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ABSTRACT

This paper introduces an approach for developing surrogate environments in re-
inforcement learning (RL) using the Sparse Identification of Nonlinear Dynamics
(SINDy) algorithm. We demonstrate the effectiveness of our approach through
extensive experiments in OpenAl Gym environments, particularly Mountain Car
and Lunar Lander. Our results show that SINDy-based surrogate models can ac-
curately capture the underlying dynamics of these environments while reducing
computational costs by 20-35%. With only 75 interactions for Mountain Car
and 1000 for Lunar Lander, we achieve state-wise correlations exceeding 0.997,
with mean squared errors as low as 3.11 x 106 for Mountain Car velocity and
1.42 x 1079 for LunarLander position. RL agents trained in these surrogate en-
vironments require fewer total steps (65075 vs. 100000 for Mountain Car and
801 000 vs. 1 000 000 for Lunar Lander) while achieving comparable performance
to those trained in the original environments, exhibiting similar convergence pat-
terns and final performance metrics. This work contributes to the field of model-
based RL by providing an efficient method for generating accurate, interpretable
surrogate environments.

1 INTRODUCTION

RL has revolutionized the field of artificial intelligence by enabling autonomous agents to learn op-
timal behavior through interaction with their environment. Despite its remarkable success in various
domains, from game playing to robotics, the practical implementation of RL faces a significant chal-
lenge: the requirement for extensive environmental interactions during training. This limitation not
only makes the training process computationally intensive but also poses safety risks in real-world
applications where trial-and-error learning may be impractical or dangerous.

To address these challenges, we propose an approach leveraging SINDy (Brunton et al.| [2016)) al-
gorithm to create efficient surrogate environments. Our methodology significantly reduces the data
requirements while maintaining high fidelity to the original environment dynamics. We demonstrate
the effectiveness of our approach using two widely-studied OpenAl Gym environments: Mountain
Car and Lunar Lander, which represent distinct classes of control problems with varying degrees of
complexity.

Our research advances RL through several key contributions. We develop a framework for creating
SINDy-based surrogate environments that accurately capture the dynamics of standard RL bench-
marks while requiring minimal training data. Through rigorous empirical analysis, we demonstrate
that agents trained in our surrogate environments achieve performance comparable to those trained
in original environments, with a significant reduction in computational resources. We comprehen-
sively investigate the fundamental trade-offs between model complexity and prediction accuracy in
surrogate environment design, providing practical guidelines for implementation. This work rep-
resents the first application of SINDy to RL environment modeling, establishing a new paradigm
for sample-efficient surrogate model development. In addition, we develop a systematic evalua-
tion framework for quantifying the fidelity of the surrogate environment, including metrics for both
state-transition accuracy and policy transfer success.

The widespread adoption of RL in practical applications is currently hindered by several critical
challenges. These include prohibitive computational requirements for environment simulation, par-
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ticularly in complex domains requiring high-fidelity physics engines; extended training durations
that can span days or weeks, limiting rapid prototyping and experimentation; substantial resource
consumption in terms of processing power and energy, raising concerns about environmental impact;
and safety considerations in real-world applications where direct environment interaction during
training could lead to hazardous situations.

2 METHODOLOGY

2.1 DATA COLLECTION

We leverage pre-trained RL models to collect high-quality state transition data with minimal sam-
pling. Specifically, a pre-trained Soft Actor-Critic (SAC) (Haarnoja et al.l 2018)) agent was utilized
to collect data from the Mountain Car environment, with only 75 state transitions captured from
a single episode. Similarly, a pre-trained Proximal Policy Optimization (PPO) (Schulman et al.
2017) agent was used to gather 1000 state transitions from a single episode in the more complex
Lunar Lander environment.

To balance between exploration and exploitation, we implemented an e-greedy policy (e = 0.2) for
both agents, ensuring 80% of actions followed the trained policy while 20% were randomly sampled.
This strategy provided diverse state-action pairs covering both optimal paths and exploratory regions
of the state space (Sutton & Barto) |2018).For each transition, we recorded the current state, action
taken, and resulting next state (s¢, at, St+1), then normalized and stored the data in CSV format.

2.2 SINDY MODEL DEVELOPMENT

SINDy was employed to uncover the underlying dynamics of both environments from collected state
transitions, generating sparse, interpretable governing equations that succinctly capture the essential
behavior of the system.

The model development followed a systematic four-stage process:

1. Initial Model Construction: We initially fitted basic models using a simplified feature
library, ultimately culminating in the application of the Sequential Thresholded Least
Squares (STLSQ) method.

2. Residual Analysis & Refinement: Prediction errors guided the progressive addition of
nonlinear terms (trigonometric for Mountain Car, polynomial for Lunar Lander).

3. Parameter Optimization: Grid search across threshold and regularization values, opti-
mizing for both sparsity and prediction accuracy.

4. Cross-Validation: Models were validated using held-out data to ensure generalization per-
formance, with final selection based on minimal MSE.

This process generated parsimonious models that effectively captured environment dynamics while
excluding spurious terms through rigorous optimization.

2.3 SINDY DRIVEN MODEL

The SINDy model is subsequently integrated into a surrogate OpenAl Gym compatible environment
(Arora et al., [2022; [Zolman et al., [2024). In this framework, the original physics engine is replaced
by the SINDy-based model. The new surrogate environment preserves all the key characteristics of
the original implementations. The primary modification lies in the state transition function, where
physics-based calculations are supplanted by trained SINDy models:

St+1 = fSINDy(Styat) (D

This approach retains the essential dynamics while significantly reducing computational overhead.
The SD-RL framework facilitates efficient policy learning by leveraging a data-driven surrogate
environment. Employing SINDy to model system dynamics ensures environment interpretability
and computational efficiency.
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Algorithm 1: Sparse Dynamics-Driven Reinforcement Learning (SD-RL)

Input: Number of episodes N, SINDy parameters 0sinpy, RL parameters Ogy.
Qutput: Trained RL policy g
// Data Collection
fori =1to N do
Initialize environment and reset state sg
for t = 1 to max timesteps do
Select action a; using e-greedy policy
Execute a; and observe next state s, and reward 7,
Store transition (¢, at, S¢11,7¢) in dataset D
end
end
// Train Sparse Dynamics Model (SINDy)
Train SINDy model using dataset D and hyperparameters fsinpy
// Train RL Agent in Surrogate Environment
Train RL agent using surrogate environment based on learned SINDy dynamics
Optimize policy 7y using Ogp
return Trained policy 7y

Table 1: SINDy Model Validation Metrics and Library Function Impact

Environment/Component MSE Correlation
Mountain Car

Position 7.21 x 1074 0.999

Velocity 3.11 x 1076 0.997
Lunar Lander

x/y-position 1.42 x 1075/9.64 x 1075 1.000/1.000

x/y-velocity 1.58 x 107°/3.38 x 1075 1.000/0.999

angle/angular vel. 1.03 x 107°/1.24 x 107*  0.999/0.989
Library Function MC MSE LL MSE
Polynomials only 5.32 x 1073 1.58 x 10~ %
With trigonometric 3.11 x 107° 1.62 x 1074
With rational terms 4.15 x 1074 1.87 x 107

2.4 EXPERIMENTAL SETUP

To validate our surrogate environments, we conducted experiments comparing the performance of
RL agents trained on both the original and surrogate environments. We used state-of-the-art RL al-
gorithms appropriate for each environment’s characteristics, following the Sparse Dynamics-Driven
RL approach outlined in Algorithm T}

3 RESULTS

3.1 SINDY MODEL PERFORMANCE AND POLICY LEARNING

Our evaluation focused on two key aspects: (1) the accuracy of learned dynamics models and (2)
the similarity of policies trained in surrogate vs. original environments.

The SINDy models achieved exceptional predictive performance with correlations above 0.99 and
minimal MSE across all state variables (Table [I| top), using remarkably small datasets (75 state
transitions for Mountain Car and 1,000 for Lunar Lander). The choice of library functions signifi-
cantly impacted model performance (Table [T} bottom), with trigonometric functions were crucial to
capture the dynamics of the Mountain Car environment, while polynomial terms were sufficient for
Lunar Lander.

To evaluate surrogate environment fidelity, we compared policies trained in original and surrogate
versions of both environments. For Mountain Car (Figure [T)), both policies learned identical strate-
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Figure 1: Mountain Car policy comparison showing remarkably similar force application strategies.
Both policies exhibit identical momentum building (blue) and goal targeting (red) regions.
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Figure 2: Lunar Lander policy comparison showing consistent control strategies across both envi-
ronments.

gies: momentum building in valley regions (blue), oscillatory behavior in middle regions, and stabi-
lization near the goal (red).

For Lunar Lander (Figure [2)), both policies show consistent landing strategies. The position-based
policies (top row) reveal that both environments learned to fire the left engine (blue) when at higher
altitudes to move rightward toward the landing zone, and the right engine (red) at lower altitudes for
final positioning adjustments. The key difference is that the surrogate policy activates the main en-
gine (yellow) more frequently at higher altitudes, suggesting it prioritizes controlled descent along-
side horizontal positioning. This slight tactical variation reflects the simplified dynamics learned
from limited data while preserving the core landing strategy. Both policies demonstrate identical
velocity control and attitude regulation patterns, confirming the surrogate environment’s ability to
enable effective policy learning.

3.2 COMPUTATIONAL EFFICIENCY

Our SINDy-based approach demonstrated significant computational advantages, requiring 35%
fewer training steps for Mountain Car (65,075 vs. 100,000) and 20% fewer for Lunar Lander
(801,000 vs. 1,000,000). These reductions directly translate to proportional decreases in training
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time and computational resources. The most striking efficiency gain, however, comes from the data
collection phase, where SINDy required only 75 and 1,000 environment interactions for Mountain
Car and Lunar Lander respectively, compared to tens of thousands typically needed for model-free
approaches.

When compared to neural network-based surrogate models that require similar training data, SINDy
achieved superior accuracy (MSE: 3.11 x 1076 vs. 4.45 x 10~%) while using approximately 95%
less computational resources during model training. This efficiency stems from SINDy’s sparse
regression approach, which converges more rapidly than gradient-based optimization methods used
in neural networks.

Beyond pure computational advantages, SINDy provides the crucial benefit of interpretability pro-
ducing explicit governing equations rather than black-box approximations. This interpretability
delivers practical advantages including easier debugging, verifiable safety properties, and insights
into environment dynamics that can guide further system improvements.

These efficiency gains are particularly valuable in domains where environment interactions are
costly or risky, such as robotics, autonomous vehicles, and industrial control systems, where physi-
cal data collection is constrained by practical and safety limitations.

4 DISCUSSION AND CONCLUSION

Our results demonstrate that SINDy can create highly effective surrogate environments for rein-
forcement learning while requiring remarkably little training data. The SINDy models achieved
exceptional fidelity (correlations > 0.99) across all state variables using only 75 state transitions for
Mountain Car and 1000 for Lunar Lander, a fraction of what traditional approaches typically require.
The choice of library functions proved critical, with trigonometric terms essential for capturing the
oscillatory dynamics of Mountain Car, while polynomial features were sufficient for Lunar Lander.

The near-identical policies learned in both original and surrogate environments confirm that our ap-
proach preserves the essential dynamics necessary for effective learning. For Mountain Car, both
policies developed identical momentum-building strategies and oscillatory patterns, while Lunar
Lander policies showed consistent engine activation across position, velocity, and attitude dimen-
sions. The slight tactical differences in descent control between original and surrogate Lunar Lander
policies reflect an interesting adaptation to the simplified dynamics model without compromising
landing performance.

The computational efficiency gains 35% fewer steps for Mountain Car and 20% fewer for Lunar
Lander demonstrate the practical value of our approach, particularly for scenarios where environ-
ment interactions are costly or risky. Beyond efficiency, SINDy offers the significant advantage of
interpretability, producing explicit equations that provide insights into system dynamics rather than
the black-box representations of neural network alternatives.

While promising, our approach has limitations that suggest valuable directions for future work.
The scalability to higher-dimensional state spaces and more complex dynamics remains to be fully
explored, as does the generalization capability to significantly different initial conditions. Hybrid ap-
proaches combining SINDy with other techniques could potentially enhance performance for more
complex environments, and testing on physical systems would validate real-world applicability.

The practical implications of our work extend beyond computational savings. SINDy-based sur-
rogate environments offer a safe platform for initial policy learning in critical applications where
failures could be costly or dangerous. Rapid prototyping enabled by data-efficient modeling could
potentially accelerate reinforcement learning research and deployment across domains.

In conclusion, our work demonstrates that SINDy can create efficient, interpretable surrogate envi-
ronments that maintain high fidelity to original systems while dramatically reducing data require-
ments. This learning from less approach represents a valuable addition to the reinforcement learning
toolkit, particularly for resource-constrained or safety-critical applications.
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