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ABSTRACT

Multiplex graphs have emerged as a powerful tool for modeling complex data due
to their capability to accommodate multi-relation structures. These graphs consist
of multiple layers, where each layer represents a specific type of relation. Pillar
community detection, a clustering approach that assigns vertices to clusters across
all layers, has been employed to identify shared community structures. However,
particular layers may possess distinct divisions, deviating from the pillar-based
clustering. Consequently, it becomes crucial not to identify individual layer clus-
ters, but a similar cluster for similar layers. In this paper, we propose an approach
called the ”Mixture Stochastic Block Model,” which aims to group similar lay-
ers based on shared community structures. A common Stochastic Block Model
represents each group’s shared community structure. The model is rigorously
defined, and an iterative technique is employed for computing the inference. We
estimate the layer-to-group assignments using the expectation-maximization tech-
nique, while the vertex-to-block assignments within each group are determined
using the variational estimation-maximization technique. We assess the identifia-
bility of our proposed model and show the consistency of the maximum likelihood
function. The performance of the method is evaluated using both synthetic graphs
and real-world datasets, showing its efficacy in identifying consistent community
structures across diverse multiplex graphs.

1 INTRODUCTION

In recent times, rapid advancements in technology have led to an exponential increase in the ac-
cumulation of data. This has ushered in the era of big data, which poses new challenges in terms
of exploring and analyzing vast quantities of information Elgendy & Elragal (2014). The data is
often presented from multiple perspectives, where various phenomena of interest can be explained
through diverse sources with multiple features Devagiri et al. (2021); Niu et al. (2016). To cope
with the growing complexity, the concept of multiplex graphs has emerged as a valuable tool in this
context Hammoud & Kramer (2020); Zweig (2016).

A multiplex graph comprises a collection of interconnected vertices shared across different layers
Han et al. (2023); Magnani et al. (2021). It serves as an effective means of representing multi-
relational data, where a distinct set of edges represents each feature. Moreover, the multiplex graph
demonstrates considerable advantages when data features may dynamically change over time Xia
et al. (2020). This flexibility allows for exploring and analyzing time-varying data with enhanced
precision and adaptability.

The application of clustering has proven to be an effective means of understanding and exploring
data in various fields Fortunato (2010a); Plantié & Crampes (2013); Bedi & Sharma (2016), by
identifying set of individuals who exhibit strong similarities. However, traditional clustering tech-
niques encounter challenges, particularly the curse of dimensionality, when dealing with datasets
with many features Sisodia et al. (2012). To address this limitation, the multiplex graph offers a
promising solution Wang et al. (2019) such that the communities detection on such graph aims to
identify groups with high intra-connectivity and low inter-connectivity Fortunato (2010b). Numer-
ous algorithms have been developed for community detection in multiplex graphs, utilizing various
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Figure 1: From the multiplex graph, the MSBM model identifies similar layers into groups. For
each group, a specific SBM is estimated, such that the edges are divided into blocks.

approaches such as optimization De Meo et al. (2011); Que et al. (2015), spectral computation Li
et al. (2018), consensus clustering Mandaglio et al. (2018), and inference Shuo & Chai (2016).
However, those methods generally provide a single cluster over all layer, which may not reveal the
quality and diversity of alternative clusters of the multiplex graph. Especially, the layers may exhibit
a complementary information with different structural clustering, like the communities of a given
user in social preferences which may be different between music and movies preferences. Such
diversity leads us to explore the identification of similar layer into groups from where a specific
division of each group will be proposed.

The Stochastic Block Model (SBM) Lee & Wilkinson (2019) is a generative model that represents
a widely adopted technique for community detection. The SBM considers the existence of commu-
nities within the graph and characterizes the probability of edges between vertices based solely on
the communities to which the connecting vertices belong. It is versatile enough to be applied across
various type’s graphs, including mono-layer Abbe (2017), multiplex graph Barbillon et al. (2017),
and dynamic networks Corneli (2017). For the multiplex graph, the SBM has been used to perform
actor-based clustering Barbillon et al. (2017), which has been extensively utilized to group vertices
consistently within all layers of the multiplex graph. However, this modeling can not capture the
diversity of clusters withing the multiplex graph, that may results in sub-optimal communities.

In this paper, we propose Mixture SBM (MSBM) for multi-group clustering, such that the layers
with similar clustering are joined into groups, and the vertices of each group are clustered into
blocks, as shown in the figure 1. To address the double clustering, we assume that the layers of the
same group shares identical SBM distribution. Estimation Maximization (EM) algorithm is used to
identify the group of layers and the Variational Estimation Maximization (VEM) technique is used
to assign vertices to their respective blocks in each group.

The paper is organized by showing a brief related work in Section 2. We set the model with its
variables in Section 3. Then, we explain the different steps of optimization and we introduce the
model in which it is used for initialization the latent variables in Section 4. We then pass to the
experiment part in Section 5, and finish the paper by a conclusion in Section 6.

2 RELATED WORKS

The application of community detection for exploring and comprehending complex data through
multiplex representation has emerged as a highly compelling and active research domain. Various
algorithms have been developed for this purpose and can be broadly categorized into three groups.

The first category employs a flattening technique, where a mono-layer representation of the multi-
plex graph is computed to summarize its structure. Therefore, community detection is performed
using traditional mono-graph algorithms on the flattened layer Berlingerio et al. (2011); Kim et al.
(2016). However, this approach may only partially capture the inter-layer affinity, where noisy layers
can adversely affect the clustering outcomes.
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The second category of methods focuses on computing consensus clustering across all layers of the
multiplex graph. This approach entails determining individual groups for each layer using mono-
layer algorithms and then optimizing a division that maximizes consensus across all layers Berlin-
gerio et al. (2013); Tagarelli et al. (2017); Tang et al. (2012). However, it is essential to note that
while reducing the graph to clusters, some of the rich information in the original graph may need to
be recovered.

The third category is the direct methods, where algorithms aim to optimize communities directly
from the information provided by the whole graph Papalexakis et al. (2013). Many mono-layer
algorithms have been extended to handle multiplex graphs De Domenico et al. (2015); Boutemine
& Bouguessa (2017); Afsarmanesh & Magnani (2016); Mucha et al. (2010), and the Multi-Layer
Stochastic Block Models (MLSBMs) is one such extension Vallè s-Català et al. (2016); De Bacco
et al. (2017); Paul & Chen (2016). MLSBMs assume the existence of community patterns between
the layers and seek to capture layer similarity using a SBM model. These models infer the graph’s
structure using techniques like Variational Estimation Maximization Barbillon et al. (2017); Celisse
et al. (2012); Corneli et al. (2016); Paul & Chen (2016); Han et al. (2015). However, such mod-
els suffer from an exponential parameter increase and may struggle to identify different clustering
patterns between the layers. A related work described in Stanley et al. (2015) proposes a model
with multi-division for a multiplex graph. This model infers multiple SBMs for the multiplex graph,
where each SBM corresponds to a specific community structure. The similar layers present their
groups, with their SBMs generated independently. However, this approach uses the K-means al-
gorithm on the parameters for identifying layers within the same groups, which can be limiting as
K-means has serious limitation like its hypothesis to be suited for spherical topology.

In this paper, we present a novel mixture model that jointly represents the affiliation of each layer to
a group (set of layers), and vertices within each group are assigned to a single block (set of vertices).
We employ the EM-VEM technique to infer the model’s parameters and estimate the assignment
variables effectively, offering an improved approach for community detection in multiplex graphs.

3 MIXTURE STOCHASTIC BLOCK MODEL

This work aims to establish a joint clustering of similar layers into groups, and for each group,
a single clustering of vertices into blocks. Therefore, layer-to-groups variables are estimated to
identify the group of each layer. The edges within each group are assumed to follow an unique
SBM distribution, such that the layer of the same group are considered as samples from the same
distribution. Additionally, for each group, the vertex-to-block variables are to identify the block of
each vertex within the same group.

3.1 MODEL DEFINITION

Consider a multiplex graph denoted as G = {G1, ...GL} comprising L layer, with Gl = {V,El}
represents a single layer, where l, s.t l ∈ [1, L] indicates the layer index, V indicates the set of ver-
tices with |V | = N , El the set of edges within layer l. Let A = {A1, ..., AL} be the corresponding
adjacency matrix of multiplex graph G, where Al stands for the adjacency matrix of the graph Gl.
The underlying graph model in this study is an unweighted and undirected multiplex graph, where
the edge distributions follow a Bernoulli distribution. The generalization of this model to a directed
graph is straightforward. Finally, an edge Alij is defined by a dyad representing its extremity i, j.

Let’s consider a partition of multiplex’s graph layers into K groups and assume that the vertices of
group k are divided into Qk clusters that we names blocks, where k ∈ [1,K]. The probability of
having an edge Ali,j in layer l, within group k, giving the block assigned to each vertex, is expressed
as follows:

P (Ali,j |Zk,Πk) = πkZk
i ,Z

k
j

(1)

where Zk = {Zk1 , ...ZkN} is the set of vertex-to-block assignments in the group k and Zki ∈
{1, ..., Qk}. The matrix Πk has Qk × Qk elements πkq,w,∀q, w ∈ {1, ..., Qk}2. Each element
represents the probability of an edge existing, depending on the block of its dyad.
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Let consider a distinct layerGl, with the vertex-to-block variables assignment for each group, where
Z = {Z1, ...,ZK}, the probability of existing edge Alij between dyad (i, j) from the MSBM model,
conditioned on Z, can be described as a mixture distribution of K independent SBMs, expressed as:

P (Alij = 1|Z;β,Π) =

K∑
k=1

βkπkZk
i ,Z

k
j

s.t
∑
k

βk = 1

(2)

where β = {β1, ..., βK} is the set of probability of layer l to be generated from the group k,
which represents the mixture weights for MSBM, and Π = {Π1,Π2, ...,ΠK} is the set of SBM
parameters of each group. This model accounts for the incorporation of K distributions from which
layers can be generated. To address the challenge of maximizing the log-likelihood function due to
the sum in the mixture model, we introduce a set of latent variables Y that represents the layer-to-
group assignment. Specifically, ylk, s.t l ∈ [1, L] and k ∈ [1,K], takes the value of one when layer
l is generated from group k and zero otherwise. The updated formulation for the probability of an
existing edge is as follows:

P (Alij = 1|Y,Z;Π) =

K∏
k=1

(πkZk
i ,Z

k
j
)ylk

P (ylk = 1;β) =
∏
k=1

(βk)ylk
(3)

Additionally, for any group k, we identify the probability of a vertex i to be assigned to block q as
follows:

P (Zki = q;αk) = αkq

s.t

Qk∑
q=1

αkq = 1
(4)

such that α = {α1,α2, ...,αK} and αk = {αk1 , αk2 , ..., αkQk
}.

Let us consider θ = {θ1,θ2, ...,θK}, such that θk = {Πk,αk}, the log-likelihood of the proposed
model is written as follows:

L(A,Y,Z;β, θ) =
L∑
l=1

K∑
k=1

ylk

[
lnβk + L(Al,Zk;θk)

]
(5)

where L(Al,Zk;θk) is the complete log-likelihood of layer l in group k with parameters θk, for-
mulated as follow:

L(Al,Zk;θk) = ln(P (Al|Zk;Πk)) + ln(P (Zk;αk))

=
∑
i,j,i ̸=j

Alij ln(π
k
ZiZj

) + (1−Alij)ln(1− πkZiZj
) +

∑
i=1

ln(αkZi
) (6)

The verification of the parameter identifiability and the assessment of the maximum likelihood con-
sistency have been performed in supplementary materials.

In the context of inferring information from a given multiplex graph, the primary objectives involve
assigning each layer to a specific group k using variable ylk, then assigning each vertex i within
group k to a particular block q using variable Zki , and optimizing the parameters β and θ.

4



Under review as a conference paper at ICLR 2024

4 OPTIMIZATION OF LOG LIKELIHOOD FUNCTION

As explained previously, the MSBM depends on layer-to-group and vertex-to-block assignment vari-
ables. We set an iterative approach to address this jointly assignment clustering challenges. To elab-
orate, we start with the estimation of layer-to-group assignment variables by utilizing the Estimation
Maximization (EM) algorithm. Then, to infer the SBM representation within each group, we use
the Variational EM (VEM) technique. This technique proves its performance in maximizing SBM
distribution parameters while estimating the latent vertex-to-block variables.

4.1 ESTIMATION OF LAYER-TO-GROUP VARIABLES

The computation of layer-to-group latent variables estimation is derived from equation 5, which
defines the complete log-likelihood. The estimation process involves calculating the expectation of
the log-likelihood based on the posterior distribution of layer-to-group latent variables, and it can be
expressed as follows:

EY[L(A,Y,Z;β, θ)] =
L∑
l=1

K∑
k=1

E(ylk)
[
lnβk + L(Al,Zk;θk)

]
(7)

whereE(ylk) is the posterior expectation probability of layer l to be generated from group k, defined
as p(ylk|Al,Zk). Using Bayes theorem, the estimation of layer-to-group is computed as follows:

E(ylk) =
βkP (Al,Zk|θk)∑
j β

jP (Al,Zj |θj)
(8)

where P (Al,Zk;θk) is written as follows:

P (Al,Zk;θk) = P (Al|Zk;Πk)P (Zk;αk)

P (Al,Zk;θk) =
∏

i,j,i ̸=j

(πkZiZj
)A

l
ij (1− πkZiZj

)(1−A
l
ij)

N∏
i=1

αki
(9)

The estimation of layer-to-group prioritizes the layer that maximizes the likelihood distribution for
a specific group. In order to assign each layer to a single group, the selection of the group is based
on the following:

ylk = argmax
j

ylj (10)

4.2 MAXIMIZATION OF LIKELIHOOD PARAMETERS AND VERTEX-TO-BLOCK VARIABLES

Once the layer-to-group assignment is identified, the MSBM parameters can be maximized and
vertex-to-group variable can be estimated too.

4.2.1 MAXIMIZATION OF β

Considering equation 5, the optimization of β involves expressing the complete log-likelihood as
follows:

L(A,Y;β, θ) =

Lk∑
l=1

lnβk + C(βk)

s.t

K∑
k=1

βk = 1

(11)

where Lk = {l ∈ [1, L], s.t ylk = 1}, set of layer of group k, and C(βk) defined as a constant
regarding on βk. By employing the Lagrange multiplier approach, the solution that satisfies the
Karush-Kuhn-Tucker (KKT) conditions can be expressed as follows:

βk =
Nk

N
(12)

where Nk = |Lk| is the number of layers in the groups k.
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4.2.2 ESTIMATION OF VERTEX-TO-BLOCK AND MAXIMIZATION OF PARAMETER θk

Our mathematical models assume that the layers within the same group are generated independently
from SBM distribution specific to that group. Let Ak the multiplex graph of group k, based on
equation 6, the log-likelihood of group k is expressed as follows:

L(Ak,Zk;θk) =
∑
l∈Lk

∑
i,j,i ̸=j

Alij ln(π
k
ZiZj

) + (1−Alij)ln(1− πkZiZj
) +

∑
i=1

ln(αkZi
)

s.t

Qk∑
q

αkq = 1

(13)

In order to optimize the parameters that maximize the previous equation, it is essential to first es-
timate the latent assignment variables. This task is addressed using the Estimation Maximization
(EM) algorithm, which requires computing the posterior probability of the latent variable Zk with
respect to the observed layers, denoted as P (Zk|Ak). However, for single-layer graphs, it has been
demonstrated that calculating this conditional probability is computationally intractable Celisse et al.
(2012). Various approaches have been proposed in the literature to tackle this challenge Li et al.
(2015); Lee & Wilkinson (2019), but they tend to suffer from the curse of dimensionality, mainly
when dealing with large-scale datasets.

The Variational EM technique has been adopted to address this issue as an alternative technique
for handling SBM estimation challenges. Previous studies have established the VEM technique’s
convergence for single-layer SBM graphs and multiplex SBM graphs Celisse et al. (2012); Barbillon
et al. (2017). The VEM approach involves approximating the posterior distribution P (Zk|Ak), by
another distribution RAk over Zk. By leveraging this approximation, the marginal log-likelihood
over Zk can be expressed as follows:

L(Ak;θk) =
∑
Zk

RAk(Zk)L(Ak,Zk;θk)−
∑
Zk

RAk(Zk)ln
(
RAk(Zk)

)
+KL

[
RAk(Zk), P (Zk|Ak;θk)

]
(14)

where KL is the Kullback-Leibler divergence. Therefore, instead of maximizing L(Ak; θk) for the
observed data, the VEM technique optimizes a lower bound of L(Ak; θk), denoted as Iθ(RAk).
This lower bound is known as the evidence lower bound, and it can be defined as follows:

Iθ(RAk) = L(Ak;θk)−KL
[
RAk(Zk), P (Zk|Ak;θk)

]
=

∑
Zk

RAk(Zk)L(Ak,Zk;θk)−
∑
Zk

RAk(Zk)logRAk(Zk)

≤ L(Ak,Zk;θk)

(15)

The equality between the evidence lower bound and the log-likelihood holds when RAk(Zk) is
equal to the true posterior distribution P (Zk|Ak;θk). Maximizing the lower bound Iθ(RAk) is
equivalent to minimizing the Kullback-Leibler divergence KL

[
RAk(Zk), P (Zk|Ak;θk)

]
. Regard-

ing to integer nature of vertex-to-block variables, to approximate the posterior distribution, we select
RAk(Zk) as follows:

RAk(Zk) =

N∏
i=1

h(Zki ; τ
k
i ) (16)

where h(:; τki ) is a multinomial distribution with parameters τ = {τk1 , ...τkQk}. The entity τkiq
approximates the probability that vertex i belongs to the community q in group k. The Iθ(RGk)
can be writhed as follows:
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Algorithm 1 Inference of Likelihood of Multi-Group Stochastic Block Model
Input: G,K,Q = [Q1, ..., QK ]
Output: Y,Z,Π, β,α

Initialize Y,Z with 2
while Iteration < Iteration max ∧ Not Converge do

Estimate ylk with 8
Compute ylk with 10
Compute αkq with 18
Compute πkqw with 19
Compute τkqw with 20

end while

Iθ(RAk) =
∑
l∈Lk

∑
i ̸=j

∑
qw

τkiqτ
k
jw

[
Alij ln(π

k
qw) + (1−Alij)ln(1− πkqw)

]
−
∑
i

∑
q

τkiqln(τ
k
iq) +

∑
i

∑
q

τkiqln(α
k
q )

(17)

The parameters that maximize Iθ(RAk) are derived directly from the previously presented formula.
To ensure that the vector αk and matrix Πk satisfy the constraints

∑
q α

k
q = 1 and 0 ≤ πqw ≤

1,∀q, w ∈ {1, ..., Qk}2, Lagrange multipliers are employed. The optimal parameters are computed
as follows:

α̂kq =
∑
i

τkiq
N

(18)

π̂kqw =

∑
l∈Lk

∑
i ̸=j τ

k
iqτ

k
jwA

l
ij∑

l∈Lk

∑
i ̸=j τ

k
iqτ

k
jw

(19)

τ̂kiq ∝ α̂kq
∏
l∈Lk

∏
i ̸=j

∏
w

[
π̂kqw

Al
ij + (1− π̂kqw)

(1−Al
ij)

]τ̂k
jw

(20)

where α̂k, Π̂k, τ̂ k are the best current parameters. Due to the interdependence between Π̂k and
τ̂k, an effective way to determine the best estimation is to alternate between updating Π̂k and τ̂k
iteratively until convergence. The optimized parameters define the distribution of SBM and vertex-
to-block assignments for a group k. The same computation is executed for each group independently.
The overall method is summarized in the algorithm 1.

4.3 MODEL INITIALIZATION

The initialization process of MSBM involves setting up the layer-to-group variables Y and the
vertex-to-block variables Z. Effective initialization of these assignment variables contributes to
faster convergence and a higher chance of recovering accurate ground truth values. In the context
of mixture models, the K-means algorithm is commonly employed for initializing assignment vari-
ables due to its simplicity and quick response. In this paper, we introduce a novel spectral technique
that computes both layer-to-group and vertex-to-block variables, such that the results are used as an
initialization for inferring the MSBM model.

Consider U = {U1,U2, ...,UK} set of centroid graphs, with each graph Uk being the centroid that
represents the group k . We aim to find layer-to-group variables by optimizing centroids that best
represent each group. Then, each centroid Uk gets clustered into Qk community for the vertex-
to-block assignment variable. One way to find the communities of centroid k is to ensure that it
is composed of Qk disconnected components, where each component corresponds to a community
in the graph. In network theory, a graph with a Qk component exhibits a multiplicity of Qk null
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eigenvalues in its corresponding Laplacian matrix. These null eigenvalues are the smallest eigenval-
ues of the Laplacian matrix. Thus, minimizing the Qk smallest eigenvalue of the Laplacian matrix
associated with Uk facilitates the formation of Qk disconnected components within the centroid.
Therefore, the model aiming to optimize these representations can be formulated as follows:

min
U1,U2,...UK ,F,Y

L∑
l=1

K∑
k=1

ylk||Uk −Al||2F + 2λ

K∑
k=1

Tr(FkTLUkFk)

s.t ∀i, ukij ≥ 0,1Tuki = 1,∀k, (Fk)TFk = I, ylk ∈ {0, 1},
K∑
k=1

ylk = 1

(21)

where ||.||2F denote the Frobenius norm, and ukij represent element of the centroid Uk, where ∀i, j ∈
V . The Laplacian representation of centroid Uk is denoted by LUk , and Fk represents an embedding
vector.

The Laplacian matrix is computed in its unnormalized version as follows:

LUk = DUk − Uk (22)

where DUk denotes the degree matrix, which is a diagonal matrix. Fk ∈ RN×Qk

helps to get
the number of connected components in the graph. The embedding vector is included in the cost
function to soft the constraint of constructing a centroid with Qk components that effectively rep-
resent the communities, leveraging the number of null eigenvalues corresponding to the number of
components in the graph. The optimization process for this model are described in the supplemen-
tary materials. Experimentally, this initialization helps the MSBM to converge faster than random
initialization, up to more than 10 times faster, which depends generally on data structure.

4.4 MODEL SELECTION

To determine the optimal number of groups K and the number of blocks Qk in each group k, we
propose using the Bayesian Information Criterion (BIC). The BIC is formulated as follows:

BIC = 2

K∑
k=1

(Qk)2 log(|Lk|N(N − 1)) + (Qk − 1) log(|Lk|N)+2(K − 1) log(L)− L(G,Y,Z;β, θ)

(23)

In this expression, |Lk| represents the number of layers associated with group k. Although the
theoretical justification for the BIC criterion still needs to be developed Bhat & Kumar (2010),
empirical evidence suggests that it yields satisfactory results in practice.

5 EXPERIMENTS

To assess the properties of the MSBM, we compare its performance with various algorithms on
four synthetic datasets. Due to space limits, only one experiment is presented in this section, the
others are shown in supplementary materials. The results of MSBM on a real datasets are provided
in supplementary materials. Specifically, as MSBM performs joint clustering of layer and vertices,
we perform separate comparisons between MSBM and other algorithms regarding graph and vertex
clustering. For the vertex clustering task, the SBM is the most natural algorithm to compare with. In
this context, we employ the SBM across all layers, such that one clustering is returned for all layers.
Additionally, We compare MSBM with Generalized Louvain Mucha et al. (2010) and Graph Fusion
Spectral Clustering (GFSC) Kang et al. (2019). Those algorithms does not consider the multigroup
clusters. Graph clustering is a more complex task. In order to highlight its difficulty, we carry
out a comparison with the K-means algorithm, whose hypothesis framework does not necessarily
include the complexity of this task. The Normalized Mutual Information (NMI) and the Adjusted
Mutual Information (AMI) are used to evaluate the performance of jointly clustering tasks between
the algorithms.
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5.1 SYNTHETIC DATA: VARIABILITY IN BLOCK SIZE

In this experiment, the dataset is composed of 3 groups. Each group of layers consists of 10 graphs,
each with 100 vertices organized into four blocks. Vertices inside a block are randomly linked to
each other with a probability πintra = 0.5, and vertices from different blocks are randomly connected
with a probability πinter = 0.3. What distinguishes the groups of layers is the number of vertex in
each block, G1 = {25, 25, 25, 25}, G2 = {20, 25, 25, 30} and G3 = {30, 30, 20, 20}, where Gi is
the ith group, and for each group, the first number indicates the number of vertex of the first block,
the second number the one of the second block, and so forth, as shown in figure ??.

Figure 2: The adjacency matrices correspond to a single layer for each group. G1 is presented
on the right, G2 in the middle, and G3 on the left. The intra-block density is set at πintra = 0.5,
and for better visualisation, the inter-block connectivity probability is set at πinter = 0.1, instead of
πinter = 0.3 as really experimented.

The MSBM and the K-means results are shown in Table 1. The MSBM successfully finds the
appropriate layer-to-group assignments. In contrast, the K-means approach fails to perform this task.
The application of multiplex clustering algorithm results in an average clustering of the vertices.
Unlike MSBM, there is no distinction between blocks of vertices for each group of layers, which
explains the better NMI/AMI results of the MSBM over the multiplex SBM, as illustrated in Table
1. The mean errors between the predicted and generated parameters is 0.04, which proves the
enhancement of parameter recovering of MSBM regarding multiplex SBM make error of 0.67.

Metrics
Algorithms Layer-to-Group Vertex-to-Block

MSBM K-means MSBM SBM GLouvain GFSC
NMI 100 52.03 100 61.40 77.44 73.80
AMI 100 49.40 100 58.74 75.74 72.65

Table 1: The NMI and AMI performances on MSBM, K-means, SBM, Glouvain and GFSC in
varibility on block size synthetic datasets.

6 CONCLUSION

Throughout this paper, we have introduced the Mixture Stochastic Block Model (MSBM) for multi-
group community detection in multiplex graphs. The MSBM serves to infer the existing groups that
share a similar community structure. Therefore, for each identified group, a distinct SBM is derived
to ascertain the community structure of each vertex. We have devised an Expectation-Maximization
(EM) framework for the estimation of layer-to-group assignment variables, followed by a Varia-
tional EM technique for estimating vertex-to-block assignments. A novel centroid methodology has
been proposed to initialize both layer-to-group and vertex-to-block variables, enhancing the model’s
convergence.

This model has been formulated with the intent of refining the estimation of the generating model
underlying multiplex graphs. It significantly contributes to a better comprehension of community
structures within multiplex graphs characterized by multi groups of community memberships. While
the current presentation exclusively addresses unweighted graphs, there exist potential extensions
encompassing degree correction and the incorporation of weights through alternative probability
distributions such as Gaussian or Poisson distributions. Such extensions would undoubtedly enrich
the model’s applicability in capturing the intricacies of diverse real-world scenarios.
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A SUPPLEMENTARY EXPERIMENTS

A.1 SYNTHETIC DATA: VARIABILITY IN BLOCK DISTRIBUTION

In this experiment, the dataset consists of 3 groups of 10 layers. Each graph is composed of 100
vertices distributed over four blocks of the same size ({25, 25, 25, 25}) and the same πintra = 0.5.
The layers’ groups difference is characterized by the probability of having an edge between the
blocks in which πG

1

inter = 0.1, πG
2

inter = 0.3 and πG
3

inter = 0.5. This difference enables us to test the
algorithm’s ability to find groups with different Π distributions. One can notice that the third group
is characterized by πinter = πintra, which corresponds to a random graph without communities.

The MSBM accurately identifies the clusters in both vertex and layers clustering with an error of
estimated parameters equal to meane = 0.04, such that that for the random layers without com-
munities, the algorithm does not find 4 clusters but considers only ”1 community”. The K-means is
still bad at retrieving the layers group, and the multiplex algorithms only manages to find an average
effect for vertex-to-block assignment with higher estimation error compared to MSBM.
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Metrics
Algorithms Layer-to-Group Vertex-to-Block

MSBM K-means MSBM SBM GLouvain GFSC
NMI 100 15.50 100 55.54 66.66 53.55
AMI 100 10.10 100 55.03 66.66 53.02

Table 2: The NMI and AMI performance for MSBM, K-means, SBM, Glouvain and GFSC in
variability on block size synthetic datasets.

Figure 3: The perfomance of MSBM, SBM, Glouvain ad GFSC to find the clusters of vertices
regarding the number of layer. The NMI and AMI were used are metrics of performance

A.2 SYNTHETIC DATA: VARIABILITY IN NUMBER OF LAYER

In this experiment, we fix the number of vertices, the number of groups and the blocks distribution
for each group, and we variate the number of layers. As the experiment for the variability in block
size, we set three groups with equitable number of layers and different block division for each, such
that πintra = 0.5 and πinter = 0.3. The blocks within the groups are divided into four blocks such
that G1 = {25, 25, 25, 25}, G2 = {20, 25, 25, 30} and G3 = {30, 30, 20, 20}, where Gi is the ith
group.

The result of the following experiments is shown in the figure 3. We can see that the performance
of the MSBM to retrieve the optimal blocks for each layer augment when the number of the layer
augment, comparing to the other methods. It can be explainable by the law of large number that
describes the convergence in probability to the expected value as the number of samples increases,
which are the layers in our case. As the layers of the multiplex graph augments, the time of com-
putation augments linearly in this case because number of parameters that scale linearly with the
number of layer for fixed number of groups and blocks, differently from the other tested algorithms
that does not scale well with large datasets. Additionally, thanks to our initialization that help to
converge to good local minimum, up to more than 10 time faster than the random initialization.

A.3 SYNTHETIC DATA: VARIABILITY IN NUMBER OF VERTICES

In this experiment, we fix the number of layer, the number of groups and the block distribution of
each group, and then we variate the size of graph by variating its number of vertices. We set three
groups with equilibrium number of layers and different block division for each one, as the previous
experiments.

The obtained result is represented in the figure 4. We can notice that the MSBM scale to large dataset
with thousand of nodes. The time complexity variate regarding size of graph and the structure of
the block. The computation time of the MSBM model is quiet small, (less than 20 second for
the multiplex graph with 900 vertices and 30 layers). It is explainable by the good initialization
that it may be returned from the centroid model. We recall that the EM technique is sensitive to
initialization, such that a random initialization may take longer time to stuck a fixed point.
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Figure 4: The perfomance of MSBM, SBM, Glouvain ad GFSC to find the clusters of vertices
regarding the number vertices in multiplex graph. The NMI and AMI were used are metrics of
performance

A.4 REAL WORLD DATA

In order to evaluate the practical effectiveness of the MSBM model within a real-world context,
we generate a composite dataset by joining multiple datasets, each inherently possessing its own
ground truth labels. To do so, we employ the BBC1 and BBCSport2 datasets. The BBC dataset
consists of 2, 225 articles divided into five different categories. It contains nine views, where each
view represents the sequence {articles, words}. The datasets are summarized in Table 3. To adapt
this dataset to our framework, we need to reconstruct a classical article-article graph. We did so by
interconnecting articles that share common words. The arising multiplex graph has integer weights,
which represent shared words among articles. For the purpose of applying MSBM based on the
Bernoulli distribution, we opt to select edges with weights exceeding the mean weight across all the
graphs. However, it may be more suitable to model the MSBM by Poisson distribution, which is
more convenient for integer weights. Poisson MSBM distribution is out of the scope of this paper.

dataset individuals views clusters
BBC 2,225 9 5

BBCSport 737 9 5

Table 3: Summary of real datasets

We then test the ability of the MSBM to distinguish between those nine layers and nine randomly
generated layers with πinter = 0.3, πintra = 0.5 uniformly distributed in 4 clusters. From the re-
sults shown in Table 4, the MSBM perfectly distinguishes the two groups. One can see that our
method is better than K-mean, SBM, GLouvain and GFSC is both identifying group and clustering.
Improvement of clustering can be done also by relaxing the assumptions regarding the the homo-
geneous distribution within each block, e.g. by considering degree-corrected variants of the SBM
Qin & Rohe (2013). This method allows for varying distributions among vertices within the same
block, thus enhancing the model’s fidelity to real-world complexities. The degree-corrected MSBM
is however out of the scope of this paper and left for potential future work, especially that our work
provides improvements as compared to existing work in this area as shown above.

In a second step, we tested the ability of MSBM to distinguish between two groups of the same
nature but different organizations, the BBCSport and the BBC datasets. As shown in Table 5, the re-
sults are again very good and less good for the vertex-to-block assignment. Our method improves the
performance in terms of detecting groups and clustering as compared to K-mean, SBM, GLouvain
and GFSC schemes.

1http://mlTheg.ucd.ie/datasets/segment.html
2http://mlg.ucd.ie/datasets/segment.html
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Layer-to-Group Vertex-to-Block
Algorithm MSBM K-means MSBM SBM GLouvain GFSC

NMI 100 67.5 49.5 35.6 43.5 41.2
AMI 100 59.4 48.3 33.5 41.3 40.1

Table 4: The NMI and AMI performance of MSBM, K-means, SBM, GLouvain and GFSC in BBC
dataset group and randomly generated layers group.

Layer-to-Group Vertex-to-Block
Algorithm MSBM K-means MSBM SBM GLouvain GFSC

NMI 100 50.40 52.14 30.47 40.68 33.54
AMI 100 47.40 50.29 28.47 40.10 30.39

Table 5: The NMI and AMI performances of MSBM, K-means, SBM, GLouvain and GFSC in BBC
and BBCSport datasets.

B IDENTIFIABILITY

The identifiability of the parameters for uni layer Bernoulli SBM has been proved in Celisse et al.
(2012). The proof has been extended to a multiplex graph for pillar division Barbillon et al. (2017).
We extend this analysis for multiplex SBM with multi groups.
Theorem 1. Let assume that there is K groups and every group has the same number of blocks
Qk = Qk

′
= Q ∀k, k′ ∈ {1, ..., Q}2. Assume for any q ∈ {1, ..., Q}, k ∈ {1, ...,K}, αkq > 0, βk >

0. Let Π ∈]0, 1[K∗Q×K∗Q diagonal block that contains matrices Πk at diagonal as follow:Π1 ... 0
: ... :
0 ... ΠK


Let also α be a K ∗Q×K ∗Q matrix, which is the diagonilization of [α1

1, ...α
1
Q, ...α

K
Q ] vector, and

β be a K ∗Q×K ∗Q matrix, which is the diagonilization of [β1, ...β1, β2...βK ] vector, where βi
is repeated Q times, ∀i ∈ {1, ...,K}. Assume that the elements of r = Π.α.β are distinct. Then the
MSBM parameters are identifiable

——

Proof. We extend the proof from Celisse et al. (2012) to the MSBM model as follows. . For any
group k, rq,k is the probability for a giving member from block q in group k to have a connection
with another in the same group rq,k =

∑Q
l=1 βkπ

k
qlα

k
l . Let R be Q ∗ K square matrix such that

Ri,q,k = (rq,k)
i for i ∈ 0, ..., Q ∗ k − 1. R is a Vandermonde matrix that is invertible by assump-

tions.

Therefore, for any i = 0, ..., (2Q− 1) ∗K, let set

µi =
∑
q,k

αq,k(rq,k)
i (24)

and M is a k(Q+ 1)×KQ matrix such that

Mij = µi+j (25)

For any i = 0, ..., Q ∗ k, we define the Q*K square matrix M i by removing line i from the matrix.
In hence,

MQ = RαRT (26)
where α is Q ∗K matrix as defined previously, where all αkq ̸= 0. Because R being invertible, then
det(M) > 0. Let us define

B(X, θ) =

Q×K∑
i=0

(−1)i+Q∗Kdet(M i(θ))Xi (27)
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B is of degree Q×K. For V i(θ) = (1, ri(θ), ..., (ri(θ))
Q), then

B(ri(θ), θ) = det(M(θ), Vi(θ)) (28)

The column of M are linearly combinations of Vi, then B(ri(θ), θ) = 0 for any i. It means that B
can be factorized as follow:

B(x, θ) = det(MQ×K)

KQ−1∏
i=0

(x− ri(θ)) (29)

Let assume the θ = (Π, α, β) and θ′ = (Π′, α′, β′) are two sets of parameters such that for any
multiplex G graph with multi-group model, L(G;θ) = L(G;θ′). Therefore, we get, µi(θ) = µi(θ

′),
that means that M i(θ) = M i(θ′) for any i. The B(; θ) = B(; θ′) because it dependents on the
determinant of M , which leads to ri(θ) = ri(θ

′). Ths R(θ) = R(θ′), and

α(θ) = (R(θ)T )−1MQ,KR(θ) = α(θ′) (30)

Therefore α = α′. The same steps can be applied to proof the identifiability of β where the matrix
diagonal α is replaced by diagonal matrix of β where every βk,∀k ∈ {1, ...,K} will be repeated Q
times before set βk+1. It leads to a matrix with the same dimension Q×K.

For Π, let’s define
Uij = R(θ)β(θ)α(θ)Πα(θ)β(θ)(R(θ))T

From previously, R(θ) = R(θ′), α(θ) = α(θ′) and β(θ) = β(θ′) then

U(θ) = U(θ′) → Π = Π′ (31)

C CONSISTENCY OF MAXIMUM LIKELIHOOD

The asymptotic consistency of the maximum likelihood estimator of Bernoulli uni layer SBM has
been studied in Celisse et al. (2012). The proof of the consistency of MSBM is straightforward from
the proof of uni-layer SBM. Let’s assume that the following assumptions hold:
Assumption 1. For every q ̸= q′ ,there existsw ∈ {1, ..., Qk} such that πkqw ̸= πkq′w, or πkwq ̸= πkwq′

Assumption 2. There exists ζ > 0 such that ∀(q, w) ∈ {1, ..., Qk}, πkqw ∈]0, 1[→ πqw ∈ [ζ, 1− ζ]

Assumption 3. There exists γ ∈ 1/Qk such that ∀q ∈ {1, ..., Qk}, αkq ∈]0, 1[→ αq ∈ [γ, 1− γ]

Assumption 4. There exists ξ ∈ 1/K such that ∀k ∈ {1, ...,K}, βk ∈]0, 1[→ βk ∈ [ξ, 1− ξ]

Theorem 2. Let (Θ, d) and (Ψ, d′) denote metric spaces and let Mn : Θ × Ψ → R be a random
function and M : Θ → R a deterministic function such that for every ϵ > 0

supd(θ,θ0)M(θ) < M(θ0) (32)

sup(θ,ψ)∈Θ×Ψ|Mn(θ, ψ)−M(θ)| := ||Mn −M ||Θ×Ψ → 0 (33)

and (θ̂ψ̂) = argmax
θ,ψ

Mn(θ, ψ), then

d(θ̂, θ0) → 0 (34)

The proof can be performed by the same steps by taking

Mn(π, α, β) =
1

N(N − 1)L ∗K
L∑
l=1

log
(∑

k

∑
z[n]

βk
∏
i ̸=j

Bernoulli(πkzki ,zkj )
∏
i

αkzki

) (35)

M(π) = max
ai,j∈A

∑
k

∑
q,w

β∗kα∗k
q α

∗k
w∑

q′,w′

a∗kqq′a
∗k
ww′ [π∗k

q,wlog(π
k
q′,w′) + (1− π∗k

q,w)log(1− π∗k
q′,w′)]

(36)
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where Bernoulli(π) is the Bernoulli distribution with paramter π, and β∗, α∗andπ∗ denotes the true
parameters respectively, with

A = {(akij)1≤q,w≤Qk , akqw ≥ 0,
∑
w

akqw = 1} (37)

D OPTIMIZATION OF INITIALIZATION MODEL

The initialization model described in Section 4.3 in Equation (21) involves multiple variables, mak-
ing it challenging to optimize them simultaneously. Therefore, we adopt an iterative technique where
each variable will be optimized while the others are held fixed.

D.1 OPTIMIZING Y, WHILE U AND F ARE FIXED

The model can be represented as follows:

min
Y

L∑
l=1

K∑
k=1

ylk||Uk −Al||2F

s.t ylk ∈ {0, 1},
K∑
k=1

ylk = 1

(38)

By relaxing the constraint ylk ∈ {0, 1} to ylk ∈ [0, 1], the model becomes linear, facilitating the
application of analytical solutions that satisfy the Karush-Kuhn-Tucker (KKT) conditions using the
Lagrange technique. The analytical solution is expressed as follows:

ylk =
||Uk −Al||2F∑K

k′=1 ||Uk
′ −Al||2F

(39)

The determination of the group to which the layer l will be assigned is carried out as follows:

ylk = argmax
k

ylk (40)

D.2 OPTIMIZING U , WHILE Y AND F ARE FIXED

Firstly, the optimization of centroids Uk is performed independently, and according to Wang et al.
(2020), the objective function Tr(FkTLUkFk) can be expressed as

∑
i, j||fi−fj||22ui, j. Therefore,

the optimization for each centroid can be formulated as follows:

min
Uk

∑
l∈Lk

∑
i,j

||uij −Aij ||2F − λ
∑
i,j

||fi − fj ||22ui,j

s.t uij ≥ 1,1T .ui = 1

(41)

Lk represent the set of layers for which ylk equals one. We denote ||fi − fj||22 as dij. Due to the
independence of optimization for each vertex vector ui from the others, the optimization of Uk can
be formulated as follows:

min
uk
i

∑
l∈Lk

||ui −
λ

2|Lk|
di||2F

s.t ∀i, j uij ≥ 1, 1T .ui = 1

(42)

The model mentioned above is quadratic with linear constraints, indicating that it is convex. It can
resolved using the augmented Lagrange multipliers. Otherwis, any quadratic solver can efficiently
resolve this problem.
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D.3 OPTIMIZING Fk WHILE U AND Y ARE FIXED

The optimization of each Fk for every group is performed independently of the remaining groups.
For a given group, the model can be formulated as follows:

min
Fk

Tr(Fk
T

LUkFk)

s.t Fk
T

.Fk = I
(43)

The optimal Fk can be obtained by extracting Qk eigenvectors of the Laplacian matrix LUk , which
are associated with the smallest Qk eigenvalues. It is important to note that Qk denotes the number
of communities within group k.

Algorithm 2 Multi Centroids algorithm fo initialization
Input G,K,Q = [Q1, ..., QK ] Output: U,Y

Initialize U = {U1,U2, ...,UK}
while Iteration < Iteration max || Not Converge do

optimize ylk with 40
optimize ui with 42
compute Fk from the eigen vector associated to Qk smallest eigen value of LUk

end while
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