ)

∂ θ

)2
∇2
f ℓ(f(x; θ)),

which allows us to rewrite (24) as

θ′ = θ −
(
(∇2

f ℓ(f(x; θ)))
−1∇2

θ ℓ(f(x; θ))
)−1

(∇2
f ℓ(f(x; θ)))

−1∇θ ℓ(f(x; θ))

= θ − (∇2
θ ℓ(f(x; θ)))

−1∇θ ℓ(f(x; θ)),

which is exactly a single Newton step starting at θ ∈ Θ.
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F Woodbury Matrix Identity for High Dimensional Outputs

For the empirical Fisher method, where z⋆ ∈ RN×m is computed via

z⋆i = ȳi −
(

1
N

∑N
j=1∇ȳj

ℓ(ȳ)∇ȳj
ℓ(ȳ)⊤ + λ · I

)−1

∇ȳi
ℓ(ȳ)

for all i ∈ {1, ..., N} and ȳ = f(x; θ), we can simplify the computation via the Woodbury matrix
identity [66]. In particular, we can simplify the computation of the inverse to(

1
N

∑N
j=1∇ȳj ℓ(ȳ)∇ȳj ℓ(ȳ)

⊤ + λ · I
)−1

(25)

=
(

1
N ∇ȳℓ(ȳ)

⊤∇ȳℓ(ȳ) + λ · I
)−1

(26)

=
1

λ
· Im −

1

N · λ2
· ∇ȳℓ(ȳ)

⊤ ·
(

1
N ·λ∇ȳℓ(ȳ)∇ȳℓ(ȳ)

⊤ + IN

)−1

· ∇ȳℓ(ȳ) . (27)

This reduces the cost of matrix inversion from O(m3) down to O(N3). We remark that this variant
is only helpful for cases where the batch size N is smaller than the output dimensionality m.

Further, we remark that in a case where the output dimensionality m and the batch size N are both
very large, i.e., the cost of the inverse is typically still small in comparison to the computational cost
of the neural network. To illustrate this, the dimensionality of the last hidden space (i.e., before the
last layer) hl is typically larger than the output dimensionality m. Accordingly, the cost of only the
last layer itself is O(N ·m · hl), which is typically larger than the cost of the inversion in Newton
Losses. In particular, assuming hl > m, O(N ·m · hl) > O(min(m,N)3).

We remark that the Woodbury inverted variation can also be used in InjectFisher.

G InjectFisher for CVXPY Layers

In this section, we provide an extension of the presented method, from algorithmic losses to optimizing
the parameters in differentiable convex optimization layers [72]. For this, we utilize the cvxpylayers
framework, and, as a proof of concept apply it to the training of a 3-layer network, where the first 2
layers are modelled via cvxpylayers: https://github.com/cvxgrp/cvxpylayers/blob/master/
examples/torch/ReLU%20Layers.ipynb.

Because there are no Hessians or second-order derivatives available in cvxpylayers, we ap-
plied the empirical Fisher variant, via the InjectFisher function, to cvxpylayers. We apply
InjectFisher to (the vector of) all weights and biases of a given layer, and choose λ = 0.1.

We ran it for 5 seeds, and the loss improves in each case (see Table 9). Importantly, we note that these
are paired results (only networks with the same initialization are comparable).

Table 9: Loss of a cvxpylayers model. Results comparable only within each seed.

Seed cvxpy cvxpy + InjectFisher

1 0.322 0.185
2 0.186 0.157
3 0.522 0.247
4 0.225 0.179
5 0.260 0.211
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H Gradient Visualizations
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(a) NeuralSort gradients in dependence of x1

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

0.4

0.2

0.0

0.2

0.4

x i
()

x0 = 5.0
x1
x2 = 4.0
x3 = 8.0
x4 = 12.0

(b) Logistic DSN gradients in dependence of x1
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(c) NeuralSort gradients (larger spread)
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(d) Logistic DSN gradients (larger spread)
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(e) Newton loss gradients (empirical Fisher) for Neu-
ralSort (larger spread)
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(f) Newton loss gradients (empirical Fisher) for Logis-
tic DSN (larger spread)

Figure 6: We illustrate the gradient of the NeuralSort and logistic DSN losses in dependence of one of the five
input dimensions for the n = 5 case. In the illustrated example, one can observe that both algorithms experience
exploding gradients when the inputs are too far away from each other (which is also controllable via steepness β
/ temperature τ ), see Figures (c) / (d). Further, we can observe that the gradients themselves can be quite chaotic,
making the optimization of the loss rather challenging. In Figures (e) / (f), we illustrate how using the empirical
Fisher Newton Loss recovers from the exploding gradients experienced in (c) / (d). The input examples are
a simplification of actual inputs, as here, x0, x2, x3, x4 are already in their correct order, and having multiple
disagreements makes the loss more chaotic.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We address all claims made in the abstract and introduction in the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed throughout this work. See also Section A for a
characterization of settings where Newton Losses are meaningful.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions are stated and the proofs are included alongside the lemmas.
We do not repeat the proof of the lemma from [64].

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss all experimental details necessary for reproduction in Section C.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results?
Answer: [Yes]
Justification: All data is openly accessible. Our implementation is openly available at
github.com/Felix-Petersen/newton-losses.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section C.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, for all results tables, we include standard deviations. We further provide
statistical significance tests. In particular, we utilize Welch’s t-test, which is an adaptation of
the Student’s t-test for cases with unequal variances of populations (sets of results) and thus
suitable for these experiments, also making it more reliable than a vanilla Student’s t-test.
We utilize a significance level of 0.05, which is standard in machine learning.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: Runtimes and hardware are discussed in Section D.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper comprises fundamental research.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are cited. See Section C.2.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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