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Abstract. In recent years, Deep Neural Networks (DNN), a special type
of Convolutional Neural Networks (CNN), have come to dominate many
machine learning related tasks, specially those related to image process-
ing, such as object recognition, detection, etc. Here we explore the posi-
bility of developing image denoising filters by stacking multiple Genetic
Programming (GP) syntax trees, in a similar fashion to how CNNs are
designed. We test the evolved filters performance in removing additive
gaussian noise. Results show that GP is able to generate a diverse set
of feature maps at the ’hidden’ layers of the proposed architecture. Al-
though more research is required to validate the suitability of GP for
image denoising, our work set the basis for the briding the gap between
deep learning and evolutionary computation.

Keywords: Deep genetic programming · Evolutionary Machine Learn-
ing · Genetic Programming · image filtering.

1 Introduction

Convolutional Neural Networks (CNN) are a type of connectionist machine learn-
ing (ML) algorithms particularly adept at image processing tasks [13, 12]. This
is thanks to a clever architectural design that allows them to scale well to high
dimensionality problems.

In recent years, a special type of CNN known as Deep Neural Networks
(DNN) have achieved record performance in typical ML tasks such as classifica-
tion, regression or prediction, outclassing both systems handcrafted by human
experts of the problem’s domain and ML systems based on techniques other
than CNN [11]. DNN have achieved this performance thanks to an ever increas-
ing number of stacked convolutional layers [10, 18, 6].

In this work we explore the possibility to implement the fundamental archi-
tecture of CNN through a different algorithmic paradigm, Genetic Programming
(GP) [9]. GP is an evolutionary algorithm typically used for ML tasks.

Our motivation to import the architectural design of CNN into GP is twofold:
first, we wish to explore the idea of replacing neurons in CNN with GP syntax
trees, as we believe they have the same, or even higher, computational power
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than that of CNN’s neurons; and secondly due to the fact that GP does not
scale well to high dimensionality problems [5], and we suspect it might benefit
from the same architectural design than that of CNN.

In order to test our proposed approach, we use as target problem the task
of image denoising. The purpose of image denoising is to recover a clean image
from contaminated original. The contamination model may be of different kinds.
In this work we attempt to clean images from additive gaussian noise.

The original contributions of this work are:

– We generate GP-based image denoising filters that operate at individual
pixel level.

– We propose the multi-layer convolutional GP architecture.
– We propose different training/evolution mechanisms that target the multi-

layer convolutional GP architecture.
– We compare the performance of the proposed GP filters to that of recent

DNN.

The implicit relevance of this work lies in the fact that for the first time,
to the best of the authors’ knowledge, we establish in a quantitative manner,
the performance gap between evolutionary algorithms/GP and Deep Learning.
Many other works related to this subject have avoided such direct comparison.

2 Background

In this section we briefly introduce GP and define the target problem.

2.1 Genetic Programming

In the context of ML, GP consists in a population of candidate solutions to
the problem at hand. These candidate solutions are called individuals. Each
individual’s performance is tested against a training dataset; the best individuals
are selected to reproduce through the use of genetic operations, i.e. generate
slightly modified versions of themselves; these new candidate solutions are also
evaluated and the best performing of them replace the worst performing of the
original ones, leading to a new generation of individuals, from which the process
repeats until a stop criterion is met.

Canonical individuals in GP are syntax trees that represent a mathematical
function or simple computer programs [9, 14]. Internal nodes in these trees are
basic functions called primitives, while leaf nodes are constants or the feature
variables from the instance being processed. In this way, data flows from bottom
nodes to the top root node where the final output is generated. Primitives are
usually unary, binary or ternary mathematical operations such as addition or
substraction between two inputs (binary), or square root or sine and cosine
functions (unary). Fig. 1 shows an example of a tree structure that represents
the function f(x, y) = (2.2 − ( x

11 )) + (7 ∗ cos(y)) [3].
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Fig. 1. Tree structures like this are typically used in GP to represent individual can-
didate solutions.

Problems with high dimensionality inputs, such as in the case of image pro-
cessing tasks, are challenging for ML algorithms for several reasons, such as time
complexity issues (time required to train such algorithms), the curse of dimen-
sionality [2], and the large number of parameters that need to be tuned inside the
algorithms for them to work properly when faced with such high dimensionality
problems.

In the case of GP, the high dimensionality issues arise due the nature canon-
ical individual representation itself. Notice how the depth of the trees has to
increase in order to accomodate more input features at the leaf nodes. Larger
trees means an exponentially growing search space of candidate solutions, that
eventually becomes intractable.

2.2 Image Denoising

The problem of image denoising is defined as follows: extract a clean image x
from a noisy observation y such that y = x + v, where v is a contamination
process; a typical example is when v follows a Gaussian distribution with some
given σ, which case is known as Additive Gaussian Noise (AWGN).

3 Related Work

GP has been succesfully used in the past to synthetize image filers. Examples
of these type of works can be found in [21, 8]. However, these works rely on a
modified version of the canonical GP individual such that primitive functions
may include already specialized image filters or at least well known image pro-
cessing functions. This property is undesirable if we wish to build ML systems
that relied as little as possible on domain human expert’s knowledge, i.e. highly
automated learning systems. A more agnostic approach has been proposed in [7],
where terminals of the syntax trees consist in simple statistics taken over regions
of pixels.
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It is relevant to contrast such specialized GP approaches with recent devel-
opments in the area of Deep Learning (DL). DNN are a special type of CNN
composed of several stacked convolutional layers. Each convolutional layer is
made of linear approximators coupled with a non-linear transformation. There is
really nothing specialized regarding image processing in the architecture of DNN
other than the use of convolution to efficiently process images. DnCNN [22] is
a recent DNN designed to tackle image denoising; its flexibility is such that, by
just switching the dataset with which is trained, the same network can learn to
remove vastly different types of noises such as Gaussian noises with different or
unknown levels of deviation, deblocking artifacts, and can even perform super
resolution. DnCNN is competitive with fully and partially handcrafted image fil-
ters designed by human experts, thus positioning DNN as very powerful learning
systems.

In more general terms, high dimensionality issues have been long acknowl-
edged in the GP community [5]. Standard approaches to tackle such issues gen-
erally involve grouping input features in one way or another, process each clus-
ter separately, and then attempt to assemble a joint global solution [20, 15].
Rodriguez-Coayahuitl et al. [15] proposed a GP autoencoder that generated a
compact representation of an input image and could decode the original image
from the compact representation. The proposed autoencoder relied on the canon-
ical GP individual representation. In order to use the proposed GP autoencoder
on images, it was required to partition the input images in small groups of neigh-
boring pixels that are processed independently in isolated GPs. Even though this
approach allowed GP to process a large enough input such as images, it is still
not the most efficient approach, since the isolated GPs did not share information
with neighboring GP processes and such many independent GP required vast
amounts of memory and processing power.

On the hand, in this work we draw inspiration from CNN and propose a
single sliding GP window that swipes an input image for processing, instead of
many multiple independent GP processes.

4 Proposed Method

Our approach to evolve image denoising filters through GP is to leverage from
the CNN architecture, where we replace neurons with GP syntax trees. Initially
we propose to evolve a single sintax tree that acts as image filter by sliding over
the noisy input image and cleaning pixel by pixel. Thereafter, we propose to
stack multiple layers of these GP filters. We explain the theoretical advanges of
stacking filters in this manner further below in this section.

4.1 Single Layer Convolutional GP Filter

We propose to use a standard GP individual representation, i.e. a syntax tree,
to act as an image filter. This filter operates over a small window region of
d × d pixels (where d is an odd number), receiving as input the pixels within
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such region, and returning as output a single value that is the level of noise of
the central pixel in the operating window; in order to filter a whole image, the
window is slided over an the entire image, generating a residual image the same
size of input image that we desire to clean of noise. Fig. 2a shows a depiction
of the proposed sliding GP filter. This residual image represents the (estimated)
level of noise of each pixel that composes the input image. In order to retrieve an
approximation of the clean image, we simply substract the residual image from
the noisy input image.

The leaf nodes of the GP individual should be the individual pixels in the
region being processed, or constanst values within some range. The primitives
can be any function that can operate at this individual pixel level. This is done
in this way to avoid the use of any image filtering expert’s knownledge.

4.2 Multi-layer Convolutional GP

Additionally we also propose to stack multiple of these sliding GP filters, both
in parallel and in series, since DNN are actually designed this way. That is,
instead of using a single GP syntax tree that filters the image, we can slide
multiple, different, GP syntax trees that generate as output feature maps, which
are intermediate transformations of the input that may be useful for generating
the desired output. All these feature maps form a volume of codified information
that is further processed by another GP sliding tree that generates the final
output, i.e. the residual image. Fig. 2b shows a GP filter architeture composed
of two stacked filter in series, while Fig. 2c depicts an architecture with multiple
GP filters both in series and in parallel.

Stacking these convolutional filters in series carries the advantage of increas-
ing the field of view. This means that if we use two sliding filter with windows
of 3 × 3 in series, when we reconstruct the central pixel at the output of the
second filter, we are actually using information of a 5 × 5 window size around
it (this is as along as the first filter did manage to codify information at feature
map it outputs). Notice however how when using this approach in such example
scenario, we are using only 18 features as inputs (9 for the first filter and 9 for
the second) whereas if we attempt to directly process filters of 5 × 5 window
size, then such filter would need to process 25 input features. This is one of the
reasons on why Convnet and DNN scale well to high dimensionality problems
and image processing tasks.

On the other hand, stacking filters in parallel per layer allows to generate
more than one feature map at each layer. Each feature map might codify different
information useful for the next layer of processing.

The canonical form of GP contemplates individuals that are composed of
a single syntax tree. In our proposed method, in the case of multiple stacked
filters, we would need to evolve more than a single GP tree. Although there do
exists GP individual representations based on forests (multiple trees), in this
type of representations the trees are loosely dependent on each other, whereas
in the multilayer architecture we are proposing here, the filter trees series rely
completely on the output generated by the previous trees in the structure.
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Fig. 2. Multilayer GP architecture. a) Single layer, single filter; b) Two layer, one filter
per layer; c) Three layer, first layer and second with n filters, third layer with only 1,
output, filter.

4.3 Evolving Multiple Layers of Convolutional GP filters

In order to train this complex architecture, we propose three different approaches:
(straightforward) define the GP individual as the entire set of trees across all
layers, evolve individuals by applying genetic operations layer-wise; (sequential)
evolve the multi-layer structure sequentially, i.e. evolve the first layer for fixed
number of generations; once this first evolution is finished, the second layer of
filters are evolved, which take as input a cleaner version of the noisy image gen-
erated by the first layer, and so on; (ensamble) the third approach is based on
the idea that the multiple feature maps at the penultimate layer might actually
act as ensamble learner, with the last layer only performing the mean function,
so in this architecuture we enforce this behavior by taking as output the mean
over the feature maps of the last layer. Fig. 3 illustrates these three variants.

5 Experimental Results and Analysis

In this section we present and discuss experimental results of the different vari-
ants of the proposed method.
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Fig. 3. Different possible GP individual representations for multilayer GP filters.

5.1 Training and Testing Datasets

We generated the training data following the works of [22, 17, 4]. From the Berke-
ley Segmentadion Dataset [16] we extracted 19,200 unique 40×40 image patches
for training purposes. For testing, we use the same classic image processing set
used in [22, 21, 8], composed of well-known pictures such as ”Lena” and ”Boats”.
A total of 12 (seven 256× 256 and five 512× 512) pictures were used for testing.

We contaminated both the training patches and the testing images by adding
them noise masks generated with a Gaussian distribution of σ = 25. All training
and testing was performed on grayscale images.

5.2 Evolutionary Algorithm Setup

For all experiments we used a multi-population, island based, model [19]. We
used a population of 500 individuals splitted across 5 islands each with 100 in-
dividuals. We used an heterogeneous and asynchronous [19] model where each
island had different crossover/mutation probabilities, and every 10 generations
send their top 10 performing individuals to another, randomly selected, island
(migration). The crossover/mutation probabilities were set as follow for each is-
land: [0.9/0.1, 0.7/0.3, 0.5/0.5, 0.3/0.7, 0.1/0.9]. The set of primitives used consist
on binary arithmetic operators, [+,−,×,÷], binary functions max, min, mean,
and unary functions x2, x3, and Rectifier Linear Units (ReLUs).

We utilized an on-line form of learning defined in [15]. We partitioned the
entire training dataset into mini-batches of 60 samples, and use one mini-batch
per evolutionary cycle for evaluating both individuals and offspring generated.
We used a steady state population replacement policy.
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Fitness function We used the minimization of the mean square error (MSE)
between the predicted noise level and the actual noise level to drive the evolution
of all systems proposed.

5.3 Results

We tested two Single Layer Convolutional GP, one consisting in a sliding window
of 3 × 3 pixels, and another with a window of 5 × 5 pixels.

We tested three different Multi-layer Convolutional GP, each under one of
the three different proposed methods for evolving multi-layer GPs. All Multi-
layer architectures consisted in only 2 layers (2 layers + mean, in the case of the
ensamble method). Both the straightforward and the sequential architectures
were composed of 3 filters in the first layer, and 1 filter in the second layer (3
filters in both layers for the ensamble method). All filters were 3 × 3 windows.

Table 1 shows the results obtained by the different tested approaches. We
include in Table 1 the values of the unfiltered noisy images (to understand how
much the proposed approaches actually denoise the images), as well as the per-
formance of the DnCNN network [22], to fully appreciate how far GP is from
modern DNN. These results were obtained on the same testing dataset for all
approaches (including the DnCNN), and using the same training dataset (also
applies for DnCNN). All the GP approaches were given the same computational
time1. Therefore these results are based on a comparison as fair as possible.

Table 1. Average performance of all Convolutional GP architectures tested. Values
expressed in decibels. Higher is better.

Noisy
Image

Single
GP, 3x3

Single
GP, 5x5

Strfwd-GP
(2 Layers)

Sequential GP
(2 Layers)

Ensamble
(2L + Mean)

DnCnn

20.32 25.96 25.07 25.22 25.93 23.60 30.43

Fig. 4 shows the performance of a 2-Layer, Sequentially evolved variant GP,
on ten training patches. We found no visually appreciable difference between
this output and the one from a single layer GP.

5.4 Additional Results

We also performed experiment using 10 filters per layer for the Multi-layer GP
architectures. Although we found them to be consistently inferior in performance
to the 3 filters per layer reported above, we found that these GP variants gen-
erated interesting paterns in the hidden layer. Fig. 5 shows the feature maps
generated by the ten filters for ten different training patches. Some of the fea-
ture maps appear to be signaling borders or other points of interest.

1 DnCNN runs in less time than GP, due to being accelerated in GPU and implemented
in highly optimized DL software libraries.
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Fig. 4. Visual results of the output generated by a 2-Layer Convolutional, Sequentially
evolved, GP. From top to bottom: original images, noisy samples, filtered images.

Fig. 5. Feature maps generated by a 2-layer GP in the hidden layer given 10 different
input patches. From top to bottom: first row, noisy patches rows 2 to 10, feature maps;
last row, filtered final output.
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5.5 Discussion

Results shows that GP can succesfully synthetize image denoising filters, even
though none of the proposed methods allows GP to benefit from a multi-layer
convolutional architecture, thus positioning a single layer GP filter as the refer-
ence method-to-beat in future works based on GP.

Results also confirm that GP struggles with high dimensionality problems.
In this case, a single layer 5× 5 window GP filter does not performs any better,
if not worse, than a 3 × 3 window one, even though the first one has more than
twice context information that theoretically should allow it to perform a better
filtering.

6 Conclusions

In this work we have introduced a method to evolve image denoising filters with
GP, through an architecture inspired by CNN. Our results have confirmed that:

– GP is a viable method to synthetize image denoising filters, even when pro-
cessing images at individual pixel level.

– GP struggles with high dimensionality problems, since it cannot make use
of input samples with as low as 25 features.

– GP cannot directly benefit from a stacked convolutional architecture. More
research is necessary in this direction.

We have also draw a clear, quantitavive, performance gap between GP and
DL based methods, by using the same exact training and testing datasets, and
making head-to-head direct comparison with modern DNN architectures.

We believe this work should serve a reference for future works that attempt
to attack problems with GP in which DL excels at.
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