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ABSTRACT

Standard attention stores keys/values losslessly but reads them via a per-head con-
vex average, blocking channel-wise selection. We propose the Free Energy Mixer
(FEM): a free-energy (log-sum-exp) read that applies a value-driven, per-channel
log-linear tilt to a fast prior (e.g., from queries/keys in standard attention) over
indices. Unlike methods that attempt to improve and enrich the (g, k) scoring
distribution, FEM treats it as a prior and yields a value-aware posterior read at
unchanged complexity, smoothly moving from averaging to per-channel selection
as the learnable inverse temperature increases, while still preserving parallelism
and the original asymptotic complexity (O(7?) for softmax; O(T) for lineariz-
able variants). We instantiate a two-level gated FEM that is plug-and-play with
standard and linear attention, linear RNNs and SSMs. It consistently outperforms
strong baselines on NLP, vision, and time-series at matched parameter budgetsﬂ

1 INTRODUCTION

Transformers, powered by attention mechanisms, have become the default backbone for sequence
modeling across language, vision, speech, and decision making (Vaswani, 2017; Devlin et al., 2019;
Radford, 2018} Brown et al., 2020; Dosovitskiy et al., [2020; Dong et al., [2018]; |Chen et al., 2021}
Touvron et al.l 2023)). Their success is often linked to selective access to an ever-growing key-value
cache while retaining parallel training and inference. In large language models, this selective abil-
ity, composed across multiple attention layers and residual pathways, supports long-range memory
retrieval and the algorithmic behaviors associated with in-context learning (for example induction
heads and pattern completion), as shown by recent empirical and mechanistic studies (Min et al.,
2022; [Wei et al., 2023} Xie et al., [2022; Zhang et al., |2023}; (Garg et al.| 2022} |Akytirek et al.| 2023
Li et al.} 2023 Dai et al., 2023} |Bai et al., 2023} |Olsson et al., [2022; |[Elhage et al., 2021).

Causal softmax attention combines strong selectivity with parallel efficiency: at each step it forms
a distribution over past indices and mixes their values, while all steps can be computed in parallel.
Given (Q, K, V) € RT*? with rows q;, k;, v;, define masked scores s;; = g} k;/v/d for i <t and
—o0 otherwise, and set oy, = softmax(s;,.) € A'~1. The step-t read is

0; = Zigt Vi, 0o € conv{vy, ..., v},
and stacking all ¢ yields O = AV with A, ; = a4 ;, so a single matrix multiply produces all outputs.

The convex-mixture view explains efficiency: outputs are probability-weighted averages of the
shared value bank, computed in one matrix multiply. Yet this also reveals a lossless-storage
versus lossy-processing dilemma (Fig. [Th). The KV-cache stores full context, but the read is
lossy: each head applies the same weights to all coordinates of v;, so o, = ZKt o ;v; lies in
conv{vy, ..., v} and all channels are synchronized. As a result, even simple per-channel indexing,
such as s = (i, 1,-.-,Vip, D) (€.g., coordinate-wise argmax), cannot be represented unless all
chosen indices coincide. Adding more heads only creates a few synchronized groups, and deeper
stacks cannot recover per-channel index identity once the first convex mixing has occurred. This
limitation hinders Transformers in long-range modeling with non-sequential or irregular timestep
indexing, and in tasks where channel-wise structure is critical, such as multivariate time series mod-
eling (Tay et al.l [2020; Zeng et al.,[2023} |Nie et al.,|2022; Liu et al., [2024; |Lu et al., [2025)).

Most recent advances in attention aim to improve expressivity and efficiency, typically by designing
richer selective distributions but still reading values through a token-separable linear combination.
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Figure 1: (a) Classic attention stores past values losslessly but reads them as a single convex com-
bination, so channel-wise indexing (e.g., per-channel argmax) is not representable. (b) Free Energy
Mixer (FEM) treats selection as a DV free-energy problem: values tilt the prior to a value-aware
posterior with a learnable per-channel temperature, enabling low-entropy (point-like) posteriors and
channel-wise selection while preserving the prior’s time complexity. (¢) Common fixes (more heads,
deeper stacks, separable mixers, and per-channel scoring) either keep channels synchronized or raise
cost / rely on fixed-state storage; none close the lossy-memory gap that FEM addresses.

These methods include sparsity (Beltagy et al., 2020; |Child et al.l [2019; [Zaheer et al., 2020)), low-
rank projections (Wang et al.,[2020; |Xiong et al.,[2021]), and kernelizable variants with normalization
or gating (Katharopoulos et al.,[2020; Choromanski et al.,|2021; Hua et al.||2022; Yang et al.|[2024b;
Qin et al.| [2022a}b). Efficiency-oriented work accelerates the same semantics via factorized imple-
mentations (Dao et al., 2022} Daol 2023) or replaces the cache with streaming state-space and RNN
models of fixed size (Gu & Dao| 2023 [Sun et al.,|2023)). Across these lines, computation is faster
or the distribution richer, but the read remains a linear mix, so channels share weight vectors, and
even simple per-channel indexing (e.g., argmax) cannot be realized in one step. Some recent works
explore more complex combinations (e.g., nonlinear mixing such as log-sum-exp in LASER atten-
tion, or hard/top-k selection (Gupta et al.l |2021; Duvvuri & Dhillonl [2025; [Hashemi et al.| 2025)),
yet these mainly target training stability or accuracy in specific cases and do not address the lossy
processing limitation .

Motivated by this gap, we propose the Free Energy Mixer (FEM), which regards lossless processing
as the optimal interaction between a selection distribution and stored values: for each channel,
choose an index distribution that maximizes utility under an information budget. FEM removes the
linear-combination bottleneck and enables per-channel, context-dependent selection from the KV
cache, while keeping causal masking, parallelism, and the asymptotic complexity of the underlying
mechanism. When strong selection is not needed, FEM reduces to the standard expectation; when it
is, different channels can focus on different past indices in the same step.

Contributions. (1) We identify a lossless-memory processing gap in attention: per-head convex
mixing cannot realize channel-wise selection from the lossless KV-cache. (2) We propose FEM,
which closes this gap by casting the read as a variational free-energy optimization that, per chan-
nel, selects an index distribution under an information budget, enabling value-aware channel-wise
selection. (3) FEM is agnostic to how the selection distribution is formed (softmax, kernel/low-rank
attention, linear RNNs, SSMs) and preserves the corresponding time complexity. (4) On NLP, vi-
sion, and time-series tasks, FEM consistently improves strong baselines at matched parameter sizes.

2 METHODOLOGY

2.1 PRELIMINARIES: SELECTION DISTRIBUTIONS

To analyze the storage-processing gap, we introduce the following notion of a selection distribu-
tion. At step ¢, we formalize memory selection over past indices Z; = {1,...,t} by a probability
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vector p; € A'~! with support My = {i € Z; : p;(i) > 0},

pe(7) >0, S ipeli) =1 (1)

Causality and hard masks can be encoded by restricting M;. Given values v; € RP, the per-step
readout is the expectation

or = S pi(i)v; = Eiop[vi] € conv{vy,..., v} 2

Causal softmax self-attention is the case where p; is a masked row-softmax over logits g, k;/V/d;
linear attention arises when p; is a normalized nonnegative kernel, as detailed in

Lossless storage vs. lossy processing. Unlike RNNs, which compress history into a fixed-size state,
softmax attention stores the full KV-cache {(k;, v;)};<; without compression (lossless storage), but
the read equation[2]applies one weight vector per head to all coordinates, so outputs lie in a per-head
convex hull. This is potentially lossy when different channels should retrieve different indices in the
same step. To state the target capability we define the finest-granularity retrieval:

Definition 2.1 (Channel-wise selector). A channel-wise selector at time ¢ is any vector s} =
(Vig 15+, 0ip,p) With i; € Z; allowed to differ across j € [D].

Lemma 2.2. Let m; = (max;<¢ v; 1, ..., MaX;<¢ v; p). If my € conv{vi,..., v}, then a single
index simultaneously attains all coordinate maxima. Hence if the arg-max indices differ across
coordinates, my ¢ conv{vy,...,v}.

Corollary 2.3. A per-head convex read ), p(i)v; cannot realize a generic channel-wise selector
with at least two coordinates selecting different indices.

This geometric limitation above motivates our method. We can see that a single head applies one se-
lection distribution to all channels at step ¢, synchronizing channel-wise index choices; with [ heads
the number of realizable head-level arg-max patterns is at most ¢/, far below the ¢ patterns needed
for lossless per-channel selection when H < D. This gap motivates replacing the expectation read
equation 2| with the free-energy read in Section Proofs of Lemma and Corollary the t7
capacity counting are deferred to Appendix

2.2  WHY STANDARD REMEDIES FAIL: TOWARD A FAITHFUL, LOSSLESS READ

We revisit common extensions around attention and explain why they do not close the channel-wise
lossless-selection gap, as shown in Fig. [Ic. Full details and proofs are in Appendix [C}

(1) More heads. Heads provide H selection distributions per layer but synchronize channels within
each head. Hence the step-t head-level argmax capacity is at most ¢, far below ¢ when H < D.

Lemma 2.4. Let agf) € A1 be the distribution of head h € [H]. Across contexts, realized
head-level argmax assignments are at most t*, and all coordinates controlled by head h share ozgl,).
Increasing H reduces the per-head width d;, = D/H, tightening the low-rank bottleneck on the
value path; as H approaches D, the cache become well-approximated by a finite-state linearization,
effectively breaking the lossless-memory advantage. See Appendix [C.1|for details and analysis.

(2) More depth. After a first per-head convex mixing acts at step ¢, per-channel index identities are
no longer available unless a fresh, independent selection acts before that first mixing.

Lemma 2.5. The map {v;}i<¢ — Y, 0t ;0; is row-stochastic with image in conv{v., ..., v:}. Any
channel-wise selector outside this hull cannot be realized at step t by composing coordinate-wise
maps and later attentions that only access already mixed tokens.

Proposition 2.6 (Selection budget). With L attention-MLP blocks and H heads per block, at most
H L disjoint channel groups receive independent first-mixing distributions by step t. A necessary
condition for D independent per-channel selections at step t is HL > D (which is not practical).

(3) Per-dimension queries/keys. Giving each coordinate its own scoring subspace raises capac-
ity toward ¢ but raises score parameters and compute from O(d?) to ©(Dd) per layer, typically
harming value bandwidth or MLP width under fixed budgets.

(4) Richer in-head mixers. The progressive family below still keeps mixing token-separable:

or =3,V = (B OV) = D, 0(BOv) = Y. flaw, ),
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Figure 2: Overview of the Two-Level Gated Free Energy Mixer. (a) Lightweight linear & low-rank
local convolution for local conditioning. (b) Prior selection: softmax attention uses a probability
normalizer, while linear RNN/SSM use an operator-induced normalizer. (c) FEM integrated into a
Pre-Norm Transformer block. (d) Final architecture: compute mean y; and max-temperature branch
Fya* with inner gate \; interpolating and outer gate g, scaling. (e) Free-energy curve: improvement
over ju; equals KL(p;||¢"?))/B. (f) Efficient implementation: one mixing with p; yields both E,, [v]
and B, log E,, [e#mexV], then gating produces o;.

Proposition 2.7 (Token-separable mixers are convexly constrained). Linear and coordinate-wise
gated variants lie in a convex hull of transformed values; even with a pointwise nonlinearity inside
the sum, channel-wise selection of the original coordinates is not realizable in general. For general
token-separable f, per-channel argmax is impossible in general. Additionally, adding per-channel
cross-token competition in f may break O(T)/O(T?) parallelism. Details in Appendix

(5) Linear RNNs/SSMs. They offer rich dimension interactions but store history in a fixed-size
state, cannot support arbitrary index retrieval at large horizons without lossless storage; see § [C.5}

Takeaway and connections. Prior remedies fall into three buckets: (a) increasing assignment
capacity at substantial cost (e.g., per-feature score-space inflation to obtain o ; ), (b) keeping a
token-separable convex read (e.g., in-head pointwise gates), or (c) relying on fixed-state storage
(e.g., linear RNNs/SSMs). None provides per-channel, value-aware cross-token competition before
the first mixing while preserving the time complexity. In particular, pushing capacity from ¢ to-
ward P via per-feature inflation leaves the read token-separable, so the same-step lossless-selection
gap persists (Lemma [2.3] Proposition 2.7); likewise, simply scaling heads/depth or adding in-head
gates cannot recover channel-wise index identity once the first convex mix has acted. These gaps
motivate a single, stronger mixer that performs value-aware competition without changing asymp-
totic cost: our FEM via a variational free-energy read. See Appendix [C.6]for a mapping of existing
designs and Appendix [C.7]for more discussion.

2.3 FREE ENERGY MIXER: VALUE-AWARE POSTERIOR SELECTION

Motivation and objective. Classic attention performs a per-head convex read and cannot real-
ize same-step channel-wise selectors in general (cf. Lemma [2.2] Corollary 2.3). We therefore cast
channel-wise retrieval as an information-constrained selection problem: at step ¢, a fast, information-
sparse prior p; (from queries/keys or an operator-induced normalizer) proposes indices on the
masked support My, while values {v;} supply evidenceﬂ For each channel j we choose ¢ € A(M;)

2Somewhat counterintuitively, we treat selection as prior and values as evidence because evidence requires
log-exp processing while the prior does not; this preserves the time complexity of the selection mechanism.
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to maximize expected utility under a KL budget relative to py,

maxgea(n,) Binglvij] st. KL(qllp:) < By 3)
Free Energy Mixer formulation. Introducing a Lagrange multiplier 3, ; > 0 yields the per-channel

free energy output
Fei(Bes) = 551082 en, pe(i) exp (B vig), @)
and the corresponding posterior selectlon d1str1but10n

i) ep(Bugvi)
> e, Pe(r) exp(Byjur ;)
Theorem 2.8 (Free-energy selection and budget duality (with 3 as inverse temperature)). The con-

strained problem equation |3 has a unique solution q*. There exists a unique (3} ; > 0 such that

q = qig* and Ey-[v; ;] = Fi ;(B; ;). Equivalently (DV form), for any 8 > 0 the maximizer of

. ieM,. (5)

2 q(t)vi 5 — LKL(ql|py) is q(] ) Moreover,  — Fy ; is continuous and strictly increasing
J T B .8 J
unless v. ; IS p¢-a.s. constant. See Appendix Lemmas and Proposition

Consequences (summary). (i) Reverse-KL improvement over the mean: F; ;(8) = Ey, [v; ;] +
1 KL (p: Hq(ﬁ )) (Proposition. (ii) Value-aware competition: the gradient equals the posterior and
the Hessian is a Fisher covariance scaled by j3; thus F; ; is convex and 3 /2-smooth in v. ; (Proposi-
tion . (iii) Channel-wise selection on the prior support: with margin A; ; > 0, qt(ﬁ-) concentrates
at the argmax with exponentially small error in 3; F; ;(8) 1T max; v; ; (Propositioh . (iv) Ca-
pacity and complexity: across channels, FEM attains the assignment upper bound |M;|”, whereas
H heads offer at most |M;|" patterns; computing equation%] with a fixed temperature adds one
masked log-sum-exp per channel and preserves the prior’s asymptotic complexity (Theorem
Proposition [E.§). (v) Masks and invariances: masking is preserved; shift/scale laws and sensitivity
to prior probabilities/logits follow from log-sum-exp structure (Proposition [E.6)).

Outputs. FEM exposes two per-channel readouts sharing the same posterior q(J ). the free energy

F: () and the posterior expectation ), qf ﬁ( i) v; j. Under B-concentration they coincide at the
selected value—letting the model smoothly move from averaging to hard indexing without changing
the architecture. In § 2.3.TH2.3.2| we add a lightweight two-level gating and linearized temperature
learning that learn a dynamic temperature without changing the prior’s asymptotic complexity.

2.3.1 EFFICIENT COMPUTATION OF FEM AND LINEARIZED TEMPERATURE LEARNING

Fixed temperature. For a fixed inverse temperature 8 > 0 and channel j, FEM reads

1
Fei(B) = logz pe(i) PV = Eiop,uig] + 5 KL | o), 6)
1€ M;

with posterior selector q(B )( ) o py(i) €#¥i3 on the same support M; as the prior. Evaluating equa-
tlon@reqmres a smgle masked log-sum-exp (LSE) per channel, so the asymptotic time complexity
is identical to the prior (e.g., O(T") for softmax, O(T) for kernel/SSM priors). See Appendix [F.1}

Why [ should be dynamic. The decomposition in equation E]reveals an energy-entropy trade-off:
B governs the improvement over the expectation baseline through KL(pth(ﬁ )) Tasks typically

need different entropy levels across steps and channels, but directly recomputlng equation@]for each
learned 3, ; would break single-pass efficiency.

Linearized Temperature Learning (LTL). Fix a per-channel maximum S, > 0 and de-

fine the expectation baseline p;; = Ej.p,[vi;] and the high-temperature branch F;"* =
Brnax 108 >0y pe(i)ePmexvii. Alearned gate Ay ; € [0, 1] interpolates
]:t)j()\tmj) ( )\t ]) ,LLt J + )\tﬂ ]_'IH(IX7 (7)

requiring only the baseline expectation and a single LSE at (,,,x per step, hence preserving the
prior’s asymptotic complexity, as shown in Figure [2f.
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Hidden temperature and equivalent reparameterization in LTL. Let F; ;(3) = F; () and
Ay j(B) = Fi j(B) — F;(0). Then F} ;(8) = B2 KL(q,E?HPt) > 0, so F} ; is continuous and
strictly increasing on [0, Biax] unless v., 7 18 pg-a.s. constant. By the intermediate value theorem, for
each \; ; € [0, 1] there exists a unique

B (Ag) = Ay A Arj(Bmax)) € [0, Bmax]  suchthat  Fy (M) = Fij(Bf;(Meg)).  (8)

Therefore, optimizing ); ; is a strictly monotone reparameterization of optimizing a hidden temper-
ature 3}, for equationd] as shown in Figure [2%k; see Proposition [F.2]

Final form of FEM and complexity. Collecting terms gives the per-channel read

-~ . At j . max Vi i
Frjeg) = (1= Aej) Dicnr, Pe(0) viyj + o5 log 3oy, pe(i) eFmaxvio, )

equal to F ; at the unique hidden temperature 374 , ;(),;). Both terms can be obtained in one pass

by mixing [v; ;, ePmaxvii | with the same p; (). Hence LTL achieves dynamic temperature control
without changing the prior’s asymptotic complexity. A KL interpretation appear in § [F.3HF4]

2.3.2 TwO-LEVEL GATED FEM: VALUE-AWARE INNER GATING AND OUTER MODULATION

We present the two-level gated FEM that turns a prior selection distribution p, € A*~1! into a per-
channel, value-aware read while preserving the prior’s time complexity. All operations below act
element-wise over channels j € [D]; ® and @ denote Hadamard product and division. Let Bpax €
RD, be a learnable global maximum inverse temperature, and let A; € [0,1]” and g, € RZ, be
per-channel gates at step t, parameterized from the current token features. We apply sigmoid and
softplus activations, and normalize g; with RMSNorm so that its modulation does not overly distort
the norm of o;. In what follows, whenever we refer to FEM, we default to this two-level gated
version. Proofs and details of this section appear in Appendix

Inner (temperature) gate via one-pass linearized temperature learning. Define the expectation
baseline and a single high-temperature branch

pe = pe(i)v; €RP, Frax = gl ©logy”, pi(i) exp(Bumax@vi) € RP,

which can be obtained in one pass by mixing [v;, exp(Bmax ©v;) | with p;(i). The inner gate as
hidden temperature interpolates

ﬁ’t()\t) = (1 — At)@[l:t + AtQthaX. (10)

Outer gate and final read. The outer gate modulates the inner read:
0y = g OFy(\y) :th[(l —)\t)QNt"i‘}\t@thax] (11)

Note that the outer gating can be regarded as applying an scaling after the token mixing in free energy
. . . _ . gt,j .
with hidden temperature, i.e., B3, . log { i, Pe(0) exp(Biia vm')} . For smoother opti-
mization, we therefore parameterize g; as strictly positive by default. Computing equation [10H1 1|

matches the asymptotic time complexity of the prior p; (e.g., O(T?) for softmax; O(T') for ker-
nel/SSM priors) as shown in the section above.

Containment of common mixer families. The two-level gate subsumes several widely used mixers:
(i) setting A; = O yields per-channel linear reweighting o, = >, p:(i) (g: ©v;); (i) 0 < A <
1 gives a monotone, convex mean—real-softmax interpolation per channel, enabling value-aware
thresholding; (iii) letting A¢, g; depend on (ctx, p;, pe, Fy*?¥) realizes a broad token-separable class
>, f(aw,i, v;) while introducing cross-token competition through the log-sum-exp branch.

2.3.3 FEM AND SELECTION DISTRIBUTIONS: A PRIOR-AGNOSTIC INTERFACE

FEM only requires a nonnegative, normalized selection prior p; € A!~! over indices Z; =
{1,...,t} with masked support M; = {i < ¢ : p:(¢) > 0}, and the variational read always en-
forces ¢; < p;. Any streaming or parallel mechanism that produces nonnegative scores s, (i) > 0

“+ /s
induces a valid prior via the normalization pj (i) = <=+ (i < ¢).

ngf, s¢ (r) (
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Proposition 2.9 (Complexity-preserving normalization). If s, (i) is produced by an associative
operator (e.g., kernelized/linear attention, linear RNN, or SSM) that admits an O(1) streaming
update per step, then the denominator is obtained by applying the same operator to an all-ones
stream, so forming p; preserves the asymptotic complexity of the underlying mechanism. Under
FEM with fixed or LTL-controlled temperature, the read adds one masked log-sum-exp per channel
on the prior support and thus preserves O(T?) (softmax) or O(T) (linear/SSM) cost (See Fig. ).

Parameter budgeting. Let the input/value width be D and let FEM use working width d on the
value path. We allocate a ratio > 0 of parameters to the prior (e.g., @, K and, where applicable,
a decay gate). Ignoring biases/norms, the per-head linear parameters decompose as 4Dd + Ddr,
covering value, output, temperature and outer gates, and the prior block of size D x (rd). To match
the classic 4D? budget in standard attention: (i) d = %, r = 4 (keeps Q, K at width D); (ii)
d = %, r = 2 (balanced split). See Appendix for the split and costs. In our experiments
we default to (i) since it uses a forward pass with exactly the same shape as standard attention.
Notably, (i) actually reduces the dimension of the value part needed to be stored in the KV-cache by
half. Subsequent experimental results show that FEM’s fine-grained processing allows it to achieve
superior performance over priors while using an even smaller memory state cache.

Instantiations of s; (and p;) We adopt the following FEM selection priors as examples. (i) Softmax
attention recovers the standard masked row-softmax prior. (ii) Gated linear attention (Yang et al.,
2024b)) keeps an associative O(T") form by combining a feature kernel with an input-conditioned
decay. (iii) Linear RNNs admit nonnegative bilinear scores with normalization from the same re-
currence. (iv) SSM/Mamba-style priors use nonnegative impulse responses; a channel-interactive
variant lifts the index set to pairs (7, k) and normalizes per output channel, enabling cross-channel
competition. All formulas, streaming recurrences, and complexity details appear in Appendix [H]

Low-rank convolution. Recent sequence models such as Mamba and DeltaNet (Gu & Daol 2023
Yang et al., [2024cpa)) variants commonly enhance feature parameterization with local convolutions.
We adopt this idea in FEM by inserting a lightweight adaptive low-rank convolution module that
produces local, position-sensitive features. Concretely, it forms a simple time-decay kernel with
O(1) streaming updates, so the overall cost is only O(T H,.) with the low-rank dimension H, < D
(H. = d/16 by default). The resulting features modulate both the selection prior and the FEM gates,
providing local adaptivity. See §[[]and § [K]for more details.

FEM as a universal fast-weight programmer. FEM provides a unified mechanism that upgrades
expectation-based reads into value-aware, per-channel posterior selection while preserving the com-
plexity. It combines temporal mixing, entropy control, local conditioning, and dual gating, thereby
serving as a general and efficient fast-weight programmer [Schmidhuber; (1992) detailed in §[J}

3 EMPIRICAL EVALUATION

We evaluate the two-level gated Free Energy Mixer (FEM) with different selection priors across
synthetic, NLP, CV, and time-series tasks. Specifically, we test FEM with softmax attention (FEM-
SM), gated linear attention (FEM-GLA), and on selected tasks also with Mamba (FEM-Mamba)
and linear RNNs using AFT (Zhai et al.| [2021) (FEM-AFT) (see §E]). Unless otherwise noted, we
use parameter budgeting strategy (i) from § which matches the parameter size of standard
attention. Under this setting, FEM reuses existing efficient implementations (e.g., FlashAttention,
FlashLinearAttention) for the core prior mixer (see Fig. [2ld;f) with only minor value-path overhead.
Our main focus is algorithmic: exploring improved mathematical structures (see §[C.7). Due to lim-
ited compute and lack of fused CUDA kernels, we scale models modestly but provide fine-grained
metrics and extensive ablations to highlight FEM’s advantages. For ablation, we denote FEM mod-
ules as (C: low-rank convolution, L: LSE mixing, T: linearized temperature learning, G: outer gate).
For example, FEM-SM (-G, T) removes outer gating and temperature learning, equivalent to SMAttn
(+C,L). Unless specified, default FEM variants include all modules (C,L,T,G). We make sure that
every variants have same parameter sizes with the parameter budgeting. Aside from causal autore-
gressive FEM shown above, encoder-only use simply removes masking. In all experiments, FEM
directly replaces the attention in a Transformer block (Fig. 2t) without altering other components
(MLPs, embeddings, hyperparameters). More implementation details appear in § [K} datasets in § [[]
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MAD. We first evaluate FEM on the Table 1: MAD benchmark evaluation results across com-
synthetic MAD benchmark (Poli et al., pression, fuzzy/in-context recall, memorization, robust-
2024), which probes sequence models ness, and selective copying. Bold marks column best.

on in-context tasks. As shown in Ta- Model Com- Fuzzy In-Ctx Memorize Noisy Selective

ble FEM-SM outperforms all other press Recall Recall TrainSet Recall Copy Ve

baselines (Hyena, DeltaNet, Linear At- gylel;; 3‘2‘-3 ;‘;‘7‘ gg-g gg-g gg-g g;-g ;’153
. . elt et . 3. . . . .. .

tention, Mamba2, Gated DeltaNet, Dif- 5 5y, 3182 910 749 756 931 626

ferential Transformer, (Poli et al.,|2023; Mamba2 436 21.1 964 869 967 933 73.0

= . GatedDeltaNet 450 298 99.9 802 999 943 749

Yang et al.l, 202‘;3& Dao & (l}u, 20%4’ DiffTrans 429 390 999 87 971 958 764

Yang et al.| 20. a; [Ye et al.} 202 .)) FEM-SMCGTLO

by a clear margin. In particular, dif- (sMan;Transformer) 443 245 999 857 985 951 747

. : FEM-SM(-G,TL)

ferent FEM variants show strong gains — gy1...c, 450 314 999 855 999 963 763

on the Compress & Recall tasks, which FEM-SMcGn

heavily tel loorithmic handli £ GMAmCL) 503 39.0 999 854  99.9 980 788

eavily rely on algorithmic handling of  Fgm-smco)

dynamic context and Channel interac_ (SMALttn+C,L,T) 523 39.1 999 85.8 99.9 994 794

. FEM-SM

tions. On the Compress task, FEM (smauscLTO) 53.1 431 999 859 999 993 80.2

models achieve significant improve- FEM-SMccGT)

ments over existing methods thanks to ?Edfa"."s*kﬁ(,c o 495 263 999 857 975 975 761

their finer-grained processing of con-  ¢MamsLD 507 328 999 857 980 976 775

text st The ablation study fur- FM-SMco

ext storage. € ablation study Tur-  smaumsL1c) 512 354 999 859 985 99.0 783

; _  FEM-SM
ther reveals that the two major perfor (SMAtn+C,L.T.G) 531 431 999 859 999 993 80.2

mance jumps over prior baselines oc-  or— VP

cur after introducing +L (LSE) and +T  (aLa 402 85 913 813 868 768 642
: : FEM-GLA(G,TL)

(temperature), con9borat1ng our earlier ;"0 471 94 917 834 925 885 688

discussion of FEM’s enhanced memory = FEM-GLA(G™)

storageprocessing. Moreover, the abla- (GLA+C.L, 5, (i) 512 124 922 85.1 924 89.2 704

. FEM-GLA(-G)
tions demonstrate that FEM can elevate  gLavcLr 57 (i) 519 132 97.1 861 935 914 722
o FEM-GLA
linear tlme.methods §uch flf GLA and (GLA+C.LTG, 77 (1)) 53.0 19.1 999 863 999 99.0 749
Mamba (with normalized p;") to a level
. . FEM-MAMBA(-G,T.L.C)
comparable with the latest attention-  (vamba) 527 67 904 895 90.1 863 693
based variants. FEM-MAMBA(p: nom)
(Mamba+C,LTG, 57 (1)) 505 128 934 889 863 922 707
. FEM-MAMBA
Language Modeling. We follow (Mamba+C.LT.G, 57 (1)) 51.1 168 907 897 927 970 73.0
the experimental setup of (Yapg et al, FEM.AFTco1LO
2024a;c). Under the same training en- O AT 505 945 63 3L1 692 901 522
vironment, we train autoregressive lan-  (rrcL1o) 555 978 903  80.1 902 934 69.9

guage models with 1.3B and 340M pa-
rameters on the FineWeb-Edu dataset (Penedo et al., [2024), using 100B and 15B sampled tokens,
respectively. The models are optimized with AdamW (learning rate 4 x 10~*, cosine annealing,
1B-token warmup), weight decay 0.1, gradient clipping of 1.0, and a batch size of 0.5M tokens. We
use the LLaMA-2 tokenizer with a 32K vocabulary, and set the training context length to 4096. We
adopt the Open LLM Leaderboard protocol and a suite of general-ability tasks, as shown in Tab.
See §L[]for more evaluation details.

Compared with models of the same scale, using FEM im-  Typle 3: Comparative analysis of
proves the overall performance of prior methods such as soft-  jmage classification on ImageNet.

max and gated linear attention. These gains are most evi- Deil-Tiny DeiT-Small

dent in handling longer contextual instructions, tackling more =~ Medel  Top-1 Acc Params|Top-1 Acc Params
complex reasoning tasks (e.g., [IFEval and ARC), and boost- ¥§§ ;ﬁg g;m 33;(3)8 g%;%
i i i HGRN 7440 6.1M | 8009 23.7M
ing accuracy across multiple QA benchmarks. This reflects JERY, 7340 &M 5009 2374

’s abili i - - . : 45 223
FEM s ability to gnhance g;rl'eral retrieval ar}d context pro-  FEM-SM 7670 58M | 8045 223M
cessing by extending the originally synchronized head-level
prior distribution into richer channel-wise and token-wise interactions. The ablation results further
confirm that introducing components like +L and +T leads to substantial performance improvements.

Image Modeling. We evaluate FEM on the ImageNet-1K image classification task, following |Qin
et al.| (2024)), by replacing the DeiT architecture’s softmax attention with our encoder-only FEM
implementation. As presented in Table [3| both FEM-SM and FEM-GLA surpass previous methods
(Qin et al., 2023ajb; |2024) while maintaining parameter budgets.
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Table 2: Unified language modeling evaluation results across model families and scales. Abbr:
Acc_n=normalized accuracy; EM=exact match; IFE-I/P = IFEval (Inst/Prompt, strict only). Shots:
MMLU-P=5, GPQA=0, BBH=3, MATH=4, MuSR=0; others 0-shot.

Model Open LLM Leaderboard General Ability

Ranking

variant

MMLU-P GPQA BBH MATH MuSR IFE-I IFE-P ARC-C ARC-E  HS  PIQA BoolQ WinoG COPA OBQA SciQ Avg #Topl

(Acct)  (Acc, 1) (Acc,T) (EMT) (Acc, 1) (strict?) (strictT) (Acc, 1) (Acc, 1) (Acc, 1) (Acc, 1) (Acct) (Acct) (Acct) (Ace, 1) (Ace,T) Rank| 1
1.3B Params — 100B Tokens
DeltaNet 0.109 0263 0.308 0.011 0417 0.288 0.165 0.266 0.522 0.502 0.704 0.611 0.541 0.740 0.318 0.761 4.44 1
GSA 0.110 0270 0.294 0.013 0.438 0.300 0.179 0.287 0.529 0.510 0.712 0.541 0.536 0.760 0.330 0.773 3.38 2
RetNet 0.110 0252 0.293 0.001 0384 0.056 0.024 0271 0489 0480 0.701 0.583 0.533 0.710 0.324 0.736 7.63 0
HGRN 0.114 0269 0297 0.008 0.409 0253 0.122 0271 0.518 0481 0.707 0.584 0.515 0.700 0.326 0.695 575 0
HGRN2 0.115 0254 0295 0.002 0350 0.223 0.129 0.282 0.504 0317 0.671 0416 0.522 0.770 0.328 0.378 6.63 2
Transformer
(SMAttn) 114 0259 0296 0.011 0365 0270 0.141 0280 0.492 0492 0.705 0.621 0.552 0.760 0318 0.769 4.56
FEM-SM
(SMAtt:cLtG) 0.113 0262 0303 0.012 0451 0.326 0.192 0364 0.636 0.519 0.713 0.624 0.534 0.740 0.382 0.807 2.06 9
GLA 0.114 0259 0295 0.006 0427 0272 0.157 0277 0482 0488 0.702 0.574 0.541 0.690 0.326 0.721 5.63 0
FEM-GLA
(GLA+CLTG) 0.112 0258 0297 0.009 0475 0277 0.157 0310 0.564 0482 0.708 0.602 0.529 0.740 0.358 0.782 3.88 1
340M Params — 15B Tokens
DiffTrans 0.109 0259 0299 0.008 0390 0.266 0.133 0.289 0.531 0408 0.668 0.603 0.534 0.690 0.330 0.734 438 1
GatedDeltaNet 0.113 0260 029 0.010 0421 0258 0.133 0276 0.527 0.396 0.662 0.588 0.527 0.710 0.338 0.735 425 1
DeltaNet 0.112 0260 0.300 0.009 0.452 0.277 0.150 0.269 0.502 0405 0.653 0.519 0.504 0.690 0.316 0.717 544 3
FEM-SM(G,TL.C)
(SMAttn) 0.106 0267 0292 0.010 0386 0.269 0.126 0273 0.506 0.396 0.650 0.569 0.499 0.720 0.324 0.727 650 1
FEM-SM(-G,T.L)
(SMAttn+c) 0.113 0254 0296 0.009 0388 0.246 0.122 0.277 0.507 0.403 0.664 0.583 0.515 0.670 0.320 0.728 6.63 0
FEM-SM(G.1)
(SMAttn+c.L) 0.112 0258 0298 0.009 0.401 0254 0.129 0.290 0.518 0407 0.657 0.595 0.511 0.690 0.342 0.731 4.81 1
FEM-SM(-G)
(SMAttn+c,L.T) 0.112 0261 0297 0.010 0421 0266 0.144 0.293 0.531 0412 0.668 0.593 0.519 0.710 0.338 0.716 331 2
FEM-SM
(SM-Attn+cLtG) 0.114 0264 0.300 0.012 0437 0.273 0.142 0.284 0.542 0409 0.676 0.609 0.523 0.730 0.342 0.735 1.81 8
GLA 0.110 0258 0.289 0.007 0415 0.228 0.109 0.247 0478 0366 0.637 0.547 0.489 0.640 0.294 0.649 938 0
FEM-GLA
(GLA+CLTG) 0.115 0255 0297 0.009 0473 0241 0.123 0271 0493 0397 0.644 0.592 0510 0.680 0.331 0.683 6.56 2

Time Series Forecasting (TSF). Following[Lu| _Table 4: Benchmark evaluation of TSF tasks.

s FEM FEM FEM FEM
& Yang| (2025), we evaluate FEM variants on  Dataset SM. GLA Mamba Apr OLA AFT

iTrans- Patch-

former

DLinear

TST

TSF, as shown in Table Across datasets,

Weather 0.222 0.223 0.218 0.218 0.223 0.221

FEM surpasses both its priors and domain-  Solar  0.189 0.188 0.193 0.186 0.204 0.198
. . . = ETThl 0.419 0418 0.421 0.414 0418 0.421
specific baselines such as iTransformer (Liu| ETTh2 0340 0344 0340 0339 0342 0342

; ETTml 0341 0345 0346 0.344 0357 0351
et al.,|2024) and PatchTST (Nie et al., 2022). ETTm2 0242 0247 0246 0241 0250 0.245

0.232
0.219
0.454
0.374
0.373
0.265

0221  0.233
0202 0.216
0413 0422
0.330 0.426
0.346  0.347
0.247 0.252

Computational Cost. We evaluate the training

and inference speed of FEM on a Nvidia L40S GPU. To avoid confounding factors, we use an 8-layer
model with 4 heads and a hidden dimension of 512, tested on randomly generated data with a context
length of 2K and a batch size of 4. As shown in Table [5} the full FEM-SM achieves comparable
computational efficiency to recent model structures, even without additional engineering designs.

4 CONCLUSION AND LIMITATION

We proposed the Free Energy Mixer (FEM), which reframes se-
quence modeling as a context-interactive selection problem to
overcome the “lossless storage but lossy readout” limitation of
classic attention. FEM enables value-aware, per-channel poste-
rior selection on top of any prior (softmax/linear attention, RNNs,
SSMs) and, with log-sum-exp, linearized temperature learning,
and two-level gating, interpolates smoothly from averaging to
near hard indexing without extra complexity. It enhances con-
textual fast-weight programming in theory and achieves consis-
tent gains across NLP, vision, and time-series tasks at equal pa-
rameter budgets, with ablations highlighting LSE and temperature
control as key. Overall, FEM is a plug-and-play mechanism for
fine-grained context processing.

Table 5: Latency & through-
put comparison (TPS in K to-
kens/s). Lower is better for la-
tency; higher is better for TPS.

Fwd Train Fwd  Train

Model Lat. (s) Lat. (s) TPS (K) TPS (K)
GatedDeltaNet  0.016 0.042 2504 97.8
DeltaNet 0.014 0.036 2925 1139
HGRN2 0.009 0.024 4400 170.7
RWKV6 0.014 0.037 2939 109.4
RWKV7 0.017 0.050 245.1 822
DiffTrans 0.018 0.041 2333 100.6
FEM-SM

(GTLC) 0.012 0.027 3331 1537
FEM-SM

(GTL) 0.015 0.033 2915 1246
FEM-SM

(G,T) 0.016 0.035 283.7 121.2
Elél\)/[’SM 0.017 0.040 249.7 1146
FEM-SM 0.017 0.041 2460 104.1

Limitation. Our work focuses on advancing the algorithmic expressivity (§C.7) rather than pursu-
ing engineering optimizations such as custom GPU kernels or acceleration strategies. Due to limited
computational resources, we were unable to scale FEM to very large models or conduct very long-
context evaluations. This constrained but focused scope allowed us to highlight FEM’s algorithmic
contributions without heavy reliance on engineering or large-scale compute.
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ETHICS STATEMENT

We evaluate FEM only on publicly available benchmarks under their licenses, without collecting
personal or sensitive data. FEM’s enhanced retrieval ability could be misused (e.g., surveillance or
deceptive content), so responsible deployment requires privacy safeguards, bias checks, and legal
compliance. We also report model sizes and training tokens, and encourage energy-aware experi-
mentation.

REPRODUCIBILITY STATEMENT

All experiments were run under a consistent setup, with FEM modules directly replacing standard
attention while keeping other components unchanged. Code, configurations, and instructions are
provided in the linked repository|to enable replication of our results. See the code base and §@
§C] for more details.
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STATEMENT OF LLM USAGE

In this paper, LLMs were mainly used to assist with writing-related tasks, including grammar check-
ing, wording adjustments, length reduction, layout reorganization, text formatting, formula format-
ting, theoretical derivation formatting, and table template generation.

We also used LLMs to search for existing methods and references in order to avoid duplicating and
over-claiming. However, we did not use LLMs to conduct literature reviews, nor did LLMs replace
the authors in studying the cited works. We confirm that all cited literature was read by the authors,
not solely by LLMs.

During experiments, LLMs were used to assist with generating or refining experimental code and
scripts, especially for bug fixing and efficiency optimization.

LLMs were not used for defining research problems, proposing ideas, designing methodologies,
providing theoretical insights, or creating algorithms and model architectures.

B DETAILS AND PROOFS FOR SECTION [2.1]
B.1 SELECTION DISTRIBUTIONS, SUPPORT, AND NORMALIZATION
We encode causality by restricting the feasible support to M; = {1,...,¢}. In softmax attention,

exp(g/ ki/Vd) 1{i < t}

nls) = > <cexpla) ki /Vd)

In linear attention we use a nonnegative feature map ¢ : R — R, and set

(¢(qr), (ki) 1{i < t}
> i<i(B(ar), d(kj))

pt(i) =

Nonnegativity guarantees p; € A’~!. Row-masking is absorbed by M.

B.2 PROOF OF LEMMA[2.2]

Letm; =), \;u; with A; > 0and ), A\; = 1. For any coordinate j, v; ; < (m;); implies

(my); = Z Aivij < Z Ai(my); = (my);.
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Thus equality holds termwise: for all ¢ with A; > 0, v; ; = (m;);. Hence every such ¢ simultane-
ously attains all coordinate maxima, proving the claim.

B.3 PROOF OF COROLLARY [2.3]

Let s; = (viy1,--.,Vip,p) With at least two distinct indices among {i;}. Unless the cho-
sen v;; coincide on all selected coordinates (a measure-zero degeneracy), Lemma @] implies
sy ¢ conv{vy,..., v}, s0 no p; satisfies Y. p.(i)v; = s}.

B.4 HEAD-SYNCHRONOUS ASSIGNMENT CAPACITY

Consider H heads at step ¢. Let agz_) € A'"! be head R’s selection distribution and ¢;, =

arg max;<¢ ag};). Channels routed through head h share the same ag’h,) at their first mixing, so

the pattern is determined by (¢1, ..., ¢p) and a fixed partition of channels into heads. The number
of realizable patterns is at most t7, versus ¢? for fully independent per-channel selection.

B.5 REMARKS ON STORAGE VERSUS PROCESSING

Softmax attention stores the entire set {(k;, v;)}i<; without compression, but the per-head read
equation [2] enforces one weight vector across all coordinates, which is the bottleneck for tasks re-
quiring different indices per channel. Pointwise nonlinearities or additional depth cannot recover
per-channel index identity at the same step unless a new, independent selection distribution acts
before the first mixing on those channels.

C DETAILS AND PROOFS FOR SECTION [2.2]

C.1 MORE HEADS: CAPACITY, LOW-RANK EFFECTS, AND FINITE-FEATURE LINEARIZATION

Bilinear form and rank. With H heads and d;, = D/H,

H
yo=3 (DWW e = S M) @i, rank(WS(W)T) < dn. (12)

i<t h=1 i<t

Proof of Lemma At step t, head h selects arg max; a;’?; the Cartesian product over H heads

has size at most t. Inside a head, all output coordinates are linear images of the same ag?). O

Finite-feature approximation (value-path erosion). Assuming clipped logits |¢ " k| < R, a sin-
gle softmax head of width d;, admits an e-accurate finite monomial feature approximation with

N +dp,
M< 0 ), N = O(R +log(1/e)),

so its read is uniformly approximable by a linear streaming state of size M x d,,. The full result is
below.

Proposition C.1 (Dimension-dependent linearization and memory collapse for a softmax head).
Consider one softmax attention head with query/key width dy, and value width d,,. Assume bounded
scores and values:

la kil <R (i<t), il <V
Fixe € (0, 1) and choose N € N such that

oo

R’Vl
> T SE

n=N+1

Define the feature map that collects all monomials up to total degree N,
N
« n+dy,—1 N +dj,
= (L= RM M = E = .
P (7) <Va!)|a\s1v =t n—0 ( dp —1 ) ( dn
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Then, uniformly on {|q" k| < R},

Tk T
[t %~ 6n.a,(a) Ona, (k)| < e (13)
Define the streaming sufficient statistics
Sy = Z¢N,dh,(k‘i) v; € RM*d, Zy = Z¢N,dh(ki) eRY,
i<t i<t
and the linearized readout
5 ON.a, (q1) " S
t = T T
ON,a, (a) T 21
.
If, in addition, € el < % then the exact softmax output o, = ZKt Qv j0; With oy j o< et ki satisfies
the uniform (in t) error bound

e R,

sup ||oy — oo < 4Velte. (14)
t

Consequently, a single softmax head is O(g)-approximable by a linear, streaming state of size M x
d,, plus one M -vector, where

M = (N;hdh> - @(fgj’;), N = @(Rﬂogg).

In particular, when dy, = 1 we have M = N +1 = ©O(R + log é) the head collapses to a one-
dimensional kernel-RNN-like compressed memory with arbitrarily small uniform error as N — oo.

R By construction

T T o
. . . q k . q k oo q
Proof. Multivariate Taylor expansion of e gives e =Y .0 Z\alzn P

of ¢n.ay,» On.a, (0) T ON.ay, (k) = Zﬁfzo > lal=n %7 so the truncation error is the scalar exponen-

tial tail evaluated at |¢ " k| < R, yielding equationby the choice of N.
Let K, (i) := e% ki, K(i) := ¢(q) T p(ki). Write N, = 3, Ky(i)v;, Dy = 32, Ky(i) and N, =
> Kie(i)vy, Dy =", Ki(i). From equationand |vill2 <V,

IN: = Nillo <€) vl <eVt,  [Dy—Dy| < et
i<t

Since |, ki| < R, we have te™ % < D; < tefl. If eef* < %, then D, — |D; — ZA)f\ > %te’R. Using
the standard ratio perturbation bound,

H& _ &H < N~ Nill2 [Nell2 - |Dy — Dy

-Dt Dt 2 Dt_‘Dt_Dt| -Dt Dt_|Dt_Dt|

Because || N¢||2 < V Dy, the RHS is at most wa + 1‘/7”& = 4V e®e, which proves equation
Ste™ §te*

The stated complexity follows from M = (N ;}'}d’l) and Stirling’s approximation; for dp, = 1, M =

N+ 1. O

Remark. Any common scaling (e.g., 1/+/d,) in dot-product attention can be absorbed into R.
Position biases can likewise be included provided the total score remains bounded by R.

Numerical illustration (state size under bounded scores). We instantiate Proposition with
two practically relevant score radii: a high quantile R ~ 5 and an extreme upper bound R = 10. For
target uniform kernel error &, choose the smallest degree N with )\ R"/n! < . The resulting
hidden-state size per head (in the dj=1 collapse) is (N+1)d, = O(N d,); across all heads with
total value width D = Hd,, itis O(N D).

Minimal degrees N (exact tail test).

e=10"% ¢=10% ¢=10"°%
=5 [ N=19 N=22 N=25
=10| N =33 N =36 N =40
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These values satisfy the safety condition of Proposition (ee < 1) eg.ee!® ~ 2.2x1072 at
e =105,

Concrete state sizes (per head, d,=1). For e = 1076,

R=5: M=N+1=23 = state = (N+1)d, =23d, and O(N D)= O(22 D) overall,
R=10: M =N+1=37 = state = (N+1)d, =37d, and O(N D)= O(36 D) overall.

Thus, under realistic bounded scores, a single softmax head with d;, =1 is equivalent (up to uniform
error €) to a linear streaming memory whose per-head size grows essentially linearly with R and only
mildly with e. For dj, > 1, the finite-feature dimension becomes M = (N jhdh) = O(N /dy!),
explaining the strong dependence on per-head width.

C.2 DEPTH: NO SAME-STEP UNMIXING AND SELECTION BUDGET

Proof of Lemma To : {vi} — >, o v, is linear, nonnegative, and weight-summing to 1,
hence images lie in conv{v; }. Composing coordinate-wise maps keeps outputs in a convex hull of
transformed points and does not reveal per-channel indices used before mixing. Later attentions at
step ¢ operate on a finite set of already mixed tokens; a selector outside conv{wv;} is unreachable
without a fresh independent selection before the first mixing touching those coordinates. O

Proof of Proposition[2.6, Define a channel group as coordinates whose first attention-based mix-
ing shares the same head at some layer. Across L layers there are at most H L groups. Each
group gets one independent selection distribution for its first mixing, hence at most H L indepen-
dent per-channel selections by step ¢. Necessity of HL > D follows; achieving the bound requires
avoiding re-synchronization before first attention. [

Accumulation. Layer ¢ writes V(©) € R**P to KV. Stored channels scale as LD, independently
selectable groups as LH; the fraction of non-independently-selectable channels does not vanish
unless H scales with D.

C.3 PER-DIMENSION QUERIES/KEYS: CAPACITY-BUDGET TRADEOFF

Giving each coordinate j its own scoring subspace increases assignment capacity toward ¢, but
increases parameters and compute from ©(d?) to ©(Dd) per layer. Under a fixed budget this forces
shrinking D (hurting value bandwidth) or the MLP width (hurting global capacity), both detrimental
in long-context regimes.

C.4 TOKEN-SEPARABLE MIXERS REMAIN CONVEXLY CONSTRAINED

We analyze
0= i =Y (B Ov) =D aic(BrOv) =Y flawi,vi),
i i i i

with coordinate-wise o.

Proposition C.2 (Full statement of Proposition 2.7). (i) The first two are linear; images lie in
conv{wv; } and conv{B; ® v;} up to coordinate-wise scaling. (ii) For ), o ;0 (B¢ © v;), outputs lie
in conv{o(B; ® v;)}; recovering a channel-wise selector of the original coordinates is impossible
in general unless special degeneracies (e.g., identical selected coordinates across candidates) hold.
(iii) For a general token-separable f, per-channel argmax over original coordinates is impossible
in general.

Proof sketch. (i) Direct. (ii) If m = (max;v;1,...) is outside conv{v;} (Lemma , any
convex combination of transformed values cannot map back to m unless o is globally invertible
and aligned simultaneously across all candidates, which fails generically. (iii) Duplication argument
in D = 1: take two identical tokens u at indices i # j but target max to prefer one index; any
token-separable >, f(cw i, v;) is invariant under swapping the two, contradicting index-sensitive
selection. O
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Complexity remark. Per-channel cross-token operations (e.g., top-k, per-channel log-sum-exp)
introduce non-separable normalizations over ¢ and typically break fused O(T)/O(T?) implementa-
tions.

C.5 LINEAR RNNS AND SSMS LACK LOSSLESS STORAGE

Let h; € R be a fixed-size state updated by a (possibly input-dependent) contractive linear op-
erator. Classical lower bounds for linear time-invariant systems imply existence of sequences and
horizons ¢t where single-token recovery error from h; is bounded away from O for any fixed S. Hence
fixed-state models cannot provide lossless storage of {v; };<; for arbitrary index retrieval at step ¢,
in contrast to a KV cache, and thus cannot realize channel-wise selection over all past values.

C.6 CONNECTIONS TO RECENT PER-CHANNEL VARIANTS

The families in Section subsume many contemporary designs:

(i) Score-space inflation per feature. Tensorized/multi-dimensional attention and element-wise
attention allocate a scoring subspace per coordinate to produce o ; . (Shen et al.,|[2018; Feng,[2025).
This moves assignment capacity from ¢t toward ¢°, but the read stays token-separable, hence sub-
ject to the convex-hull constraint (Proposition [C.2). Moreover, the per-feature distributions are
typically prior-only (value-agnostic) at the same step, so no value-aware cross-token competition is
introduced before first mixing (cf. Lemma. The parameter/compute cost also scales from O (d?)
to ©(Dd) per layer; see Appendix [C.3]

(ii) More heads/depth. Increasing H adds only H independent selection groups, bounding head-
level assignments by ¢/ (Lemma ; depth increases storage but not the number of independent
first-mixing distributions per step beyond H L (Proposition [2.6). Hence the channel-wise lossless-
selection gap remains unless H scales with D.

(iii) In-head pointwise gating. Adding coordinate-wise gates inside the per-head mixer keeps
token separability (the form ), f (o 4, v;)), so outputs remain in a convex hull of transformed val-
ues and cannot realize per-channel argmax of the original coordinates in general (Proposition [C.2)).
Making the gates index-sensitive requires cross-token competition per channel, which naively breaks
O(T)/O(T?) implementations; see Appendix

Summary. Across (i)—(iii), either capacity increases at significant parameter/compute cost while
the read remains token-separable, or the same convex bottleneck persists, or fixed-state storage limits
retrieval. None provides per-channel, value-aware cross-token competition before the first mixing
under the prior’s asymptotic complexity.

C.7 WHY A STRONGER ALGORITHMIC MIXING STRUCTURE MATTERS

A mixer that natively performs value-aware, per-channel cross-token competition at the first mixing
step has two practical advantages under fixed budgets:

Separation of roles. The mixer shoulders dynamic fast-weight programming (context-dependent
routing/selection), while MLPs focus on feature synthesis and knowledge consolidation. In a ker-
nel/NTK view, this corresponds to adapting the effective kernel online at the mixing site, reducing
the burden on downstream static nonlinearities.

Parallelism and efficiency. If such competition is realized without changing the asymptotic com-
plexity of the selection prior (e.g., by computing a per-channel log-partition over the same masked
support), we preserve the O(T?) softmax or O(T) streaming behavior and fused-kernel practical-
ity. This is the design objective satisfied by FEM in the next subsection: it introduces value-aware,
per-channel posterior selection via a variational free-energy read while retaining the prior’s time
complexity.
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D ADDITIONAL DISCUSSION: PER-CHANNEL SCORE DISTRIBUTIONS VS.
TOKEN-SEPARABLE MIXERS

Many recent variants extend a single per-head distribution p; = oy . to per-channel distributions
Qi(c,”) = oy, € A1 yielding

Orc = Zigt Qe Vie, o, = Zigt Diag(atviyl, .. .,ozm-,D) o(vi) = Zigt“’tﬂ' © o(vy),

=:Dy ;

(15)
where ¢ acts coordinate-wise and w;; = (ay1,...,0; p). Expression equation is token-
separable: the outer sum is over tokens and introduces no cross-token interaction inside the mixer.
Consequently, for each channel ¢, o . € conv{vy c,... ,vnc}, and exact coordinate-wise selection

at the same step is unattainable unless c; . . degenerates to a point mass (cf. Lemma[2.2} Lemma[2.5}

Proposition [C.2)).

Assignment capacity vs. convexity. Per-channel scoring lifts head-synchronous capacity from
tH to the natural upper bound ¢”: across contexts, independent argmax patterns {i%}cerp) can
in principle be realized by {atﬁc} (Shen et al., 2018} |[Feng, [2025). However, the mixer remains
a convex expectation per channel; without value-aware cross-token competition, the distributions
need not concentrate on the value argmax, and the lossless-selection gap remains.

Mapping of representative designs.

¢ Per-dimension score inflation. Tensorized/multi-dimensional and element-wise attentions in-
stantiate v ; . by combining a shared token-to-token term with per-channel terms or by per-
channel distances (Shen et al.| [2018; [Feng, 2025). These methods increase assignment capacity
(toward ¢7) but keep the token-separable convex read in equation [15|and are typically prior-only
(depending on (g, k) but not v).

* In-head mixer enrichments. Per-channel rescaling, pointwise nonlinearities, or FiLM-style
gates fit ZZ oy,; 0(Br © v;) and remain within Proposition the image is a convex hull of
transformed values, and no same-step unmixing arises without an additional independent selec-
tion before first mixing (cf. Lemma[2.5).

* Axis/channel attention and structural re-partition. Methods that attend over channels (or
axes) rather than over past indices change the domain of selection but do not produce per-channel
distributions across time; thus they do not affect channel-wise index capacity over Z;; see, e.g.,
channel-token attention in vision and time—channel layouts in forecasting (Ding et al., 2022 |[Liu
et al., 2024 |Guo et al.| [2025)).

* Linear RNNs/SSMs and kernel priors. Streaming fast-weight priors with fixed-size state offer
cross-dimension couplings yet lack lossless storage over all past indices; kernelized/linearized
priors preserve streaming complexity but still yield expectation reads (Katharopoulos et al.|[2020;
Choromanski et al., 2021; |Gu & Daol [2023)).

Where FEM differs. FEM preserves the chosen prior p; (softmax, kernel, RNN/SSM) but up-
grades the read from an expectation to the free energy 3! log >, ps(i) exp(Bv; ), yielding per-
channel, value-aware posteriors ¢, () (i) o< p¢(i) PV, This introduces cross-token competition

per channel before first mixing, achieves the |M;|” assignment capacity and admits exponential

posterior concentration while retaining the prior’s asymptotic time complexity (see §2.3.1).

E THEORETICAL PROPERTIES OF FEM

We fix a timestep ¢, a channel j € [D], the prior selection distribution p; with support M; := {i :
pe(3) > 0}, and the values {v; ; }ienm, -
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Notation. For 5 > 0, define the per-channel free energy and posterior selector

Bos,
v pe(r)e” I
Fii(B) = log E pe(i eP i, qu)( ) = ¢(2)

] 1€ Mt7 (16)
i€ M, ZTG]VIt pt(T) eﬁvn]

and let v. ; € RIM:l collect {v; ; }iens, -

Standing assumptions. All statements are over the support M; and assume p; (i) > 0 for i € M;.
For 8 < oo, the posterior q(B ) is unique; in the limit 5 — oo, ties may persist if margins vanish,
which does not affect ﬁmte—ﬁ claims.

Lemma E.1 (Equivalence of budgeted and penalized forrns) Fix t,j and a budget B > 0. The
constrained problem equation Ihas a umque maximizer ¢* € A(My;). There exists a unique 3* >0
such that ¢* = argmax,{}; q(i)vi j — KL(qut)} conversely, for every 8> 0, the maximizer

of the penalized objective solves equation lfor the budget B = KL(¢'®||p;). The map B — 5*(B)
is continuous and strictly increasing whenever v. ; is not ps-a.s. constant.

Lemma E.2 (Donsker-Varadhan variational principle and mirror ascent). For every 8 > 0,

— Ny - — L
Fii(B) = qerﬁ?ﬁa{ > a(i)vi; — 5KLalpe) } 17)
with the unique maximizer q(B ) in equation Equivalently,
¢} = argmin LKL(qp) — (g, v.;), (18)

qEA(My)
i.e., an exponentiated-gradient (mirror ascent) step from p, with step 3 along v. ;.
Proof. Standard DV identity: log Y, p;e”¥" = max,{3(g,v) — KL(¢||p)}. Divide by /3 and apply
KKT; uniqueness holds on A(M;) since the objective is strictly concave in g. O

Proposition E.3 (Expectation baseline and monotonicity). Let ;. ; := E,, [v; ;]. Then

1
FusB) = mg + 5KUp 0] 2 . (19)
Moreover, B — F; ; () is continuous and strictly increasing unless v. j is pi-a.s. constant, with
d s
a7 Fii(B) = @ KUq%) || pe) > 0, Foj(B) = ey + 5 Varp, (vij) + O(8%) (8 —0). (20)

Proof. equation [19|follows by direct algebra using ¢ oc peP. Differentiate 3! log >", p;ePs
to obtain equation 20} The small-3 expansion is the second cumulant of v; ; under p,. 0

Proposition E.4 (Local geometry: gradient, curvature, smoothness). F ;(3) is convex and C™ in
V. 4, with

.
Vo, Fus(B) = af). V2 Fi8) = 8(Diaga}) ~ Y} ) = 0. @n

Hence ||VFy |l = ||qt(ﬂ)||1 = land |VF ;|2 = ||qt(ﬂ)||2 < 1. Moreover, F; j is [3/2-smooth in
62.'
V23 (B)l,p = B Amax(Diag(a) —aq") < B/2, (22)

and the bound is tight when q is supported on two coordinates equally, e.g. ¢ = (1/2,1/2,0,...,0).

Proof. For equation , differentiate equationwith respect to v. ; to obtain V.F, () = q,g[;) nd

V2F.,;(B) = B(Diag(q) —qq"), where ¢ := g, j) Convexity and smoothness (indeed C>°) follow
from the log-sum-exp structure The ¢1- and /5-norm statements follow since ¢ is a probability
vector: |q|l; = Land g3 = 32,42 < ¥, 4: = L.
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For equation 22} write J(q) := Diag(q) — qq . This is the covariance matrix of a one-hot random
vector with class-probabilities ¢, hence J(q) »= 0. To bound its spectral norm, apply the Gershgorin
disc theorem. Row ¢ has diagonal entry ¢;(1 — ¢;) and the sum of absolute values of the off-diagonal
entries is i Gy = qi(1 — ¢;), so every eigenvalue lies in

Ula(l—a) —a(1—a), a:(1 —a) +a:(1 —a)] = J [0, 26:(1 — ) ]-
Therefore Amax(J(q)) < max; 2¢;(1 — ;) < 1/2, with equality attained when ¢ is supported on
two coordinates equally, e.g. ¢ = (1/2,1/2,0,...,0) (then J(q) has eigenvalues {0,1/2,0,...,0}).

Multiplying by 3 gives ||[V2F; ;(8)llop = B11J(q)]lop < B/2, and the bound is tight in the stated
case. O

Proposition E.5 (Range, concentration, and finite-3 guarantees). Let i* = arg max;em, v;,; and
Ay j = v j — maXixx V55 > 0. Then for all 8 > 0,
1 —pe (i)

1
“BAG 4, ; T . L
e (i%) ¢ ", vis 4 2 logpy(iF) < Fi 5 (B) < vie

Pt < Fei(B) < vis g, 1—(],55)(2'*) < 3
(23)

In particular, if Ay ; > 0 then qt(ﬁ-) = 0;« and F; ;(B) T v j exponentially as B — oo.

Proof. Upper bound: log Zipieﬁvi < fmax; v;. Lower bounds: F = p + %KL(qu(ﬁ)) > p and

Ditir piePVi < (1 — p*)eP" =) give equation 0
Proposition E.6 (Mask preservation; shift/scale; prior sensitivity). (i) (Masking) If p(i) = 0 then

q,gg) (7) = 0; restricting My can only decrease equation|l
(ii) (Shift/scale) For any ¢ € R and a > 0,
Fii(Bsv+c¢) =c+ Fi;(B;v), Fii(B;av) = a Fy j(af;v).
(iii) (Prior sensitivity: probabilities) Viewing F; ; as a function of p € A(My),
1 Bu. ; 1 Bu.j Bv. ;T
e VRFy= <0
B3 prefir B (S, prefoms)
so Fy j is concave in p on the simplex.
(iv) (Prior sensitivity: logits)

VpFij =

« For unnormalized weights s; > 0 with w; = log s; and F(B;w) :=

~ 1

VoF =54 Vo F = —(Diag(q) — 4§

hence F is convex in w.

* For normalized logits b with p = softmax(b), writing J(r) := Diag(r) — rr "',
1 1
Vo Fij = B(qt(g) -p),  ViFi;= B(‘](qt(,ﬁj)) - J(p)),

which is in general indefinite; thus F; ; is a difference-of-convex function of b.

Proof. (1) is immediate from equation For (ii), add c inside the exponent or reparameterize
3 + af to obtain the stated identities. For (iii), F(p) = B! log(p, e’?) is a log of an affine
function in p, hence concave; the displayed derivatives follow by direct differentiation. For (iv),
both statements follow from standard properties of log-sum-exp: the unnormalized case is convex
in w; composing with softmax yields a DC form with the given gradient and Hessian. O

Theorem E.7 (Channel-wise assignment capacity over the prior support). Let D be the number of
channels and a = (ay,...,ap) € MtD. If each channel has a positive margin A ; = Va;,j —

(Beg) s\ _
t.j (i) =
a; for all j. Hence the set of achievable channel-index argmax patterns has cardinality | My |P (the
natural upper bound). A single attention head, in contrast, yields at most | My| patterns (all channels
synchronized on one distribution).

maxX;ep,\{a;} Vi,j > 0, then there exist finite temperatures {Bt,;} such that arg max; q
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Proof sketch. Apply Proposition per channel and choose f3; ; to concentrate posterior mass on
a;j with any desired margin; counting patterns gives | M| . O

Proposition E.8 (Complexity preservation and stable backpropagation). For fixed 5, computing
Fi,;(B) requires one masked log-sum-exp over M, and produces qt(fj-) as the gradient equation |21

Therefore FEM preserves the asymptotic time complexity of the underlying prior (e.g., O(T?) or
O(T)) while enabling numerically stable forward/backward passes using standard LSE/softmax
primitives.

Proof sketch. Convex1ty in ¢ and Slater’s condition yield strong duality for equation 3} KKT gives
the log-linear form ¢* o< p, €Y with multiplier 5*. The monotonicity follows from the derivative

a5 F(B) = B7*KL(qP||py). H

Remark. Lemmas establish that FEM is variationally optimal (DV), value-aware with
explicit local geometry, monotone in temperature with variance-controlled small-/3 behavior, mask-
preserving, concave in the prior p on the simplex, convex in unnormalized log-weights, and DC
in normalized logits, capacity-optimal for channel-wise assignment over the prior support, and
complexity-preserving with stable gradients.

F DETAILS FOR LINEARIZED TEMPERATURE LEARNING

F.1 FIXED TEMPERATURE: DECOMPOSITION AND COST

Lemma F.1. For fixed 8 > 0, the FEM read satisfies F; ;(8) = pu; + [3_1KL(pt||qt(:Bj)), where

we; = Ep,[vi ;] and q(ﬁ) oc pi(i)ePUi on My. Evaluating F ;(3) adds one masked LSE per
channel and preserves th]e prlor ’s asymptotic complexity.

Proof. Algebra from ¢ o p eV yields the identity; cost follows since the support is M;. [

F.2 MONOTONICITY AND HIDDEN TEMPERATURE

Proposition F.2. Let Fy ;(8) = 87" 1og Yy, pe(i)ePV9 and A 5(8) = F, ;(8) — Fy j(0). Then

F/;(B) =B~ ZKL( tg.)Hpt) > O, with strict positivity unless v. j is ps-a.s. constant. For any \ €
[0, 1], there exists a unique 3f ; () € [0, Bmax] such that (1 —X)pig j+AFy j(Bmax) = Fr j (87 ; (V).
Moreover X\ — B ;()) is continuous and strictly increasing.

Proof. Differentiate F to obtain F’(3) = B~2KL(¢'®||p). Continuity and strict monotonicity
n [0, Bmax) imply the claim by the intermediate value theorem; strict increase follows from strict
positivity of F” in the nondegenerate case. O

Corollary F.3 (Reparameterization equivalence). For any smooth loss L, optimizing )\ ; in
L(F: ;(Ae,j)) is a strictly monotone reparameterization of optimizing (3 in L(F; ;(5)): OL/OX =
(OL/OF) F'(8*) (0B* /ON) with F'(5*) > 0.

F.3 KL-CONTROLLED INTERPRETATION OF THE GATE

From F ;(8) — p,j = B~ 1KL(p,LHq(ﬁ)) and equation

Ki(pellgs* ™) = A == KLpy g,

1
5;]( ) 5max

so A specifies the fraction of the achievable KL improvement realized at step ¢.
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F.4 ONE-PASS IMPLEMENTATION

Form the augmented value stream o;; = [v;;, €3] and compute ;) pe(i)0i; =

[thpv;(l)egl‘}“’;“] in one pass. Then F** = B.1 log (Y, pi(i)e’=> i) and equa-
tion[7}-equation 9] follow.

F.5 GEOMETRY, STABILITY, AND ADDITIONAL PROPERTIES

For completeness we collect properties proved in Appendix [Ef (i) DV variational form F(3) =
max,{E,[v] — B7'KL(qg||p)} with maximizer ¢/} o peP?; (ii) gradient V,F(3) = ¢,
Hessian V2F(8) = B(Diag(q?) — q(ﬁ)q(B)T) and (3/2-smoothness; (iii) small-3 expansion
F(B)=p+ gVarp (v) + O(3?); (iv) mask preservation; shift/scale laws; concavity in p; convexity
in unnormalized logits; difference-of-convex in normalized logits; (v) complexity preservation and
capacity consequences when [ is large.

F.6 COMPLEXITY SUMMARY

LTL requires one expectation and one masked LSE at /3,,,, per channel, both over M;, thus matching
the prior’s asymptotic complexity (O(T?) for softmax; O(T) for kernel/SSM priors) while enabling
dynamic temperature control in a single pass.

G DETAILS FOR TWO-LEVEL GATED FEM

G.1 INNER GATE AS HIDDEN TEMPERATURE: PROPERTIES AND PROOF

Lemma G.1 (Monotonicity and smoothness). F; ; is continuous on [0, 00), differentiable on (0, c0),
and
d

R =67 KL\ || p:) > 0, (24)

with equality iff v. ; is p-a.s. constant. Moreover Fy ; is convex and (3 /2-smooth in v. ;.

Proof. Standard Donsker—Varadhan calculus yields Fi;(8) = maxgeacarn){Eqlv. ;] —
(1/8)KL(q||p:)}. Envelope differentiation gives equation Convexity/smoothness follow from

the Fisher covariance of qgﬁ). O

Proposition G.2 (Inner gate as hidden-temperature free energy). For each channel j and any )\; ; €
[0, 1] there exists a unique Buid,t,j € [0, Bmax, ;] Such that

~ . )
Fr (M) = B ;108 pi(i) exp(Buia e, vij)-
i
Moreover, Ay j — Phid e, is strictly increasing unless v. j is p;-a.s. constant.

Proof. Let A, ;(B) = Fy ;(8) — F ;(0). By Lemma[G.1} A ; is continuous, strictly increasing on
[0, Bmax,;] unless v. ; is constant. For any A, ; € [0, 1], define

ﬁhid,tLj = At__}(At,jAmj (6max,j)) € [Oa ﬁma&j]a

which is unique by strict monotonicity. Substituting yields ﬁt,j()\t,j) = F} ;j(Bnid,t,;) as claimed.
O

Reverse-KL improvement over the mean. For any 5 > 0,
1
Fj(B) = ey + 3 KL(pella;”), (25)

SO th’j()\) improves over fi; ; by a controlled reverse-KL term at the hidden temperature. This
explains the mean— soft-max interpolation effect of the inner gate.
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G.2 COMPLEXITY, SINGLE-PASS COMPUTATION, AND STREAMING

Proposition G.3 (Complexity preservation). Computing equation[IOequation [[1] requires one ex-
pectation and one masked log-sum-exp at Bmax per channel, hence matches the asymptotic time
complexity of the prior p; (e.g., O(T?) for softmax; O(T) for kernel/SSM priors).

Proof. Compute ). (i) [v;, exp(Bmax ©v;)] once, then split to obtain p; and F;***. This re-
quires one expectation and one masked log-sum-exp per channel on the prior support M;, matching
the prior’s asymptotic time (softmax O(7?); kernel/SSM O(T)). The outer gate g; is a pointwise
modulation. O

Streaming compatibility. For associative priors (kernel/SSM), the normalized read is computed
by the same scan used for p;; concatenating a constant “1” channel yields the normalizer and nu-
merator in one pass. The LSE branch uses the same support A/, and thus preserves streaming.

Numerical stability. We use standard LSE stabilization per channel: subtract max;(Smax,;Vi,;)
inside the exponential and add it back after the logarithm. Gradient clipping for By,.x prevents
overflow when tasks push toward hard selection.

G.3 CONTAINMENT OF MIXER FAMILIES

Proposition G.4 (Formal containment). (i) Ay = 0 gives oy = >, (i) (g: ©v;), matching per-
channel linear reweighting. (ii) 0 < Ay < 1 yields a monotone, convex aggregator in each channel
that interpolates between i ; and max; v; j as A ; increases. (iii) Allowing A, g; to depend on
(ctx, e, pe, F{*X) realizes token-separable couplings of the form . f(oy i, v;) and adds cross-
token competition through the log-sum-exp term.

Proof. Direct substitution of the choices for A; and identification of limits 5 — 0 and 5 — oo per
channel. O

G.4 CAPACITY AND HARD-SELECTION LIMITS

Proposition G.5 (Capacity and limits on the prior support). With A; ~ 1 and sufficiently large B ax,
the per-channel posterior concentrates on its own arg-max over the prior support My = {i : p;(i) >
0}, so the achievable channel-index assignment capacity attains |My|P. In the limit \; = 0, FEM
reduces to the expectation baseline (the original read of the selection prior).

Proof. Fix channel j and let A; ; = min;;« (vs» j—v; ;) > 0 be the margin at the arg-max index ¢*.
For any 3 > Sy(A;,;), the posterior q(ﬂ) places at least 1 — exp(—/SA, ;) mass on i*, and Fy ;(5) 1
Vix j. Across channels, with Ay ~ 1 and sufficiently large Bmax, the joint posterior concentrates

independently per channel over M;, achieving |M;|P distinct index assignments. Setting A; = 0
recovers fiy.

G.5 GRADIENTS AND CURVATURE

For channel j,

OF:4(8) L PRL0) _
g =a), g =Bl i =) - df) el ).

Thus gradients are the posterior weights and the Hessian is a Fisher covariance scaled by 3, giving
stable, value-aware competition. Backprop through equation[I0]is a convex combination of the mean
and LSE branches with coefficients 1 — A; and A;.

G.6 INVARIANCES AND SENSITIVITY TO PRIORS

For any constants a; > 0 and b;, F} ;(8;a,v;; + b;) = a;F; ;(a;8;v; ;) + b;. Multiplying prior
probabilities by a positive scalar and renormalizing leaves F; ; unchanged; reweighting p; within

(8)

My shifts the posterior via g, ;' o py exp(fv. ;), which is exploited by the outer and inner gates.
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H PARAMETERIZATIONS OF THE PRIOR SELECTION p; IN FEM

Unified interface. At step ¢, let the accessible index set be Z; = {1,...,t} and let a nonnegative
score s; : Z; — R>( define the prior selection by

s¢(7)

Zrﬁt St (T)
with s;(7) = 0 for ¢ > t (causal mask). FEM then optimizes, per channel j, the DV free energy
Foi(B) = 67" og Y pu(i) ™, g (i) o< p(i) .
i<t

Below we specify s; (hence p;) for each prior family, along with the streaming recurrences and time
complexity. Throughout, M; = {i <t : s4(i) > 0} is the support carried into FEM (we enforce

qt < p).

H.1 SOFTMAX-ATTENTION PRIOR

Scores and normalization. Given masked scores ¢;(i) = {(qy, ki) + by,; with £,(i) = —oo fori > ¢,
. . : exp{fs(i)}
s:(1) = exp{l(i)}, )= . 27)
D =eplt@) nli) = =8 (

This is the standard row-softmax over causal scores.

Complexity. Matrix form A = softmax,ow (QK ™ + B + M) yields O(T?) time and O(T?)
memory (or O(T?) time, O(T') KV-cache in the autoregressive setting).

H.2 GATED LINEAR ATTENTION (GLA) PRIOR

Positional encoding and positivity. We inject relative position with RoPE, then map queries/keys
to the nonnegative orthant:

G: = ReLU(RoPE(q;)) + ¢ € R, k; = ReLU(RoPE(k;)) + ¢ € RY,,
where € > 0 is a small constant for numerical stability.

Decay gating. Let g <0 be a learned (scalar / per-head / per-channel) gate and define the cumulative
envelope

t
D, = exp( Z gT) (clipped in practice).
T=1

The causal time-decay factor between index ¢ and step ¢ is K; ; = DD, L= exp(Zi:i 4197) €
(0,1].

Scores and normalization. The nonnegative score and prior are

5:(0)

se(i) = Kyi (G ki) 1{i < t}, pe(i) = Z,

Equivalently, with an associative scan form,

Zi = (Deds, YD ke ), Yosli)v = (Ded YD M (Reww) ) 29)

r<t i<t r<t
N———
Bt At

Hence the baseline normalized read is

<tht7 Af>

H = (Dig, B
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Streaming recurrences. Both states update in O(1) per step:

Bt = Bt—l + Dt_lkt, At = At—l + Df_l(];:f® Ut).

A one-pass implementation appends a constant channel to values: o, = [vyl], 4, =
> ,<; Dyt (kr® v,); then [num, den] = (D, gy, A¢) and iy = num/den.

Complexity. GLA preserves the O(T) streaming complexity (per head), with the same
associative-scan cost as standard linear attention. FEM operates over the same support M; = {i :
pt(i) > 0} and adds one masked log-sum-exp per channel (at fixed or LTL-controlled temperature).

H.3 LINEAR RNN-STYLE PRIORS

(LRNN-softmax) AFT-style normalized exponential weights. Let k; € R™ be per-step logits
and define

se(i) = exp{ki}1{i <t},  Z = Y exp{k,}. (30)

r<t
Streaming recurrence:
Sy =81+ €My, Zy=Z;q +eM, = Ky, [vi] = St/Z:.
(We stabilize with k; — max, <, k, in practice.)

(LRNN-decay) Input-conditioned exponential decay. Let g. € R<( be a learned generator and
define

t
se(i) = exp( 3 gT) 1{i < 1. 31)
T=14+1
With Ty = exp(3_, <, g7) we have s,(i) = Iy ;! and the streaming form
Ct :Ct—l +Ft_lvt7 ZSt(i)Ui :FtCt, Zt ZFt Zf;l
i<t i<t

Thus numerator and denominator share the envelope I';, preserving O(T') cost. (Conceptually,
LRNN-decay recovers the decay portion of GLA without the dot-product features.)

Complexity. Both LRNN-softmax and LRNN-decay are O(T") with O(1) updates; FEM adds one
masked log-sum-exp per channel.

H.4 SSM/MAMBA-STYLE PRIORS

Positive impulse-response SSM. Consider a causal linear state-space operator with nonnegative
impulse Hy(7) > 0:

(Sow)e =Y Ho(t —i)u;,  Ho(r) = CAAN 'Bal{r > 1} + D1{r = 0},
i<t
where (Aa, Ba, Ca, D) are stable, nonnegative discretizations.

Scores and normalization. Set

si(i) = Hp(t—i)1{i <t},  Z = > Hp(t—r) = (Spl)s. (32)

r<t

Both numerator and denominator come from the same scan (once with u; = v;, once with u; = 1),
so the O(T) streaming complexity is preserved. In practice we parameterize to ensure Hy(7) > 0
(e.g., softplus for (A, B, C, D) and negative-softplus for the diagonal generator).
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H.5 LocAL CONDITIONING OF THE PRIOR

Let ¢; € R be the output of a learnable, O(T') time-decay conditioner (low-rank causal convolu-
tion). We modulate the prior parameters and value-path gates by

0; = 0,+GW) (cr), Bu(-) = (-5 04), B = Ui®(1+77t(v))’ A = /\t®(1+77t(>\))7 gt = 9t®(1+77§g)),

where G(P) and (") are small MLPs. This preserves the streaming/parallel cost of the chosen prior.

H.6 SUPPORT, MASKING, AND COMPLEXITY SUMMARY

We always enforce s;(7) = 0 for ¢ > ¢ and for hard-masked indices, hence M; = {i <t : s5;(i) >
0}. FEM’s per-channel variational step operates on M; and adds exactly one masked log-sum-exp
per channel (at a fixed or LTL-controlled temperature), so the asymptotic time complexity matches
that of the prior: softmax O(T?), GLA/LRNN/SSM O(T).

Prior family Scores s¢(i) Complexity (per head)
Softmax attention exp{{(qs, ki) + bi:} O(T?d)
Gated linear attention (GLA) eXr=iv1 97 (e, ki) O(Tad)
LRNN-softmax (AFT) exp{k;} O(Td)
LRNN-decay exp(zf;:”l gr)s gr <0 O(Td)
SSM/Mamba Ho(t — 1), Ho(-) > 0 O(Td)

Remark (RoPE & positivity mapping). Any invertible positional transform (g, k) — (T'q, Tk)
can precede score evaluation. In our GLA prior we use RoPE followed by a ReLU +¢ mapping on

both queries and keys to guarantee nonnegative feature vectors (g, k;) € RZ, before decay gating
and normalization. B

H.7 WIDTH AND PARAMETER BUDGETING FOR THE PRIOR
Let the input/value width be D and let FEM use a working width d on the value path. We allocate

a parameter ratio r > 0 for the prior parameterization (queries/keys and decay gate in GLA), scaled
with d. Ignoring biases and norms, the per-head linear parameters decompose into five projections:

Dxd+ Dxd + Dxd +dxD+ Dx(rd) = 4Dd + Ddr.
S—— S~ S~—— S~ ———
value outer gate g temperature X output prior (Q/K + decay)

The prior block D x (rd) is split among ¢, k; projections and the decay gate. To keep the total
parameter count equal to classic attention (4D?), two convenient choices are

d=L2, r=4 o ()d=22 r=2,

since 4Dd + Ddr = 4D? in both cases. In (i), the grior (Q/K) runs at D-dim width—identical to

standard attention—while the value path uses d = 5. In (ii), the value width increases to d = %

with a balanced prior split (e.g., dim(Q) = dim(K) = %), and the remaining budget supports the

decay gate. Both settings preserve the asymptotic time complexity of the chosen prior (softmax
O(T?); GLA/LRNN/SSM O(T)).

I Low-RANK CONVOLUTION: TIME-DECAY CONDITIONER (TDC)

1.1 DEFINITION AND STREAMING FORM
Given token features z.7 € RT*P let ; = LN(x;) and choose a hidden width H, < D. Define

sy = softplus(z,Wy) € RAc = 2,W, € R¥:  a, = softplus(z,W,) € R,

29



Under review as a conference paper at ICLR 2026

with Wy, W,,, W, € RP*He_ The positive envelope is

t
fi= exp( — Z sT) € Rfe  (element-wise).

T=1

The TDC output is the causal, input-conditioned separable convolution

Etzftcazt:(ui@fi) zzt:exp(— zt: sT) Ou; € RHe, (33)
i=1 i=1

T=1i+1

K,

A calibrated shortcut and projection produce the conditioning features:
h; = SiLU(norm(a;)) ® LN(h;), ¢, = hyW, € RP-,

where W, € Rf<*DPe and norm(-) rescales to unit ¢ norm.

Proposition 1.1 (Rank-1-in-time kernel and O(1) updates). The kernel in equation |33|factors as
Ki; = f: © (f))7', i.e, rank-1 in time for each channel. Hence the convolution admits O(1)
streaming updates:

Ci=Ci1+tuw O fi, hy, = fi © C;.
The per-sequence cost is O(T H..) and the per-step memory is O(H.,).
Proof. By definition, K;, = exp( — Zi:u—l sT) = exp( — ngt sT) ® eXP(ZTg sT) =
f: © (f;)~!. Substituting into equationyields the stated streaming form. O

Stability. The softplus parameterization ensures s; > 0, hence f; € (0, 1] element-wise; this
prevents exploding envelopes and ensures well-conditioned division in w;/ f; with standard ¢ stabi-
lization.

1.2 CouprLING TDC TO FEM

We use disjoint slices of ¢; to modulate (i) the parameterization of the prior selection p;(+; 6;) and
(i) FEM’s value-path gates:

Prior modulation: 0, = 0, + NG, A6, = GP)(¢), Pe(i) = pt(i;ét), (34a)

Value gate: v = v, 01+ nt”)), m@ e ] C e, (34b)
Outer gate: g = g0 (1+ nt(g))’ m(g) e 9] C e, (34¢)
Temperature gate: A = MO (1 + nt()‘)), nto‘) € [n()‘)] C ¢y (344d)

FEM then applies equation with (p¢,vi,g:, A¢) replaced by (f)t,ﬁi,gt,j\t), yielding
position-aware, locally conditioned selection without changing the prior’s asymptotic complexity.

1.3 COMPLEXITY AND COMPATIBILITY

Proposition 1.2 (Complexity preservation). TDC adds O(T H.) time and O(H.) memory per layer
and does not alter the asymptotic complexity of FEM’s read, which remains O(T?) for softmax
priors and O(T) for kernel/SSM priors. The per-step coupling in equation|34|is pointwise in t and
thus streaming-compatible.

Relation to recent convolutional/SSM designs. TDC follows the spirit of low-rank,
input-conditioned time-decay filters used in SSM/DeltaNet-style models and the local convolutional
augmentations commonly paired with Mamba-like architectures. Our use is FiLM-like: TDC learns
a compact context ¢; that modulates both the selection prior and FEM gates, providing local adap-
tivity while preserving streaming costs.

30



Under review as a conference paper at ICLR 2026

Implementation notes. We apply standard LSE stabilization per channel in FEM’s log-sum-exp
branch, and clamp the envelope by computing f; = exp(—cumsum(s;)) in log-space with an &

floor. The projections G, [(")], [n9)], [nM)] are small MLPs with per-channel outputs; their
widths are tuned so that H. < D.

J  FEM AS A UNIVERSAL FAST-WEIGHT PROGRAMMER

Putting the pieces together, the final Free Energy Mixer realizes a unified, parallel fast-weight pro-
gram:

0r = g0 [(1=A)© Einpld] +X 0Bk ©log) 5ii) exp(Bnax ©8) |, 35
N—_——

1<
mean (high-entropy) ist

max free energy (low-entropy)

where the prior p; and the value-path gates (¥;, g, S\t) are locally conditioned by TDC as in equa-
tion[34] Equation equation 35]shows that the mixer is simultaneously:

* a temporal mixer (log-sum-exp across indices, with causal masking and per-channel competi-
tion);

* an entropy mixer (inner temperature via S\t; mean<>soft-max interpolation);

* alocal-feature mixer (position-aware modulation injected by TDC);

* a dual-gated mixer (inner temperature gate over indices ¢; outer amplitude gate over timesteps
t).

Crucially, the assignment capacity over the prior support attains the upper bound | M;|? (per-channel
posterior selection), the variational objective is solved exactly (DV optimality), and the overall time
complexity matches that of the chosen prior (softmax O(T?), kernel/SSM O(T)), up to the O(T H..)
convolution overhead. FEM thus serves as a broadly applicable, universal fast-weight programmer
that upgrades expectation-based reads to value-aware, memory processing without sacrificing paral-
lel efficiency.

J.1 RELATION TO PRIOR POOLING AND SELECTION METHODS

Our Free Energy Mixer (FEM) is related to but distinct from several existing approaches:

* Log-Sum-Exp (LSE) pooling. FEM is not simply a generalized mean that interpolates
between average and max pooling. Instead, from a Donsker—Varadhan variational view, it
uses values to tilt an arbitrary prior distribution p,. This yields per-channel, value-aware
posteriors rather than only adjusting the softness of pooling.

* Entmax / Sparsemax. These operate directly on the scoring distribution over (g, k),
changing how probability mass is allocated. FEM instead treats this distribution as a prior
and introduces cross-token competition through the values. The two directions are comple-
mentary and could be combined.

* Gumbel-Softmax / Top-k. Such methods emphasize hard selection, sampling, or ranking,
often requiring non-parallel sampling or offline sorting. In contrast, FEM remains fully dif-
ferentiable, parallel in one pass, and preserves the asymptotic complexity of the underlying
prior.

K ADDITIONAL IMPLEMENTATION DETAILS

Our detailed experimental setup is available in the linked code repository. All language model-
ing experiments, including both training and inference, were conducted on 8x Nvidia H100 GPUs,
while all non-language modeling tasks were trained on 8x Nvidia L40S GPUs. We use 42 as the
random seed. The training and inference precision is bfloat16. For each task, we replaced the
standard Transformer block with an FEM Transformer block, substituting the attention layer with
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FEM-{SM, GLA, Mamba, AFT}, while keeping all other settings unchanged to ensure a fully con-
sistent experimental environment. Parameter budgeting was carefully applied to keep overall model
size and architecture comparable to the baselines. The additional low-rank convolution used in our
parameterization introduces less than 1% extra parameters (with H. = d/16).

special configurations required by the experimental setup when specified. Otherwise, all linear
projections are randomly initialized from a centered normal distribution with a standard deviation
of 0.02. All biases and embeddings are initialized to zero. For the maximum inverse temperature,
we initialize it to zero and then apply the parameterization softplus(x+1.8) to ensure that its initial
value is around 1 and remains strictly positive throughout training.

L  ADDITIONAL DATASET DESCRIPTION

Language Model Evaluation Setup. We adopt the Open LLM Leaderboard (OLL) protocol and
a complementary suite of general-ability tasks. The Open LLM Leaderboard core covers MMLU-
Pro (5-shot, accuracy), GPQA (0-shot, normalized accuracy), BBH (3-shot, normalized accuracy),
MATH (4-shot, exact match), and MuSR (0-shot, normalized accuracy), plus IFEval for instruction
following, where we report strict pass rates for instruction- and prompt-level constraints (Wang
et al., 2024} Rein et al.l 2023; |Suzgun et al., 2022; Hendrycks et al.l 2021; |Sprague et al., 2023;
Zhou et al.| 2023). Following OLL, we use the normalized-accuracy metric acc,, for multiple-
choice tasks, which subtracts the random-guess baseline and rescales scores to a common range for
fair cross-task comparison (Hugging Face| 2025). To broaden coverage, we also evaluate on widely
used general-ability benchmarks: ARC (Challenge/Easy), HellaSwag, PIQA, BoolQ, WinoGrande,
COPA, OpenBookQA, and SciQ, reporting accuracy or acc,, as standard; unless noted, these are
evaluated in O-shot (Clark et al., 2018; [Zellers et al., 2019; Bisk et al.| |2019; (Clark et al., [2019;
Sakaguchi et al., 2020; Roemmele et al., 201 1; Welbl et al.,[2017). We perform the evaluations with
Im-evaluation-harness (Gao et al., [2021)).

MAD We assess our architecture using the Mechanistic Architecture Design (MAD) framework,
a recently introduced methodology for cost-efficient evaluation of deep learning models [Poli et al.
(2024). MAD provides a set of capability-focused benchmarks—including in-context recall, fuzzy
recall, selective copying, and compression—that probe core sequence modeling abilities. It has been
validated across more than 500 language models ranging from 70M to 7B parameters, showing a
strong correlation between performance on these synthetic tasks and compute-optimal perplexity at
scale. By leveraging MAD as a reliable predictor of large-scale behavior, we can identify architec-
tural advantages without relying on the prohibitive compute costs of full-scale training.

Time Series Forecasting We evaluate our module on several standard time series forecasting
benchmarks, following the setup of Lu & Yang| (2025). (1) Weather (Wu et al., 2021 21 me-
teorological variables (e.g., temperature, humidity) collected every 10 minutes in 2020 from a Ger-
man weather station. (2) Solar (Lai et al., [2018))*t Solar power output recorded every 10 minutes
in 2006 from 137 U.S. photovoltaic plants. (3) ETT (Zhou et al.| ZOZIﬂ Transformer load and
temperature data from July 2016 to July 2018, sampled at 15-minute (ETTm1/ETTm?2) and hourly
(ETTh1/ETTh2) intervals, covering 7 key operational features.

*https://www.bgc-jena.mpg.de/wetter/
‘nttp://www.nrel.gov/grid/solar-power—data.html
Shttps://github.com/zhouhaoyi/ETDataset
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