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Abstract

The Hessian of a differentiable convex function is positive semidefinite. Therefore,
checking the Hessian of a given function is a natural approach to certify convexity.
However, implementing this approach is not straightforward since it requires a
representation of the Hessian that allows its analysis. Here, we implement this
approach for a class of functions that is rich enough to support classical machine
learning. For this class of functions it was recently shown how to compute compu-
tational graphs of their Hessians. We show how to check these graphs for positive
semidefiniteness. We compare our implementation of the Hessian approach with
the well-established disciplined convex programming (DCP) approach and prove
that the Hessian approach is at least as powerful as the DCP approach for differ-
entiable functions. Furthermore, we show for a state-of-the-art implementation
of the DCP approach that, for differentiable functions, the Hessian approach is
actually more powerful. That is, it can certify the convexity of a larger class of
differentiable functions.

1 Introduction

Convex optimization forms the backbone of classical machine learning. Formulating machine learning
problems as convex optimization problems is attractive because these problems can be solved globally
and efficiently. Several optimization frameworks consisting of a modeling language and solver exist
and are used in machine learning. Two examples of such frameworks are CVX [Grant and Boyd,
2014] and GENO [Laue et al., 2019], which take different approaches.

CVX takes a formal specification of an optimization problem and transforms it into a normal form,
such as a convex quadratic program (QP) or semidefinite program (SDP). The transformation is only
possible if the specified problem is convex. Therefore, a convexity test is performed first in CVX.
The test is based on a calculus for convex functions called disciplined convex programming (DCP) by
Grant et al. [2006a], which takes advantage, for example, of the fact that the sum of convex functions
and the positive scaling of a convex function are convex again. The convexity calculus requires a set
of functions, called atoms, whose convexity has to be certified by other means.

GENO also takes the formal specification of an optimization problem but does not transform it into
standard form. Instead, it uses the specification to generate a solver for the specified problem or
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problem class utilizing automatic (symbolic) differentiation. Thus, solvers can also be generated
for non-convex problems. However, such solvers usually do not converge to a global optimum but
only provide a local optimum. Therefore, to assess the quality of a solution, a convexity certificate
calculated from the specification is also of interest to GENO.

For compiling a specification into a solver, GENO employs a matrix calculus [Laue et al., 2018] for
computing symbolic derivatives of matrix and tensor expressions. The matrix calculus can also be
used to compute second order derivatives, that is, Hessians. A test for convexity can thus be reduced
to a test of positive semidefiniteness of the Hessian, which certifies the convexity of a function. This
is the approach that we take here. We design an algorithm for certifying positive semidefiniteness of
matrix expressions. For certifying convexity, the algorithm is then applied to symbolic Hessians that
are computed by a matrix calculus.

We start with a formally defined language of mathematical functions (see the supplementary material
for its grammar). For expressions from this language, we generate computational graphs of their
Hessians using a matrix calculus and check these graphs for positive semidefinitness. The compu-
tational graphs are small since they only contain symbols for parameter vectors and matrices, and
not their numerical values. Our algorithm for certifying positive semidefiniteness runs in time linear
in the size of the computational graph. It propagates positivity information of subexpressions to
the root of the computational graph by using simple rules for positive semidefinite matrices. Non-
trivial subexpressions can be certified as convex by matching them to known expression templates.
Surprisingly, there is a single template that is powerful enough to certify the convexity of a large
class of matrix expressions. Using this template, we show that our Hessian approach covers all
differentiable functions with vector input that can be certified as convex by the DCP implementation
within CVX. Furthermore, we provide classes of differentiable convex functions that can be certified
by our approach, but cannot be certified as convex by CVX.

2 Related work

In general, certifying that a function is convex is known to be strongly NP-hard [Ahmadi et al.,
2013], even when the function is a multivariate polynomial of degree three and the domain is a
bounded box [Ahmadi and Hall, 2020]. However, since certifying convexity is such an important
issue in optimization and machine learning, there are many convexity proofs for specific problems,
see Klibanov [1997] for an example. Unfortunately, these proofs are problem- and often even
instance-specific and cannot be generalized. But, there are also generic approaches that we discuss in
the following. Most generic approaches are either rule-based or analyze the Hessian.

Rule-based approaches We have already mentioned the disciplined convex programming (DCP)
approach taken by CVX [Grant and Boyd, 2008, 2014; Agrawal et al., 2017], which has been ported
from Matlab to other programming languages, like CVXPY [Diamond and Boyd, 2016] for Python,
CVX for Julia [Udell et al., 2014], or CVX for R [Fu et al., 2020]. Any convex function that cannot
be derived from the atomic convex functions by the DCP rule set cannot be certified as convex by the
DCP approach. However, functions that have been certified as convex by other means can be added
manually as atomic functions. Hence, over the course of the last few years, many convex functions
have been added as atoms, for instance quadratic functions x⊤Ax for positive semidefinite matrices
A, or the negative entropy function x⊤ log(x). In our approach, we certify the convexity of these
functions automatically.

Tawarmalani and Sahinidis [2005] describe a polyhedral branch-and-cut approach for finding a global
optimum for non-convex optimization problems. They use rule-based convexity tests for decomposing
a non-convex problem into a set of convex problems. Posypkin and Khamisov [2021] use interval
arithmetic and a set of rules for determining the convexity of univariate functions, similar to the CVX
approach. However, unlike CVX, their approach can only be applied to simple univariate functions.
Similarly, Singh and Lucet [2021] analyze univariate piecewise polynomial functions. Fourer et
al. [2010] summarize and generalize the convexity detection methods described by Schichl and
Neumaier [2005] and Fourer and Orban [2010]. Their approach, traversing a function’s computational
graph and applying composition rules when convexity holds, is again similar to the DCP approach.

Hessian based approaches Camino et al. [2003] use the software package NCAlgebra by Helton
and de Oliveira [2000] for computing the Hessian of a function that is defined over matrices. Based

2



on a symbolic Cholesky decomposition, they check the non-negativity of the eigenvalues of the
Hessian. If all eigenvalues are non-negative, the Hessian is positive semidefinite and thus implies
convexity. However, this approach only works for very simple functions, i.e., only polynomials of
matrices and their inverses. In these cases, the Hessian is always a quadratic function for which the
symbolic Cholesky decomposition can be computed. This approach works for the function x⊤Ax,
but not for the negative entropy function x⊤ log(x).

Using automatic differentiation for computing Hessians and then certifying convexity was proposed
by Nenov et al. [2004]. However, the proposal does not include specific algorithms and has not been
implemented yet.

Other approaches An approach that is neither rule-based nor based on analyzing the Hessian was
proposed by Carmon et al. [2017], who established a relationship between the number of iterations
needed for minimizing a function and its convexity. In general, if a function is convex, convergence
rates can be estimated. Hence, if during the minimization process these convergence rates are
violated, then one has found a certificate that this function is not convex. However, if convergence
rates are satisfied during the optimization process no statement about convexity can be made. In
general, if one starts close to a local minimum, then the function looks locally like a convex function
to the minimization process, while globally, it does not need to be convex. Instead of looking at
the convergence rates, one could modify this approach by computing the Hessian in each iteration
and checking its smallest eigenvalue. If it is negative, then non-convexity can be certified. Again,
convexity cannot be asserted by such an approach.

3 The DCP and the Hessian approach

This section gives a brief high-level overview of the DCP approach and our implementation of
the Hessian approach. Details are provided in the following sections. The two approaches are
algorithmically similar. Both use some a priori information that is propagated through expression
DAGs (directed acyclic graphs) for the function or its Hessian, respectively. They differ in the form
of the a priori information and in the rules that are used for propagating the information. Noteworthy,
in contrast to the Hessian approach, the DCP approach also works for non-differentiable functions.

DCP approach. The DCP approach comprises a rule set and a set of atomic expressions, short
atoms, that are already known to be convex. It applies to expressions that are recursively build
from functions, constants, and variables. The expressions can be organized in an expression DAG
whose inner nodes are function symbols and whose leaves are constants and variables as shown in
Figure 1. The set of function symbols includes the atoms. Function symbols can be labeled as convex,

f

g1

. . .

gn

. . .

x1

. . .

xm

Figure 1: Abstract expression DAG for the function f . The leaves xi are either variables or constants,
all other nodes gi and f are abstract function symbols. The root of this sub-DAG is labeled by the
function symbol f .

concave, affine, and monotonously increasing (decreasing). Constants and variables can be labeled as
non-negative or non-positive. The DCP rules are used to propagate label information from the leaves
to the root of the expression DAG, which represents the whole expression. Therefore, if it is possible
to propagate the label convex to the root, then the expression is proven to be convex.

Hessian approach. The Hessian of a twice differentiable function f : Rn → R is a quadratic form
H(f), that is, for v ∈ Rn the Hessian evaluates as v⊤H(f)v. The function f is convex if H(f) is
positive semidefinite. Here, we assume that we can compute H(f) in vectorized form, that is, in
standard matrix language that does not make use of explicit indices. Our implementation works for a
formally defined language for representing multivariate functions (see the supplemental material)
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that allows to compute their Hessians in normalized vectorized form. By representing the Hessian by
an expression DAG, the Hessian approach for computing convexity certificates propagates positivity
and type information from the leaves of the DAG to the root by using a rule set that we introduce in
Sections 4 and 5.

4 Rule sets

In this section we show that for a twice differentiable function the DCP rule set is implied by a set of
positivity rules for the Hessian of the function. However, this is not enough to show that the DCP
approach is implied by a positivity calculus, since this also requires that the atoms used in the DCP
approach can be certified as convex by the positivity calculus. We discuss CVX’s DCP atoms in
Section 6.

The DCP rule set by Grant et al. [2006b] comprises the following rules for functions on Rn:

1.
∑m

i=1 αifi is convex if either αi ≥ 0 and fi is convex, or αi ≤ 0 and fi is concave, for all
i ∈ [m].

2. f(g1, g2, . . . , gm) is convex if f is convex and for each gi one of the following conditions
holds:
(a) f is increasing in argument i and gi is convex.
(b) f is decreasing in argument i and gi is concave.
(c) gi is affine or constant.

3. f(g1, g2, . . . , gm) is concave if f is concave and for each gi one of the following conditions
holds:
(a) f is increasing in argument i and gi is concave.
(b) f is decreasing in argument i and gi is convex.
(c) gi is affine or constant.

4. f(g1, g2, . . . , gm) is affine if f is affine and each function gi is affine.

Note that products of functions cannot be treated within the DCP framework, that is, expressions of
the form f1 · f2. Even when f1 and f2 are known to be affine, nothing can be said about the product.

Here, we only discuss certifying convexity, since concavity of a function f can be certified by the
convexity of −f . Hence, in the following, we do not consider the DCP Rule 3. We show that the
DCP Rules 1 and 2 for twice differentiable functions are implied by positivity rules for their Hessians.
DCP Rule 4 that asserts that h is affine, which is a stronger property, can be addressed by adding
the rules 0 ·M = M · 0 = 0 and M + 0 = M to the positivity rules. More specifically, we have the
following proposition.
Proposition 1. For twice differentiable functions, the DCP rule set is implied by the following
positivity rules for (n× n)-matrices:

1. If c ≥ 0 and M ⪰ 0, then c ·M ⪰ 0.

2. If c ≤ 0 and M ⪯ 0, then c ·M ⪰ 0.

3. If M1 ⪰ 0 and M2 ⪰ 0, then M1 +M2 ⪰ 0.

4. If M ⪰ 0 and A is an arbitrary (m× n) matrix, then AMA⊤ ⪰ 0.

Proof. We exploit that a twice differentiable function h is convex if its Hessian H(h) is positive
semidefinite (psd) and that it is concave if its Hessian H(h) is negative semidefinite (nsd). For DCP
Rule 1, we observe that H(fi) ⪰ 0 if fi is convex, and H(fi) ⪯ 0 if fi is concave. Hence, by
Positivity Rules 1 and 2,

H(αifi) = αiH(fi) ⪰ 0

for all i ∈ [m], and then by Positivity Rule 3,

H
( m∑

i=1

αifi

)
=

m∑
i=1

αiH(fi) ⪰ 0,
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which certifies the convexity of
∑m

i=1 αifi.

For the remaining DCP Rules 2 and 4, let h be recursively defined as h = f(g1, g2, . . . , gm). The
gradient of h at x can be written as

∇(h) =
m∑
i=1

∇(f)i(g1, g2, . . . , gm) · ∇(gi)

and its Hessian is given as

H(h) =

m∑
i,j=1

H(f)ij(g1, g2, . . . , gm) · ∇(gi)∇(gj)⊤ +

m∑
i=1

∇(f)i(g1, g2, . . . , gm) ·H(gi).

For DCP Rule 2a, we first argue separately that both sums for H(h) are psd. The first sum can be
written as GH(f)G⊤, where the columns of G are the gradients ∇(gi). Since the convexity of f
implies that H(f) ⪰ 0 it follows from Positivity Rule 4 that the first sum for H(h) is psd. For the
second sum, we use that f is increasing in its i-th argument, which implies that∇(f)i ≥ 0, and that
the gi are convex, which implies that H(gi) ⪰ 0. Hence, by Positivity Rule 1 all terms in the second
sum are psd, which together with Positivity Rule 3 implies that also the second sum for H(h) is psd.
Thus, we can conclude from Positivity Rule 3 that H(h) ⪰ 0, which certifies the convexity of h. The
claims for DCP Rules 2b, 2c and 4 follow similarly.

5 Implementing the Hessian approach

For implementing the Hessian approach, we need to compute a representation of the Hessian that
is amenable to analysis. The matrix calculus by Laue et al. [2018, 2020] computes derivatives
of vectorized expressions again in vectorized form without explicit indices. Here, we employ
computational graphs for the expressions of second derivatives. That is, Hessians, computed by
the matrix calculus. We normalize these computational graphs into expression DAGs (directed
acyclic graphs) that contain each subexpression exactly once, see Figures 2, 3 and 4 for examples of
normalized expression DAGs.

In the following, we demonstrate our implementation of the Hessian approach using illustrative
examples before we summarize the algorithm that underlies our implementation of the Hessian
approach.

5.1 A generic example

As a first generic example we discuss the ordinary least squares regression problem

min
w
∥Xw − y∥22 = min

w
(Xw − y)⊤(Xw − y),

where X ∈ Rm×n is a data matrix, y ∈ Rm is a label vector, and w ∈ Rn is the parameter vector that
needs to be optimized. Using matrix calculus, the Hessian for the objective function of this problem
can be computed in vectorized form as 2 ·X⊤X . An expression DAG for the Hessian is shown in
Figure 2. Our implementation of the Hessian approach computes positivity information for each node

∗

2

∗

⊤ X

Rule 4

Rule 1

constant, 2 ≥ 0

label: psd

label: psd

E
valuation

Figure 2: Illustration of the Hessian approach on the normalized expression DAG for the Hessian of
the ordinary least squares loss function.
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of the DAG in a bottom-up strategy from the leaves to the root. There are positivity rules that apply
to the two multiplication nodes of the DAG, namely first Rule 4 for the expression X⊤X and then
Rule 1 for the expression 2 ·X⊤X , where it is already known that X⊤X is psd.

Let us compare the Hessian approach to the DCP approach for certifying the convexity of the ordinary
least squares problem. The DAG for the ordinary least squares objective function is shown in Figure 3.
The DCP approach traverses this DAG in a bottom-up fashion. Starting from the leaves, the matrix-
vector product Xw is affine by definition and thus the corresponding multiplication node is labeled
affine, similarly the subtraction node for Xw − y is labeled affine, since the addition/subtraction of
affine functions is affine again, and the transposition node in (Xw − y)⊤ is labeled affine, since the
transposition preserves this property. However, in general nothing can be said about the product of
affine functions, which means that the standard DCP rules are not enough to label the root of the
DAG. Typically, the problem is dealt with by adding a new atomic function to the DCP atoms that
squares its input.

∗

⊤

−

∗

X w

ylabel: affine

label: affine

label: ?

label: affine

Variable

E
valuation

Figure 3: Illustration of the DCP approach on the normalized expression DAG for the ordinary least
squares loss function.

5.2 Propagating information about subexpressions

A second instructive example is the univariate function f(x) = x log(x) that neither the Hessian
nor the DCP approach can certify as convex without information beyond the rules. However, the
information required by the Hessian approach is easier to provide on the language level. The Hessian
of f(x) is the expression 1/x, which, in general, can be positive, negative, or even undefined at 0.
However, we already know that x ∈ (0,∞), because the domain of the logarithm is the positive reals.
This information is enough to decide the positivity of the Hessian. Hence, we can exploit positivity
information about the elementary functions that are supported by our formal language. Here are some
additional rules

log(x) ⇒ x ∈ (0,∞),
√
x ⇒ x ∈ [0,∞),

and exp(x), arccos(x), log(1 + x), ∥x∥ ≥ 0.

Let us compare this again to the DCP approach that directly works on the expression x log(x). Here,
the problem is at the root node that multiplies the affine function x with the concave function log(x).
Since, in general, nothing can be said about the product of an affine function and a concave function,
it is not possible to certify the convexity of x log(x) from the DCP rules. Indeed, CVX adds the
entropy function −x⊤ log(x) as an atom that has been certified as concave by other means like
analyzing its second order derivative.

Another instructive example is the univariate function log(1 + exp(x)) whose Hessian is

exp(x)

1 + exp(x)

(
1− exp(x)

1 + exp(x)

)
.

The Hessian can be certified positive definite by propagating the known positivity information for
the exponential function through the normalized expression DAG for the Hessian, as can be seen in
Figure 4. CVX adds this function as an atom named logistic, probably because the derivative of
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this function is the logistic function 1/(1 + exp(−x)). Note that the naming problem does not exist
in the Hessian approach.

A fourth example is the power function xp. The Hessian of the power function is p(p−1)xp−2. Since
p(p−1) ≥ 0 for p ≥ 1 and p ≤ 0 we can certify the convexity of the power function from its Hessian
if p = 2n, n ∈ N, or

(
(p ≥ 1) ∨ (p < 0)

)
∧ (x > 0), or

(
(p = 1) ∨ (p = 2k, k ∈ Z)

)
∧ (x < 0).

Furthermore, we can certify the convexity of −xp from its Hessian if (0 < p < 1) ∧ (x ≥ 0). That
is, the Hessian approach can certify the convexity of power functions from constraints on x and
information about the power parameter p, whereas the DCP approach needs atoms for the different
cases.

∗

−

/

+

exp

1

x

∈ (0,∞)

∈ [max{1, exp(x)},∞)

∈ [0, 1]

∈ [0, 1]

∈ [0, 1] ∈ [0, 1]

∈ [0, 1]

∈ [0, 1]

Figure 4: Propagating positivity information from the leaves to the root of the normalized expression
DAG for the Hessian of the logistic function.

In general, the Hessian approach can exploit derived and user provided information about variables,
parameters, and, more generally, subexpressions. However, the next example shows that this is not
enough.

5.3 A psd expression template

Our fifth example is the CVX atom log_sum_exp that computes log
(
sum(exp(x))

)
. Its Hessian is

given, again in vectorized form, as

(
diag

(
exp(x)

)
− exp(x)exp(x)⊤/sum

(
exp(x)

))
/sum

(
exp(x)

)
.

Both the first and the second term are readily certified as pos-
itive, but their difference is not, because in general, nothing
can be said about the difference of two psd matrices. How-
ever, we will show that the Hessian matches the psd expres-
sion template from Proposition 2, see also the Figure to the
right. The template can be used to certify many expressions
as convex. Whenever a subexpression of a larger expression
DAG matches the template, we can label the subexpression
DAG as psd and propagate this information within the larger
DAG. Indeed, adding this template to our rule set is powerful
enough to cover all differentiable CVX atoms with vector
input, and thus by Proposition 1 all differentiable functions
with vector input, that can be certified as convex by the DCP
implementation within CVX.

−

diag /

⊤

∗

⊙⊙

zy

sum

label: psd

Proposition 2. For y ∈ Rn and z ∈ Rn
≥0, all matrices of the following form are psd:

diag(y ⊙ z ⊙ y)− (y ⊙ z)(y ⊙ z)⊤/sum(z).
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Proof. We have to show that v⊤Av ≥ 0 for all v ∈ Rn for the template matrix A. It turns out that
v⊤Av is the variance of some random variable. We compute that

v⊤(diag(y ⊙ z ⊙ y)− (y ⊙ z)(y ⊙ z)⊤/sum(z))v

= sum(z ⊙ (y ⊙ v)2)− sum(z ⊙ (y ⊙ v))2/sum(z)

= sum(z) ·
(

sum
(
(z/sum(z))⊙ (y ⊙ v)2

)
− sum

(
(z/sum(z))⊙ y ⊙ v

)2)
= sum(z) · var(Vy) ≥ 0,

where var(Vy) is the variance of the random variable Vy that takes the value yivi with probability
zi/sum(z) for i ∈ [n].

Note that the Hessian of the CVX atom log_sum_exp matches the template if z is instantiated by
exp(x)/sum(exp(x)) and y by vector(1).

5.4 Summary of the Hessian approach

Algorithm 1 that implements the Hessian approach combines the individual steps mentioned above. Its
input is the Hessian of a given expression computed as a normalized expression DAG. In the algorithm,
we encode positivity and negativity information by intervals as follows: for scalar expressions, the
interval encodes (a superset of) the domain of the expression, for vector expressions, the interval
encodes (a superset of) the domains of all vector entries, and for matrix expression, any interval in
[0,∞) encodes psd information and any interval in (−∞, 0] encodes nsd information.

Algorithm 1 Certify convexity of a Hessian
1: v ← ROOTOF(DAG)
2: Iv ← DETERMINEINTERVAL(v)
3: if Iv ⊆ [0,∞) then
4: return true
5: else
6: return false
7: end if

The main work in Algorithm 1 is delegated to the subroutine DETERMINEINTERVAL that is imple-
mented in Algorithm 2. The subroutine recursively processes the normalized expression sub-DAG
rooted at some vertex v from the leaves to the node v. The intervals Iv at leaf nodes always either
encode known or user-provided positivity information about variables or parameters or are set to
(−∞,∞). At any node, the information about the intervals associated with its children is combined,
using the psd rule set and standard interval arithmetic, into an interval for the node by the subroutine
COMBINEINTERVALS. Exceptions from this rule are multiplication nodes at which Rule 4 might
apply and subtraction nodes, where the psd template from Proposition 2 might apply. Therefore,
we check at each node if a simple template for Rule 4 or our psd template applies. Matching the
templates are simple instances of tree matching problems that are implemented in the subroutine
MATCHTEMPLATE. Here, we encode a match with the templates by the interval [0,∞).

Since the psd expression template and the rules from Proposition 1 only require checking substructures
of constant depth (up to depth five for the psd template), the running time of the algorithm is linear in
the size of the expression DAG of the Hessian.

6 Atoms of CVX’s implementation of the DCP approach

In addition to the rule set, the DCP approach requires functions (atoms) that are already known to be
convex. Here, we show that all twice differentiable atoms with vector input that can be certified as
convex by the DCP implementation within CVX can also be certified by our implementation of the
Hessian approach. In the next section we provide examples of convex functions that are not certified
as convex by CVX, but can be certified by our Hessian approach.

Among CVX’s DCP atoms are standard convex univariate functions like exp, neg_log, neg_sqrt,
and square that we discuss in the supplemental material. Multivariate DCP atoms in CVX are
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Algorithm 2 Compute the positivity interval for a node v

1: procedure DETERMINEINTERVAL(v)
2: if v.leaf = true then
3: return Iv
4: end if
5: if MATCHTEMPLATE(v) then
6: return [0,∞)
7: else
8: Il ← DETERMINEINTERVAL(LEFTCHILD(v))
9: Il ← DETERMINEINTERVAL(RIGHTCHILD(v))

10: return COMBINEINTERVALS(Il, Ir)
11: end if
12: end procedure

sum(x), that is, the function
∑n

i=1 xi, and quadratic forms quad_form(x,A), that is, x⊤Ax for a
psd matrix A. Both functions are readily certified as convex by their Hessians. A more interesting
atom is inv_prod(x) that computes

(∏n
i=1 xi

)−1
. In vectorized notation this function can be

written as f(x) = 1/exp
(
sum(log(x))

)
and its vectorized Hessian is given as

f(x) ·
(
vector(1)⊘ x)(vector(1)⊘ x)⊤ + diag(vector(f(x))⊘ (x⊙ x)

)
,

where vector(1) is the all ones vector, ⊙ and ⊘ denote elementwise multiplication and divison,
respectively. It follows from the positivity of f(x) and Positivity Rules 1 and 4 that the first term
in the sum for the Hessian is psd, and from the positivity of f(x) and the positivity of the entries
of x⊙ x it follows that also the second term is psd. Hence, the Hessian is psd by Positivity Rule 3,
which certifies the convexity of f(x).

CVX also contains four atoms (combinations of the operators sum, log, and exp) that superficially
look similar to inv_prod but cannot be certified directly from the positivity calculus. However, for
these problems, the Hessian is the difference of two psd matrices that can be matched to the template
expression from Proposition 2. We have already discussed the CVX atom log_sum_exp. The three
remaining atoms are the harmonic mean, p-norms, and the geometric mean.

Negative harmonic mean The negative harmonic mean neg_harmonic_mean(x) for x ∈ Rn
+ is

defined as −n/
∑n

i=1 x
−1
i . It can be written in vectorized notation as

−1/sum
(
vector(1)⊘ x)

)
=: f(x).

Its Hessian, which computes to

2 · f(x)2
(

diag
(
vector(1)⊘ (x⊙ x⊙ x)

)
+ f(x) · (vector(1)⊘ (x⊙ x))(vector(1)⊘ (x⊙ x))⊤

)
,

is matched by the psd expression template if both y and z are instantiated by vector(1) ⊘ x. Note
that 1/sum(z) in the template becomes −f(x) = 1/sum

(
vector(1)⊘ x)

)
in the instantiation.

p-norms The p-norm ∥x∥p =
(∑n

i=1 |xi|p
)1/p

of x ∈ Rn for p > 1 reads in vectorized notation
as

sum
(
exp(p · log(s(x)⊙ x))

)1/p
= sum(f(x))1/p,

where s(x) is the sign vector of x, that is, we have s(x) ⊙ s(x) = s(x) ⊘ s(x) = vector(1). The
Hessian of the p-norm can be computed as

(p−1) ·sum((f(x))1/p−1 ·diag(f(x)⊘(x⊙x))−(p−1) ·sum(f(x))1/p−2 ·(f(x)⊘x)(f(x)⊘x)⊤.

The Hessian matches the psd expression template if y is instantiated by vector(1)⊘ x and z by f(x).
It also follows that the p-norm is concave for 0 < p < 1, since the negated p-norm is convex for
these values of p.
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Negative geometric mean The negative geometric mean neg_geo_mean(x, p) is given as

−

(
n∏

i=1

xpi

i

)1/sum(p)

,

where p ∈ Rn
+ is a parameter vector. It reads in vectorized form as

f(x) = −exp(sum(p⊙ log(x)))1/sum(p) ≤ 0.

Its Hessian

f(x) ·
(
(p⊘ x)(p⊘ x)⊤/sum(p)2 − diag

(
(p⊘ x⊘ x)/sum(p)

))
,

matches the psd expression template if y is instantiated by p and z is instantiated by vector(1)⊘ x.

7 Beyond CVX’s atoms

There are two main classes of functions that cannot be treated by DCP. The first are products of
two non-constant expressions such as x exp(x) for x ≥ 0. The second are compositions that are
not following DCP’s Rules 2, 3 or 4 such as neg_entr(cosh(x)) = cosh(x) log(cosh(x)), where
neg_entr(x) = x log(x) is convex but not increasing, and thus composing it with the convex
function cosh(x), DCP Rule 2a does not apply here. Both examples so far do not need the template
expression from Proposition 2 to be certified convex by the Hessian approach. This is different for
the multivariate function ( n∑

i=1

exp(xi)
)
log
(
1 +

n∑
i=1

exp(xi)
)
,

which can be expressed in vectorized form as

sum
(
exp(x)

)
log
(
1 + sum

(
exp(x)

))
.

Its Hessian is the sum of three matrices

(
log
(
1 + sum(exp(x))

)
+

sum(exp(x))
(1 + sum(exp(x)))2

)
· diag(exp(x)) +

2 · exp(x)exp(x)⊤

1 + sum(exp(x))

+

(
sum(exp(x))

1 + sum(exp(x))

)2

·
(

diag(exp(x))− exp(x)exp(x)⊤/sum(exp(x))
)
,

where the last matrix matches the template expression from Proposition 2, up to a positive prefactor if
y is instantiated by vector(1) and z by exp(x). The first two matrices can be certified as psd directly
from the positivity rules.

8 Conclusions

We have presented the first generic implementation of the Hessian approach for certifying convexity
and shown that it complements the well-established disciplined convex programming approach.
Neither approach is better than the other. Both have complementary strengths and weaknesses. The
DCP approach also works for non-differentiable functions but needs a new symbol for every new
atom, whereas our implementation of the Hessian approach works on a formal language that is close
to natural problem formulations in textbooks and rich enough to express many classical machine
learning problems, including problems not found in standard libraries like scikit-learn [Pedregosa et
al., 2011]. Furthermore, new DCP atoms also need to be certified at some point, and the Hessian
approach can be used to certify some of these new atoms.
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