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ABSTRACT

Standard attention stores keys/values losslessly but reads them via a per-head con-
vex average, blocking channel-wise selection. We propose the Free Energy Mixer
(FEM): a free-energy (log-sum-exp) read that applies a value-driven, per-channel
log-linear tilt to a fast prior (e.g., from queries/keys in standard attention) over
indices. Unlike methods that attempt to improve and enrich the (q, k) scoring
distribution, FEM treats it as a prior and yields a value-aware posterior read at
unchanged complexity, smoothly moving from averaging to per-channel selection
as the learnable inverse temperature increases, while still preserving parallelism
and the original asymptotic complexity (O(T 2) for softmax; O(T ) for lineariz-
able variants). We instantiate a two-level gated FEM that is plug-and-play with
standard and linear attention, linear RNNs and SSMs. It consistently outperforms
strong baselines on NLP, vision, and time-series at matched parameter budgets.1

1 INTRODUCTION

Transformers, powered by attention mechanisms, have become the default backbone for sequence
modeling across language, vision, speech, and decision making (Vaswani, 2017; Devlin et al., 2019;
Radford, 2018; Brown et al., 2020; Dosovitskiy et al., 2020; Dong et al., 2018; Chen et al., 2021;
Touvron et al., 2023). Their success is often linked to selective access to an ever-growing key-value
cache while retaining parallel training and inference. In large language models, this selective abil-
ity, composed across multiple attention layers and residual pathways, supports long-range memory
retrieval and the algorithmic behaviors associated with in-context learning (for example induction
heads and pattern completion), as shown by recent empirical and mechanistic studies (Min et al.,
2022; Wei et al., 2023; Xie et al., 2022; Zhang et al., 2023; Garg et al., 2022; Akyürek et al., 2023;
Li et al., 2023; Dai et al., 2023; Bai et al., 2023; Olsson et al., 2022; Elhage et al., 2021).

Causal softmax attention combines strong selectivity with parallel efficiency: at each step it forms
a distribution over past indices and mixes their values, while all steps can be computed in parallel.
Given (Q,K, V )∈RT×d with rows qt,ki,vi, define masked scores st,i = q⊤t ki/

√
d for i≤ t and

−∞ otherwise, and set αt,· = softmax(st,·) ∈ ∆t−1. The step-t read is
ot =

∑
i≤t αt,i vi, ot ∈ conv{v1, . . . ,vt},

and stacking all t yields O = AV with At,i = αt,i, so a single matrix multiply produces all outputs.

The convex-mixture view explains efficiency: outputs are probability-weighted averages of the
shared value bank, computed in one matrix multiply. Yet this also reveals a lossless-storage
versus lossy-processing dilemma (Fig. 1a). The KV-cache stores full context, but the read is
lossy: each head applies the same weights to all coordinates of vi, so ot =

∑
i≤t αt,ivi lies in

conv{v1, . . . ,vt} and all channels are synchronized. As a result, even simple per-channel indexing,
such as s⋆t = (vi1,1, . . . , viD,D) (e.g., coordinate-wise argmax), cannot be represented unless all
chosen indices coincide. Adding more heads only creates a few synchronized groups, and deeper
stacks cannot recover per-channel index identity once the first convex mixing has occurred. This
limitation hinders Transformers in long-range modeling with non-sequential or irregular timestep
indexing, and in tasks where channel-wise structure is critical, such as multivariate time series mod-
eling (Tay et al., 2020; Zeng et al., 2023; Nie et al., 2022; Liu et al., 2024; Lu et al., 2025).

Most recent advances in attention aim to improve expressivity and efficiency, typically by designing
richer selective distributions but still reading values through a token-separable linear combination.

1Code: anonymous.4open.science/r/Free-Energy-Mixer-6D5F.
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Figure 1: (a) Classic attention stores past values losslessly but reads them as a single convex com-
bination, so channel-wise indexing (e.g., per-channel argmax) is not representable. (b) Free Energy
Mixer (FEM) treats selection as a DV free-energy problem: values tilt the prior to a value-aware
posterior with a learnable per-channel temperature, enabling low-entropy (point-like) posteriors and
channel-wise selection while preserving the prior’s time complexity. (c) Common fixes (more heads,
deeper stacks, separable mixers, and per-channel scoring) either keep channels synchronized or raise
cost / rely on fixed-state storage; none close the lossy-memory gap that FEM addresses.

These methods include sparsity (Beltagy et al., 2020; Child et al., 2019; Zaheer et al., 2020), low-
rank projections (Wang et al., 2020; Xiong et al., 2021), and kernelizable variants with normalization
or gating (Katharopoulos et al., 2020; Choromanski et al., 2021; Hua et al., 2022; Yang et al., 2024b;
Qin et al., 2022a;b). Efficiency-oriented work accelerates the same semantics via factorized imple-
mentations (Dao et al., 2022; Dao, 2023) or replaces the cache with streaming state-space and RNN
models of fixed size (Gu & Dao, 2023; Sun et al., 2023). Across these lines, computation is faster
or the distribution richer, but the read remains a linear mix, so channels share weight vectors, and
even simple per-channel indexing (e.g., argmax) cannot be realized in one step. Some recent works
explore more complex combinations (e.g., nonlinear mixing such as log-sum-exp in LASER atten-
tion, or hard/top-k selection (Gupta et al., 2021; Duvvuri & Dhillon, 2025; Hashemi et al., 2025)),
yet these mainly target training stability or accuracy in specific cases and do not address the lossy
processing limitation .

Motivated by this gap, we propose the Free Energy Mixer (FEM), which regards lossless processing
as the optimal interaction between a selection distribution and stored values: for each channel,
choose an index distribution that maximizes utility under an information budget. FEM removes the
linear-combination bottleneck and enables per-channel, context-dependent selection from the KV
cache, while keeping causal masking, parallelism, and the asymptotic complexity of the underlying
mechanism. When strong selection is not needed, FEM reduces to the standard expectation; when it
is, different channels can focus on different past indices in the same step.

Contributions. (1) We identify a lossless-memory processing gap in attention: per-head convex
mixing cannot realize channel-wise selection from the lossless KV-cache. (2) We propose FEM,
which closes this gap by casting the read as a variational free-energy optimization that, per chan-
nel, selects an index distribution under an information budget, enabling value-aware channel-wise
selection. (3) FEM is agnostic to how the selection distribution is formed (softmax, kernel/low-rank
attention, linear RNNs, SSMs) and preserves the corresponding time complexity. (4) On NLP, vi-
sion, and time-series tasks, FEM consistently improves strong baselines at matched parameter sizes.

2 METHODOLOGY

2.1 PRELIMINARIES: SELECTION DISTRIBUTIONS

To analyze the storage-processing gap, we introduce the following notion of a selection distribu-
tion. At step t, we formalize memory selection over past indices It = {1, . . . , t} by a probability

2
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vector pt ∈ ∆t−1 with support Mt = {i ∈ It : pt(i) > 0},

pt(i) ≥ 0,
∑t

i=1 pt(i) = 1. (1)

Causality and hard masks can be encoded by restricting Mt. Given values vi ∈ RD, the per-step
readout is the expectation

ot =
∑t

i=1 pt(i)vi = Ei∼pt [vi] ∈ conv{v1, . . . ,vt}. (2)

Causal softmax self-attention is the case where pt is a masked row-softmax over logits q⊤
t ki/

√
d;

linear attention arises when pt is a normalized nonnegative kernel, as detailed in §B.1.

Lossless storage vs. lossy processing. Unlike RNNs, which compress history into a fixed-size state,
softmax attention stores the full KV-cache {(ki,vi)}i≤t without compression (lossless storage), but
the read equation 2 applies one weight vector per head to all coordinates, so outputs lie in a per-head
convex hull. This is potentially lossy when different channels should retrieve different indices in the
same step. To state the target capability we define the finest-granularity retrieval:
Definition 2.1 (Channel-wise selector). A channel-wise selector at time t is any vector s⋆t =
(vi1,1, . . . , viD,D) with ij ∈ It allowed to differ across j ∈ [D].
Lemma 2.2. Let mt = (maxi≤t vi,1, . . . ,maxi≤t vi,D). If mt ∈ conv{v1, . . . ,vt}, then a single
index simultaneously attains all coordinate maxima. Hence if the arg-max indices differ across
coordinates, mt /∈ conv{v1, . . . ,vt}.
Corollary 2.3. A per-head convex read

∑
i pt(i)vi cannot realize a generic channel-wise selector

with at least two coordinates selecting different indices.

This geometric limitation above motivates our method. We can see that a single head applies one se-
lection distribution to all channels at step t, synchronizing channel-wise index choices; with H heads
the number of realizable head-level arg-max patterns is at most tH , far below the tD patterns needed
for lossless per-channel selection when H ≪ D. This gap motivates replacing the expectation read
equation 2 with the free-energy read in Section 2.3. Proofs of Lemma 2.2 and Corollary 2.3, the tH

capacity counting are deferred to Appendix B.

2.2 WHY STANDARD REMEDIES FAIL: TOWARD A FAITHFUL, LOSSLESS READ

We revisit common extensions around attention and explain why they do not close the channel-wise
lossless-selection gap, as shown in Fig. 1c. Full details and proofs are in Appendix C.

(1) More heads. Heads provide H selection distributions per layer but synchronize channels within
each head. Hence the step-t head-level argmax capacity is at most tH , far below tD when H ≪ D.

Lemma 2.4. Let α(h)
t,· ∈ ∆t−1 be the distribution of head h ∈ [H]. Across contexts, realized

head-level argmax assignments are at most tH , and all coordinates controlled by head h share α(h)
t,· .

Increasing H reduces the per-head width dh = D/H , tightening the low-rank bottleneck on the
value path; as H approaches D, the cache become well-approximated by a finite-state linearization,
effectively breaking the lossless-memory advantage. See Appendix C.1 for details and analysis.

(2) More depth. After a first per-head convex mixing acts at step t, per-channel index identities are
no longer available unless a fresh, independent selection acts before that first mixing.
Lemma 2.5. The map {vi}i≤t 7→

∑
i αt,ivi is row-stochastic with image in conv{v1, . . . ,vt}. Any

channel-wise selector outside this hull cannot be realized at step t by composing coordinate-wise
maps and later attentions that only access already mixed tokens.
Proposition 2.6 (Selection budget). With L attention-MLP blocks and H heads per block, at most
HL disjoint channel groups receive independent first-mixing distributions by step t. A necessary
condition for D independent per-channel selections at step t is HL ≥ D (which is not practical).

(3) Per-dimension queries/keys. Giving each coordinate its own scoring subspace raises capac-
ity toward tD but raises score parameters and compute from Θ(d2) to Θ(Dd) per layer, typically
harming value bandwidth or MLP width under fixed budgets.

(4) Richer in-head mixers. The progressive family below still keeps mixing token-separable:
ot =

∑
i αt,ivi ⇒

∑
i αt,i(βt ⊙ vi) ⇒

∑
i αt,i σ(βt ⊙ vi) ⇒

∑
i f(αt,i,vi),

3
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Figure 2: Overview of the Two-Level Gated Free Energy Mixer. (a) Lightweight linear & low-rank
local convolution for local conditioning. (b) Prior selection: softmax attention uses a probability
normalizer, while linear RNN/SSM use an operator-induced normalizer. (c) FEM integrated into a
Pre-Norm Transformer block. (d) Final architecture: compute mean µt and max-temperature branch
Fmax
t , with inner gate λt interpolating and outer gate gt scaling. (e) Free-energy curve: improvement

over µt equals KL(pt∥q(β))/β. (f) Efficient implementation: one mixing with pt yields both Ept
[v]

and β−1
max logEpt

[eβmaxv], then gating produces ot.

Proposition 2.7 (Token-separable mixers are convexly constrained). Linear and coordinate-wise
gated variants lie in a convex hull of transformed values; even with a pointwise nonlinearity inside
the sum, channel-wise selection of the original coordinates is not realizable in general. For general
token-separable f , per-channel argmax is impossible in general. Additionally, adding per-channel
cross-token competition in f may break O(T )/O(T 2) parallelism. Details in Appendix C.4.

(5) Linear RNNs/SSMs. They offer rich dimension interactions but store history in a fixed-size
state, cannot support arbitrary index retrieval at large horizons without lossless storage; see § C.5.

Takeaway and connections. Prior remedies fall into three buckets: (a) increasing assignment
capacity at substantial cost (e.g., per-feature score-space inflation to obtain αt,i,c), (b) keeping a
token-separable convex read (e.g., in-head pointwise gates), or (c) relying on fixed-state storage
(e.g., linear RNNs/SSMs). None provides per-channel, value-aware cross-token competition before
the first mixing while preserving the time complexity. In particular, pushing capacity from tH to-
ward tD via per-feature inflation leaves the read token-separable, so the same-step lossless-selection
gap persists (Lemma 2.5, Proposition 2.7); likewise, simply scaling heads/depth or adding in-head
gates cannot recover channel-wise index identity once the first convex mix has acted. These gaps
motivate a single, stronger mixer that performs value-aware competition without changing asymp-
totic cost: our FEM via a variational free-energy read. See Appendix C.6 for a mapping of existing
designs and Appendix C.7 for more discussion.

2.3 FREE ENERGY MIXER: VALUE-AWARE POSTERIOR SELECTION

Motivation and objective. Classic attention performs a per-head convex read and cannot real-
ize same-step channel-wise selectors in general (cf. Lemma 2.2, Corollary 2.3). We therefore cast
channel-wise retrieval as an information-constrained selection problem: at step t, a fast, information-
sparse prior pt (from queries/keys or an operator-induced normalizer) proposes indices on the
masked support Mt, while values {vi} supply evidence.2 For each channel j we choose q ∈ ∆(Mt)

2Somewhat counterintuitively, we treat selection as prior and values as evidence because evidence requires
log-exp processing while the prior does not; this preserves the time complexity of the selection mechanism.

4
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to maximize expected utility under a KL budget relative to pt,

maxq∈∆(Mt) Ei∼q[vi,j ] s.t. KL
(
q∥pt

)
≤ Bt,j . (3)

Free Energy Mixer formulation. Introducing a Lagrange multiplier βt,j > 0 yields the per-channel
free energy output

Ft,j(βt,j) = 1
βt,j

log
∑

i∈Mt
pt(i) exp

(
βt,j vi,j

)
, (4)

and the corresponding posterior selection distribution

q
(j)
t,β(i) =

pt(i) exp
(
βt,jvi,j

)∑
r∈Mt

pt(r) exp
(
βt,jvr,j

) , i ∈ Mt. (5)

Theorem 2.8 (Free-energy selection and budget duality (with β as inverse temperature)). The con-
strained problem equation 3 has a unique solution q⋆. There exists a unique β⋆

t,j ≥ 0 such that

q⋆ = q
(j)
t,β⋆ and Eq⋆ [vi,j ] = Ft,j(β

⋆
t,j). Equivalently (DV form), for any β > 0 the maximizer of∑

i q(i)vi,j − 1
βKL(q∥pt) is q

(j)
t,β . Moreover, β 7→ Ft,j(β) is continuous and strictly increasing

unless v·,j is pt-a.s. constant. See Appendix E, Lemmas E.1–E.2 and Proposition E.3.

Consequences (summary). (i) Reverse-KL improvement over the mean: Ft,j(β) = Ept [vi,j ] +
1
βKL(pt∥q(β)t,j ) (Proposition E.3). (ii) Value-aware competition: the gradient equals the posterior and
the Hessian is a Fisher covariance scaled by β; thus Ft,j is convex and β/2-smooth in v·,j (Proposi-
tion E.4). (iii) Channel-wise selection on the prior support: with margin ∆t,j > 0, q(β)t,j concentrates
at the argmax with exponentially small error in β; Ft,j(β) ↑ maxi vi,j (Proposition E.5). (iv) Ca-
pacity and complexity: across channels, FEM attains the assignment upper bound |Mt|D, whereas
H heads offer at most |Mt|H patterns; computing equation 4 with a fixed temperature adds one
masked log-sum-exp per channel and preserves the prior’s asymptotic complexity (Theorem E.7,
Proposition E.8). (v) Masks and invariances: masking is preserved; shift/scale laws and sensitivity
to prior probabilities/logits follow from log-sum-exp structure (Proposition E.6).

Outputs. FEM exposes two per-channel readouts sharing the same posterior q(j)t,β : the free energy

Ft,j(β) and the posterior expectation
∑

i q
(j)
t,β(i) vi,j . Under β-concentration they coincide at the

selected value—letting the model smoothly move from averaging to hard indexing without changing
the architecture. In § 2.3.1–2.3.2 we add a lightweight two-level gating and linearized temperature
learning that learn a dynamic temperature without changing the prior’s asymptotic complexity.

2.3.1 EFFICIENT COMPUTATION OF FEM AND LINEARIZED TEMPERATURE LEARNING

Fixed temperature. For a fixed inverse temperature β > 0 and channel j, FEM reads

Ft,j(β) =
1

β
log

∑
i∈Mt

pt(i) e
β vi,j = Ei∼pt [vi,j ] +

1

β
KL

(
pt ∥ q

(β)
t,j

)
, (6)

with posterior selector q(β)t,j (i) ∝ pt(i) e
βvi,j on the same support Mt as the prior. Evaluating equa-

tion 6 requires a single masked log-sum-exp (LSE) per channel, so the asymptotic time complexity
is identical to the prior (e.g., O(T 2) for softmax, O(T ) for kernel/SSM priors). See Appendix F.1.

Why β should be dynamic. The decomposition in equation 6 reveals an energy-entropy trade-off:
β governs the improvement over the expectation baseline through 1

βKL(pt∥q(β)t,j ). Tasks typically
need different entropy levels across steps and channels, but directly recomputing equation 6 for each
learned βt,j would break single-pass efficiency.

Linearized Temperature Learning (LTL). Fix a per-channel maximum βmax > 0 and de-
fine the expectation baseline µt,j = Ei∼pt

[vi,j ] and the high-temperature branch Fmax
t,j =

β−1
max log

∑
i∈Mt

pt(i)e
βmaxvi,j . A learned gate λt,j ∈ [0, 1] interpolates

F̃t,j(λt,j) = (1− λt,j)µt,j + λt,j Fmax
t,j , (7)

requiring only the baseline expectation and a single LSE at βmax per step, hence preserving the
prior’s asymptotic complexity, as shown in Figure 2f.

5
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Hidden temperature and equivalent reparameterization in LTL. Let Ft,j(β) = Ft,j(β) and
∆t,j(β) = Ft,j(β) − Ft,j(0). Then F ′

t,j(β) = β−2 KL
(
q
(β)
t,j ∥pt

)
≥ 0, so Ft,j is continuous and

strictly increasing on [0, βmax] unless v·,j is pt-a.s. constant. By the intermediate value theorem, for
each λt,j ∈ [0, 1] there exists a unique

β⋆
t,j(λt,j) = ∆−1

t,j(λt,j ∆t,j(βmax)) ∈ [0, βmax] such that F̃t,j(λt,j) = Ft,j

(
β⋆
t,j(λt,j)

)
. (8)

Therefore, optimizing λt,j is a strictly monotone reparameterization of optimizing a hidden temper-
ature β∗

hid for equation 4, as shown in Figure 2e; see Proposition F.2.

Final form of FEM and complexity. Collecting terms gives the per-channel read

F̃t,j(λt,j) = (1− λt,j)
∑

i∈Mt
pt(i) vi,j +

λt,j

βmax
log

∑
i∈Mt

pt(i) e
βmaxvi,j , (9)

equal to Ft,j at the unique hidden temperature β⋆
hid,t,j(λt,j). Both terms can be obtained in one pass

by mixing [ vi,j , e
βmaxvi,j ] with the same pt(i). Hence LTL achieves dynamic temperature control

without changing the prior’s asymptotic complexity. A KL interpretation appear in § F.3–F.4.

2.3.2 TWO-LEVEL GATED FEM: VALUE-AWARE INNER GATING AND OUTER MODULATION

We present the two-level gated FEM that turns a prior selection distribution pt ∈∆t−1 into a per-
channel, value-aware read while preserving the prior’s time complexity. All operations below act
element-wise over channels j ∈ [D]; ⊙ and ⊘ denote Hadamard product and division. Let βmax ∈
RD

>0 be a learnable global maximum inverse temperature, and let λt ∈ [0, 1]D and gt ∈ RD
>0 be

per-channel gates at step t, parameterized from the current token features. We apply sigmoid and
softplus activations, and normalize gt with RMSNorm so that its modulation does not overly distort
the norm of ot. In what follows, whenever we refer to FEM, we default to this two-level gated
version. Proofs and details of this section appear in Appendix G.

Inner (temperature) gate via one-pass linearized temperature learning. Define the expectation
baseline and a single high-temperature branch

µt =
∑

i pt(i)vi ∈ RD, Fmax
t = β−1

max⊙log
∑

i pt(i) exp
(
βmax⊙vi

)
∈ RD,

which can be obtained in one pass by mixing [vi, exp(βmax⊙vi) ] with pt(i). The inner gate as
hidden temperature interpolates

F̃t(λt) = (1− λt)⊙µt + λt⊙Fmax
t . (10)

Outer gate and final read. The outer gate modulates the inner read:

ot = gt⊙F̃t(λt) = gt⊙
[
(1− λt)⊙µt + λt⊙Fmax

t

]
. (11)

Note that the outer gating can be regarded as applying an scaling after the token mixing in free energy

with hidden temperature, i.e., β∗−1
hid,t,j log

[∑
i∈Mt

pt(i) exp
(
β∗
hid,t,j vi,j

)]gt,j
. For smoother opti-

mization, we therefore parameterize gt as strictly positive by default. Computing equation 10–11
matches the asymptotic time complexity of the prior pt (e.g., O(T 2) for softmax; O(T ) for ker-
nel/SSM priors) as shown in the section above.

Containment of common mixer families. The two-level gate subsumes several widely used mixers:
(i) setting λt = 0 yields per-channel linear reweighting ot =

∑
i pt(i) (gt⊙vi); (ii) 0 < λt <

1 gives a monotone, convex mean→real-softmax interpolation per channel, enabling value-aware
thresholding; (iii) letting λt, gt depend on (ctx, pt,µt,F

max
t ) realizes a broad token-separable class∑

i f(αt,i,vi) while introducing cross-token competition through the log-sum-exp branch.

2.3.3 FEM AND SELECTION DISTRIBUTIONS: A PRIOR-AGNOSTIC INTERFACE

FEM only requires a nonnegative, normalized selection prior pt ∈ ∆t−1 over indices It =
{1, . . . , t} with masked support Mt = {i ≤ t : pt(i) > 0}, and the variational read always en-
forces qt ≪ pt. Any streaming or parallel mechanism that produces nonnegative scores s+t (i) ≥ 0

induces a valid prior via the normalization p+t (i) =
s+t (i)∑

r≤t s
+
t (r)

(i ≤ t).
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Proposition 2.9 (Complexity-preserving normalization). If s+t (i) is produced by an associative
operator (e.g., kernelized/linear attention, linear RNN, or SSM) that admits an O(1) streaming
update per step, then the denominator is obtained by applying the same operator to an all-ones
stream, so forming pt preserves the asymptotic complexity of the underlying mechanism. Under
FEM with fixed or LTL-controlled temperature, the read adds one masked log-sum-exp per channel
on the prior support and thus preserves O(T 2) (softmax) or O(T ) (linear/SSM) cost (See Fig. 2b).

Parameter budgeting. Let the input/value width be D and let FEM use working width d on the
value path. We allocate a ratio r > 0 of parameters to the prior (e.g., Q,K and, where applicable,
a decay gate). Ignoring biases/norms, the per-head linear parameters decompose as 4Dd + Ddr,
covering value, output, temperature and outer gates, and the prior block of size D× (rd). To match
the classic 4D2 budget in standard attention: (i) d = D

2 , r = 4 (keeps Q,K at width D); (ii)
d = 2D

3 , r = 2 (balanced split). See Appendix H.7 for the split and costs. In our experiments
we default to (i) since it uses a forward pass with exactly the same shape as standard attention.
Notably, (i) actually reduces the dimension of the value part needed to be stored in the KV-cache by
half. Subsequent experimental results show that FEM’s fine-grained processing allows it to achieve
superior performance over priors while using an even smaller memory state cache.

Instantiations of st (and pt) We adopt the following FEM selection priors as examples. (i) Softmax
attention recovers the standard masked row-softmax prior. (ii) Gated linear attention (Yang et al.,
2024b) keeps an associative O(T ) form by combining a feature kernel with an input-conditioned
decay. (iii) Linear RNNs admit nonnegative bilinear scores with normalization from the same re-
currence. (iv) SSM/Mamba-style priors use nonnegative impulse responses; a channel-interactive
variant lifts the index set to pairs (i, k) and normalizes per output channel, enabling cross-channel
competition. All formulas, streaming recurrences, and complexity details appear in Appendix H.

Low-rank convolution. Recent sequence models such as Mamba and DeltaNet (Gu & Dao, 2023;
Yang et al., 2024c;a) variants commonly enhance feature parameterization with local convolutions.
We adopt this idea in FEM by inserting a lightweight adaptive low-rank convolution module that
produces local, position-sensitive features. Concretely, it forms a simple time-decay kernel with
O(1) streaming updates, so the overall cost is only O(THc) with the low-rank dimension Hc≪D
(Hc = d/16 by default). The resulting features modulate both the selection prior and the FEM gates,
providing local adaptivity. See § I and § K for more details.

FEM as a universal fast-weight programmer. FEM provides a unified mechanism that upgrades
expectation-based reads into value-aware, per-channel posterior selection while preserving the com-
plexity. It combines temporal mixing, entropy control, local conditioning, and dual gating, thereby
serving as a general and efficient fast-weight programmer Schmidhuber (1992) detailed in § J.

3 EMPIRICAL EVALUATION

We evaluate the two-level gated Free Energy Mixer (FEM) with different selection priors across
synthetic, NLP, CV, and time-series tasks. Specifically, we test FEM with softmax attention (FEM-
SM), gated linear attention (FEM-GLA), and on selected tasks also with Mamba (FEM-Mamba)
and linear RNNs using AFT (Zhai et al., 2021) (FEM-AFT) (see § H). Unless otherwise noted, we
use parameter budgeting strategy (i) from § 2.3.3, which matches the parameter size of standard
attention. Under this setting, FEM reuses existing efficient implementations (e.g., FlashAttention,
FlashLinearAttention) for the core prior mixer (see Fig. 2d;f) with only minor value-path overhead.
Our main focus is algorithmic: exploring improved mathematical structures (see § C.7). Due to lim-
ited compute and lack of fused CUDA kernels, we scale models modestly but provide fine-grained
metrics and extensive ablations to highlight FEM’s advantages. For ablation, we denote FEM mod-
ules as (C: low-rank convolution, L: LSE mixing, T: linearized temperature learning, G: outer gate).
For example, FEM-SM (-G,T) removes outer gating and temperature learning, equivalent to SMAttn
(+C,L). Unless specified, default FEM variants include all modules (C,L,T,G). We make sure that
every variants have same parameter sizes with the parameter budgeting. Aside from causal autore-
gressive FEM shown above, encoder-only use simply removes masking. In all experiments, FEM
directly replaces the attention in a Transformer block (Fig. 2c) without altering other components
(MLPs, embeddings, hyperparameters). More implementation details appear in § K; datasets in § L.
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Table 1: MAD benchmark evaluation results across com-
pression, fuzzy/in-context recall, memorization, robust-
ness, and selective copying. Bold marks column best.

Model Com-
press

Fuzzy
Recall

In-Ctx
Recall

Memorize
TrainSet

Noisy
Recall

Selective
Copy Avg

Hyena 44.8 14.4 99.0 89.4 98.6 93.0 73.2
DeltaNet 42.2 35.7 99.9 52.8 99.9 99.9 71.7
LinAttn 33.1 8.2 91.0 74.9 75.6 93.1 62.6
Mamba2 43.6 21.1 96.4 86.9 96.7 93.3 73.0
GatedDeltaNet 45.0 29.8 99.9 80.2 99.9 94.3 74.9
DiffTrans 42.9 39.0 99.9 83.7 97.1 95.8 76.4

FEM-SM(-G,T,L,C)
(SMAttn;Transformer) 44.3 24.5 99.9 85.7 98.5 95.1 74.7
FEM-SM(-G,T,L)
(SMAttn+C) 45.0 31.4 99.9 85.5 99.9 96.3 76.3
FEM-SM(-G,T)
(SMAttn+C,L) 50.3 39.0 99.9 85.4 99.9 98.0 78.8
FEM-SM(-G)
(SMAttn+C,L,T) 52.3 39.1 99.9 85.8 99.9 99.4 79.4
FEM-SM
(SMAttn+C,L,T,G) 53.1 43.1 99.9 85.9 99.9 99.3 80.2
FEM-SM(-C,G,T)
(SMAttn+L) 49.5 26.3 99.9 85.7 97.5 97.5 76.1
FEM-SM(-C,G)
(SMAttn+L,T) 50.7 32.8 99.9 85.7 98.0 97.6 77.5
FEM-SM(-C)
(SMAttn+L,T,G) 51.2 35.4 99.9 85.9 98.5 99.0 78.3
FEM-SM
(SMAttn+C,L,T,G) 53.1 43.1 99.9 85.9 99.9 99.3 80.2
FEM-GLA(-G,T,L,C)
(GLA) 40.2 8.5 91.3 81.3 86.8 76.8 64.2
FEM-GLA(-G,T,L)
(GLA+C) 47.1 9.4 91.7 83.4 92.5 88.5 68.8
FEM-GLA(-G,T)

(GLA+C,L, p̃+
t (i)) 51.2 12.4 92.2 85.1 92.4 89.2 70.4

FEM-GLA(-G)

(GLA+C,L,T, p̃+
t (i)) 51.9 13.2 97.1 86.1 93.5 91.4 72.2

FEM-GLA
(GLA+C,L,T,G, p̃+

t (i)) 53.0 19.1 99.9 86.3 99.9 99.0 74.9

FEM-MAMBA(-G,T,L,C)
(Mamba) 52.7 6.7 90.4 89.5 90.1 86.3 69.3
FEM-MAMBA(-pt norm)

(Mamba+C,L,T,G, s+t (i)) 50.5 12.8 93.4 88.9 86.3 92.2 70.7
FEM-MAMBA
(Mamba+C,L,T,G, p̃+

t (i)) 51.1 16.8 90.7 89.7 92.7 97.0 73.0

FEM-AFT(-G,T,L,C)
(AFT) 50.5 9.15 63 31.1 69.2 90.1 52.2
FEM-AFT
(AFT+C,L,T,G) 55.5 9.78 90.3 80.1 90.2 93.4 69.9

MAD. We first evaluate FEM on the
synthetic MAD benchmark (Poli et al.,
2024), which probes sequence models
on in-context tasks. As shown in Ta-
ble 1, FEM-SM outperforms all other
baselines (Hyena, DeltaNet, Linear At-
tention, Mamba2, Gated DeltaNet, Dif-
ferential Transformer, (Poli et al., 2023;
Yang et al., 2024b;c; Dao & Gu, 2024;
Yang et al., 2024a; Ye et al., 2025))
by a clear margin. In particular, dif-
ferent FEM variants show strong gains
on the Compress & Recall tasks, which
heavily rely on algorithmic handling of
dynamic context and channel interac-
tions. On the Compress task, FEM
models achieve significant improve-
ments over existing methods thanks to
their finer-grained processing of con-
text storage. The ablation study fur-
ther reveals that the two major perfor-
mance jumps over prior baselines oc-
cur after introducing +L (LSE) and +T
(temperature), corroborating our earlier
discussion of FEM’s enhanced memory
storage processing. Moreover, the abla-
tions demonstrate that FEM can elevate
linear-time methods such as GLA and
Mamba (with normalized p̃+t ) to a level
comparable with the latest attention-
based variants.

Language Modeling. We follow
the experimental setup of (Yang et al.,
2024a;c). Under the same training en-
vironment, we train autoregressive lan-
guage models with 1.3B and 340M pa-
rameters on the FineWeb-Edu dataset (Penedo et al., 2024), using 100B and 15B sampled tokens,
respectively. The models are optimized with AdamW (learning rate 4 × 10−4, cosine annealing,
1B-token warmup), weight decay 0.1, gradient clipping of 1.0, and a batch size of 0.5M tokens. We
use the LLaMA-2 tokenizer with a 32K vocabulary, and set the training context length to 4096. We
adopt the Open LLM Leaderboard protocol and a suite of general-ability tasks, as shown in Tab. 2.
See §L for more evaluation details.

Table 3: Comparative analysis of
image classification on ImageNet.

DeiT-Tiny DeiT-Small
Model Top-1 Acc Params Top-1 Acc Params
DeiT 72.20 5.7M 79.90 22.0M
TNN 72.29 6.4M 79.20 23.4M
HGRN 74.40 6.1M 80.09 23.7M
HGRN2 75.39 6.1M 80.12 23.8M
FEM-SM 76.70 5.8M 80.45 22.3M
FEM-GLA 75.80 5.8M 80.20 22.3M

Compared with models of the same scale, using FEM im-
proves the overall performance of prior methods such as soft-
max and gated linear attention. These gains are most evi-
dent in handling longer contextual instructions, tackling more
complex reasoning tasks (e.g., IFEval and ARC), and boost-
ing accuracy across multiple QA benchmarks. This reflects
FEM’s ability to enhance general retrieval and context pro-
cessing by extending the originally synchronized head-level
prior distribution into richer channel-wise and token-wise interactions. The ablation results further
confirm that introducing components like +L and +T leads to substantial performance improvements.

Image Modeling. We evaluate FEM on the ImageNet-1K image classification task, following Qin
et al. (2024), by replacing the DeiT architecture’s softmax attention with our encoder-only FEM
implementation. As presented in Table 3, both FEM-SM and FEM-GLA surpass previous methods
(Qin et al., 2023a;b; 2024) while maintaining parameter budgets.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Unified language modeling evaluation results across model families and scales. Abbr:
Acc n=normalized accuracy; EM=exact match; IFE-I/P = IFEval (Inst/Prompt, strict only). Shots:
MMLU-P=5, GPQA=0, BBH=3, MATH=4, MuSR=0; others 0-shot.
Model
variant

Open LLM Leaderboard General Ability Ranking
MMLU-P

(Acc↑)
GPQA

(Accn↑)
BBH

(Accn↑)
MATH
(EM↑)

MuSR
(Accn↑)

IFE-I
(strict↑)

IFE-P
(strict↑)

ARC-C
(Accn↑)

ARC-E
(Accn↑)

HS
(Accn↑)

PIQA
(Accn↑)

BoolQ
(Acc↑)

WinoG
(Acc↑)

COPA
(Acc↑)

OBQA
(Accn↑)

SciQ
(Accn↑)

Avg
Rank↓

#Top1
↑

1.3B Params – 100B Tokens
DeltaNet 0.109 0.263 0.308 0.011 0.417 0.288 0.165 0.266 0.522 0.502 0.704 0.611 0.541 0.740 0.318 0.761 4.44 1
GSA 0.110 0.270 0.294 0.013 0.438 0.300 0.179 0.287 0.529 0.510 0.712 0.541 0.536 0.760 0.330 0.773 3.38 2
RetNet 0.110 0.252 0.293 0.001 0.384 0.056 0.024 0.271 0.489 0.480 0.701 0.583 0.533 0.710 0.324 0.736 7.63 0
HGRN 0.114 0.269 0.297 0.008 0.409 0.253 0.122 0.271 0.518 0.481 0.707 0.584 0.515 0.700 0.326 0.695 5.75 0
HGRN2 0.115 0.254 0.295 0.002 0.350 0.223 0.129 0.282 0.504 0.317 0.671 0.416 0.522 0.770 0.328 0.378 6.63 2
Transformer
(SMAttn) 0.114 0.259 0.296 0.011 0.365 0.270 0.141 0.280 0.492 0.492 0.705 0.621 0.552 0.760 0.318 0.769 4.56 1
FEM-SM
(SMAttn+C,L,T,G) 0.113 0.262 0.303 0.012 0.451 0.326 0.192 0.364 0.636 0.519 0.713 0.624 0.534 0.740 0.382 0.807 2.06 9
GLA 0.114 0.259 0.295 0.006 0.427 0.272 0.157 0.277 0.482 0.488 0.702 0.574 0.541 0.690 0.326 0.721 5.63 0
FEM-GLA
(GLA+C,L,T,G) 0.112 0.258 0.297 0.009 0.475 0.277 0.157 0.310 0.564 0.482 0.708 0.602 0.529 0.740 0.358 0.782 3.88 1

340M Params – 15B Tokens
DiffTrans 0.109 0.259 0.299 0.008 0.390 0.266 0.133 0.289 0.531 0.408 0.668 0.603 0.534 0.690 0.330 0.734 4.38 1
GatedDeltaNet 0.113 0.260 0.296 0.010 0.421 0.258 0.133 0.276 0.527 0.396 0.662 0.588 0.527 0.710 0.338 0.735 4.25 1
DeltaNet 0.112 0.260 0.300 0.009 0.452 0.277 0.150 0.269 0.502 0.405 0.653 0.519 0.504 0.690 0.316 0.717 5.44 3
FEM-SM(-G,T,L,C)

(SMAttn) 0.106 0.267 0.292 0.010 0.386 0.269 0.126 0.273 0.506 0.396 0.650 0.569 0.499 0.720 0.324 0.727 6.50 1
FEM-SM(-G,T,L)

(SMAttn+C) 0.113 0.254 0.296 0.009 0.388 0.246 0.122 0.277 0.507 0.403 0.664 0.583 0.515 0.670 0.320 0.728 6.63 0
FEM-SM(-G,T)

(SMAttn+C,L) 0.112 0.258 0.298 0.009 0.401 0.254 0.129 0.290 0.518 0.407 0.657 0.595 0.511 0.690 0.342 0.731 4.81 1
FEM-SM(-G)

(SMAttn+C,L,T) 0.112 0.261 0.297 0.010 0.421 0.266 0.144 0.293 0.531 0.412 0.668 0.593 0.519 0.710 0.338 0.716 3.31 2
FEM-SM
(SM-Attn+C,L,T,G) 0.114 0.264 0.300 0.012 0.437 0.273 0.142 0.284 0.542 0.409 0.676 0.609 0.523 0.730 0.342 0.735 1.81 8
GLA 0.110 0.258 0.289 0.007 0.415 0.228 0.109 0.247 0.478 0.366 0.637 0.547 0.489 0.640 0.294 0.649 9.38 0
FEM-GLA
(GLA+C,L,T,G) 0.115 0.255 0.297 0.009 0.473 0.241 0.123 0.271 0.493 0.397 0.644 0.592 0.510 0.680 0.331 0.683 6.56 2

Table 4: Benchmark evaluation of TSF tasks.
Dataset FEM

SM
FEM
GLA

FEM
Mamba

FEM
AFT GLA AFT iTrans-

former
Patch-
TST DLinear

Weather 0.222 0.223 0.218 0.218 0.223 0.221 0.232 0.221 0.233
Solar 0.189 0.188 0.193 0.186 0.204 0.198 0.219 0.202 0.216
ETTh1 0.419 0.418 0.421 0.414 0.418 0.421 0.454 0.413 0.422
ETTh2 0.340 0.344 0.340 0.339 0.342 0.342 0.374 0.330 0.426
ETTm1 0.341 0.345 0.346 0.344 0.357 0.351 0.373 0.346 0.347
ETTm2 0.242 0.247 0.246 0.241 0.250 0.245 0.265 0.247 0.252

Time Series Forecasting (TSF). Following Lu
& Yang (2025), we evaluate FEM variants on
TSF, as shown in Table 4. Across datasets,
FEM surpasses both its priors and domain-
specific baselines such as iTransformer (Liu
et al., 2024) and PatchTST (Nie et al., 2022).

Computational Cost. We evaluate the training
and inference speed of FEM on a Nvidia L40S GPU. To avoid confounding factors, we use an 8-layer
model with 4 heads and a hidden dimension of 512, tested on randomly generated data with a context
length of 2K and a batch size of 4. As shown in Table 5, the full FEM-SM achieves comparable
computational efficiency to recent model structures, even without additional engineering designs.

4 CONCLUSION AND LIMITATION Table 5: Latency & through-
put comparison (TPS in K to-
kens/s). Lower is better for la-
tency; higher is better for TPS.

Model
Fwd

Lat. (s)
Train

Lat. (s)
Fwd

TPS (K)
Train

TPS (K)

GatedDeltaNet 0.016 0.042 250.4 97.8
DeltaNet 0.014 0.036 292.5 113.9
HGRN2 0.009 0.024 440.0 170.7
RWKV6 0.014 0.037 293.9 109.4
RWKV7 0.017 0.050 245.1 82.2
DiffTrans 0.018 0.041 233.3 100.6
FEM-SM
(-G,T,L,C) 0.012 0.027 333.1 153.7

FEM-SM
(-G,T,L) 0.015 0.033 291.5 124.6

FEM-SM
(-G,T) 0.016 0.035 283.7 121.2

FEM-SM
(-G) 0.017 0.040 249.7 114.6

FEM-SM 0.017 0.041 246.0 104.1

We proposed the Free Energy Mixer (FEM), which reframes se-
quence modeling as a context-interactive selection problem to
overcome the “lossless storage but lossy readout” limitation of
classic attention. FEM enables value-aware, per-channel poste-
rior selection on top of any prior (softmax/linear attention, RNNs,
SSMs) and, with log-sum-exp, linearized temperature learning,
and two-level gating, interpolates smoothly from averaging to
near hard indexing without extra complexity. It enhances con-
textual fast-weight programming in theory and achieves consis-
tent gains across NLP, vision, and time-series tasks at equal pa-
rameter budgets, with ablations highlighting LSE and temperature
control as key. Overall, FEM is a plug-and-play mechanism for
fine-grained context processing.

Limitation. Our work focuses on advancing the algorithmic expressivity (§C.7) rather than pursu-
ing engineering optimizations such as custom GPU kernels or acceleration strategies. Due to limited
computational resources, we were unable to scale FEM to very large models or conduct very long-
context evaluations. This constrained but focused scope allowed us to highlight FEM’s algorithmic
contributions without heavy reliance on engineering or large-scale compute.
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ETHICS STATEMENT

We evaluate FEM only on publicly available benchmarks under their licenses, without collecting
personal or sensitive data. FEM’s enhanced retrieval ability could be misused (e.g., surveillance or
deceptive content), so responsible deployment requires privacy safeguards, bias checks, and legal
compliance. We also report model sizes and training tokens, and encourage energy-aware experi-
mentation.

REPRODUCIBILITY STATEMENT

All experiments were run under a consistent setup, with FEM modules directly replacing standard
attention while keeping other components unchanged. Code, configurations, and instructions are
provided in the linked repository to enable replication of our results. See the code base and §3, §K,
§L for more details.
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A STATEMENT OF LLM USAGE

In this paper, LLMs were mainly used to assist with writing-related tasks, including grammar check-
ing, wording adjustments, length reduction, layout reorganization, text formatting, formula format-
ting, theoretical derivation formatting, and table template generation.

We also used LLMs to search for existing methods and references in order to avoid duplicating and
over-claiming. However, we did not use LLMs to conduct literature reviews, nor did LLMs replace
the authors in studying the cited works. We confirm that all cited literature was read by the authors,
not solely by LLMs.

During experiments, LLMs were used to assist with generating or refining experimental code and
scripts, especially for bug fixing and efficiency optimization.

LLMs were not used for defining research problems, proposing ideas, designing methodologies,
providing theoretical insights, or creating algorithms and model architectures.

B DETAILS AND PROOFS FOR SECTION 2.1

B.1 SELECTION DISTRIBUTIONS, SUPPORT, AND NORMALIZATION

We encode causality by restricting the feasible support to Mt = {1, . . . , t}. In softmax attention,

pt(i) =
exp(q⊤

t ki/
√
d)1{i ≤ t}∑

j≤t exp(q
⊤
t kj/

√
d)

.

In linear attention we use a nonnegative feature map ϕ : Rd → Rm
≥0 and set

pt(i) =
⟨ϕ(qt), ϕ(ki)⟩1{i ≤ t}∑

j≤t⟨ϕ(qt), ϕ(kj)⟩
.

Nonnegativity guarantees pt ∈ ∆t−1. Row-masking is absorbed by Mt.

B.2 PROOF OF LEMMA 2.2

Let mt =
∑

i λivi with λi ≥ 0 and
∑

i λi = 1. For any coordinate j, vi,j ≤ (mt)j implies

(mt)j =
∑
i

λivi,j ≤
∑
i

λi(mt)j = (mt)j .
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Thus equality holds termwise: for all i with λi > 0, vi,j = (mt)j . Hence every such i simultane-
ously attains all coordinate maxima, proving the claim.

B.3 PROOF OF COROLLARY 2.3

Let s⋆t = (vi1,1, . . . , viD,D) with at least two distinct indices among {ij}. Unless the cho-
sen vij coincide on all selected coordinates (a measure-zero degeneracy), Lemma 2.2 implies
s⋆t /∈ conv{v1, . . . ,vt}, so no pt satisfies

∑
i pt(i)vi = s⋆t .

B.4 HEAD-SYNCHRONOUS ASSIGNMENT CAPACITY

Consider H heads at step t. Let α
(h)
t,· ∈ ∆t−1 be head h’s selection distribution and ιh =

argmaxi≤t α
(h)
t,i . Channels routed through head h share the same α

(h)
t,· at their first mixing, so

the pattern is determined by (ι1, . . . , ιH) and a fixed partition of channels into heads. The number
of realizable patterns is at most tH , versus tD for fully independent per-channel selection.

B.5 REMARKS ON STORAGE VERSUS PROCESSING

Softmax attention stores the entire set {(ki,vi)}i≤t without compression, but the per-head read
equation 2 enforces one weight vector across all coordinates, which is the bottleneck for tasks re-
quiring different indices per channel. Pointwise nonlinearities or additional depth cannot recover
per-channel index identity at the same step unless a new, independent selection distribution acts
before the first mixing on those channels.

C DETAILS AND PROOFS FOR SECTION 2.2

C.1 MORE HEADS: CAPACITY, LOW-RANK EFFECTS, AND FINITE-FEATURE LINEARIZATION

Bilinear form and rank. With H heads and dh = D/H ,

yt =
∑
i≤t

( H∑
h=1

α
(h)
t,i W

(h)
O (W

(h)
V )⊤

)
xi =

∑
i≤t

Mt(i)xi, rank
(
W

(h)
O (W

(h)
V )⊤

)
≤ dh. (12)

Proof of Lemma 2.4. At step t, head h selects argmaxi α
(h)
t,i ; the Cartesian product over H heads

has size at most tH . Inside a head, all output coordinates are linear images of the same α
(h)
t,· .

Finite-feature approximation (value-path erosion). Assuming clipped logits |q⊤k| ≤ R, a sin-
gle softmax head of width dh admits an ε-accurate finite monomial feature approximation with

M =

(
N + dh

dh

)
, N = O

(
R+ log(1/ε)

)
,

so its read is uniformly approximable by a linear streaming state of size M × dv . The full result is
below.
Proposition C.1 (Dimension-dependent linearization and memory collapse for a softmax head).
Consider one softmax attention head with query/key width dh and value width dv . Assume bounded
scores and values:

|q⊤t ki| ≤ R (i ≤ t), ∥vi∥2 ≤ V.

Fix ε ∈ (0, 1
4 ) and choose N ∈ N such that

∞∑
n=N+1

Rn

n!
≤ ε.

Define the feature map that collects all monomials up to total degree N ,

ϕN,dh
(x) :=

(
xα
√
α!

)
|α|≤N

∈ RM , M =

N∑
n=0

(
n+ dh − 1

dh − 1

)
=

(
N + dh

dh

)
.
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Then, uniformly on {|q⊤k| ≤ R},∣∣ eq⊤k − ϕN,dh
(q)⊤ϕN,dh

(k)
∣∣ ≤ ε. (13)

Define the streaming sufficient statistics

St :=
∑
i≤t

ϕN,dh
(ki) v

⊤
i ∈ RM×dv , Zt :=

∑
i≤t

ϕN,dh
(ki) ∈ RM ,

and the linearized readout

õt :=
ϕN,dh

(qt)
⊤St

ϕN,dh
(qt)⊤Zt

∈ Rdv .

If, in addition, ε eR ≤ 1
2 , then the exact softmax output ot =

∑
i≤t αt,ivi with αt,i ∝ eq

⊤
t ki satisfies

the uniform (in t) error bound

sup
t

∥ ot − õt ∥2 ≤ 4V eR ε. (14)

Consequently, a single softmax head is O(ε)-approximable by a linear, streaming state of size M ×
dv plus one M -vector, where

M =

(
N + dh

dh

)
= Θ

(
Ndh

dh!

)
, N = Θ

(
R+ log 1

ε

)
.

In particular, when dh = 1 we have M = N + 1 = Θ(R + log 1
ε ): the head collapses to a one-

dimensional kernel-RNN-like compressed memory with arbitrarily small uniform error as N → ∞.

Proof. Multivariate Taylor expansion of eq
⊤k gives eq

⊤k =
∑∞

n=0

∑
|α|=n

qαkα

α! . By construction

of ϕN,dh
, ϕN,dh

(q)⊤ϕN,dh
(k) =

∑N
n=0

∑
|α|=n

qαkα

α! , so the truncation error is the scalar exponen-
tial tail evaluated at |q⊤k| ≤ R, yielding equation 13 by the choice of N .

Let Kt(i) := eq
⊤
t ki , K̂t(i) := ϕ(qt)

⊤ϕ(ki). Write Nt =
∑

i Kt(i)vi, Dt =
∑

i Kt(i) and N̂t =∑
i K̂t(i)vi, D̂t =

∑
i K̂t(i). From equation 13 and ∥vi∥2 ≤ V ,

∥Nt − N̂t∥2 ≤ ε
∑
i≤t

∥vi∥2 ≤ εV t, |Dt − D̂t| ≤ εt.

Since |q⊤t ki| ≤ R, we have te−R ≤ Dt ≤ teR. If εeR ≤ 1
2 , then Dt − |Dt − D̂t| ≥ 1

2 te
−R. Using

the standard ratio perturbation bound,∥∥∥Nt

Dt
− N̂t

D̂t

∥∥∥
2
≤ ∥Nt − N̂t∥2

Dt − |Dt − D̂t|
+

∥Nt∥2
Dt

· |Dt − D̂t|
Dt − |Dt − D̂t|

.

Because ∥Nt∥2 ≤ V Dt, the RHS is at most εV t
1
2 te

−R
+ V ·εt

1
2 te

−R
= 4V eRε, which proves equation 14.

The stated complexity follows from M =
(
N+dh

dh

)
and Stirling’s approximation; for dh = 1, M =

N + 1.

Remark. Any common scaling (e.g., 1/
√
dh) in dot-product attention can be absorbed into R.

Position biases can likewise be included provided the total score remains bounded by R.

Numerical illustration (state size under bounded scores). We instantiate Proposition C.1 with
two practically relevant score radii: a high quantile R ≃ 5 and an extreme upper bound R = 10. For
target uniform kernel error ε, choose the smallest degree N with

∑
n>N Rn/n! ≤ ε. The resulting

hidden-state size per head (in the dh=1 collapse) is (N+1) dv = O(N dv); across all heads with
total value width D = Hdv it is O(N D).

Minimal degrees N (exact tail test).

ε = 10−4 ε = 10−6 ε = 10−8

R = 5 N = 19 N = 22 N = 25
R = 10 N = 33 N = 36 N = 40
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These values satisfy the safety condition of Proposition C.1 (εeR ≤ 1
2 ); e.g., εe10 ≈ 2.2×10−2 at

ε = 10−6.

Concrete state sizes (per head, dh=1). For ε = 10−6,

R = 5 : M = N+1 = 23 ⇒ state = (N+1) dv = 23 dv and O(N D) = O(22D) overall,
R = 10 : M = N+1 = 37 ⇒ state = (N+1) dv = 37 dv and O(N D) = O(36D) overall.

Thus, under realistic bounded scores, a single softmax head with dh=1 is equivalent (up to uniform
error ε) to a linear streaming memory whose per-head size grows essentially linearly with R and only
mildly with ε. For dh > 1, the finite-feature dimension becomes M =

(
N+dh

dh

)
= Θ(Ndh/dh!),

explaining the strong dependence on per-head width.

C.2 DEPTH: NO SAME-STEP UNMIXING AND SELECTION BUDGET

Proof of Lemma 2.5. Tα : {vi} 7→
∑

i αt,ivi is linear, nonnegative, and weight-summing to 1,
hence images lie in conv{vi}. Composing coordinate-wise maps keeps outputs in a convex hull of
transformed points and does not reveal per-channel indices used before mixing. Later attentions at
step t operate on a finite set of already mixed tokens; a selector outside conv{vi} is unreachable
without a fresh independent selection before the first mixing touching those coordinates.

Proof of Proposition 2.6. Define a channel group as coordinates whose first attention-based mix-
ing shares the same head at some layer. Across L layers there are at most HL groups. Each
group gets one independent selection distribution for its first mixing, hence at most HL indepen-
dent per-channel selections by step t. Necessity of HL ≥ D follows; achieving the bound requires
avoiding re-synchronization before first attention.

Accumulation. Layer ℓ writes V (ℓ) ∈ Rt×D to KV. Stored channels scale as LD, independently
selectable groups as LH; the fraction of non-independently-selectable channels does not vanish
unless H scales with D.

C.3 PER-DIMENSION QUERIES/KEYS: CAPACITY–BUDGET TRADEOFF

Giving each coordinate j its own scoring subspace increases assignment capacity toward tD, but
increases parameters and compute from Θ(d2) to Θ(Dd) per layer. Under a fixed budget this forces
shrinking D (hurting value bandwidth) or the MLP width (hurting global capacity), both detrimental
in long-context regimes.

C.4 TOKEN-SEPARABLE MIXERS REMAIN CONVEXLY CONSTRAINED

We analyze

ot =
∑
i

αt,ivi ⇒
∑
i

αt,i(βt ⊙ vi) ⇒
∑
i

αt,i σ(βt ⊙ vi) ⇒
∑
i

f(αt,i,vi),

with coordinate-wise σ.
Proposition C.2 (Full statement of Proposition 2.7). (i) The first two are linear; images lie in
conv{vi} and conv{βt ⊙ vi} up to coordinate-wise scaling. (ii) For

∑
i αt,iσ(βt ⊙ vi), outputs lie

in conv{σ(βt ⊙ vi)}; recovering a channel-wise selector of the original coordinates is impossible
in general unless special degeneracies (e.g., identical selected coordinates across candidates) hold.
(iii) For a general token-separable f , per-channel argmax over original coordinates is impossible
in general.

Proof sketch. (i) Direct. (ii) If m = (maxi vi,1, . . . ) is outside conv{vi} (Lemma 2.2), any
convex combination of transformed values cannot map back to m unless σ is globally invertible
and aligned simultaneously across all candidates, which fails generically. (iii) Duplication argument
in D = 1: take two identical tokens u at indices i ̸= j but target max to prefer one index; any
token-separable

∑
i f(αt,i, vi) is invariant under swapping the two, contradicting index-sensitive

selection.
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Complexity remark. Per-channel cross-token operations (e.g., top-k, per-channel log-sum-exp)
introduce non-separable normalizations over t and typically break fused O(T )/O(T 2) implementa-
tions.

C.5 LINEAR RNNS AND SSMS LACK LOSSLESS STORAGE

Let ht ∈ RS be a fixed-size state updated by a (possibly input-dependent) contractive linear op-
erator. Classical lower bounds for linear time-invariant systems imply existence of sequences and
horizons t where single-token recovery error from ht is bounded away from 0 for any fixed S. Hence
fixed-state models cannot provide lossless storage of {vi}i≤t for arbitrary index retrieval at step t,
in contrast to a KV cache, and thus cannot realize channel-wise selection over all past values.

C.6 CONNECTIONS TO RECENT PER-CHANNEL VARIANTS

The families in Section 2.2 subsume many contemporary designs:

(i) Score-space inflation per feature. Tensorized/multi-dimensional attention and element-wise
attention allocate a scoring subspace per coordinate to produce αt,i,c (Shen et al., 2018; Feng, 2025).
This moves assignment capacity from tH toward tD, but the read stays token-separable, hence sub-
ject to the convex-hull constraint (Proposition C.2). Moreover, the per-feature distributions are
typically prior-only (value-agnostic) at the same step, so no value-aware cross-token competition is
introduced before first mixing (cf. Lemma 2.5). The parameter/compute cost also scales from Θ(d2)
to Θ(Dd) per layer; see Appendix C.3.

(ii) More heads/depth. Increasing H adds only H independent selection groups, bounding head-
level assignments by tH (Lemma 2.4); depth increases storage but not the number of independent
first-mixing distributions per step beyond HL (Proposition 2.6). Hence the channel-wise lossless-
selection gap remains unless H scales with D.

(iii) In-head pointwise gating. Adding coordinate-wise gates inside the per-head mixer keeps
token separability (the form

∑
i f(αt,i,vi)), so outputs remain in a convex hull of transformed val-

ues and cannot realize per-channel argmax of the original coordinates in general (Proposition C.2).
Making the gates index-sensitive requires cross-token competition per channel, which naively breaks
O(T )/O(T 2) implementations; see Appendix C.4.

Summary. Across (i)–(iii), either capacity increases at significant parameter/compute cost while
the read remains token-separable, or the same convex bottleneck persists, or fixed-state storage limits
retrieval. None provides per-channel, value-aware cross-token competition before the first mixing
under the prior’s asymptotic complexity.

C.7 WHY A STRONGER ALGORITHMIC MIXING STRUCTURE MATTERS

A mixer that natively performs value-aware, per-channel cross-token competition at the first mixing
step has two practical advantages under fixed budgets:

Separation of roles. The mixer shoulders dynamic fast-weight programming (context-dependent
routing/selection), while MLPs focus on feature synthesis and knowledge consolidation. In a ker-
nel/NTK view, this corresponds to adapting the effective kernel online at the mixing site, reducing
the burden on downstream static nonlinearities.

Parallelism and efficiency. If such competition is realized without changing the asymptotic com-
plexity of the selection prior (e.g., by computing a per-channel log-partition over the same masked
support), we preserve the O(T 2) softmax or O(T ) streaming behavior and fused-kernel practical-
ity. This is the design objective satisfied by FEM in the next subsection: it introduces value-aware,
per-channel posterior selection via a variational free-energy read while retaining the prior’s time
complexity.
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D ADDITIONAL DISCUSSION: PER-CHANNEL SCORE DISTRIBUTIONS VS.
TOKEN-SEPARABLE MIXERS

Many recent variants extend a single per-head distribution pt = αt,· to per-channel distributions
Qt(c, ·) = αt,·,c ∈ ∆t−1, yielding

ot,c =
∑

i≤t αt,i,c vi,c, ot =
∑

i≤t Diag
(
αt,i,1, . . . , αt,i,D

)︸ ︷︷ ︸
=:Dt,i

ϕ(vi) =
∑

i≤t ωt,i ⊙ ϕ(vi),

(15)
where ϕ acts coordinate-wise and ωt,i = (αt,i,1, . . . , αt,i,D). Expression equation 15 is token-
separable: the outer sum is over tokens and introduces no cross-token interaction inside the mixer.
Consequently, for each channel c, ot,c ∈ conv{v1,c, . . . , vt,c}, and exact coordinate-wise selection
at the same step is unattainable unless αt,·,c degenerates to a point mass (cf. Lemma 2.2, Lemma 2.5,
Proposition C.2).

Assignment capacity vs. convexity. Per-channel scoring lifts head-synchronous capacity from
tH to the natural upper bound tD: across contexts, independent argmax patterns {i⋆c}c∈[D] can
in principle be realized by {αt,·,c} (Shen et al., 2018; Feng, 2025). However, the mixer remains
a convex expectation per channel; without value-aware cross-token competition, the distributions
need not concentrate on the value argmax, and the lossless-selection gap remains.

Mapping of representative designs.

• Per-dimension score inflation. Tensorized/multi-dimensional and element-wise attentions in-
stantiate αt,i,c by combining a shared token-to-token term with per-channel terms or by per-
channel distances (Shen et al., 2018; Feng, 2025). These methods increase assignment capacity
(toward tD) but keep the token-separable convex read in equation 15 and are typically prior-only
(depending on (q, k) but not v).

• In-head mixer enrichments. Per-channel rescaling, pointwise nonlinearities, or FiLM-style
gates fit

∑
i αt,i σ(βt ⊙ vi) and remain within Proposition C.2: the image is a convex hull of

transformed values, and no same-step unmixing arises without an additional independent selec-
tion before first mixing (cf. Lemma 2.5).

• Axis/channel attention and structural re-partition. Methods that attend over channels (or
axes) rather than over past indices change the domain of selection but do not produce per-channel
distributions across time; thus they do not affect channel-wise index capacity over It; see, e.g.,
channel-token attention in vision and time–channel layouts in forecasting (Ding et al., 2022; Liu
et al., 2024; Guo et al., 2025).

• Linear RNNs/SSMs and kernel priors. Streaming fast-weight priors with fixed-size state offer
cross-dimension couplings yet lack lossless storage over all past indices; kernelized/linearized
priors preserve streaming complexity but still yield expectation reads (Katharopoulos et al., 2020;
Choromanski et al., 2021; Gu & Dao, 2023).

Where FEM differs. FEM preserves the chosen prior pt (softmax, kernel, RNN/SSM) but up-
grades the read from an expectation to the free energy β−1 log

∑
i pt(i) exp(βvi,c), yielding per-

channel, value-aware posteriors q
∗(c)
t,β (i) ∝ pt(i) e

βvi,c . This introduces cross-token competition
per channel before first mixing, achieves the |Mt|D assignment capacity and admits exponential
posterior concentration while retaining the prior’s asymptotic time complexity (see §2.3.1).

E THEORETICAL PROPERTIES OF FEM

We fix a timestep t, a channel j ∈ [D], the prior selection distribution pt with support Mt := {i :
pt(i) > 0}, and the values {vi,j}i∈Mt .
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Notation. For β > 0, define the per-channel free energy and posterior selector

Ft,j(β) :=
1

β
log

∑
i∈Mt

pt(i) e
β vi,j , q

(β)
t,j (i) :=

pt(i) e
βvi,j∑

r∈Mt
pt(r) eβvr,j

, i ∈ Mt, (16)

and let v·,j ∈ R|Mt| collect {vi,j}i∈Mt
.

Standing assumptions. All statements are over the support Mt and assume pt(i) > 0 for i ∈ Mt.
For β < ∞, the posterior q(β)t,j is unique; in the limit β → ∞, ties may persist if margins vanish,
which does not affect finite-β claims.
Lemma E.1 (Equivalence of budgeted and penalized forms). Fix t, j and a budget B ≥ 0. The
constrained problem equation 3 has a unique maximizer q⋆∈∆(Mt). There exists a unique β⋆≥0
such that q⋆ = argmaxq{

∑
i q(i)vi,j −

1
β⋆KL(q∥pt)}; conversely, for every β≥ 0, the maximizer

of the penalized objective solves equation 3 for the budget B = KL(q(β)∥pt). The map B 7→ β⋆(B)
is continuous and strictly increasing whenever v·,j is not pt-a.s. constant.

Lemma E.2 (Donsker-Varadhan variational principle and mirror ascent). For every β > 0,

Ft,j(β) = max
q∈∆(Mt)

{ ∑
i
q(i) vi,j − 1

β KL
(
q∥pt

) }
, (17)

with the unique maximizer q(β)t,j in equation 16. Equivalently,

q
(β)
t,j = argmin

q∈∆(Mt)

1
βKL(q∥pt) − ⟨q, v·,j⟩, (18)

i.e., an exponentiated-gradient (mirror ascent) step from pt with step β along v·,j .

Proof. Standard DV identity: log
∑

i pie
βvi = maxq{β⟨q, v⟩ −KL(q∥p)}. Divide by β and apply

KKT; uniqueness holds on ∆(Mt) since the objective is strictly concave in q.

Proposition E.3 (Expectation baseline and monotonicity). Let µt,j := Ept
[vi,j ]. Then

Ft,j(β) = µt,j +
1

β
KL

(
pt ∥ q

(β)
t,j

)
≥ µt,j . (19)

Moreover, β 7→ Ft,j(β) is continuous and strictly increasing unless v·,j is pt-a.s. constant, with

d

dβ
Ft,j(β) =

1

β2
KL

(
q
(β)
t,j ∥ pt

)
≥ 0, Ft,j(β) = µt,j +

β

2
Varpt

(vi,j) +O(β2) (β → 0). (20)

Proof. equation 19 follows by direct algebra using q(β) ∝ p eβv . Differentiate β−1 log
∑

i pie
βvi

to obtain equation 20. The small-β expansion is the second cumulant of vi,j under pt.

Proposition E.4 (Local geometry: gradient, curvature, smoothness). Ft,j(β) is convex and C∞ in
v·,j , with

∇v·,jFt,j(β) = q
(β)
t,j , ∇2

v·,jFt,j(β) = β
(
Diag(q

(β)
t,j )− q

(β)
t,j q

(β)
t,j

⊤)
⪰ 0. (21)

Hence ∥∇Ft,j∥1 = ∥q(β)t,j ∥1 = 1 and ∥∇Ft,j∥2 = ∥q(β)t,j ∥2 ≤ 1. Moreover, Ft,j is β/2-smooth in
ℓ2: ∥∥∇2Ft,j(β)

∥∥
op

= β λmax

(
Diag(q)− qq⊤

)
≤ β/2, (22)

and the bound is tight when q is supported on two coordinates equally, e.g. q = (1/2, 1/2, 0, . . . , 0).

Proof. For equation 21, differentiate equation 16 with respect to v·,j to obtain ∇Ft,j(β) = q
(β)
t,j and

∇2Ft,j(β) = β
(
Diag(q)− qq⊤

)
, where q := q

(β)
t,j . Convexity and smoothness (indeed C∞) follow

from the log-sum-exp structure. The ℓ1- and ℓ2-norm statements follow since q is a probability
vector: ∥q∥1 = 1 and ∥q∥22 =

∑
i q

2
i ≤

∑
i qi = 1.
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For equation 22, write J(q) := Diag(q) − qq⊤. This is the covariance matrix of a one-hot random
vector with class-probabilities q, hence J(q) ⪰ 0. To bound its spectral norm, apply the Gershgorin
disc theorem. Row i has diagonal entry qi(1−qi) and the sum of absolute values of the off-diagonal
entries is

∑
j ̸=i qiqj = qi(1− qi), so every eigenvalue lies in⋃
i

[ qi(1− qi)− qi(1− qi), qi(1− qi) + qi(1− qi) ] =
⋃
i

[ 0, 2qi(1− qi) ].

Therefore λmax

(
J(q)

)
≤ maxi 2qi(1 − qi) ≤ 1/2, with equality attained when q is supported on

two coordinates equally, e.g. q = (1/2, 1/2, 0, . . . , 0) (then J(q) has eigenvalues {0, 1/2, 0, . . . , 0}).
Multiplying by β gives ∥∇2Ft,j(β)∥op = β ∥J(q)∥op ≤ β/2, and the bound is tight in the stated
case.

Proposition E.5 (Range, concentration, and finite-β guarantees). Let i⋆ = argmaxi∈Mt vi,j and
∆t,j := vi⋆,j −maxi̸=i⋆ vi,j ≥ 0. Then for all β > 0,

µt,j ≤ Ft,j(β) ≤ vi⋆,j , 1−q
(β)
t,j (i

⋆) ≤ 1− pt(i
⋆)

pt(i⋆)
e−β∆t,j , vi⋆,j+

1

β
log pt(i

⋆) ≤ Ft,j(β) ≤ vi⋆,j .

(23)
In particular, if ∆t,j > 0 then q

(β)
t,j ⇒ δi⋆ and Ft,j(β) ↑ vi⋆,j exponentially as β → ∞.

Proof. Upper bound: log
∑

i pie
βvi ≤ βmaxi vi. Lower bounds: F = µ+ 1

βKL(p∥q(β)) ≥ µ and∑
i̸=i⋆ pie

βvi ≤ (1− p⋆)eβ(v
⋆−∆) give equation 23.

Proposition E.6 (Mask preservation; shift/scale; prior sensitivity). (i) (Masking) If pt(i) = 0 then
q
(β)
t,j (i) = 0; restricting Mt can only decrease equation 17.

(ii) (Shift/scale) For any c ∈ R and a > 0,
Ft,j(β; v + c) = c+ Ft,j(β; v), Ft,j(β; av) = aFt,j(aβ; v) .

(iii) (Prior sensitivity: probabilities) Viewing Ft,j as a function of p ∈ ∆(Mt),

∇pFt,j =
1

β

eβv·,j∑
r pre

βvr,j
, ∇2

pFt,j = − 1

β

eβv·,j eβv·,j⊤(∑
r pre

βvr,j
)2 ⪯ 0,

so Ft,j is concave in p on the simplex.
(iv) (Prior sensitivity: logits)

• For unnormalized weights si > 0 with wi = log si and F̃(β;w) := 1
β log

∑
i e

wi+βvi,j ,

∇wF̃ =
1

β
q̃, ∇2

wF̃ =
1

β

(
Diag(q̃)− q̃ q̃⊤

)
⪰ 0,

hence F̃ is convex in w.

• For normalized logits b with p = softmax(b), writing J(r) := Diag(r)− rr⊤,

∇bFt,j =
1

β

(
q
(β)
t,j − p

)
, ∇2

bFt,j =
1

β

(
J
(
q
(β)
t,j

)
− J(p)

)
,

which is in general indefinite; thus Ft,j is a difference-of-convex function of b.

Proof. (i) is immediate from equation 16. For (ii), add c inside the exponent or reparameterize
β 7→ aβ to obtain the stated identities. For (iii), F(p) = β−1 log⟨p, eβv⟩ is a log of an affine
function in p, hence concave; the displayed derivatives follow by direct differentiation. For (iv),
both statements follow from standard properties of log-sum-exp: the unnormalized case is convex
in w; composing with softmax yields a DC form with the given gradient and Hessian.

Theorem E.7 (Channel-wise assignment capacity over the prior support). Let D be the number of
channels and a = (a1, . . . , aD) ∈ MD

t . If each channel has a positive margin ∆t,j := vaj ,j −
maxi∈Mt\{aj} vi,j > 0, then there exist finite temperatures {βt,j} such that argmaxi q

(βt,j)
t,j (i) =

aj for all j. Hence the set of achievable channel-index argmax patterns has cardinality |Mt|D (the
natural upper bound). A single attention head, in contrast, yields at most |Mt| patterns (all channels
synchronized on one distribution).
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Proof sketch. Apply Proposition E.5 per channel and choose βt,j to concentrate posterior mass on
aj with any desired margin; counting patterns gives |Mt|D.

Proposition E.8 (Complexity preservation and stable backpropagation). For fixed β, computing
Ft,j(β) requires one masked log-sum-exp over Mt and produces q(β)t,j as the gradient equation 21.
Therefore FEM preserves the asymptotic time complexity of the underlying prior (e.g., O(T 2) or
O(T )) while enabling numerically stable forward/backward passes using standard LSE/softmax
primitives.

Proof sketch. Convexity in q and Slater’s condition yield strong duality for equation 3; KKT gives
the log-linear form q⋆ ∝ pt e

βv with multiplier β⋆. The monotonicity follows from the derivative
d
dβF(β) = β−2KL(q(β)∥pt).

Remark. Lemmas E.1-E.8 establish that FEM is variationally optimal (DV), value-aware with
explicit local geometry, monotone in temperature with variance-controlled small-β behavior, mask-
preserving, concave in the prior p on the simplex, convex in unnormalized log-weights, and DC
in normalized logits, capacity-optimal for channel-wise assignment over the prior support, and
complexity-preserving with stable gradients.

F DETAILS FOR LINEARIZED TEMPERATURE LEARNING

F.1 FIXED TEMPERATURE: DECOMPOSITION AND COST

Lemma F.1. For fixed β > 0, the FEM read satisfies Ft,j(β) = µt,j + β−1KL(pt∥q(β)t,j ), where

µt,j = Ept [vi,j ] and q
(β)
t,j (i) ∝ pt(i)e

βvi,j on Mt. Evaluating Ft,j(β) adds one masked LSE per
channel and preserves the prior’s asymptotic complexity.

Proof. Algebra from q(β) ∝ p eβv yields the identity; cost follows since the support is Mt.

F.2 MONOTONICITY AND HIDDEN TEMPERATURE

Proposition F.2. Let Ft,j(β) = β−1 log
∑

i∈Mt
pt(i)e

βvi,j and ∆t,j(β) = Ft,j(β)−Ft,j(0). Then

F ′
t,j(β) = β−2KL(q

(β)
t,j ∥pt) ≥ 0, with strict positivity unless v·,j is pt-a.s. constant. For any λ ∈

[0, 1], there exists a unique β⋆
t,j(λ) ∈ [0, βmax] such that (1−λ)µt,j+λFt,j(βmax) = Ft,j(β

⋆
t,j(λ)).

Moreover λ 7→ β⋆
t,j(λ) is continuous and strictly increasing.

Proof. Differentiate F to obtain F ′(β) = β−2KL(q(β)∥p). Continuity and strict monotonicity
on [0, βmax] imply the claim by the intermediate value theorem; strict increase follows from strict
positivity of F ′ in the nondegenerate case.

Corollary F.3 (Reparameterization equivalence). For any smooth loss L, optimizing λt,j in
L(F̃t,j(λt,j)) is a strictly monotone reparameterization of optimizing β in L(Ft,j(β)): ∂L/∂λ =
(∂L/∂F )F ′(β⋆) (∂β⋆/∂λ) with F ′(β⋆) > 0.

F.3 KL-CONTROLLED INTERPRETATION OF THE GATE

From Ft,j(β)− µt,j = β−1KL(pt∥q(β)t,j ) and equation 8,

1

β⋆
t,j(λ)

KL
(
pt∥q

(β⋆
t,j(λ))

t,j

)
= λ · 1

βmax
KL

(
pt∥q(βmax)

t,j

)
,

so λ specifies the fraction of the achievable KL improvement realized at step t.
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F.4 ONE-PASS IMPLEMENTATION

Form the augmented value stream v̄i,j = [ vi,j , e
βmaxvi,j ] and compute

∑
i∈Mt

pt(i)v̄i,j =

[µt,j ,
∑

i pt(i)e
βmaxvi,j ] in one pass. Then Fmax

t,j = β−1
max log

(∑
i pt(i)e

βmaxvi,j
)

and equa-
tion 7–equation 9 follow.

F.5 GEOMETRY, STABILITY, AND ADDITIONAL PROPERTIES

For completeness we collect properties proved in Appendix E: (i) DV variational form F(β) =
maxq{Eq[v] − β−1KL(q∥p)} with maximizer q(β) ∝ p eβv; (ii) gradient ∇vF(β) = q(β),

Hessian ∇2
vF(β) = β(Diag(q(β)) − q(β)q(β)

⊤
) and β/2-smoothness; (iii) small-β expansion

F(β) = µ+ β
2Varp(v) +O(β2); (iv) mask preservation; shift/scale laws; concavity in p; convexity

in unnormalized logits; difference-of-convex in normalized logits; (v) complexity preservation and
capacity consequences when β is large.

F.6 COMPLEXITY SUMMARY

LTL requires one expectation and one masked LSE at βmax per channel, both over Mt, thus matching
the prior’s asymptotic complexity (O(T 2) for softmax; O(T ) for kernel/SSM priors) while enabling
dynamic temperature control in a single pass.

G DETAILS FOR TWO-LEVEL GATED FEM

G.1 INNER GATE AS HIDDEN TEMPERATURE: PROPERTIES AND PROOF

Lemma G.1 (Monotonicity and smoothness). Ft,j is continuous on [0,∞), differentiable on (0,∞),
and

d

dβ
Ft,j(β) = β−2 KL

(
q
(β)
t,j ∥ pt

)
≥ 0, (24)

with equality iff v·,j is pt-a.s. constant. Moreover Ft,j is convex and β/2-smooth in v·,j .

Proof. Standard Donsker–Varadhan calculus yields Ft,j(β) = maxq∈∆(Mt){Eq[v·,j ] −
(1/β)KL(q∥pt)}. Envelope differentiation gives equation 24. Convexity/smoothness follow from
the Fisher covariance of q(β)t,j .

Proposition G.2 (Inner gate as hidden-temperature free energy). For each channel j and any λt,j ∈
[0, 1] there exists a unique βhid,t,j ∈ [0, βmax,j ] such that

F̃t,j(λt,j) = β−1
hid,t,j log

∑
i

pt(i) exp
(
βhid,t,j vi,j

)
.

Moreover, λt,j 7→ βhid,t,j is strictly increasing unless v·,j is pt-a.s. constant.

Proof. Let ∆t,j(β) = Ft,j(β)− Ft,j(0). By Lemma G.1, ∆t,j is continuous, strictly increasing on
[0, βmax,j ] unless v·,j is constant. For any λt,j ∈ [0, 1], define

βhid,t,j = ∆−1
t,j

(
λt,j∆t,j(βmax,j)

)
∈ [0, βmax,j ],

which is unique by strict monotonicity. Substituting yields F̃t,j(λt,j) = Ft,j(βhid,t,j) as claimed.

Reverse-KL improvement over the mean. For any β > 0,

Ft,j(β) = µt,j +
1

β
KL

(
pt∥q(β)t,j

)
, (25)

so F̃t,j(λ) improves over µt,j by a controlled reverse-KL term at the hidden temperature. This
explains the mean→soft-max interpolation effect of the inner gate.
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G.2 COMPLEXITY, SINGLE-PASS COMPUTATION, AND STREAMING

Proposition G.3 (Complexity preservation). Computing equation 10–equation 11 requires one ex-
pectation and one masked log-sum-exp at βmax per channel, hence matches the asymptotic time
complexity of the prior pt (e.g., O(T 2) for softmax; O(T ) for kernel/SSM priors).

Proof. Compute
∑

i pt(i) [vi, exp(βmax⊙vi) ] once, then split to obtain µt and Fmax
t . This re-

quires one expectation and one masked log-sum-exp per channel on the prior support Mt, matching
the prior’s asymptotic time (softmax O(T 2); kernel/SSM O(T )). The outer gate gt is a pointwise
modulation.

Streaming compatibility. For associative priors (kernel/SSM), the normalized read is computed
by the same scan used for pt; concatenating a constant “1” channel yields the normalizer and nu-
merator in one pass. The LSE branch uses the same support Mt and thus preserves streaming.

Numerical stability. We use standard LSE stabilization per channel: subtract maxi(βmax,jvi,j)
inside the exponential and add it back after the logarithm. Gradient clipping for βmax prevents
overflow when tasks push toward hard selection.

G.3 CONTAINMENT OF MIXER FAMILIES

Proposition G.4 (Formal containment). (i) λt = 0 gives ot =
∑

i pt(i) (gt⊙vi), matching per-
channel linear reweighting. (ii) 0<λt < 1 yields a monotone, convex aggregator in each channel
that interpolates between µt,j and maxi vi,j as λt,j increases. (iii) Allowing λt, gt to depend on
(ctx, pt,µt,F

max
t ) realizes token-separable couplings of the form

∑
i f(αt,i,vi) and adds cross-

token competition through the log-sum-exp term.

Proof. Direct substitution of the choices for λt and identification of limits β → 0 and β → ∞ per
channel.

G.4 CAPACITY AND HARD-SELECTION LIMITS

Proposition G.5 (Capacity and limits on the prior support). With λt≈1 and sufficiently large βmax,
the per-channel posterior concentrates on its own arg-max over the prior support Mt = {i : pt(i)>
0}, so the achievable channel-index assignment capacity attains |Mt|D. In the limit λt = 0, FEM
reduces to the expectation baseline (the original read of the selection prior).

Proof. Fix channel j and let ∆t,j = mini̸=i⋆(vi⋆,j−vi,j) > 0 be the margin at the arg-max index i⋆.
For any β ≥ β0(∆t,j), the posterior q(β)t,j places at least 1− exp(−β∆t,j) mass on i⋆, and Ft,j(β) ↑
vi⋆,j . Across channels, with λt ≈ 1 and sufficiently large βmax, the joint posterior concentrates
independently per channel over Mt, achieving |Mt|D distinct index assignments. Setting λt = 0
recovers µt.

G.5 GRADIENTS AND CURVATURE

For channel j,
∂Ft,j(β)

∂vi,j
= q

(β)
t,j (i),

∂2Ft,j(β)

∂vi,j∂vr,j
= β

(
q
(β)
t,j (i)1{i = r} − q

(β)
t,j (i)q

(β)
t,j (r)

)
.

Thus gradients are the posterior weights and the Hessian is a Fisher covariance scaled by β, giving
stable, value-aware competition. Backprop through equation 10 is a convex combination of the mean
and LSE branches with coefficients 1− λt and λt.

G.6 INVARIANCES AND SENSITIVITY TO PRIORS

For any constants aj > 0 and bj , Ft,j(β; ajvi,j + bj) = ajFt,j(ajβ; vi,j) + bj . Multiplying prior
probabilities by a positive scalar and renormalizing leaves Ft,j unchanged; reweighting pt within
Mt shifts the posterior via q

(β)
t,j ∝ pt exp(βv·,j), which is exploited by the outer and inner gates.
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H PARAMETERIZATIONS OF THE PRIOR SELECTION pt IN FEM

Unified interface. At step t, let the accessible index set be It = {1, . . . , t} and let a nonnegative
score st : It → R≥0 define the prior selection by

pt(i) =
st(i)∑
r≤t st(r)

, i ≤ t, (26)

with st(i) = 0 for i > t (causal mask). FEM then optimizes, per channel j, the DV free energy

Ft,j(β) = β−1 log
∑
i≤t

pt(i) e
βvi,j , q

∗(j)
t,β (i) ∝ pt(i) e

βvi,j .

Below we specify st (hence pt) for each prior family, along with the streaming recurrences and time
complexity. Throughout, Mt = {i ≤ t : st(i) > 0} is the support carried into FEM (we enforce
qt ≪ pt).

H.1 SOFTMAX-ATTENTION PRIOR

Scores and normalization. Given masked scores ℓt(i) = ⟨qt, ki⟩+ bt,i with ℓt(i) = −∞ for i > t,

st(i) = exp{ℓt(i)} , pt(i) =
exp{ℓt(i)}∑
r≤t exp{ℓt(r)}

. (27)

This is the standard row-softmax over causal scores.

Complexity. Matrix form A = softmaxrow(QK⊤ + B + M△) yields O(T 2) time and O(T 2)
memory (or O(T 2) time, O(T ) KV-cache in the autoregressive setting).

H.2 GATED LINEAR ATTENTION (GLA) PRIOR

Positional encoding and positivity. We inject relative position with RoPE, then map queries/keys
to the nonnegative orthant:

q̃t := ReLU
(
RoPE(qt)

)
+ ε ∈ Rm

≥0, k̃i := ReLU
(
RoPE(ki)

)
+ ε ∈ Rm

≥0,

where ε > 0 is a small constant for numerical stability.

Decay gating. Let gτ ≤0 be a learned (scalar / per-head / per-channel) gate and define the cumulative
envelope

Dt := exp
( t∑

τ=1

gτ

)
(clipped in practice).

The causal time-decay factor between index i and step t is Kt,i = DtD
−1
i = exp(

∑t
τ=i+1 gτ ) ∈

(0, 1].

Scores and normalization. The nonnegative score and prior are

st(i) = Kt,i

〈
q̃t, k̃i

〉
1{i ≤ t}, pt(i) =

st(i)

Zt
, Zt =

∑
r≤t

st(r). (28)

Equivalently, with an associative scan form,

Zt =
〈
Dt q̃t,

∑
r≤t

D−1
r k̃r︸ ︷︷ ︸

Bt

〉
,

∑
i≤t

st(i) vi =
〈
Dt q̃t,

∑
r≤t

D−1
r

(
k̃r⊗ vr

)
︸ ︷︷ ︸

At

〉
. (29)

Hence the baseline normalized read is

µt =
⟨Dtq̃t, At⟩
⟨Dtq̃t, Bt⟩

.
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Streaming recurrences. Both states update in O(1) per step:

Bt = Bt−1 +D−1
t k̃t, At = At−1 +D−1

t

(
k̃t⊗ vt

)
.

A one-pass implementation appends a constant channel to values: v̄t = [vt; 1], Āt =∑
r≤t D

−1
r (k̃r⊗ v̄r); then [num, den] = ⟨Dtq̃t, Āt⟩ and µt = num/den.

Complexity. GLA preserves the O(T ) streaming complexity (per head), with the same
associative-scan cost as standard linear attention. FEM operates over the same support Mt = {i :
pt(i) > 0} and adds one masked log-sum-exp per channel (at fixed or LTL-controlled temperature).

H.3 LINEAR RNN-STYLE PRIORS

(LRNN-softmax) AFT-style normalized exponential weights. Let ki ∈ Rm be per-step logits
and define

st(i) = exp{ki}1{i ≤ t}, Zt =
∑
r≤t

exp{kr} . (30)

Streaming recurrence:

St =St−1 + ektvt, Zt = Zt−1 + ekt , ⇒ Ept [vi] = St/Zt.

(We stabilize with ki −maxr≤t kr in practice.)

(LRNN-decay) Input-conditioned exponential decay. Let gτ ∈ R≤0 be a learned generator and
define

st(i) = exp
( t∑

τ=i+1

gτ

)
1{i ≤ t}. (31)

With Γt = exp(
∑

τ≤t gτ ) we have st(i) = Γt Γ
−1
i and the streaming form

Ct = Ct−1 + Γ−1
t vt,

∑
i≤t

st(i)vi = Γt Ct, Zt = Γt

∑
i≤t

Γ−1
i .

Thus numerator and denominator share the envelope Γt, preserving O(T ) cost. (Conceptually,
LRNN-decay recovers the decay portion of GLA without the dot-product features.)

Complexity. Both LRNN-softmax and LRNN-decay are O(T ) with O(1) updates; FEM adds one
masked log-sum-exp per channel.

H.4 SSM / MAMBA-STYLE PRIORS

Positive impulse-response SSM. Consider a causal linear state-space operator with nonnegative
impulse Hθ(τ) ≥ 0:

(Sθu)t =
∑
i≤t

Hθ(t− i)ui, Hθ(τ) = C∆A
τ−1
∆ B∆1{τ ≥ 1}+D1{τ = 0},

where (A∆, B∆, C∆, D) are stable, nonnegative discretizations.

Scores and normalization. Set

st(i) = Hθ(t− i)1{i ≤ t}, Zt =
∑
r≤t

Hθ(t− r) = (Sθ1)t. (32)

Both numerator and denominator come from the same scan (once with ui = vi, once with ui ≡ 1),
so the O(T ) streaming complexity is preserved. In practice we parameterize to ensure Hθ(τ) ≥ 0
(e.g., softplus for (∆, B,C,D) and negative-softplus for the diagonal generator).
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H.5 LOCAL CONDITIONING OF THE PRIOR

Let ct ∈ RHc be the output of a learnable, O(T ) time-decay conditioner (low-rank causal convolu-
tion). We modulate the prior parameters and value-path gates by

θ̃t = θt+G(p)(ct), p̃t(·) = pt(· ; θ̃t), ṽi = vi⊙(1+η
(v)
t ), λ̃t = λt⊙(1+η

(λ)
t ), g̃t = gt⊙(1+η

(g)
t ),

where G(p) and η(·) are small MLPs. This preserves the streaming/parallel cost of the chosen prior.

H.6 SUPPORT, MASKING, AND COMPLEXITY SUMMARY

We always enforce st(i) = 0 for i > t and for hard-masked indices, hence Mt = {i ≤ t : st(i) >
0}. FEM’s per-channel variational step operates on Mt and adds exactly one masked log-sum-exp
per channel (at a fixed or LTL-controlled temperature), so the asymptotic time complexity matches
that of the prior: softmax O(T 2), GLA/LRNN/SSM O(T ).

Prior family Scores st(i) Complexity (per head)

Softmax attention exp{⟨qt, ki⟩+ bt,i} O(T 2d)

Gated linear attention (GLA) e
∑t

τ=i+1 gτ ⟨q̃t, k̃i⟩ O(Td)
LRNN-softmax (AFT) exp{ki} O(Td)

LRNN-decay exp(
∑t

τ=i+1 gτ ), gτ ≤ 0 O(Td)
SSM/Mamba Hθ(t− i), Hθ(·) ≥ 0 O(Td)

Remark (RoPE & positivity mapping). Any invertible positional transform (q, k) 7→ (Tq, Tk)
can precede score evaluation. In our GLA prior we use RoPE followed by a ReLU+ε mapping on
both queries and keys to guarantee nonnegative feature vectors (q̃t, k̃i) ∈ Rm

≥0 before decay gating
and normalization.

H.7 WIDTH AND PARAMETER BUDGETING FOR THE PRIOR

Let the input/value width be D and let FEM use a working width d on the value path. We allocate
a parameter ratio r > 0 for the prior parameterization (queries/keys and decay gate in GLA), scaled
with d. Ignoring biases and norms, the per-head linear parameters decompose into five projections:

D × d︸ ︷︷ ︸
value

+ D × d︸ ︷︷ ︸
outer gate g

+ D × d︸ ︷︷ ︸
temperature λ

+ d×D︸ ︷︷ ︸
output

+ D × (rd)︸ ︷︷ ︸
prior (Q/K + decay)

= 4Dd + Ddr.

The prior block D × (rd) is split among q̃t, k̃i projections and the decay gate. To keep the total
parameter count equal to classic attention (4D2), two convenient choices are

(i) d = D
2 , r = 4 or (ii) d = 2D

3 , r = 2,

since 4Dd + Ddr = 4D2 in both cases. In (i), the prior (Q/K) runs at D-dim width—identical to
standard attention—while the value path uses d = D

2 . In (ii), the value width increases to d = 2D
3

with a balanced prior split (e.g., dim(Q) = dim(K) = d
2 ), and the remaining budget supports the

decay gate. Both settings preserve the asymptotic time complexity of the chosen prior (softmax
O(T 2); GLA/LRNN/SSM O(T )).

I LOW-RANK CONVOLUTION: TIME-DECAY CONDITIONER (TDC)

I.1 DEFINITION AND STREAMING FORM

Given token features x1:T ∈ RT×D, let x̂t = LN(xt) and choose a hidden width Hc ≪ D. Define

st = softplus(x̂tWf ) ∈ RHc , ut = x̂tWx ∈ RHc , at = softplus(x̂tWs) ∈ RHc ,
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with Wf ,Wx,Ws ∈ RD×Hc . The positive envelope is

ft = exp
(
−

t∑
τ=1

sτ

)
∈ RHc (element-wise).

The TDC output is the causal, input-conditioned separable convolution

h̃t = ft ⊙
t∑

i=1

(
ui ⊘ fi

)
=

t∑
i=1

exp
(
−

t∑
τ=i+1

sτ

)
︸ ︷︷ ︸

Kt,i

⊙ui ∈ RHc . (33)

A calibrated shortcut and projection produce the conditioning features:

ht = SiLU
(
norm(at)

)
⊙ LN(h̃t), ct = htWc ∈ RDc ,

where Wc ∈ RHc×Dc and norm(·) rescales to unit ℓ2 norm.

Proposition I.1 (Rank-1-in-time kernel and O(1) updates). The kernel in equation 33 factors as
Kt,i = ft ⊙ (fi)

−1, i.e., rank-1 in time for each channel. Hence the convolution admits O(1)
streaming updates:

Ct = Ct−1 + ut ⊘ ft, h̃t = ft ⊙Ct.

The per-sequence cost is O(THc) and the per-step memory is O(Hc).

Proof. By definition, Kt,i = exp
(
−

∑t
τ=i+1 sτ

)
= exp

(
−

∑
τ≤t sτ

)
⊙ exp

(∑
τ≤i sτ

)
=

ft ⊙ (fi)
−1. Substituting into equation 33 yields the stated streaming form.

Stability. The softplus parameterization ensures st ≥ 0, hence ft ∈ (0, 1] element-wise; this
prevents exploding envelopes and ensures well-conditioned division in ui/fi with standard ε stabi-
lization.

I.2 COUPLING TDC TO FEM

We use disjoint slices of ct to modulate (i) the parameterization of the prior selection pt(·; θt) and
(ii) FEM’s value-path gates:

Prior modulation: θ̃t = θt + ∆θt, ∆θt = G(p)(ct), p̃t(i) := pt
(
i; θ̃t

)
, (34a)

Value gate: ṽi = vi ⊙
(
1 + η

(v)
t

)
, η

(v)
t ∈ [η(v)] ⊂ ct, (34b)

Outer gate: g̃t = gt ⊙
(
1 + η

(g)
t

)
, η

(g)
t ∈ [η(g)] ⊂ ct, (34c)

Temperature gate: λ̃t = λt ⊙
(
1 + η

(λ)
t

)
, η

(λ)
t ∈ [η(λ)] ⊂ ct. (34d)

FEM then applies equation 11 with (pt,vi, gt,λt) replaced by (p̃t, ṽi, g̃t, λ̃t), yielding
position-aware, locally conditioned selection without changing the prior’s asymptotic complexity.

I.3 COMPLEXITY AND COMPATIBILITY

Proposition I.2 (Complexity preservation). TDC adds O(THc) time and O(Hc) memory per layer
and does not alter the asymptotic complexity of FEM’s read, which remains O(T 2) for softmax
priors and O(T ) for kernel/SSM priors. The per-step coupling in equation 34 is pointwise in t and
thus streaming-compatible.

Relation to recent convolutional/SSM designs. TDC follows the spirit of low-rank,
input-conditioned time-decay filters used in SSM/DeltaNet-style models and the local convolutional
augmentations commonly paired with Mamba-like architectures. Our use is FiLM-like: TDC learns
a compact context ct that modulates both the selection prior and FEM gates, providing local adap-
tivity while preserving streaming costs.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Implementation notes. We apply standard LSE stabilization per channel in FEM’s log-sum-exp
branch, and clamp the envelope by computing ft = exp(−cumsum(st)) in log-space with an ε
floor. The projections G(p), [η(v)], [η(g)], [η(λ)] are small MLPs with per-channel outputs; their
widths are tuned so that Hc ≪ D.

J FEM AS A UNIVERSAL FAST-WEIGHT PROGRAMMER

Putting the pieces together, the final Free Energy Mixer realizes a unified, parallel fast-weight pro-
gram:

ot = g̃t ⊙
[(
1− λ̃t

)
⊙ Ei∼p̃t

[ṽi]︸ ︷︷ ︸
mean (high-entropy)

+ λ̃t ⊙ β−1
max ⊙ log

∑
i≤t

p̃t(i) exp
(
βmax ⊙ ṽi

)
︸ ︷︷ ︸

max free energy (low-entropy)

]
, (35)

where the prior p̃t and the value-path gates (ṽi, g̃t, λ̃t) are locally conditioned by TDC as in equa-
tion 34. Equation equation 35 shows that the mixer is simultaneously:

• a temporal mixer (log-sum-exp across indices, with causal masking and per-channel competi-
tion);

• an entropy mixer (inner temperature via λ̃t; mean↔soft-max interpolation);

• a local-feature mixer (position-aware modulation injected by TDC);

• a dual-gated mixer (inner temperature gate over indices i; outer amplitude gate over timesteps
t).

Crucially, the assignment capacity over the prior support attains the upper bound |Mt|D (per-channel
posterior selection), the variational objective is solved exactly (DV optimality), and the overall time
complexity matches that of the chosen prior (softmax O(T 2), kernel/SSM O(T )), up to the O(THc)
convolution overhead. FEM thus serves as a broadly applicable, universal fast-weight programmer
that upgrades expectation-based reads to value-aware, memory processing without sacrificing paral-
lel efficiency.

J.1 RELATION TO PRIOR POOLING AND SELECTION METHODS

Our Free Energy Mixer (FEM) is related to but distinct from several existing approaches:

• Log-Sum-Exp (LSE) pooling. FEM is not simply a generalized mean that interpolates
between average and max pooling. Instead, from a Donsker–Varadhan variational view, it
uses values to tilt an arbitrary prior distribution pt. This yields per-channel, value-aware
posteriors rather than only adjusting the softness of pooling.

• Entmax / Sparsemax. These operate directly on the scoring distribution over (q, k),
changing how probability mass is allocated. FEM instead treats this distribution as a prior
and introduces cross-token competition through the values. The two directions are comple-
mentary and could be combined.

• Gumbel-Softmax / Top-k. Such methods emphasize hard selection, sampling, or ranking,
often requiring non-parallel sampling or offline sorting. In contrast, FEM remains fully dif-
ferentiable, parallel in one pass, and preserves the asymptotic complexity of the underlying
prior.

K ADDITIONAL IMPLEMENTATION DETAILS

Our detailed experimental setup is available in the linked code repository. All language model-
ing experiments, including both training and inference, were conducted on 8× Nvidia H100 GPUs,
while all non-language modeling tasks were trained on 8× Nvidia L40S GPUs. We use 42 as the
random seed. The training and inference precision is bfloat16. For each task, we replaced the
standard Transformer block with an FEM Transformer block, substituting the attention layer with
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FEM-{SM, GLA, Mamba, AFT}, while keeping all other settings unchanged to ensure a fully con-
sistent experimental environment. Parameter budgeting was carefully applied to keep overall model
size and architecture comparable to the baselines. The additional low-rank convolution used in our
parameterization introduces less than 1% extra parameters (with Hc = d/16).

special configurations required by the experimental setup when specified. Otherwise, all linear
projections are randomly initialized from a centered normal distribution with a standard deviation
of 0.02. All biases and embeddings are initialized to zero. For the maximum inverse temperature,
we initialize it to zero and then apply the parameterization softplus(x+1.8) to ensure that its initial
value is around 1 and remains strictly positive throughout training.

L ADDITIONAL DATASET DESCRIPTION

Language Model Evaluation Setup. We adopt the Open LLM Leaderboard (OLL) protocol and
a complementary suite of general-ability tasks. The Open LLM Leaderboard core covers MMLU-
Pro (5-shot, accuracy), GPQA (0-shot, normalized accuracy), BBH (3-shot, normalized accuracy),
MATH (4-shot, exact match), and MuSR (0-shot, normalized accuracy), plus IFEval for instruction
following, where we report strict pass rates for instruction- and prompt-level constraints (Wang
et al., 2024; Rein et al., 2023; Suzgun et al., 2022; Hendrycks et al., 2021; Sprague et al., 2023;
Zhou et al., 2023). Following OLL, we use the normalized-accuracy metric accn for multiple-
choice tasks, which subtracts the random-guess baseline and rescales scores to a common range for
fair cross-task comparison (Hugging Face, 2025). To broaden coverage, we also evaluate on widely
used general-ability benchmarks: ARC (Challenge/Easy), HellaSwag, PIQA, BoolQ, WinoGrande,
COPA, OpenBookQA, and SciQ, reporting accuracy or accn as standard; unless noted, these are
evaluated in 0-shot (Clark et al., 2018; Zellers et al., 2019; Bisk et al., 2019; Clark et al., 2019;
Sakaguchi et al., 2020; Roemmele et al., 2011; Welbl et al., 2017). We perform the evaluations with
lm-evaluation-harness (Gao et al., 2021).

MAD We assess our architecture using the Mechanistic Architecture Design (MAD) framework,
a recently introduced methodology for cost-efficient evaluation of deep learning models Poli et al.
(2024). MAD provides a set of capability-focused benchmarks—including in-context recall, fuzzy
recall, selective copying, and compression—that probe core sequence modeling abilities. It has been
validated across more than 500 language models ranging from 70M to 7B parameters, showing a
strong correlation between performance on these synthetic tasks and compute-optimal perplexity at
scale. By leveraging MAD as a reliable predictor of large-scale behavior, we can identify architec-
tural advantages without relying on the prohibitive compute costs of full-scale training.

Time Series Forecasting We evaluate our module on several standard time series forecasting
benchmarks, following the setup of Lu & Yang (2025). (1) Weather (Wu et al., 2021)3: 21 me-
teorological variables (e.g., temperature, humidity) collected every 10 minutes in 2020 from a Ger-
man weather station. (2) Solar (Lai et al., 2018)4: Solar power output recorded every 10 minutes
in 2006 from 137 U.S. photovoltaic plants. (3) ETT (Zhou et al., 2021)5: Transformer load and
temperature data from July 2016 to July 2018, sampled at 15-minute (ETTm1/ETTm2) and hourly
(ETTh1/ETTh2) intervals, covering 7 key operational features.

3https://www.bgc-jena.mpg.de/wetter/
4http://www.nrel.gov/grid/solar-power-data.html
5https://github.com/zhouhaoyi/ETDataset
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