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Abstract

We can visually discriminate and recognize a wide range of materials. Meanwhile, we use

language to describe what we see and communicate relevant information about the materi-

als. Here, we investigate the relationship between visual judgment and language expression

to understand how visual features relate to semantic representations in human cognition.

We use deep generative models to generate images of realistic materials. Interpolating

between the generative models enables us to systematically create material appearances in

both well-defined and ambiguous categories. Using these stimuli, we compared the repre-

sentations of materials from two behavioral tasks: visual material similarity judgments and

free-form verbal descriptions. Our findings reveal a moderate but significant correlation

between vision and language on a categorical level. However, analyzing the representations

with an unsupervised alignment method, we discover structural differences that arise at the

image-to-image level, especially among ambiguous materials morphed between known cat-

egories. Moreover, visual judgments exhibit more individual differences compared to verbal

descriptions. Our results show that while verbal descriptions capture material qualities on

the coarse level, they may not fully convey the visual nuances of material appearances.

Analyzing the image representation of materials obtained from various pre-trained deep

neural networks, we find that similarity structures in human visual judgments align more

closely with those of the vision-language models than purely vision-based models. Our work

illustrates the need to consider the vision-language relationship in building a comprehensive

model for material perception. Moreover, we propose a novel framework for evaluating the

alignment and misalignment between representations from different modalities, leveraging

information from human behaviors and computational models.

Author summary

Materials are building blocks of our environment, granting access to a wide array of visual

experiences. The immense diversity, complexity, and versatility of materials present chal-

lenges in verbal articulation. To what extent can words convey the richness of visual
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material perception? What are the salient attributes for communicating about materials?

We address these questions by measuring both visual material similarity judgments and

free-form verbal descriptions. We use AI models to create a diverse array of plausible

visual appearances of familiar and unfamiliar materials. Our findings reveal a moderate

vision-language correlation within individual participants, yet a notable discrepancy per-

sists between the two modalities. While verbal descriptions capture material qualities at a

coarse categorical level, precise alignment between vision and language at the individual

stimulus level is still lacking. These results highlight that visual representations of materi-

als are richer than verbalized semantic features, underscoring the differential roles of lan-

guage and vision in perception. Lastly, we discover that deep neural networks pre-trained

on large-scale datasets can predict human visual similarities at a coarse level, suggesting

the general visual representations learned by these networks carry perceptually relevant

information for material-relevant tasks.

Introduction

We often describe what we see with words. Language reveals how we interpret and communi-

cate our sensory experiences and provides critical information about our mental representa-

tion of the environment [1]. The interaction between language and perception has long been

debated, mainly in visual cognition, such as color categorization [2–4] and scene interpretation

[5, 6]. Jointly modeling visual and natural language features expands the capability of artificial

intelligence systems (e.g., image-classification [7, 8], image-retrieval [9–11], and text-to-image

generation [12, 13]) and provides valuable tools for investigating the neural correlates of object

and scene recognition [14, 15]. Little is known about how and what aspects we communicate

about materials, which are the building blocks of objects and the environment. Material per-

ception facilitates us to form a vivid and rich representation of the external world, which in

turn guides our interaction with it. Although we can visually recognize and discriminate a

broad range of materials, we might find it challenging to precisely and effectively describe

their appearances and properties with words. To what extent do words encapsulate the rich-

ness of visual material perception? What are the salient attributes for communicating about

materials?

Based on visual input, we can often distinguish materials, and infer their diverse optical

properties (e.g., surface glossiness [16–19], translucency [20–29] or transparency [30]), surface

properties (e.g., roughness [31]), mechanical properties (e.g., softness [32], stiffness [33]) and

states (e.g., freshness [34], wetness [35]). Previous works actively examined how visual esti-

mates of material attributes are related to the statistical image features [36], as well as seeking

to probe the neural representation of material perception in cortical areas of the ventral visual

pathway [37–40]. Along with visual discrimination, verbalizing what we see reflects, to a cer-

tain degree, how we process and organize visual information into semantic-level representa-

tion. Verbal description could serve as an interpretable representation that encodes the salient

features of material qualities. While a plethora of works scrutinized the visual estimation of

specific material properties related to physics [17, 36, 41–43], few studies shined the light on

more subjective material perception from both visual judgment and language expression.

With a broad dataset of natural material images, Schmidt et al. (2022) [44] used visual triplet

similarity judgments from crowd-sourcing to distill a representational space, which was later

annotated by humans to find conceptual and perceptual dimensions of materials. Cavdan et al.

(2023) [45] studied the structure of the representational space of perceptual softness triggered
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by material name with a cross-group analysis and suggested that verbally activated softness

representation correlates with that derived from vision [32]. However, participants in these

studies were often limited to judging materials based on predetermined categories and attri-

butes without being given the opportunity to express their personal semantic interpretations.

Further, previous works typically focused on the group-level analysis and downplayed the

potential individual variances. To definitively assess the link between vision and language in

material perception, it is crucial to measure visual judgment and verbal description within the

individual participants, as well as allow them to freely articulate their unique visual

experiences.

Perceiving materials may entail processing visual information at multiple levels. To probe

the representational space of materials, designing stimuli that incorporate both the naturalness

of mid-to-low-level visual properties and semantic-level richness is essential. To achieve this,

we developed an effective approach to create an extensive range of plausible visual appearances

of familiar and novel materials (see Fig 1). Without requiring annotated data, unsupervised

learning has been recently applied to the study of human material perception [29, 46, 47]. We

use an unsupervised image synthesis model, StyleGAN2-ADA [48], to generate images of

diverse materials based on the learning of real-world photos. As a result, the model parameter-

izes the statistical structures of material appearances and facilitates linear interpolation

between image data points, allowing us to morph between different material categories (e.g.,

morphing between a soap to a rock results in an ambiguous translucent object shown in Fig

2C). This approach enables us to continuously vary the multidimensional structural features of

materials (e.g., the combination of shape and color variation) and build an expanded Space of

Morphable Material Appearance. The morphed materials resemble the visual characteristics of

both original materials (e.g., soap and rock), potentially resulting in the ambiguity of perceived

material identity. This offers an opportunity to investigate the influence of semantic-level

interpretation on material perception.

We measured material perception with two behavior tasks involving vision and language

within individuals: Multiple Arrangement and Verbal Description (Fig 3). Stimuli were sam-

pled from the Space of Morphable Material Appearance (Fig 2D and 2E). In the Multiple

Arrangement task, participants arranged materials based on visual similarities [49]. For the

verbal description task, the participants described the same images with texts. With the recent

advancements in Large Language Models (LLMs), it is now possible to create a representation

based on verbal reports provided by the participants. We discovered a moderate vision-lan-

guage correlation within individual participants by quantitatively comparing the behavioral

representations derived from two tasks. Incorporating two behavioral tasks allows us to

uncover salient semantic features associated with material perception. Crucially, by assessing

the stimulus-level representational differences, we noted a persistent gap in using words to

capture the nuanced visual differences among diverse material samples, particularly among

the ambiguous materials generated from morphing.

How do we discover perceptually relevant features that are descriptive of the richness of

human material perception? We confronted various pre-trained, large-scale deep neural net-

work models with our stimuli and compared image-based representations extracted from

these models with those from humans. Despite not being explicitly trained with our stimuli,

we found that these models can cluster images in patterns similar to human perception. Fur-

thermore, we discovered that the weakly-supervised model (e.g., Contrastive Language-

Image Pretraining (CLIP) [7] and OpenCLIP [50]), which learns high-level semantic corre-

lations between images and text, best predicts human visual similarity judgments. We dis-

cuss the implications of our results on visual and semantic contribution to material

perception.
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Results

Space of Morphable Material Appearance

Employing the unsupervised learning model, StyleGAN2-ADA, we generated images of diverse

materials with perpetually convincing quality by training on real-world photos (Fig 2). With its

multi-scale generative network (G) and scale-dependent latent space (W), the model learns the

Fig 1. Our framework to investigate the link between vision and language in material perception. We built an

expandable Space of Morphable Material Appearance based on the unsupervised image generation model StyleGAN

(see details in Fig 2). Our method allows us to synthesize images of diverse material appearances in a controllable

manner. We created six image categories of material: three original materials (i.e., soap, toy, rock) by directly learning

from real photos, and three morphed materials by cross-material morphing (i.e., soap-to-rock, rock-to-toy, and soap-

to-toy). The image examples displayed represent each of the six categories. Sampling stimuli from the Space of

Morphable Material Appearance, we measured material perception with two psychophysical tasks: visual material

similarity judgment and verbal description. We quantitatively evaluated the representations across modalities using the

Representational Similarity Analysis (RSA) and the unsupervised alignment method Gromov-Wasserstein Optimal

Transport (GWOT). Within each participant, we compared Representational Dissimilarity Matrices (RDMs) between

the visual judgment (i.e., Vision RDM) and verbal description (i.e., Text RDM) results. We also compared the

participant’s visual judgment behavior with the image-feature representations (i.e., Image-feature RDM) of stimuli

extracted from the self-supervised (e.g., DINO) or weakly-supervised models (e.g., text-guided model CLIP) pre-

trained on large-scale datasets.

https://doi.org/10.1371/journal.pcbi.1012481.g001
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Fig 2. Overview of the synthesis pipeline for morphable material appearances. (A) Training datasets. (B) Transfer learning

pipeline. Upon training, we obtained models to generate images from three material classes. We can generate images of a desired

material (e.g., soaps) by injecting the latent codes (e.g., wsoap 2Wsoap) into the corresponding material generator (e.g., Gsoap). (C)

Illustration of cross-category material morphing. By linearly interpolating between a soap and a rock, we obtain a morphed

material, “soap-to-rock,” produced from its latent code wsoap−to−rock and generator Gsoap−to−rock. (D) Illustration of the Space of

Morphable Material Appearance. (E) Examples of generated images from the Space of Morphable Material Appearance. These

images are a subset of stimuli used in our psychophysical experiments, covering two major lighting conditions (i.e., strong and

weak lighting).

https://doi.org/10.1371/journal.pcbi.1012481.g002
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statistical regularity of the images at multiple spatial scales, spontaneously disentangling seman-

tically meaningful visual attributes, such as the object’s shape, texture, and body color [29].

Here, we built our own image datasets that include three materials: soaps (Dsoap), rocks (Drock),

and squishy toys (Dtoy) (Fig 2A). We fine-tuned the StyleGAN pre-trained on the large soap

dataset Dsoap on the smaller datasets Drock and Dtoy (Fig 2B). With a short training time, the

Soap Model (Wsoap, Gsoap) turned into Rock (Wrock, Grock) and Toy Models (Wtoy, Gtoy) and can

synthesize images of realistic and diverse rocks/crystals and squishy toys, under the broad varia-

tion of three-dimensional (3D) shapes, colors, textures, and lighting environments (Fig 2E Top

Row). The effectiveness of transfer learning also suggests that the different categories of materi-

als have common visual characteristics, such as color variation, specular highlight, and surface

geometry; thus, learning features from one material benefits learning new materials.

We can produce novel material appearances without additional training, by morphing

between existing learned materials. Given the images of a pair of source and target materials, we

can linearly interpolate between their layer-wise latent codes (e.g., wsoap and wrock) while interpo-

lating all convolution layers’ weight parameters of the corresponding material generators (e.g.,

Gsoap and Grock) (see Method). At a given step size, we can synthesize the image of a morphed

material with the interpolated latent code (e.g., wsoap−to−rock) and generator (e.g., Gsoap−to−rock).

Fig 2C illustrates the method of creating a morphed material between soap and rock. In S7 Fig,

we further illustrate the cross-material morphing with additional interpolation steps.

Combining transfer learning and model morphing, we constructed an expandable Space of

Morphable Material Appearance, from which we can systematically sample and create existing

and novel material appearances with object-level realism (Fig 2D). In this study, we focused on

the material appearances at the morphing midpoints (i.e., step λ = 0.5). With this technique,

we generated morphed materials, soap-to-rock (midpoint from soap to rock), soap-to-toy

(midpoint from soap to squishy toy), and rock-to-toy (midpoint from rock to squishy toy)

(Fig 2E Bottom row). We sampled 72 images from the Space of Morphable Material Appear-

ance as stimuli for both of our behavioral experiments (see S1 Fig, S1 Text, and Method).

Visual material judgment and verbal description are moderately correlated

within individuals

Using the above-mentioned stimuli, we measured material perception with Multiple Arrange-

ment and Verbal Description tasks. In the Multiple Arrangement task, participants were

Fig 3. Illustrations of psychophysical experiment interface. (A) The Multiple Arrangement task. Participants (N = 16) arranged images within a circle

based on their judgment of the visual similarity of material properties. In the first trial, participants were presented with all 72 images of materials. In

each subsequent trial, a subset of images was iteratively presented based on an adaptive sampling algorithm [49]. (B) The Verbal Description task. With

free-form text input, participants were asked to describe the material shown in the image from five aspects: material name, color, optical properties,

mechanical properties, and surface texture. The gray texts are example responses from one trial.

https://doi.org/10.1371/journal.pcbi.1012481.g003
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instructed to place the images within the circled region based on the “similarity of material

properties” (Fig 3A). The task prompted the consideration of various aspects of the materials,

allowing for the capturing of a multidimensional representation of how visual material dis-

crimination is processed. During the Verbal Description task, the same group of participants

provided unrestricted descriptions of the material with texts covering five aspects: material

name, color, optical properties, mechanical properties, and surface texture. These aspects have

been found useful in characterizing the mental representations of materials [44].

We constructed the Representational Dissimilarity Matrices (RDMs) from each partici-

pant’s behavioral results for both tasks. A Vision RDM is created based on the on-screen

Euclidean distances of pairwise comparisons of material similarity [49] from the Multiple

Arrangement. Meanwhile, we also built a Text RDM by encoding the images’ text descriptions

provided by the participant into an embedding space with a pre-trained LLM (see Methods).

We tested four publicly accessible LLMs, CLIP’s text encoder [7], Sentence-BERT [51], GPT-2

[52], and OpenAI Embedding V3-small, whose embedding spaces were shown to capture the

semantic similarity of textual information. The primary analysis in this paper is conducted

using the CLIP’s text embedding unless otherwise noted.

Across individuals, we found a moderate correlation between the RDMs of the two tasks

within each participant, by applying the Representational Similarity Analysis (RSA). Fig 4A

displays the RDMs of three participants (see S2 Fig for all participants’ results). While the par-

ticipants used different numbers of unique words (Fig 5A, mean = 128 unique words,

max = 288 words, min = 37 words), we found that all of the participants’ verbal responses

exhibited a significant correlation (min Spearman’s correlation rs = 0.09, max Spearman’s cor-

relation rs = 0.53, all p< 0.001, FDR-corrected) with their own multiple arrangement behavior,

signifying the presence of inherent cross-task consistency within an individual (Fig 5B “With

material name” condition). These moderate correlations reflect that participants’ own Vision

and Text RDMs share similarities in their overall structures, while also underpinning differ-

ences in their local patterns. We observed a stronger correlation when comparing the group

average Vision and Text RDMs (Spearman’s correlation rs = 0.74, p< 0.001) (rightmost col-

umn in Fig 4A). By applying classical multidimensional scaling (MDS) on the group average

RDMs, we found that Vision and Text embeddings exhibit similar organizations, forming

three major clusters: squishy-like (squishy toys, top left cluster in MDS), soap-like (soap and

soap-to-toy, bottom left cluster in MDS), and rock-like (rock, rock-to-toy, and soap-to-rock,

bottom right cluster in MDS).

Vision- and language-based representations reveal salient semantic

features

Next, we sought to interpret the representative dimensions of materials expressed through the

behavioral tasks. We annotated the MDS results of the group average Vision RDMs with the

image stimuli and the participants’ verbal descriptions. Colorfulness, material name, and soft-

ness are the key features across participants. The “Colorfulness” panel in Fig 6 shows that

materials with vivid body colors and high saturation (left side in MDS, e.g., red, pink) are sepa-

rated from less saturated colors (e.g., light blue and light gray). Materials’ chemical and physi-

cal properties determine the specific range of their colors and surface textures [34]. This innate

connection may facilitate visual material categorization. To further comprehend the material

clustering in the MDS, we labeled the most frequent word participants used in verbal descrip-

tions for each stimulus. In the description of “material name” and “mechanical properties”, we

observed that participants tend to group “hard” materials (e.g., rock, glass, or crystal) away

from “soft” ones (e.g., squishy toy, or rubber) (“Mechanical properties” and “Material name”
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Fig 4. Vision-based similarity judgment and verbal description of materials are moderately correlated. (A) RDMs of visual material similarity

judgment via Multiple Arrangement (Vision RDMs) and Verbal Description (Text RDMs). Top: Vision RDMs. Bottom: Text RDMs. From left to right:

RDMs for three participants and the group average RDM across all participants. In each RDM, on both x- and y-axis, the images are organized by the

type of material generator, spanning from the learned original materials (i.e., soap, toy, rock) to the morphed midpoint materials (i.e., soap-to-rock,

rock-to-toy, and soap-to-toy). The dissimilarities in the individual RDMs are normalized to the 0 and 1 range, and the average RDMs are computed

based on the normalized values. The green colors indicate low dissimilarity between pairwise combinations of materials, whereas the pink colors

indicate high dissimilarity. The Spearman’s correlation (rs) between the corresponding Vision and Text RDMs are annotated in the box below. (B)

Two-dimensional embedding from the MDS of the group average Vision and Text RDMs, color-coded based on the six types of material generator

depicted in (A). The percentage of explained variance is shown in parentheses.

https://doi.org/10.1371/journal.pcbi.1012481.g004
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panels in Fig 6). Here, perceived softness might be a notable attribute associated with the mate-

rial category. On the other hand, the descriptive words representing visual characteristics,

“optical properties” and “surface texture” (e.g., “translucent”, “opaque”, “rough”, and “crack”),

are dispersed across different major clusters (“Optical properties” and “Surface texture” panels

in Fig 6). Semantic features of the material may have various levels of functional importance,

depending on the nature of the attribute. While colorfulness, material name, and softness

Fig 5. Effect of the number of unique words, language models, and material names on individual behavioral results. (A) Distribution of the

number of unique words participants used in the Verbal Description task. (B) Comparison of vision-language correlations across different language

models. For each individual, we computed within-person Spearman’s correlation between the Vision and Text RDMs. The Text RDM is built by

embedding verbal descriptions with four different pre-trained LLMs: CLIP’s text encoder, Sentence-BERT, GPT-2, and OpenAI Embedding V3-small.

The blue bars indicate the correlation values when all text features are included to construct the Text RDM. The gray bars indicate the correlation values

when the “material name” is excluded from constructing the Text RDM. Asterisks indicate FDR-corrected p-values: *** p< 0.001, ** p< 0.01, and *
p< 0.05.

https://doi.org/10.1371/journal.pcbi.1012481.g005
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establish the coarse-grained material assessment, optical and surface properties could further

support fine-grained material discrimination.

We further found that removing the “material names” from the text embeddings (“No

material name” condition in Fig 5B) significantly decreased the correlation between Vision

and Text RDMs for almost all participants (Wilcoxon one-sided signed-rank test, all

p< 0.0005 across four tested language models). Different LLMs produced similar results,

except GPT-2 embedding led to lower vision-language correlations. We observed a similar

effect when separately comparing the perceptual RDMs of the 36 images of “original” and

36 images of “morphed” materials. Removing “Material Name” also reduces vision-lan-

guage correlation in “morphed” materials (see S4 Fig). Material naming may serve as a

high-level feature that envelops the particular structural combination of various material

characteristics, providing critical information to the perceptual inference of material

attributes.

Comparing stimulus-level similarity structures between vision and text

To further examine the relationship between representation from vision and language at the

stimulus level, we use an unsupervised alignment method, Gromov-Wasserstein Optimal

Fig 6. Annotated MDS of the group average Vision RDM. For “Colorfulness”, we display the data point in the form of the image stimuli. For “Optical

properties”, “Surface texture”, “Mechanical properties” and “Material name”, we display the most frequently used word (applied with the same color)

for each image, aggregated across all participants. The color schemes of words are not comparable across MDS plots. An interactive version of this plot

is provided in the S1 File.

https://doi.org/10.1371/journal.pcbi.1012481.g006

PLOS COMPUTATIONAL BIOLOGY Probing the link between vision and language in material perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012481 October 3, 2024 10 / 23

https://doi.org/10.1371/journal.pcbi.1012481.g006
https://doi.org/10.1371/journal.pcbi.1012481


Transport (GWOT), to scrutinize structural alignment between the perceptual spaces from

visual judgment and verbal description [53, 54] (see Fig 7A and Method). Given two embed-

dings, GWOT provides a mapping between them based only on their internal relationships

(i.e., distances between data points). It seeks to identify an optimal transportation plan Γ
between these two similarity structures (i.e., expressed through the dissimilarity matrices), by

Fig 7. The similarity structures between visual judgment and verbal description align on the coarse categorical level but lack precise one-to-one stimulus-level

mapping. (A) Illustration of Gromov-Wasserstein Optimal Transport (GWOT), an unsupervised alignment method to compare two similarity structures (e.g.,

similarity structure 1 and 2). Dij denotes the dissimilarity between stimulus i and j in one RDM, and D0kl denotes the dissimilarity between stimulus k and l in another

RDM. Solving the minimization problem of Gromov-Wasserstein distance (GWD) yields an optimal transportation plan Γ. The group average Vision (Top left) and

Text (Top right) RDMs are shown as examples. (B) Optimal transportation plan Γ between group average Vision RDM and Text RDM. Each element in the Γ matrix

indicates the probability of an image in the similarity structure of verbal description corresponding to another item in the similarity structure of visual material

similarity judgment. The purple diagonal indicates the perfect alignment on the image-to-image level. Only a small fraction of diagonal elements in Γ show high

values, indicating the lack of one-to-one mapping between verbal descriptions and visual judgment of the stimuli. The Spearman’s correlation (rs) between the Vision

and Text RDMs is noted in the bottom left corner of the Γ matrix. (C) Γ matrix computed from individual participant’s Vision and Text RDMs. The samples on the X-

and Y-axis follow the same order as the Vision and Text RDMs.

https://doi.org/10.1371/journal.pcbi.1012481.g007
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solving the optimization problem on Gromov-Wasserstein distance (GWD):

GWD ¼ min
G

X

i;j;k;l

jjDij � D0kljj
2
GikGjl ð1Þ

Applying GWOT to the group average Vision and Text RDMs, we discovered that vision—

and language-based representational spaces are aligned at the coarse categorical level but lack

precise one-to-one mapping on the stimulus level. Fig 7B shows the optimal transportation

plan matrix Γ (between group average Vision and Text RDMs). Each element in Γ indicates

the probability of a sample in one similarity structure corresponding to another in the other

similarity structure. We observed that Γ significantly deviates from being a diagonal matrix.

Significant deviations typically occur within materials of similar visual appearance, such as

samples in the same coarse material categories (e.g., within soaps). The misalignments are

enlarged among the morphed material, especially those morphed from rocks (e.g., soap-to-

rock, rock-to-toy). We observed a marginal enhancement in stimulus-level vision-language

alignment when employing a semantically richer text embedding, such as OpenAI Embedding

V3-small model, yet misalignment in local structures still persists (S3 Fig).

Fig 7C shows significant differences in the stimulus-level structures among the perceptual

RDMs from different participants. The figure shows that even for participants exhibiting a

substantial correlation between Vision and Text RDMs (e.g., Participant L), their Γ matrix has

considerable data points that deviate from the diagonal line (Fig 7C middle panel). We com-

puted the top-1 matching rate to quantify the stimulus-level alignment across individuals. For

each stimulus, we consider it as a match if the transportation plan assigns the highest probabil-

ity between the same stimuli in the two similarity structures. Contrary to the top-1 matching

rate for the group average Vision and Text RDMs (12.5%), the individual participants’ RDMs

tend to have a lower top-1 matching rate (ranging from 1.38% and 6.94%), suggesting the sig-

nificant structure difference between vision and language representations at the individual

level.

We assessed the inter-participant consistency of the behavioral tasks with the leave-one-out

test by iteratively correlating one participant’s data with the group average of the rest of the

participants. We found significant (all p< 0.001) inter-participant correlations in both tasks,

with Vision RDMs (mean correlation r = 0.41) displaying a greater variance than Text RDMs

(mean correlation r = 0.57). Compared with the ways of articulating materials with words, par-

ticipants tended to be more diverse in visually judging material similarities. Such variation in

visual judgment strategies may contribute to the enlarged vision-language misalignment on

the individual-participant level.

Image representations from the pre-trained data-rich models capture

material features

Our findings reveal subtle yet discernible visual differences among material samples that are

challenging to articulate verbally. Next, we examined whether the image representations of

materials extracted from pre-trained data-rich models correlate with human visual perception

and explored the plausibility of using the distilled image features from such models to narrow

the gap.

We examined the image representation derived from the pre-trained models: self-super-

vised vision model (e.g., DINO), and visual-semantic model (e.g., CLIP and OpenCLIP [50]).

Fig 8A Middle and Right panels show the constructed Image-feature RDMs by encoding our

psychophysical stimuli with the tested models (see detail in Method). We then computed the
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Spearman’s correlations between each Image-feature RDM and each participant’s Vision

RDM. Fig 8B shows that the deep image-feature representations from the data-rich model

models moderately correlated with human visual judgment (DINO-ViT-s8: mean rs = 0.29,

W(16) = 136, p< 0.0001; OpenCLIP-ViT-L/14: mean rs = 0.35, W(16) = 136, p< 0.0001).

Compared with the pure vision model DINO, the visual-semantic model OpenCLIP-ViT-L/

14, which was trained on a larger dataset (over 2 billion English image-text pairs), had a higher

correlation (W(16) = 2, p = 0.00009) with human visual judgments. In contrast, the relatively

low-level image feature similarity, such as the features from the perceptual similarity metric

LPIPS (mean rs = 0.16, W(16) = 135, p< 0.0001), is less correlated with human behavior

results. Our results indicate the general visual representation captured by the large-scale con-

trastive vision-language pretraining is transferable to material-related visual tasks. Comparing

image representation from other weakly-supervised [7], self-supervised models [55] and per-

ception-based image similarity metrics [56, 57], we discovered the semantically-aware model

(e.g., OpenCLIP) could best predict human visual similarity judgment (see S6 Fig).

We illustrated the alignment and misalignment between humans and networks by applying

GWOT on the group average Vision RDM and each model-based Image-feature RDM. The

resulting Γ matrix from the semantically-aware model, OpenCLIP-ViT-L/14 (Fig 8C Right-

most), shows that the model’s representation roughly aligns with human perception at the

level of coarse categories (rs = 0.68, p< 0.005), yet precise mapping at the stimulus-level is still

lacking (top-1 matching rate 15.27%). As shown in Fig 8C Leftmost and Middle panels, low-

level image feature and DINO’s deep image feature representation have larger structural

Fig 8. Compare human visual judgments with image representations. (A) Image-feature RDMs of 72 stimuli created from pre-trained models: LPIPS (perceptual

image similarity), DINO-ViT-s8 (self-supervised model), OpenCLIP-ViT-L/14 (visual-semantic model). The elements in the RDM follow the same order as the Vision

and Text RDMs. (B) Spearman’s correlation between an individual’s Vision RDM and Image-feature RDM from each vision encoder. The bars represent the average

correlations across participants. The block dots represent the individual participants. The red dotted line indicates the lower bounds of the noise ceiling of human

visual judgment results. On top of each bar, * indicates p< 0.005 for model-specific one-sided signed-rank tests against zero. The horizontal black bar indicates

p< 0.05 for two-sided pairwise signed-rank tests between vision encoder models. (C) Optimal transportation plan (Γ) matrix between group average human visual

judgment and image feature embedding of 72 psychophysical stimuli. The Spearman’s correlation (rs) between the Image-feature RDM and the group average human

Vision RDM is marked in the bottom left corner. (D) Jointing verbal descriptions with image features from the visual-semantic model OpenCLIP-ViT-L/14 improves

the prediction of visual material similarity judgment for all participants. The y-axis represents individual participants. The x-axis represents the explained variance.

https://doi.org/10.1371/journal.pcbi.1012481.g008
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deviance from human visual judgment than those of the OpenCLIP-ViT-L/14 model. This

demonstrates that the weakly-supervised model, which learns high-level semantic correlations

between images and text, may capture perceptually relevant visual features crucial to material

perception.

Lastly, we tested whether combining the model-extracted image representations and

human verbal descriptions improves the prediction of human visual judgments of materials.

For each individual, we used the Image-feature RDM (based on OpenCLIP ViT-L/14, Fig 8A

Rightmost panel) and the participant’s Text RDM together (i.e., full model) or only the Text

RDM (i.e., reduced model) as predictors in a multiple regression model to predict the partici-

pant’s Vision RDM. Compared with the reduced model, the model incorporating verbal

descriptions and image features (i.e., Text RDM + OpenCLIP ViT-L/14 RDM) performs sig-

nificantly better (p< 0.0001 with ANOVA test) and increases the explained variance (adjusted

R2) across all participants (Fig 8D). This suggests combining human text with image features

from large-scale, pre-trained, semantic-aware models might narrow the gap between visual

and semantic representations in material perception.

Discussion

We propose a framework to probe the link between vision and language using AI-generated

images of familiar and ambiguous materials. By combining multimodal psychophysics with

machine learning techniques, our approach offers a quantitative exploration of the representa-

tional space of materials. Specifically, using an unsupervised image synthesis model, we devel-

oped an efficient approach to create a diverse array of plausible visual appearances of familiar

and unfamiliar materials. With these images, we measured and analyzed behavioral tasks

alongside image features derived from pre-trained data-rich models. We found a moderate but

significant correlation between visual judgments and verbal descriptions of materials within

individual participants, signifying both the efficacy and limitation of language in describing

materials.

The lack of precise alignment between the representations from two behavioral tasks pin-

points the gap between visual judgment and verbal description of materials (Fig 7C). On the

one hand, combining human vision- and text-based representations reveals informative fea-

tures for material discrimination, such as the object’s color, softness, and material name. This

would be challenging to manifest when limited to a single modality. At the same time, the verbal

descriptions do not fully capture the visual nuances of material appearances, which are more

pronounced between materials samples within a category and between ambiguous materials.

One potential explanation could be that participants faced difficulty in describing subtle visual

characteristics, such as spatial color variation and surface geometric complexity, with accuracy

and consistency. Nevertheless, these visual attributes could be crucial in finely distinguishing

samples within the general clustering of materials. These results highlight that visual representa-

tions of materials are richer than verbalized semantic features, underscoring the differential

roles of language and vision in perception. This notion is crucial in developing computer vision

applications, from material-related scene annotation to text-guided image synthesis.

Our results show that when the material name is removed from the text embedding, the

correlation between Vision and Text RDMs systematically decreases across participants

(Fig 5). We conducted the MDS and GWOT analysis with the human text embedding at the

“No Material Name” condition (see S5 Fig). We observed that removing the material name

may further reduce the one-to-one mapping between verbal description and visual judgment

of material (Spearman’s correlation rs = 0.74 for the “With Material Name” condition to rs =

0.50 for the “No Material Name” condition). This may stem from the functional roles that
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nouns (material names) play in everyday language usage [58] and highlights the significant

role of material names in visual categorization. With material names (e.g., crystal or soap), we

can label materials that possess an array of unique and/or related attributes, such as softness,

translucency, glossiness, and the object’s shape. During this labeling process, material names

can encapsulate the perceptual similarity of materials across multiple dimensions and partition

samples of materials into a system of semantic categories [59], potentially serving as an effi-

cient approach to communicating about material appearance. In future works, we might inves-

tigate material perception from the perspective of effective communication [4, 59, 60], such as

examining the structure and complexity of material naming and comparing material naming

across various language systems.

Our investigation of the image representation from the data-rich models shows the useful-

ness of the learned task-agnostic features in visual material reasoning. Through pre-training on

large-scale datasets, we found most of our tested models can approximate an “average” human

participant’s visual material similarity structure without being explicitly trained on material-

specific tasks. This shows that the generalized visual features can cluster materials into coarse

categories similar to humans. Furthermore, our findings suggest the weakly-supervised vision-

semantic models (e.g., CLIP, OpenCLIP), which learn high-level semantic correlations between

images and texts, are more likely to capture perceptually relevant visual features crucial to

material perception. These computational models may provide insights into searching vision-

specific nuanced features in material perception, potentially narrowing the gap between vision

and language. Recent studies have demonstrated the possibility of improving the representa-

tion of visual-semantic models using human perceptual judgment as supervision [61]. Future

investigations could explore whether this approach is applicable to uncovering critical informa-

tion related to human visual judgments of materials (e.g., material property estimation).

Evaluating the link between visual judgment and verbal description with behavioral data is

the first step for probing their neural representations in material perception. Neuroscience

research actively examined the neural representation of language and non-linguistic process-

ing (e.g., music, working memory) and investigated the specificity and interrelationship of

brain regions responsible for these cognitive skills [62]. Efforts were also made to explore how

the brain encodes certain conceptual representations (e.g., objects, actions) elicited by visual

and linguistic stimuli [15, 63]. Recent work suggested that incorporating language feedback is

crucial for explaining neural responses in high-level visual brain regions [64]. Following these

practices, a plausible future direction could be to examine whether and how brain regions’

engagement for visual judgment differs from those activated by semantic descriptions of mate-

rials. Addressing such cortical representations across modalities may help to unravel the open

questions: What is the causal relationship between material recognition and attribute estima-

tion? At a more fundamental level, how does the functional mechanism of perceiving materials

differ from and connect to that of perceiving textures and objects?

Unlike previous works that usually examined material perception with real or rendered

zoom-in surfaces, we intentionally synthesized images of materials coupling with object-level

realism. Our approach of constructing a Space of Morphable Material Appearance with trans-

fer learning and model interpolation methods could be extended to a broader range of materi-

als (e.g., metal, glass). Beyond sampling at the interpolation midpoint, the expressiveness of

our model and its latent representation offers a unique capability to manipulate material-

related attributes (e.g., translucency and surface geometry) of the object. This facilitates con-

trolled and continuous adjustments of visual characteristics linked to material categories. This

capability enables us to investigate the relationship between visual features and categorical per-

ception, which is crucial in understanding the interplay between perception and language.

This intersection has been actively studied in color perception [65].
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In our current Verbal Description experiment, we provided a predetermined list of material

attributes to encourage the participants to actively consider the material attributes. Given that

our stimuli only contain a single object in a simple scene, the design is suitable for collecting

verbal communication of materials. In the future, we will consider more free-form, even com-

plete free-form expression when we create stimuli of more complex scenes. Our current data-

set focuses on translucent materials, which share certain visual characteristics. We

acknowledge that the current dataset of our selection of material could be restricted in its

diversity. Our effort is a step towards building a more comprehensive large-scale real photo

dataset of diverse materials.

In conclusion, by demonstrating the potential link between vision- and language-based rep-

resentations, we reveal salient features related to material perception, while also highlighting

the disparity between semantic and visual representations. Our study invites further investiga-

tion of material perception by considering it an avenue to explore the language-perception

relationship across a broad range of visual cognition tasks.

Methods

Ethics statement. The experiments were approved by the ethics board at the American Uni-

versity (AU) (Protocol number IRB-2020–155) and conducted in adherence to the Declaration

of Helsinki.

Image datasets

We created our training datasets of high-resolution images (1024 pixels × 1024 pixels) by taking

photographs of real-world materials with an iPhone 12 Mini smartphone. Overall, our training

data consists of three subcategories: soap (Dsoap), rock (Drock), and squishy toy (Dtoy) datasets,

including 8085 (60 objects), 3180 (24 objects), and 1900 (15 objects) images, respectively.

StyleGAN and transfer learning

We used the style-based generative adversarial network, StyleGAN2-ADA, as the backbone

model. Our previous work, Liao et al. (2023) [29], provides a detailed description of the model

and the training process. StyleGAN2-ADA inherently applies a variety of data augmentation

during training, and the length of training is defined by the total number of real images seen

by the network. We obtained a Soap Model by training the StyleGAN2-ADA from scratch on

Dsoap for a total length of 3,836,000 images, with a learning rate of 0.002 and R1 regularization

of 10.

We fine-tuned the Soap Model separately on the Drock and Dtoy, which allows all model

parameters to adjust to the new datasets. Full-model fine-tuning processes on Drock and Dtoy

used the same hyperparameters as the training on Dsoap. The lengths of fine-tuning were

1,060,000 and 960,000 images for Drock and Dtoy, respectively. We used the models with the

lowest Fréchet Inception Distance (FID) scores for the rest of our study. The FID scores for

Rock and Toy Models are 22.22 and 23.38, respectively. All training was performed on a Tesla

V100 GPU on Google Colab.

Cross-category material morphing

The morphing of images of materials requires applying linear interpolation of the layer-wise

latent codes w 2W, as well as the StyleGAN’s generator weights [66]. To morph from a source

to a target material, we first sample two latent codes (i.e., wsource and wtarget) from the corre-

sponding learned W latent spaces (e.g., wsoap 2Wsoap as source, wrock 2Wrock as target). As
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illustrated in Fig 2C, w is a tensor with the dimension of 18 × 512. With Eq 2, we can compute

the interpolated latent code wλ, at any desired step size λ. The dimension of wλ is also 18 × 512.

Similarly, we implement linear interpolation between the convolutional weights of each con-

volution layer in the source material generator and the corresponding weights in the target

material generator. The weights are multidimensional tensors. With the same λ, we calculate

the interpolated generator weights Gλ (Eq 3).

wl ¼ wsource þ lðwtarget � wsourceÞ ð2Þ

Gl ¼ Gsource þ lðGtarget � GsourceÞ ð3Þ

We insert wλ into Gλ to generate the image of morphed material. Specifically, each of 18

slices of wλ is injected into the convolution layer at the corresponding spatial resolution (from

4 pixels × 4 pixels to 1024 pixels × 1024 pixels) (Fig 2C).

Psychophysical experiments

Participants. Sixteen participants (13 female, median age = 22) from AU participated in

the experiments with written consent and they were reimbursed for their participation. All

were Native English speakers and had a normal or corrected-to-normal vision.

Stimulus selection. We first generated 30 images for each of the “original” materials:

soaps, rocks, and squishy toys, by sampling from their corresponding latent spaces, Wsoap,

Wrock, and Wtoy and synthesizing with their paired material generators, Gsoap, Grock, and Gtoy.

We balanced the images in two lighting conditions for each material category: strong and

weak (Fig 2E).

We randomly paired up two different “original” materials under the same lighting condi-

tions and then synthesized the image corresponding to the linear interpolation midpoint (step

λ = 0.5). We initially generated 1000 images of morphed materials through the corresponding

midpoint material generators (Gsoap−to−rock, Gsoap−to−toy, and Grock−to−toy). We picked 12 images

synthesized from six material categories: soap, rock, squishy toy, soap-to-rock midpoint, rock-

to-toy midpoint, and soap-to-toy midpoint. For each material category, half of the selected

images are from strong lighting conditions (i.e., sunny indoor scene), and the remaining half

are from weak lighting conditions (i.e., overcast indoor scene). We selected 72 images and

tried to make the range of visual appearances as diverse and natural as possible. These images

were then used as stimuli for Multiple Arrangement and Verbal Description tasks.

Multiple Arrangement task. We conducted the multiple arrangement experiment using

Meadows.com (https://meadows-research.com/). Participants were instructed to arrange the

images (180 pixels × 180 pixels) of materials based on the “similarity of material properties” by

dragging and dropping them in the circled region (Fig 3A). In the first trial, the participants

roughly arranged all 72 images into groups. In the subsequent trials, more refined subsets were

chosen and displayed by an adaptive lift-the-weakest algorithm to reduce the remaining uncer-

tainty of the similarity judgment of materials [49]. The average duration of the experiment was

about 60 minutes. The pairwise on-screen Euclidean distances between the arranged images

were computed upon the completion of the experiment, producing a Vision RDM with inverse

MDS.

Verbal Description task. With the same 72 images used in the Multiple Arrangement

task, participants described the material in the image by freely inputting texts based on five

aspects (see Fig 3B). The stimuli were presented in size of 512 pixels × 512 pixels. They had

unlimited time on each trial and were not restricted regarding the order in which they could

enter their responses. In the experiment instruction, the participants were told, “Please provide

PLOS COMPUTATIONAL BIOLOGY Probing the link between vision and language in material perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012481 October 3, 2024 17 / 23

https://meadows-research.com/
https://doi.org/10.1371/journal.pcbi.1012481


keywords or short sentences to describe the material from the following aspects: The name of

the material, color, optical properties, mechanical properties, and surface texture.” We also

encouraged the participants to describe the material attributes in the way they wanted and

assured them that the task was subjective, without correct answers.

Experiment procedures. All participants first completed the Multiple Arrangement task,

and then the Verbal Description task in a separate session. All experiments were conducted in

a dimly lit laboratory room. The stimuli were presented on an Apple iMac computer with a

21.5-inch Retina Display, with a resolution of 1920 pixels × 1080 pixels.

Creating Text RDMs from verbal description data. We used a fixed template to concate-

nate the five aspects that participants described an image: “It is a material of [material name]

with the color of [color], it is [optical properties], it is [mechanical properties], and it is [sur-

face texture].” Next, we encoded the concatenated text into a feature vector through a pre-

trained LLM. The four commonly used pre-trained transformer-based language models (i.e.,

CLIP’s text encoder [7], Sentence-BERT [51], GPT-2 [52], and OpenAI Embedding V3-small),

can embed a sentence or paragraph of text into a high-dimensional feature space. For each

model, we extracted the feature vector at the last hidden layer. The size of the embedded text

feature vector varies across different language models: 512 for CLIP, 384 for Sentence-BERT,

768 for GPT-2, and 1536 for OpenAI Embedding V3-small. For each participant, we built a

72 × 72 Text RDM by computing the pairwise Cosine distance between the resulting feature

vectors of the verbal descriptions (Fig 4A, Bottom Row).

To investigate the effect of removing the “material name” on the embedding of the verbal

descriptions, we used the following template to form the image caption: “It is a material with

the color of [color], it is [optical properties], it is [mechanical properties], and it is [surface tex-

ture].” Hence, we used the same procedure described above to encode the descriptions without

material names as feature vectors.

Gromov-Wasserstein Optimal Transport (GWOT). GWOT is an unsupervised align-

ment technique, identifying the best transport strategy between point clouds across two

domains, while the correspondence between data in two similarity structures is not assumed.

As illustrated in Fig 7A, given two similarity structures, represented by their RDMs (nor-

malized to 0 to 1 range), D and D0, GWOT seeks to optimize the Gromov-Wasserstein distance

(GWD). To enhance the optimization efficiency of GWD, an entropy-regularization term H
(Γ) is added to Eq (1). This regularized GWD, GWD�, is optimized as the following:

GWD� ¼ min
G

X

i;j;k;l

jjDij � D0kljj
2
GikGjl þ �HðGÞ; ð4Þ

where Γ is the optimal transportation plan.

A local minima can be found by solving the above optimization problem. We performed

hyperparameter tuning on �, searching for its optimal value over 0.0001 to 0.1 with logarithmic

spacing (500 different � values). For each searched �, we can find its corresponding Γ. We

finally selected the Γ that minimized GWD (without the entropy-regularization term (Eq 1))

as the optimal transportation plan. A detailed explanation of GWOT can be found in [53, 54].

Creating Image-feature RDM with pre-trained models. We extracted the latent image

features of each stimulus in the psychophysical experiments with pre-trained data-rich models.

The weakly-supervised models, OpenCLIP, were pre-trained on a large-scale image-text-pair

dataset, LAION-2B. They jointly trained an image encoder and a text encoder to maximize the

cosine similarity of the image and text embeddings in order to predict which images were

paired with which texts in the training dataset. With the Vision Transformer (ViT) based

image encoder of OpenCLIP (OpenCLIP-ViT-L/14), we extracted the embedding of our
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stimuli based on the feature vector at the final linear projection layer. In contrast, DINO, the

self-supervised training of ViT, is trained on images only. It uses a knowledge-distillation

learning paradigm and was pre-trained on the ImageNet dataset. We extracted the feature vec-

tor from the output layer of the pre-trained DINO-ViT-s8. The size of the image feature vec-

tors varies depending on the pre-trained models (see S1 Table). We computed the pairwise

Cosine distances between images based on the model-extracted features to build the Image-

feature RDMs (see examples in Fig 8A).

Predicting Vision RDM with Text and Image-feature RDMs. To determine the contri-

bution of verbal description and image-level features to the multiple arrangement behavior, we

use multiple linear regression based on the Text and Image-feature RDMs derived from vari-

ous image encoders [67].

We first converted the 72 × 72 RDMs into 2556-dimensional feature vectors, by extracting

the off-diagonal elements of an RDM. We set the participant’s own Vision RDM feature vector

as the predicted variable. Two first-order multiple regression models were fitted for each par-

ticipant: one “full” model that included the Text RDM and the Image-feature RDM; and one

“reduced” model that only included the Text RDM. For each model, we computed the adjusted

R2 to indicate the explained variance of the Vision RDM. We also used ANOVA to test

whether the “full” model improves the fit of the data compared to the “reduced” model, with

statistical significance (95% confidence level).

Supporting information

S1 Text. Explanatory texts for each figure and table in Supporting information.

(PDF)

S1 Fig. Seventy-two generated images used as stimuli for both Multiple Arrangement and

Verbal Description experiments.

(TIF)

S2 Fig. Individual participant’s (N = 16) RDMs of visual material similarity judgment via

Multiple Arrangement (Vision RDM) and Verbal Description (Text RDM). The Text

RDMs are based on the CLIP’s text embedding results, as illustrated in the main paper Fig 4A.

The Spearman’s correlation (rs) between the participant’s own Vision and Text RDMs is

marked on top of each pair of RDMs.

(TIF)

S3 Fig. Optimal transportation plan between Vision and Text RDMs. The Text RDMs are

based on OpenAI Embedding V3-small. (A) Optimal transportation plan matrix (Γ) between

group average Vision and Text RDMs. (B) Optimal transportation plan matrix of individual

participant’s Vision and Text RDMs. The Spearman’s correlation (rs) between the Vision and

Text RDMs is noted in the bottom left corner of the Γ matrix.

(TIF)

S4 Fig. Correlation between Vision and Text RDMs with ROI for the original “original”

(soap, rock, toy) and “morphed” (soap-to-rock, soap-to-toy, toy-to-rock) materials. Top:

text embedding derived from CLIP’s text encoder. Bottom: text embedding derived from

OpenAI Embedding V3-small. The blue bars indicate Spearman’s correlation values when all

text features are included to construct the Text RDM. The gray bars indicate the correlation

values when the “material name” is excluded from constructing the Text RDM. Asterisks indi-

cate FDR-corrected p-values: *** p< 0.001, ** p< 0.01, and * p< 0.05.

(TIF)
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S5 Fig. Representational space of human text response in the “No Material Name” versus

“With Material Name” condition based on CLIP’s text embedding. Under each text embed-

ding condition, the leftmost column shows the group average Text RDMs. The middle column

is the MDS embeddings of the group average Text RDMs. The rightmost column shows the

optimal transportation plans that compare the group average human Vision RDM (from the

Multiple Arrangement task) with the group average Text RDM. (A) “No Material Name”

(when the “material name” is removed from the text embedding) (B) “With Material Name”

condition.

(TIF)

S6 Fig. Spearman’s correlation between an individual’s Vision RDM and Image-feature

RDM from each tested vision encoder. The bars represent the average correlations across

participants. The block dots represent the individual participants. The red dotted line indicates

the lower bounds of the noise ceiling of human visual judgment results. On top of each bar, *
indicates p< 0.005 for model-specific one-sided signed-rank tests against zero. The horizontal

black bar indicates p< 0.05 for two-sided pairwise signed-rank tests between two nearby

vision encoder models shown in the plot.

(TIF)

S7 Fig. Cross-material morphing examples. The source material transforms into the target

material with a nine-step interpolation.

(TIF)

S1 Table. Size of the latent feature vectors from the pre-trained vision and LLM models.

(TIF)

S1 File. Interactive plots of Fig 6 of our main paper. Annotated MDS of the group average

Vision RDM. For each stimulus, we annotated with the aggregated human text description

along with the word frequency of each material aspect, “colorfulness”, “optical properties”,

“surface texture”, “mechanical properties”, and “material name.”

(ZIP)
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