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ABSTRACT

Standard attention stores keys/values losslessly but reads them via a per-head con-
vex average, blocking channel-wise selection. We propose the Free Energy Mixer
(FEM): a free-energy (log-sum-exp) read that applies a value-driven, per-channel
log-linear tilt to a fast prior (e.g., from queries/keys in standard attention) over
indices. Unlike methods that attempt to improve and enrich the (g, k) scoring
distribution, FEM treats it as a prior and yields a value-aware posterior read at
unchanged complexity, smoothly moving from averaging to per-channel selection
as the learnable inverse temperature increases, while still preserving parallelism
and the original asymptotic complexity (O(7?) for softmax; O(T') for lineariz-
able variants). We instantiate a two-level gated FEM that is plug-and-play with
standard and linear attention, linear RNNs and SSMs. It consistently outperforms
strong baselines on NLP, vision, and time-series at matched parameter budgets.
The code implementation is available at this link.

1 INTRODUCTION

Transformers, powered by attention mechanisms, have become the default backbone for sequence
modeling across language, vision, speech, and decision making (Vaswani, 2017; Devlin et al., 2019;
Radford, 2018} Brown et al., 2020; Dosovitskiy et al., [2020; Dong et al., [2018]; |Chen et al., 2021}
Touvron et al.l 2023)). Their success is often linked to selective access to an ever-growing key-value
cache while retaining parallel training and inference. In large language models, this selective abil-
ity, composed across multiple attention layers and residual pathways, supports long-range memory
retrieval and the algorithmic behaviors associated with in-context learning (for example induction
heads and pattern completion), as shown by recent empirical and mechanistic studies (Min et al.,
2022; [Wei et al., 2023} Xie et al., [2022; Zhang et al., |2023}; (Garg et al.| 2022} |Akytirek et al.| 2023}
Li et al.} 2023 Dai et al., [2023}; |Bai et al.} 2023} |Olsson et al., [2022; |[Elhage et al., 2021).

Causal softmax attention combines strong selectivity with parallel efficiency: at each step it forms
a distribution over past indices and mixes their values, while all steps can be computed in parallel.
Given (Q, K, V) € RT*? with rows q;, k;, v;, define masked scores s; ; = q; k;/\/d for i <t and
—o0 otherwise, and set a;,. = softmax(s;.) € A'~!, where A'~! denotes the probability simplex
over {1,...,t} . The step-t read is 0y = Y ., o ; v, 0; € conv{vy,...,v;}, and stacking all ¢
yields O = AV with A;; = oy ;, 0 a single matrix multiply produces all outputs.

The convex-mixture view explains efficiency: outputs are probability-weighted averages of the
shared value bank, computed in one matrix multiply. Yet this also reveals a lossless-storage
versus lossy-processing dilemma (Fig. [Th). The KV-cache stores full context, but the read is
lossy: each head applies the same weights to all coordinates of v;, so o, = ZKt oy jv; lies in
conv{vy, ..., v} and all channels are synchronized. As a result, even simple per-channel indexing,
such as s = (vi;1,-.-,Vip,p) (€.g., coordinate-wise argmax), cannot be represented unless all
chosen indices coincide. Adding more heads only creates a few synchronized groups, and deeper
stacks cannot recover per-channel index identity once the first convex mixing has occurred. This
limitation hinders Transformers in long-range modeling with non-sequential or irregular timestep
indexing, and in tasks where channel-wise structure is critical, such as multivariate time series mod-
eling (Tay et al.l 2020; Zeng et al.,[2023} |Nie et al.,2022; Liu et al., [2024; |Lu et al., [2025)).

Most recent advances in attention aim to improve expressivity and efficiency, typically by designing
richer selective distributions but still reading values through a token-separable linear combination.
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Figure 1: (a) Classic attention stores past values losslessly but reads them as a single convex com-
bination, so channel-wise indexing (e.g., per-channel argmax) is not representable. (b) Free Energy
Mixer (FEM) treats selection as a DV free-energy problem: values tilt the prior to a value-aware
posterior with a learnable per-channel temperature, enabling low-entropy (point-like) posteriors and
channel-wise selection while preserving the prior’s time complexity. (¢) Common fixes (more heads,
deeper stacks, separable mixers, and per-channel scoring) either keep channels synchronized or raise
cost / rely on fixed-state storage; none close the lossy-memory gap that FEM addresses.

These methods include sparsity (Beltagy et al., 2020; |Child et al.l [2019; [Zaheer et al., 2020)), low-
rank projections (Wang et al.,[2020; |Xiong et al.,[2021]), and kernelizable variants with normalization
or gating (Katharopoulos et al.,[2020; Choromanski et al.,|2021; Hua et al.||2022; Yang et al.|[2024b;
Qin et al.|[2022ab). Efficiency-oriented work accelerates via factorized implementations (Dao et al.,
2022} [Dao, 2023) or replaces the cache with streaming SSM and RNN models of fixed size (Gu &
Dao, 2023} [Sun et al.,|2023)). Across these lines, computation is faster or the distribution richer, but
the read remains a linear mix, so channels share weights, and even simple per-channel indexing (e.g.,
argmax) cannot be realized in one step. Some recent works explore more complex combinations
(e.g., nonlinear mixing such as log-sum-exp in LASER attention, or hard/top-k selection (Gupta
et al.| [2021; [Duvvuri & Dhillon, [2025; [Hashemi et al.| [2025)), §|]';f|), yet these mainly target training
stability or accuracy in specific cases and do not address the lossy processing limitation.

Motivated by this gap, we propose the Free Energy Mixer (FEM), which regards lossless processing
as the optimal interaction between a selection distribution and stored values: for each channel,
choose an index distribution that maximizes utility under an information budget. FEM removes the
linear read bottleneck and enables per-channel, context-dependent selection from the memory, while
keeping causal parallelism and the time complexity of the underlying mechanism. When channel
selection is not needed, FEM reduces to the standard expectation; when it is, different channels can
focus on different past indices in the same step. FEM consists of four components: temperature
gating (T), LSE mixing (L), outer gating (G), and low-rank convolution (C), described in §2.3]

Contributions. (1) We identify a lossless-memory processing gap in attention: per-head convex
mixing cannot realize channel-wise selection from the lossless KV-cache. (2) We propose FEM,
which closes this gap by casting the read as a variational free-energy optimization that, per chan-
nel, selects an index distribution under an information budget, enabling value-aware channel-wise
selection. (3) FEM is agnostic to how the selection distribution is formed (softmax, kernel/low-rank
attention, linear RNNs, SSMs) and preserves the corresponding time complexity. (4) On NLP, vi-
sion, and time-series tasks, FEM consistently improves strong baselines at matched parameter sizes.

2 METHODOLOGY

2.1 PRELIMINARIES: SELECTION DISTRIBUTIONS

To analyze the storage-processing gap, we introduce the following notion of a selection distribu-
tion. At step ¢, we formalize memory selection over past indices Z; = {1,...,t} by a probability
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vector p; € A'~! with support My = {i € Z; : p;(i) > 0},

pe(7) >0, S ipeli) =1 (1)

Hard masks such as local window can be encoded by restricting M; . Given values v; € R, the
per-step readout is the expectation

or = St pi(i)v; = Eiop[vi] € conv{vy,..., v} 2

Causal softmax self-attention is the case where p; is a masked row-softmax over logits g, k;/V/d;
linear attention arises when p; is a normalized nonnegative kernel, as detailed in

Lossless storage vs. lossy processing. Unlike RNNs, which compress history into a fixed-size state,
softmax attention stores the full KV-cache {(k;, v;)};<; without compression (lossless storage), but
the read equation[2]applies one weight vector per head to all coordinates, so outputs lie in a per-head
convex hull. This is potentially lossy when different channels should retrieve different indices in the
same step. To state the target capability we define the finest-granularity retrieval:

Definition 2.1 (Channel-wise selector). A channel-wise selector at time ¢ is any vector s} =
(Vig 15+, 0ip,p) With i; € Z; allowed to differ across j € [D].

Lemma 2.2. Let m; = (max;<¢ v; 1, ..., MaX;<¢ v; p). If my € conv{vi,..., v}, then a single
index simultaneously attains all coordinate maxima. Hence if the arg-max indices differ across
coordinates, my ¢ conv{vy,...,v}.

Corollary 2.3. A per-head convex read ), p(i)v; cannot realize a generic channel-wise selector
with at least two coordinates selecting different indices.

This geometric limitation above motivates our method. We can see that a single head applies one se-
lection distribution to all channels at step ¢, synchronizing channel-wise index choices; with [ heads
the number of realizable head-level arg-max patterns is at most ¢/, far below the ¢ patterns needed
for lossless per-channel selection when H < D. This gap motivates replacing the expectation read
equation 2| with the free-energy read in Section Proofs of Lemma and Corollary the t7
capacity counting are deferred to Appendix

2.2  WHY STANDARD REMEDIES FAIL: TOWARD A FAITHFUL, LOSSLESS READ

We revisit common extensions around attention and explain why they do not close the channel-wise
lossless-selection gap, as shown in Fig. [Ic. Full details and proofs are in Appendix [C}

(1) More heads. Heads provide H selection distributions per layer but synchronize channels within
each head. Hence the step-t head-level argmax capacity is at most ¢, far below ¢ when H < D.

Lemma 2.4. Let agf) € A1 be the distribution of head h € [H]. Across contexts, realized
head-level argmax assignments are at most t*, and all coordinates controlled by head h share ozgl,).
Increasing H reduces the per-head width d;, = D/H, tightening the low-rank bottleneck on the
value path; as H approaches D, the cache become well-approximated by a finite-state linearization,
effectively breaking the lossless-memory advantage. See Appendix [C.1|for details and analysis.

(2) More depth. After a first per-head convex mixing acts at step ¢, per-channel index identities are
no longer available unless a fresh, independent selection acts before that first mixing.

Lemma 2.5. The map {v;}i<¢ — Y, 0t ;0; is row-stochastic with image in conv{v., ..., v:}. Any
channel-wise selector outside this hull cannot be realized at step t by composing coordinate-wise
maps and later attentions that only access already mixed tokens.

Proposition 2.6 (Selection budget). With L attention-MLP blocks and H heads per block, at most
H L disjoint channel groups receive independent first-mixing distributions by step t. A necessary
condition for D independent per-channel selections at step t is HL > D (which is not practical).

(3) Per-dimension queries/keys. Giving each coordinate its own scoring subspace raises capac-
ity toward ¢ but raises score parameters and compute from O(d?) to ©(Dd) per layer, typically
harming value bandwidth or MLP width under fixed budgets.

(4) Richer in-head mixers. The progressive family below still keeps mixing token-separable:

or =3,V = (B OV) = D, 0(BOv) = Y. flaw, ),
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Figure 2: Overview of the Two-Level Gated Free Energy Mixer. (a) Lightweight linear & low-rank
local convolution for local conditioning. (b) Prior selection: softmax attention uses a probability
normalizer, while linear RNN/SSM use an operator-induced normalizer. (c) FEM integrated into a
Pre-Norm Transformer block. (d) Final architecture: compute mean y; and max-temperature branch
Fya* with inner gate \; interpolating and outer gate g, scaling. (e) Free-energy curve: improvement
over ju; equals KL(p;||¢"?))/B. (f) Efficient implementation: one mixing with p; yields both E,, [v]
and B, log E,, [e#mexV], then gating produces o;.

Proposition 2.7 (Token-separable mixers are convexly constrained). Linear and coordinate-wise
gated variants lie in a convex hull of transformed values; even with a pointwise nonlinearity inside
the sum, channel-wise selection of the original coordinates is not realizable in general. For general
token-separable f, per-channel argmax is impossible in general. Additionally, adding per-channel
cross-token competition in f may break O(T)/O(T?) parallelism. Details in Appendix

(5) Linear RNNs/SSMs. They offer rich dimension interactions but store history in a fixed-size
state, cannot support arbitrary index retrieval at large horizons without lossless storage; see § [C.5}

Takeaway and connections. Prior remedies fall into three buckets: (a) increasing assignment
capacity at substantial cost (e.g., per-feature score-space inflation to obtain o ; ), (b) keeping a
token-separable convex read (e.g., in-head pointwise gates), or (c) relying on fixed-state storage
(e.g., linear RNNs/SSMs). None provides per-channel, value-aware cross-token competition before
the first mixing while preserving the time complexity. In particular, pushing capacity from ¢ to-
ward P via per-feature inflation leaves the read token-separable, so the same-step lossless-selection
gap persists (Lemma [2.3] Proposition 2.7); likewise, simply scaling heads/depth or adding in-head
gates cannot recover channel-wise index identity once the first convex mix has acted. These gaps
motivate a single, stronger mixer that performs value-aware competition without changing asymp-
totic cost: our FEM via a variational free-energy read. See Appendix [C.6]for a mapping of existing
designs and Appendix [C.7]for more discussion.

2.3 FREE ENERGY MIXER: VALUE-AWARE POSTERIOR SELECTION

Motivation and objective. Classic attention performs a per-head convex read and cannot real-
ize same-step channel-wise selectors in general (cf. Lemma [2.2] Corollary 2.3). We therefore cast
channel-wise retrieval as an information-constrained selection problem: at step ¢, a fast, information-
sparse prior p; (from queries/keys or an operator-induced normalizer) proposes indices on the
masked support My, while values {v;} supply evidenceﬂ For each channel j we choose ¢ € A(M;)

'Somewhat counterintuitively, we treat selection as prior and values as evidence because evidence requires
log-exp processing while the prior does not; this preserves the time complexity of the selection mechanism.
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to maximize expected utility under a KL budget relative to py,

maXgqeA(M,) Eiwq[vi,j] S.t. KL(qut) < Btﬂ'. 3)

Free Energy Mixer formulation. Introducing a Lagrange multiplier 3, ; > 0 yields the per-channel
free energy output

Fij(Beg) = 55108 e n, e(i) exp(Bejvij), S
and the corresponding posterior selection distribution
) s Pe(2) exp(Br,;vi ‘
W) = o) gy, 5)

ZTGJVL pi(r) exp (ﬁt,j Um‘)

Theorem 2.8 (Free-energy selection and budget duality (with 3 as inverse temperature)). The con-
strained problem equation |3| has a unique solution q*. There exists a unique Bf ; > 0 such that
q = qt(jg* and By [v; ;] = Fi j(Bf ;). Equivalently (DV form), for any 3 > 0 the maximizer of
Yol — %KL(qut) is q,fjﬁ) Moreover, B — F; ;(B) is continuous and strictly increasing
unless v. j is ps-a.s. constant. See Appendix|E} Lemmas[E.IHE.2|and Proposition|[E.3]|

Consequences (summary). (i) Reverse-KL improvement over the mean: F; ;(8) = E,, [v; ;] +
%KL(pt qugﬁ])) (Proposition. (ii) Value-aware competition: the gradient equals the posterior and

the Hessian is a Fisher covariance scaled by 3; thus F; ; is convex and /3/2-smooth in v. ; (Proposi-

tion . (iii) Channel-wise selection on the prior support: with margin A; ; > 0, qiﬁj) concentrates

at the argmax with exponentially small error in 3; F; ; () T max; v; j (Proposition [E.5). (iv) Ca-
pacity and complexity: across channels, FEM attains the assignment upper bound |M;|"”, whereas
H heads offer at most |M;|" patterns; computing equation%] with a fixed temperature adds one
masked log-sum-exp per channel and preserves the prior’s asymptotic complexity (Theorem [E.7]
Proposition [E.§)). (v) Masks and invariances: masking is preserved; shift/scale laws and sensitivity
to prior probabilities/logits follow from log-sum-exp structure (Proposition [E.6).

Outputs. FEM exposes two per-channel readouts sharing the same posterior q% the free energy
F:;(f) and the posterior expectation ), qt(Jg(z) v;, ;. Under S-concentration they coincide at the
selected value—letting the model smoothly move from averaging to hard indexing without changing
the architecture. In § 2.3.TH2.3.2| we add a lightweight two-level gating and linearized temperature
learning that learn a dynamic temperature without changing the prior’s asymptotic complexity.

Rethinking the Design of Attention. Attention can be viewed as a simplified subclass of a more
general and computationally-expensive map-reduce structure oy = > ., , (25, z1.¢). The simplifica-
tion occurs in the map stage: instead of computing a full channel-wise function g(z;, x1.¢), attention
retains the full memory state x;.; but replaces g with a channel-synchronized form Zi <t Qi ;.
This avoids materializing a large channel-wise weight tensor and reduces the read to a single scalar
weight per position, enabling highly efficient parallelization. FEM restores the missing channel
interaction not by increasing the internal complexity of the map function g(-) (which would raise
time complexity), but by enriching the reduce stage » ., g(-). By replacing the linear read with a
free-energy read, FEM recovers channel-wise selection ability while preserving the computational
efficiency of the original attention. In this way, FEM closes the expressiveness gap introduced by
the map-stage simplification of classical attention.

2.3.1 EFFICIENT COMPUTATION OF FEM AND LINEARIZED TEMPERATURE LEARNING

Fixed temperature. For a fixed inverse temperature 8 > 0 and channel j, FEM reads
Foi(B) = §108T i, peli) ¥ = Biny,[oig] + 5KUpe | /7). (6)

with posterior selector qiﬁ-) (i) o< py() €¥3 on the same support M; as the prior. Evaluating equa-
tion [6|requires a single masked log-sum-exp (LSE) per channel, so the asymptotic time complexity
is identical to the prior (e.g., O(T?) for softmax, O(T) for kernel/SSM priors). See Appendix
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Why /3 should be dynamic. The decomposition in equation [6] reveals an energy-entropy trade-off:
B governs the improvement over the expectation baseline through %KL(pt \\q§@)) Tasks typically

need different entropy levels across steps and channels, but directly recomputing equation [6]for each
learned /3, ; would break single-pass efficiency.

Linearized Temperature Learning (LTL). (Figure 2f) Now we fix a per-channel maximum
Bmax > 0 and define the expectation baseline pi; ; = Eip, [vi, j} and the high-temperature branch

Foex = B 1og Y, pi(i)ePmexvii. A learned gate \; ; € [0, 1] interpolates

Frieg) = (1= N j) pe g + My Fioe, )

requiring only the baseline expectation and a single LSE at (3,,x per step, hence preserving the
prior’s asymptotic complexity.

Hidden temperature and equivalent reparameterization in LTL. (Figure ) Let I, ;(8) =
Fij(B) and Ayj(B) = F;(8) — Fi;(0). Then F{(8) = B>KL(¢\”) |p:) > 0, so Fy; is

continuous and strictly increasing on [0, Smax] unless v. ; is p;-a.s. constant. By the intermediate
value theorem, for each \; ; € [0, 1] there exists a unique

Bt i(Aej) = Ay Ay At (Bumax)) € [0, Bmax]  suchthat  Fyj(Aey) = Frj (87, (M) (8)

Therefore, optimizing ), ; is a strictly monotone reparameterization of optimizing a hidden temper-
ature 3}, for equation [} see Proposition

Final form of FEM and complexity. Collecting terms gives the per-channel read

FrjOg) = (1= j) Siear 20 vij + 355 log Yoy, pi(i) ePmosvis, )

equal to Fy ; at the unique hidden temperature 57, , ; (A¢,;)- Both terms can be obtained in one pass

by mixing [v; ;, e’maxviJ | with the same p;(i). Hence LTL achieves dynamic temperature control
without changing the prior’s asymptotic complexity. A KL interpretation appear in §

2.3.2 TwO-LEVEL GATED FEM: VALUE-AWARE INNER GATING AND OUTER MODULATION

We present the two-level gated FEM that turns a prior selection distribution p; € A*~! into a per-
channel, value-aware read while preserving the prior’s time complexity. All operations below act
element-wise over channels j € [D]; ® and @ denote Hadamard product and division. Let Byax €
RZ; be a learnable global maximum inverse temperature, and let A; € [0,1]” and g; € RZ be
per-channel gates at step ¢, parameterized from the current token features. We apply sigmoid and
softplus activations, and normalize g; with RMSNorm so that its modulation does not overly distort
the norm of o,. In what follows, whenever we refer to FEM, we default to this two-level gated
version. Proofs and details of this section appear in Appendix

Inner (temperature) gate via one-pass linearized temperature learning. Define the expectation
baseline and a single high-temperature branch

Mt = Z, Dt (Z) v; € RD7 thax = ﬁr;;leOngj Dt (Z) €xXp (ﬁmaxQUi) € RDv

which can be obtained in one pass by mixing [v;, exp(Bmax ©v;) | with p;(i). The inner gate as
hidden temperature interpolates

Fi(A) = (1= X))@ p + A O Fax, (10)

QOuter gate and final read. The outer gate modulates the inner read:
o = g OF(\) :th[(l—)\t)QMt-i-)\t@thaX] (11

Note that the outer gating can be regarded as applying an scaling after the token mixing in free energy
gt,j
with hidden temperature, i.e., B3, ; log{zieMt pe(i) exp(Biiar vm')} " For smoother opti-

mization, we therefore parameterize g; as strictly positive by default. Computing equation [10H1 1|
matches the asymptotic time complexity of the prior p; (e.g., O(T?) for softmax; O(T') for ker-
nel/SSM priors) as shown in the section above.
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Containment of common mixer families. The two-level gate subsumes several widely used mixers:
(i) setting A; = O yields per-channel linear reweighting o; = Zi p(i) (g ©v;); (1) 0 < Ap <
1 gives a monotone, convex mean—real-softmax interpolation per channel, enabling value-aware
thresholding; (iii) letting A¢, g; depend on (ctx, p, pe, F;?¥) realizes a broad token-separable class
>, f(aw,i, v;) while introducing cross-token competition through the log-sum-exp branch.

2.3.3 FEM AND SELECTION DISTRIBUTIONS: A PRIOR-AGNOSTIC INTERFACE

FEM only requires a nonnegative, normalized selection prior p; € A!~! over indices Z; =
{1,...,t} with masked support M; = {i < ¢ : p:(¢) > 0}, and the variational read always en-
forces g¢; < p;. Any streaming or parallel mechanism that produces nonnegative scores s, (i) > 0

“+ /s
induces a valid prior via the normalization p; (i) = ”7(:1 (1<)
r<t St

> ()
Proposition 2.9 (Complexity-preserving normalization). If s, (i) is produced by an associative
operator (e.g., kernelized/linear attention, linear RNN, or SSM) that admits an O(1) streaming
update per step, then the denominator is obtained by applying the same operator to an all-ones
stream, so forming p; preserves the asymptotic complexity of the underlying mechanism. Under
FEM with fixed or LTL-controlled temperature, the read adds one masked log-sum-exp per channel
on the prior support and thus preserves O(T?) (softmax) or O(T) (linear/SSM) cost (See Fig. ).

Parameter budgeting. Let the input/value width be D and let FEM use working width d on the
value path. We allocate a ratio r > 0 of parameters to the prior (e.g., @, K and, where applicable,
a decay gate). Ignoring biases/norms, the per-head linear parameters decompose as 4Dd + Ddr,
covering value, output, temperature and outer gates, and the prior block of size D x (rd). To match
the classic 4D? budget in standard attention: (i) d = %, r = 4 (keeps @, K at width D); (ii) d = %,
r = 2 (balanced split). See Appendix [H.7]for the split and costs. In our experiments we default to (i)
since it uses a forward pass with exactly the same shape as standard attention. Notably, under (i) the
value part of the KV-cache can in principle have half the dimensionality. Subsequent experimental
results show that FEM’s fine-grained processing allows it to achieve superior performance over
priors while using an even smaller memory state cache.

Instantiations of s; (and p;) We adopt the following FEM selection priors as examples. (i) Softmax
attention recovers the standard masked row-softmax prior. (ii) Gated linear attention (Yang et al.,
2024b)) keeps an associative O(T') form by combining a feature kernel with an input-conditioned
decay. (iii) Linear RNNs admit nonnegative bilinear scores with normalization from the same re-
currence. (iv) SSM/Mamba-style priors use nonnegative impulse responses; a channel-interactive
variant lifts the index set to pairs (¢, k) and normalizes per output channel, enabling cross-channel
competition. All formulas, streaming recurrences, and complexity details appear in Appendix [H]

Low-rank convolution. Recent sequence models such as Mamba and DeltaNet (Gu & Daol 2023;
Yang et al.|, |2024cga) variants commonly enhance feature parameterization with local convolutions.
We adopt this idea in FEM by inserting a lightweight adaptive low-rank convolution module that
produces local, position-sensitive features. Concretely, it forms a simple time-decay kernel with
O(1) streaming updates, so the overall cost is only O(T H,) with the low-rank dimension H, < D
(H. = d/16 by default). The resulting features modulate both the selection prior and the FEM gates,
providing local adaptivity. See §[land § [K]for more details.

FEM as a universal fast-weight programmer. FEM provides a unified mechanism that upgrades
expectation-based reads into value-aware, per-channel posterior selection while preserving the com-
plexity. It combines temporal mixing, entropy control, local conditioning, and dual gating, thereby
serving as an effective fast-weight programmer [Schmidhuber| (1992)) detailed in § [J]and [M]

3 EMPIRICAL EVALUATION

We evaluate the two-level gated Free Energy Mixer (FEM) with different selection priors across
synthetic, NLP, CV, and time-series tasks. Specifically, we test FEM with softmax attention (FEM-
SM), gated linear attention (FEM-GLA), and on selected tasks also with Mamba (FEM-Mamba)
and linear RNNs using AFT (Zhai et al.| [2021) (FEM-AFT) (see §E]). Unless otherwise noted, we
use parameter budgeting strategy (i) from § which matches the parameter size of standard
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attention. Under this setting, FEM reuses existing efficient implementations (e.g., FlashAttention,
FlashLinearAttention) for the core prior mixer (see Fig. [2ld;f) with only minor value-path overhead.
Our main focus is algorithmic: exploring improved mathematical structures (see §[C.7). Due to lim-
ited compute and lack of fused CUDA kernels, we scale models modestly but provide fine-grained
metrics and extensive ablations to highlight FEM’s advantages. For ablation, we denote FEM mod-
ules as (C: low-rank convolution, L: LSE mixing, T: linearized temperature learning, G: outer gate).
For example, FEM-SM (-G, T) removes outer gating and temperature learning, equivalent to SMAttn
(+C,L). Unless specified, default FEM variants include all modules (C,L,T,G). We make sure that
every variants have same parameter sizes with the parameter budgeting. Aside from causal autore-
gressive FEM shown above, encoder-only use simply removes masking. In all experiments, FEM
directly replaces the attention in a Transformer block (Fig. 2k) without altering other components
(MLPs, embeddings, hyperparameters). More implementation details appear in § [K} datasets in § [[]

MAD. We first evaluate FEM on
the synthetic MAD benchmark (Polii  Table 1: MAD benchmark evaluation results across com-
et al.| [2024), which probes sequence pression, fuzzy/in-context recall, memorization, robustness,

models on in-context tasks.  As and selective copying. Bold marks column best.
shown in Table FEM-SM out-

Com- Fuzzy In-Ctx Memorize Noisy Selective

performs all other baselines (Hyena, Model press Recall Recall TrainSet Recall Copy Avg
DeltaNet, Linear Attention, Mamba2, Hyena 448 144 990 894 986 930 732
Gated DeltaNet, Differential Trans- DgltaNet 422 357 99.9 52.8 999 999 71.7
. ] LinAttn 331 82 910 749 756 931 626
former, (Poli et al., [2023; |Yang et al.,  Mamba2 436 211 964 869 967 933 730
2024bic; Dao & Gul 2024 Yang| GatedDeltaNet 450 29.8 999 80.2 99.9 943 749
et al|, 2024a; [Ye et al) 2023)) by a DiffTrans 429 390 999 8.7 971 958 764
b J J M
. 0 . FEM-SM(-G,T.L.C)
clear margin. In particular, dlfferent (SMAtin;Transformer) 443 245 999 857 985 951 747
FEM variants show strong gains on FEM-SMGTL) 450 314 999 855 999 963 763
. SMALttn+C . K . . 5 e 2
the Compress & Recall tasks, which  FEm"sMen
heavily rely on algorithmic handling (S]l;dﬁmgi/,[u 50.3 39.0 99.9 85.4 999 98.0 788
. . -SM(-G)
of dynamic context and channel inter-  syauncL) 523 391 999 858 999 994 794
i FEM-SM
actions. On the Compress task, FEM  (EALOM 531 431 999 859 999 993 802
models achieve significant improve- FEM-SMCom
ments over existing methods thanks (smame) 495 263 999 857 975 975 76.1
: ora] ; FEM-SM(-C.G)
to their finer-grained processing of ~ (AX ML 507 328 999 857 980 97.6 77.5
context storage. The ablation study FEM-SMcc
further reveals that the two major per- (SMAnméL,T,G) 51.2 354 999 859 98.5 99.0 783
FEM-SM
formance jumps over prior baselines  (SMAin+CLT.G) 53.1 431 999 85.9 999 993 80.2
occur after introducing +L (LSE) and = FEM-GLA(GTL.C) w02 85 013 813 868 768 642
+T (temperature), corroborating our FEM-GLA(GTL)
earlier discussion of FEM’s enhanced  (GLA+C) 471 94 917 834 925 885 6838
‘ . M FEM-GLA(G.T)
memory storage processing. O~ GLa+CL. 5} (i) 512 124 922 851 924 892 70.4
over, the ablations demonstrate that FEM-GLA(G)
FEM can elevate linear-time methods ~ (CEMCLE f“)) 519 132 971 86.1 935 914 722
such as GLA and Mamba (with nor-  GrLaccLTG. 57 (i) 530 191 999 863 999 990 749
malized $,) to a level comparable FEM-MamsAGTLO
with the latest attention-based vari- Mamba) 527 67 904 895 901 863 693
FEM-MAMBA(-p; norm)
ants. (Mamba+C,L TG, s (i) 505 128 934 889 863 922 707
. FEM-MAMBA
Language Modeling. We follow the  aambarcLG, 57 (i) 511 168 907 897 927 970 73.0
experimental setup of (Yang et al. FEM-AFT(c.rL0)
! : (AFT) 505 9.15 63 3.1 692 901 522
2024a,§). Under the. same ftrain- Lpeiapr
ing environment, we train autoregres-  (AFT+CLTG) 555 9.78 903 80.1 90.2 934 699

sive language models with 1.3B and

340M parameters on the FineWeb-

Edu dataset (Penedo et al.| [2024)), using 100B and 15B sampled tokens, respectively. The models are
optimized with AdamW (learning rate 4 x 10~%, cosine annealing, 1B-token warmup), weight decay
0.1, gradient clipping of 1.0, and a batch size of 0.5M tokens. We use the LLaMA-2 tokenizer with a
32K vocabulary, and set the training context length to 4096. We adopt the Open LLM Leaderboard
protocol and a suite of general-ability tasks, as shown in Tab. 2] See §L]for more evaluation details.
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Table 2: Unified language modeling evaluation results across model families and scales. Abbr:
Acc_n=normalized accuracy; EM=exact match; IFE-I/P = IFEval (Inst/Prompt, strict only). Shots:
MMLU-P=5, GPQA=0, BBH=3, MATH=4, MuSR=0; others 0-shot. Bold and underline indicate
group-wise best and second-best results, respectively.

Model Open LLM Leaderboard General Ability Ranking

variant MMLU-P GPQA BBH MATH MuSR IFE-I IFE-P ARC-C ARC-E HS PIQA BoolQ WinoG COPA OBQA SciQ Avg #Topl
(AccT) (Accn 1) (Acc,T) (EMT) (Acc, 1) (strict?) (strict]) (Acc, 1) (Ace, 1) (Ace, 1) (Ace, 1) (Acct) (Acct) (Acet) (Ace, 1) (Acc,T) Rank] 1

1.3B Params — 100B Tokens

DeltaNet 0.109 0263 0.308 0011 0417 0288 0.165 0266 0.522 0.502 0.704 0.611 0.541 0.740 0.318 0.761 444 1

GSA 0.110  0.270 0.294 0.013 0.438 0.300 0.179 0.287 0.529 0510 0.712 0.541 0.536 0.760 0.330 0.773 338 2

RetNet 0.110 0252 0293 0.001 0384 0.056 0.024 0.271 0489 0480 0.701 0.583 0.533 0.710 0.324 0.736 7.63 0

HGRN 0.114 0269 0297 0.008 0409 0253 0.122 0271 0518 0481 0.707 0.584 0.515 0.700 0.326 0.695 575 0

HGRN2 0.115 0254 0295 0.002 0350 0223 0.129 0282 0.504 0317 0.671 0416 0.522 0.770 0.328 0.378 6.63 2

Transformer

(SMAttn) 0.114 0259 0.296 0.011 0365 0.270 0.141 0.280 0.492 0492 0.705 0.621 0.552 0.760 0.318 0.769 4.56

FEM-SM

(SMAttn+cLTG)  0.113 0262 0303 0.012 0451 0.326 0.192 0364 0.636 0.519 0.713 0.624 0.534 0.740 0.382 0.807 2.06 9
0.114 0259 0295 0.006 0427 0.272 0.157 0.277 0482 0488 0.702 0.574 0.541 0.690 0.326 0.721 5.63 0

GLA
FEM-GLA
(GLA+CLTG) 0.112 0258 0297 0.009 0475 0.277 0.157 0310 0.564 0482 0.708 0.602 0.529 0.740 0.358 0.782 3.88 1
340M Params - 15B Tokens

DiffTrans 0.109 0259 0299 0.008 0390 0266 0.133 0.289 0.531 0408 0.668 0.603 0.534 0.690 0.330 0.734 438 1
GatedDeltaNet 0.113 0260 0296 0.010 0421 0258 0.133 0276 0.527 0396 0.662 0.588 0.527 0.710 0.338 0.735 425 1
DeltaNet 0.112 0260 0.300 0.009 0452 0277 0.150 0269 0.502 0405 0.653 0.519 0.504 0.690 0.316 0.717 544 3
FEM-SM(.G,TL.C)

(SMAttn) 0.106 0267 0292 0.010 0386 0269 0.126 0273 0.506 0.396 0.650 0.569 0.499 0.720 0.324 0.727 650 1
FEM-SM(-G.TL)

(SMAttn+c) 0.113 0254 029 0.009 038 0246 0.122 0277 0.507 0403 0.664 0.583 0.515 0.670 0.320 0.728 6.63 0
FEM-SM(G.1)

(SMAttn+cL) 0.112 0258 0.298 0.009 0.401 0.254 0.129 0.290 0.518 0.407 0.657 0.595 0.511 0.690 0.342 0.731 4.81 1
fSEI\’rA?IKC?T) 0.112 0261 0297 0.010 0421 0266 0.144 0.293 0.531 0412 0.668 0.593 0.519 0.710 0.338 0.716 3.31 2
g%\i[v-l/-\slx[»fc,l.mc) 0.114  0.264 0.300 0.012 0437 0273 0.142 0284 0.542 0409 0.676 0.609 0.523 0.730 0.342 0.735 181 8
GLA 0.110  0.258 0.289 0.007 0.415 0.228 0.109 0.247 0.478 0366 0.637 0.547 0.489 0.640 0.294 0.649 938 0
fGEIIj[\:g%I:G) 0.115 0255 0297 0.009 0473 0241 0.123 0271 0493 0397 0.644 0.592 0.510 0.680 0.331 0.683 6.56 2

Compared with models of the same scale, using FEM im- Table 3: Comparative analysis of
proves the overall performance of prior methods such as soft- image classification on ImageNet.

max and gated linear attention. These gains are most evi- Model Def-Tiny DeiT-Small
. . . . . T _] o P4 o q T — A P, >
dent in handling longer contextual instructions, tackling more ¥4 op-1 Acc Params |Top-1 Acc Params
. DeiT 7220 57M | 7990 22.0M
complex reasoning tasks (e.g., IFEval and ARC), and boost-  TNN 7229 64M | 7920 23.4M
. . . HGRN 4.4 M 09 237M
ing accuracy across multiple QA benchmarks. This reflects HSRNz ;5,38 2,1M 38,?2 23<§M

FEM’s ability to enhance general retrieval and context pro- EEM-SM = 76.70  3.8M 1 8045 22.3M

cessing by extending the originally synchronized head-level
prior distribution into richer channel-wise and token-wise interactions. The ablation results further
confirm that introducing components like +L and +T leads to substantial performance improvements.

Image Modeling. We evaluate FEM on the ImageNet-1K image classification task, following |Qin
et al.| (2024)), by replacing the DeiT architecture’s softmax attention with our encoder-only FEM
implementation. As presented in Table [3| both FEM-SM and FEM-GLA surpass previous methods
(Qin et al., [2023ajb; |2024) while maintaining parameter budgets.

Time Series Forecasting (TSF). Following Lu
& Yang| (2025), we evaluate FEM variants on _ Table 4: Benchmark evaluation of TSF tasks.
i 0 Trans. Pa
TSF, as shown in Table . Across datase.ts, FSENI\I/I E;FLX Nll:l?nlvll) I;EF¥ GLA AFT lfT::s; P;tsc};- DLincar
FEM surpasses both its priors and domain- amba orme
. : . - her 0.222 0.223 0218 0218 0.223 0.221 0232 0221 0233
specific baselines such as iTransformer (Ciu]  sou o8 0158 0193 0.186 0204 0.198 0215 0202 0216
: ETThl 0419 0418 0421 0414 0418 0421 0454 0413 0422
et al" 2024) and PatChTST (Nle et al" 2022) ETTh2 0.340 0.344 0.340 0.339 0.342 0.342 0.374 0.330 0.426
.. ETTml 0.341 0.345 0.346 0.344 0.357 0.351 0.373 0.346 0.347
Computational Cost. We evaluate the training  ETTm2 0242 0247 0246 0.241 0.250 0245 0265 0247 0.252
and inference speed of FEM on a Nvidia L40S
GPU. To avoid confounding factors, we use an 8-layer model with 4 heads and a hidden dimension
of 512, tested on randomly generated data with a context length of 2K and a batch size of 4. As
shown in Table[5] the full FEM-SM achieves comparable efficiency to recent model structures, even

without additional engineering designs. See additional efficiency analysis in §O]and Table

Dataset

4 CONCLUSION AND LIMITATION

We proposed the Free Energy Mixer (FEM), which reframes sequence modeling as a context-
interactive selection problem to overcome the “lossless storage but lossy readout” limitation of clas-
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sic attention. FEM enables value-aware, per-channel posterior selection on top of any prior (soft-
max/linear attention, RNNs, SSMs) and, with log-sum-exp, linearized temperature learning, and
two-level gating, interpolates smoothly from averaging to near hard indexing without extra com-
plexity. It enhances contextual fast-weight programming in theory and achieves consistent gains
across NLP, vision, and time-series tasks at equal parameter budgets, with ablations highlighting
LSE and temperature control as key. Overall, FEM is a plug-and-play mechanism for fine-grained
context processing.

Limitation. Our work focuses on advancing the algorithmic ex- Taple 5: Latency & through-
pressivity (§C.7) rather than pursuing engineering optimizations put comparison (TPS in K to-
such as custom GPU kernels or acceleration strategies. Due to  kens/s). Lower is better for la-
limited computational resources, we were unable to scale FEM to  tency: higher is better for TPS.

very lar.ge models or conduct very long-contex.t eva.lluations. This Fwd Train  Fwd  Tram
constrained but focused scope allowed us to highlight FEM’s al-  Model Lat. (s) Lat. (s) TPS (K) TPS (K)
1 1 1 1 1 1 1 1 GatedDeltaNet  0.016 0.042 2504 97.8
gorithmic contributions without heavy reliance on engineering or ~ Gatedbel 0016 0042 204 18
large-scale compute. HGRN2 0009 0024 4400 170.7
RWKV6 0014 0037 2939 1094
RWKV7 0017 0050 2451 822
A DiffTrans 0.018 0.041 2333 100.6
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(GTLC) 0012 0027 3331 1537
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We evaluate FEM only on publicly available benchmarks under their licenses, without collecting
personal or sensitive data. FEM’s enhanced retrieval ability could be misused (e.g., surveillance or
deceptive content), so responsible deployment requires privacy safeguards, bias checks, and legal
compliance. We also report model sizes and training tokens, and encourage energy-aware experi-
mentation.

REPRODUCIBILITY STATEMENT

All experiments were run under a consistent setup, with FEM modules directly replacing standard
attention while keeping other components unchanged. Code, configurations, and instructions are
provided in the linked repository to enable replication of our results. See the code base and §3] §Kl
§L] for more details.
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STATEMENT OF LLM USAGE

In this paper, LLMs were mainly used to assist with writing-related tasks, including grammar check-
ing, wording adjustments, length reduction, layout reorganization, text formatting, formula format-
ting, theoretical derivation formatting, and table template generation.

We also used LLMs to search for existing methods and references in order to avoid duplicating and
over-claiming. However, we did not use LLMs to conduct literature reviews, nor did LLMs replace
the authors in studying the cited works. We confirm that all cited literature was read by the authors,
not solely by LLMs.

During experiments, LLMs were used to assist with generating or refining experimental code and
scripts, especially for bug fixing and efficiency optimization.

LLMs were not used for defining research problems, proposing ideas, designing methodologies,
providing theoretical insights, or creating algorithms and model architectures.

B

B.1

DETAILS AND PROOFS FOR SECTION[2.1]

SELECTION DISTRIBUTIONS, SUPPORT, AND NORMALIZATION

We encode causality by restricting the feasible support to M; = {1, ..., ¢}. In softmax attention,

exp(g/ ki/Vd) 1{i < t}
Ejgtexp(q;kj/\/g) .

Pt(i) =

In linear attention we use a nonnegative feature map ¢ : R — RZ, and set

(Blar). oko) 1(i <t}

i) = 5 o(ar), o(k))

Nonnegativity guarantees p; € A‘~!. Row-masking is absorbed by M;.
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B.2 PROOF OF LEMMA[2.2]

Letm, =, \ju; with \; > 0and ), \; = 1. For any coordinate j, v; ; < (my); implies
(ma); =Y Aviy < D Ni(me); = (my);.

Thus equality holds termwise: for all ¢ with \; > 0, v; ; = (m,);. Hence every such  simultane-
ously attains all coordinate maxima, proving the claim.

B.3 PROOF OF COROLLARY [2.3]

Let s; = (vi1,...,%ip,p) With at least two distinct indices among {i;}. Unless the cho-
sen v;; coincide on all selected coordinates (a measure-zero degeneracy), Lemma @] implies
sy ¢ conv{vy,..., v}, s0ono p; satisfies Y. p;(i)v; = 5.

B.4 HEAD-SYNCHRONOUS ASSIGNMENT CAPACITY

Consider H heads at step ¢. Let agff) € A'! be head R’s selection distribution and ¢;, =
arg max;<¢ aif?. Channels routed through head h share the same ag?) at their first mixing, so

the pattern is determined by (¢1,...,ty) and a fixed partition of channels into heads. The number
of realizable patterns is at most t, versus ¢ for fully independent per-channel selection.

B.5 REMARKS ON STORAGE VERSUS PROCESSING

Softmax attention stores the entire set {(k;, v;)}i<; without compression, but the per-head read
equation [2] enforces one weight vector across all coordinates, which is the bottleneck for tasks re-
quiring different indices per channel. Pointwise nonlinearities or additional depth cannot recover
per-channel index identity at the same step unless a new, independent selection distribution acts
before the first mixing on those channels.

C DETAILS AND PROOFS FOR SECTION [2.2]

C.1 MORE HEADS: CAPACITY, LOW-RANK EFFECTS, AND FINITE-FEATURE LINEARIZATION

Bilinear form and rank. With H heads and d, = D/H,

H
Y = Z (Zag;) Wéh)(W‘(/h))T)wi = ZMt(z) T;, rank(Wéh)(W‘(/h))T) <dp. (12)

i<t  h=1 i<t

Proof of Lemma At step ¢, head h selects arg max; ag;); the Cartesian product over H heads

has size at most ¢, Inside a head, all output coordinates are linear images of the same ag’h_). O

Finite-feature approximation (value-path erosion). Assuming clipped logits |¢" k| < R, a sin-
gle softmax head of width dj, admits an e-accurate finite monomial feature approximation with

dp,
M = (N;h ’), N = O(R +log(1/e)),

so its read is uniformly approximable by a linear streaming state of size M x d,,. The full result is
below.

Proposition C.1 (Dimension-dependent linearization and memory collapse for a softmax head).
Consider one softmax attention head with query/key width d;, and value width d,,. Assume bounded
scores and values:

lg/ kil <R (i<, lvilla < V.
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Fixe € (0, 1) and choose N € N such that

oo

R’n
> T SE

n=N+1

Define the feature map that collects all monomials up to total degree N,

N
[ = M . n+dy—1\ (N +dy
ON.a, (T) = ( ?!)MSNGR . M = ;—0:( dn o1 ) = ( 0 )

Then, uniformly on {|q"k| < R},

-
le? ¥ — o, (q)  dna, (R) | < e (13)
Define the streaming sufficient statistics
= ¢na,(ki)v, € RM*d, = ¢na, (ki) € RM,
i<t i<t
and the linearized readout .
~ S,
5, = ¢>N,dh(th)T -
ONa, (@) T 2

. .. . T . .
If in addition, € e® < % then the exact softmax output o, = ZKt Ot U5 With o 5 oc et ki satisfies
the uniform (in t) error bound

sup ||oy — o |la < 4Velte. (14)
t

Consequently, a single softmax head is O(g)-approximable by a linear, streaming state of size M x
d, plus one M -vector, where

M = (N;hdh) = o(%5)., N = (R+logl).

In particular, when dy, = 1 we have M = N +1 = ©O(R + log é) the head collapses to a one-
dimensional kernel-RNN-like compressed memory with arbitrarily small uniform error as N — oo.

Proof. Multivariate Taylor expansion of el k gives equ =30 2\04 n aa . By construction
of O a,» On.a, (4) " On.ay, (k) = Zn 0 ZM a, , so the truncation error is the scalar exponen-
tial tail evaluated at |¢ " k| < R, yielding equatlon.by the choice of V.
Let K (i) := e® ¥, Ky (i) i= ¢(qr) T o(ks). Write Ny = 35, Ky (i)vi, Dy = 30, K (i) and Ny =
> Ki(i)v;, D, = >; K (4). From equationand [lvill2 <V,
IN: = Nillo <€ vl <eVt,  [Dy— Dy| < et
i<t

Since |¢, k;| < R, we have te™® < D, < tef. If ce® < 1, then D, — |D; — Dy| > 1 te~ . Using
the standard ratio perturbatlon bound,

H INe = Nello | [Nella |D¢ — D]
Dt —‘Dt—Dt| Dt Dt—|Dt—Dt|
Because || Ny[|z < V Dy, the RHS is at most ="~ + 1L = 4Vefe, which proves equation
te Ste™
The stated complexity follows from M = (N ;‘hd“) and Stirling’s approximation; for d, = 1, M =
N+ 1. O

Remark. Any common scaling (e.g., 1/+4/dp) in dot-product attention can be absorbed into R.
Position biases can likewise be included provided the total score remains bounded by R.
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Numerical illustration (state size under bounded scores). We instantiate Proposition with
two practically relevant score radii: a high quantile R ~ 5 and an extreme upper bound R = 10. For
target uniform kernel error ¢, choose the smallest degree NV with ) _ \ R"/n! < . The resulting
hidden-state size per head (in the dj;,=1 collapse) is (N+1)d, = O(N d,); across all heads with
total value width D = Hd,, itis O(N D).

Minimal degrees N (exact tail test).

e=10"% e=10"% ¢=10"°%
=5 | N=19 N=22 N=25
=10| N =33 N = 36 N =40

These values satisfy the safety condition of Proposition (ee < 1) eg.ee!® ~ 2.2x1072 at
e =105,

Concrete state sizes (per head, d,=1). For e = 1076,

R=5: M=N+1=23 = state= (N+1)d, =23d, and O(N D) = O(22 D) overall,
R=10: M=N+1=37 = state = (N+1)d, =37d, and O(N D)= O(36 D) overall.

Thus, under realistic bounded scores, a single softmax head with d;,=1 is equivalent (up to uniform
error €) to a linear streaming memory whose per-head size grows essentially linearly with R and only
mildly with e. For dj, > 1, the finite-feature dimension becomes M = (N ;hdh) = O(N /dy!),
explaining the strong dependence on per-head width.

C.2 DEPTH: NO SAME-STEP UNMIXING AND SELECTION BUDGET

Proof of Lemma To : {vi} = >, a4 v, is linear, nonnegative, and weight-summing to 1,
hence images lie in conv{wv;}. Composing coordinate-wise maps keeps outputs in a convex hull of
transformed points and does not reveal per-channel indices used before mixing. Later attentions at
step t operate on a finite set of already mixed tokens; a selector outside conv{w;} is unreachable
without a fresh independent selection before the first mixing touching those coordinates. [

Proof of Proposition[2.6, Define a channel group as coordinates whose first attention-based mix-
ing shares the same head at some layer. Across L layers there are at most H L groups. Each
group gets one independent selection distribution for its first mixing, hence at most H L indepen-
dent per-channel selections by step ¢. Necessity of HL > D follows; achieving the bound requires
avoiding re-synchronization before first attention. O

Accumulation. Layer ¢ writes V() € R**P to KV. Stored channels scale as LD, independently
selectable groups as LH; the fraction of non-independently-selectable channels does not vanish
unless H scales with D.

C.3 PER-DIMENSION QUERIES/KEYS: CAPACITY-BUDGET TRADEOFF
Giving each coordinate j its own scoring subspace increases assignment capacity toward ¢, but
increases parameters and compute from ©(d?) to ©(Dd) per layer. Under a fixed budget this forces

shrinking D (hurting value bandwidth) or the MLP width (hurting global capacity), both detrimental
in long-context regimes.

C.4 TOKEN-SEPARABLE MIXERS REMAIN CONVEXLY CONSTRAINED

We analyze
o; = Zat,ivi = Zat,i</3t Ov;) = Zat,i o(B: Ov;) = Z flow,i, vs),

with coordinate-wise o.
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Proposition C.2 (Full statement of Proposition 2.7). (i) The first two are linear; images lie in
conv{wv; } and conv{B; ® v;} up to coordinate-wise scaling. (ii) For ), o ;0 (B © v;), outputs lie
in conv{o(B: © v;)}, recovering a channel-wise selector of the original coordinates is impossible
in general unless special degeneracies (e.g., identical selected coordinates across candidates) hold.
(iii) For a general token-separable f, per-channel argmax over original coordinates is impossible
in general.

Proof sketch. (i) Direct. (ii) If m = (max;v;1,...) is outside conv{v;} (Lemma , any
convex combination of transformed values cannot map back to m unless o is globally invertible
and aligned simultaneously across all candidates, which fails generically. (iii) Duplication argument
in D = 1: take two identical tokens u at indices i # j but target max to prefer one index; any
token-separable >, f(cw i, v;) is invariant under swapping the two, contradicting index-sensitive
selection. O

Complexity remark. Per-channel cross-token operations (e.g., top-k, per-channel log-sum-exp)
introduce non-separable normalizations over ¢ and typically break fused O(T)/O(T?) implementa-
tions.

C.5 LINEAR RNNS AND SSMS LACK LOSSLESS STORAGE

Let h; € RS be a fixed-size state updated by a (possibly input-dependent) contractive linear op-
erator. Classical lower bounds for linear time-invariant systems imply existence of sequences and
horizons ¢ where single-token recovery error from h, is bounded away from O for any fixed S. Hence
fixed-state models cannot provide lossless storage of {v; };<; for arbitrary index retrieval at step ¢,
in contrast to a KV cache, and thus cannot realize channel-wise selection over all past values.

C.6 CONNECTIONS TO RECENT PER-CHANNEL VARIANTS

The families in Section [2.2] subsume many contemporary designs:

(i) Score-space inflation per feature. Tensorized/multi-dimensional attention and element-wise
attention allocate a scoring subspace per coordinate to produce ¢ ; . (Shen et al.,|[2018; Feng),[2025).
This moves assignment capacity from ¢t toward ¢7, but the read stays token-separable, hence sub-
ject to the convex-hull constraint (Proposition [C.2). Moreover, the per-feature distributions are
typically prior-only (value-agnostic) at the same step, so no value-aware cross-token competition is
introduced before first mixing (cf. Lemma. The parameter/compute cost also scales from ©(d?)
to ©(Dd) per layer; see Appendix

level assignments by ¢/ (Lemma ; depth increases storage but not the number of independent
first-mixing distributions per step beyond H L (Proposition [2.6). Hence the channel-wise lossless-
selection gap remains unless H scales with D.

(ii) More heads/depth. Increasi adds only H independent selection groups, bounding head-
2.4)

(iii) In-head pointwise gating. Adding coordinate-wise gates inside the per-head mixer keeps
token separability (the form ZZ f(a.4,v;)), so outputs remain in a convex hull of transformed val-
ues and cannot realize per-channel argmax of the original coordinates in general (Proposition [C.2).
Making the gates index-sensitive requires cross-token competition per channel, which naively breaks
O(T)/O(T?) implementations; see Appendix|C.4}

Summary. Across (i)—(iii), either capacity increases at significant parameter/compute cost while
the read remains token-separable, or the same convex bottleneck persists, or fixed-state storage limits

retrieval. None provides per-channel, value-aware cross-token competition before the first mixing
under the prior’s asymptotic complexity.

C.7 WHY A STRONGER ALGORITHMIC MIXING STRUCTURE MATTERS

A mixer that natively performs value-aware, per-channel cross-token competition at the first mixing
step has two practical advantages under fixed budgets:
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Separation of roles. The mixer shoulders dynamic fast-weight programming (context-dependent
routing/selection), while MLPs focus on feature synthesis and knowledge consolidation. In a ker-
nel/NTK view, this corresponds to adapting the effective kernel online at the mixing site, reducing
the burden on downstream static nonlinearities. More discussion can be found in §M}

Parallelism and efficiency. If such competition is realized without changing the asymptotic com-
plexity of the selection prior (e.g., by computing a per-channel log-partition over the same masked
support), we preserve the O(T?) softmax or O(T') streaming behavior and fused-kernel practical-
ity. This is the design objective satisfied by FEM in the next subsection: it introduces value-aware,
per-channel posterior selection via a variational free-energy read while retaining the prior’s time
complexity.

D ADDITIONAL DISCUSSION: PER-CHANNEL SCORE DISTRIBUTIONS VS.

TOKEN-SEPARABLE MIXERS

Many recent variants extend a single per-head distribution p; = ¢y . to per-channel distributions
Qi(c,”) = oy, € A1 yielding

Ot,c = Zigt At j.c Vic, oy = Zigt Diag(at,i,la ceey at,i,D) ¢(Vi) = Zigt wi; O d’(vi)a

=:Dy;

(15)
where ¢ acts coordinate-wise and w;; = (a4 1,...,0;p). Expression equation is token-
separable: the outer sum is over tokens and introduces no cross-token interaction inside the mixer.
Consequently, for each channel ¢, 0, . € conv{vic, ..., v}, and exact coordinate-wise selection

at the same step is unattainable unless o . . degenerates to a point mass (cf. Lemma[2.2} Lemma[2.5}

Proposition [C.2)).

Assignment capacity vs. convexity. Per-channel scoring lifts head-synchronous capacity from
tH to the natural upper bound ¢: across contexts, independent argmax patterns {i%}cerp) can
in principle be realized by {atﬁc} (Shen et al., 2018} |[Feng, [2025). However, the mixer remains
a convex expectation per channel; without value-aware cross-token competition, the distributions
need not concentrate on the value argmax, and the lossless-selection gap remains.

Mapping of representative designs.

¢ Per-dimension score inflation. Tensorized/multi-dimensional and element-wise attentions in-
stantiate o ; . by combining a shared token-to-token term with per-channel terms or by per-
channel distances (Shen et al., [2018}; [Feng, 2025). These methods increase assignment capacity
(toward t7) but keep the token-separable convex read in equation |15|and are typically prior-only
(depending on (g, k) but not v).

* In-head mixer enrichments. Per-channel rescaling, pointwise nonlinearities, or FiLM-style
gates fit ) . oy ; 0(f; © v;) and remain within Proposition the image is a convex hull of
transformed values, and no same-step unmixing arises without an additional independent selec-
tion before first mixing (cf. Lemma[2.5).

¢ Axis/channel attention and structural re-partition. Methods that attend over channels (or
axes) rather than over past indices change the domain of selection but do not produce per-channel
distributions across time; thus they do not affect channel-wise index capacity over Z;; see, e.g.,
channel-token attention in vision and time—channel layouts in forecasting (Ding et al., 2022 |[Liu
et al., 2024 |Guo et al.| [2025)).

* Linear RNNs/SSMs and kernel priors. Streaming fast-weight priors with fixed-size state offer
cross-dimension couplings yet lack lossless storage over all past indices; kernelized/linearized
priors preserve streaming complexity but still yield expectation reads (Katharopoulos et al.| [2020;
Choromanski et al.| 2021; |Gu & Daol, [2023)).

Where FEM differs. FEM preserves the chosen prior p; (softmax, kernel, RNN/SSM) but up-
grades the read from an expectation to the free energy S~ 'log Y, p:(i) exp(Bv; ), yielding per-
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channel, value-aware posteriors ¢; () (i) o< p¢(i) ePVic. This introduces cross-token competition

per channel before first mixing, achieves the |M;|” assignment capacity and admits exponential
posterior concentration while retaining the prior’s asymptotic time complexity (see §2.3.1).

E THEORETICAL PROPERTIES OF FEM

We fix a timestep ¢, a channel j € [D], the prior selection distribution p; with support M; := {i :
pi(3) > 0}, and the values {v; ; }ienm, -

Notation. For S > 0, define the per-channel free energy and posterior selector

1 N , i) ePves
Fii(B) = BIOgZ p(i) P Vi qgﬁ)(z) = 40)

) 1€ Mt7 (16)
i€ M, ZTEMﬁ pe(r) efri

and let v. ; € RIM:l collect {v; ; }iens, -

Standing assumptions. All statements are over the support M, and assume p; () > 0 for i € M;.
For § < oo, the posterior qt(’ﬂj) is unique; in the limit 8 — oo, ties may persist if margins vanish,
which does not affect finite-3 claims.

Lemma E.1 (Equivalence of budgeted and penalized forms). Fix t,j and a budget B > 0. The
constrained problem equation has a unique maximizer ¢* € A(My). There exists a unique 8* >0
such that ¢* = argmax {3, q(i)vi; — 3-KL(ql|lpt)}; conversely, for every 3> 0, the maximizer
of the penalized objective solves equation or the budget B = KL(q'®)||p;). The map B +— 5*(B)
is continuous and strictly increasing whenever v. j is hot p;-a.s. constant.

Lemma E.2 (Donsker-Varadhan variational principle and mirror ascent). For every 8 > 0,

) — Nos » — L
Fri(B) = qergm){ Ziq(z)vm 5 KL(qllp:) } (17)
with the unique maximizer qgi) in equation Equivalently,
g7 = argmin 1KL(qlp) — (g, v.), (18)

qEA(My)

i.e., an exponentiated-gradient (mirror ascent) step from p; with step 3 along v. ;.

Proof. Standard DV identity: log >, p;e®¥" = max,{B(q,v) — KL(q||p)}. Divide by 3 and apply
KKT; uniqueness holds on A(M;) since the objective is strictly concave in g. O

Proposition E.3 (Expectation baseline and monotonicity). Let i ; := E,, [v; ;]. Then
1
FiiB) = mg + GKUpel ) = g (19)
Moreover, B — F; ;(B) is continuous and strictly increasing unless v. ; is p;-a.s. constant, with
d 1

a3 Fii(B) = =5 KL(q;ﬂj) | pe) > 0, Fj(B) = purj + gVarpt (vi,j) + O(B%) (B — 0). (20)

Proof. equation (19| follows by direct algebra using ¢(¥) o pe??. Differentiate 3~ log >, p;e/:
to obtain equation The small-3 expansion is the second cumulant of v; ; under p;. O

Proposition E.4 (Local geometry: gradient, curvature, smoothness). F ;(3) is convex and C™ in
. 4, With

;
Vo, Fus(B) = af). V2 Fi8) = 8(Diaga}) — Y} ) = 0. @n

1= ||q£’6;)||1 = land |VF |2 = ||qt(’i)||2 < 1. Moreover, Fy j is 3/2-smooth in

Hence ||VF; |

2%
[V2F058)||,, = B Amax(Ding(q) —gq") < B/2, (22)

and the bound is tight when q is supported on two coordinates equally, e.g. ¢ = (1/2,1/2,0,...,0).
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Proof. For equation , differentiate equation (16| with respect to v. ; to obtain V.F; ;(3) = q,g’ﬁj) and

V2F.,;(8) = B(Diag(q) —qq"), where ¢ := qtﬁ). Convexity and smoothness (indeed C>°) follow
from the log-sum-exp structure. The /- and /5-norm statements follow since ¢ is a probability
vector: [|gfl1 = 1and [lql3 =32, ¢7 < 30,00 = 1.

For equation 22} write J(q) := Diag(q) — qq . This is the covariance matrix of a one-hot random
vector with class-probabilities ¢, hence J(g) = 0. To bound its spectral norm, apply the Gershgorin
disc theorem. Row ¢ has diagonal entry ¢; (1 — ¢;) and the sum of absolute values of the off-diagonal
entries is » i Gy = qi(1 — ¢;), so every eigenvalue lies in

U [ai(1—ai) —¢(1 — ), (1 — @) + (1 —q;) ] = U [0, 2¢;(1 —q;) .

i i
Therefore Amax(/(q)) < max;2¢;(1 — ¢;) < 1/2, with equality attained when g is supported on
two coordinates equally, e.g. ¢ = (1/2,1/2,0,...,0) (then J(q) has eigenvalues {0,1/2,0,...,0}).
Multiplying by 3 gives ||V2F; ;(B)llop = Bl (q)]lop < B/2, and the bound is tight in the stated
case. O]

Proposition E.5 (Range, concentration, and finite-5 guarantees). Let i* = arg max;em, v;; and

At,j 1= Vx5 — IAXi£4x Vg > 0. Then for all B8 >0,

L-p(@) —pa,
pe(i*)

1

pig < Fii(B) < vie g, 1—qt(§-)(i*) < 5

log i (i*) < F5(B) < vis 5.
(23)

7y Vi it

(8)

In particular, if Ay ; > 0 then g, ;

= 0;+ and F; ;(B) T v j exponentially as B — oo.

Proof. Upper bound: log Y", p;e#" < Bmax; v;. Lower bounds: F = p1 + %KL(qu(B)) > 1 and
Zi;ﬁi* pielri < (1 —p*)eP"=2) give equation O

Proposition E.6 (Mask preservation; shift/scale; prior sensitivity). (i) (Masking) If p:(i) = 0 then
(8)

4 ; (i) = 0; restricting My can only decrease equation|l
(ii) (Shift/scale) For any ¢ € R and a > 0,

Fri(Biv+c) =c+ Fpi(Biv), Frj(Brav) = aFy j(aB;v).
(iii) (Prior sensitivity: probabilities) Viewing F; ; as a function of p € A(My),
1 Bu. ; 1 Bu.j Bv. ;T
feiﬁvj V?J}—t,jz—*% =<
B3 prefir B (S, prefoms)

so JF; ; is concave in p on the simplex.
(iv) (Prior sensitivity: logits)

VpFij =

 For unnormalized weights s; > 0 with w; = log s; and .7}(6, w) = L log > ewitBui,

B
.1 R
VwF==q¢,  Vi,F=—(Diag(qg)—q¢q') = 0,
B 5
hence F is convex in w.
* For normalized logits b with p = softmax(b), writing J(r) := Diag(r) —rrT,
1 1
Vi Fij = B(qt(ﬁ-) -p),  ViFij= B(‘] @) - J(p)),

which is in general indefinite; thus F; ; is a difference-of-convex function of b.

Proof. (i) is immediate from equation For (ii), add c inside the exponent or reparameterize
B + af to obtain the stated identities. For (iii), F(p) = B~ log(p, ") is a log of an affine
function in p, hence concave; the displayed derivatives follow by direct differentiation. For (iv),
both statements follow from standard properties of log-sum-exp: the unnormalized case is convex
in w; composing with softmax yields a DC form with the given gradient and Hessian. O
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Theorem E.7 (Channel-wise assignment capacity over the prior support). Let D be the number of
channels and a = (ay,...,ap) € MD. If each channel has a positive margin A ; := Vajj —

mMaX;ens,\{a,} Vi,j > 0, then there exist finite temperatures {[; ;} such that arg max; qt(Bt J)( ) =

aj for all j. Hence the set of achievable channel-index argmax patterns has cardinality |Mt\D (the
natural upper bound). A single attention head, in contrast, yields at most | My| patterns (all channels
synchronized on one distribution).

Proof sketch. Apply Proposition E] per channel and choose (3 ; to concentrate posterior mass on
a; with any desired margin; counting patterns gives |M/; |P. O

Proposition E.8 (Complexity preservation and stable backpropagation). For fixed 5, computing
Fi,;(B) requires one masked log-sum-exp over M, and produces qf[j as the gradient equation 21

Therefore FEM preserves the asymptotic time complexity of the underlying prior (e.g., O(T?) or
O(T)) while enabling numerically stable forward/backward passes using standard LSE/softmax
primitives.

Proof sketch. Convex1ty in g and Slater’s condition yield strong duality for equation [3} KKT gives
the log-linear form ¢* o p; e”¥ with multiplier 3*. The monotonicity follows from the derivative
15 F(B) = B KL(q |Ip). O

Remark. Lemmas establish that FEM is variationally optimal (DV), value-aware with
explicit local geometry, monotone in temperature with variance-controlled small-/3 behavior, mask-
preserving, concave in the prior p on the simplex, convex in unnormalized log-weights, and DC
in normalized logits, capacity-optimal for channel-wise assignment over the prior support, and
complexity-preserving with stable gradients.

F DETAILS FOR LINEARIZED TEMPERATURE LEARNING

F.1 FIXED TEMPERATURE: DECOMPOSITION AND COST

Lemma F.1. For fixed 8 > 0, the FEM read satisfies F; ;(8) = pu; + 6‘1KL(pt||qt(:Bj)), where

we; = Ep,[vi ;] and q(ﬂ) (i) oc pi(i)ePUi on M,. Evaluating F ;(B) adds one masked LSE per
channel and preserves tl;e prior’s asymptotic complexity.

Proof. Algebra from ¢ o p eP? yields the identity; cost follows since the support is M;. O

F.2  MONOTONICITY AND HIDDEN TEMPERATURE

Proposition F.2. Let Fy ;(8) = 87" 1og Yy, pe(i)€PV9 and A 5(8) = F, ;(8) — Fy j(0). Then

F/;(B) =B~ QKL((LS[;)HZ%) > O, with strict positivity unless v. j is ps-a.s. constant. For any X €
[0, 1], there exists a unique 3f ;(\) € [0, Bmax] such that (1 —X)pug j+AFy j(Bmax) = Fr i (87 ; (V)
Moreover \ — By ;()) is continuous and strictly increasing.

Proof. Differentiate F to obtain F’'(3) = B~2KL(¢'®||p). Continuity and strict monotonicity
n [0, Bmax| imply the claim by the intermediate value theorem; strict increase follows from strict
positivity of F” in the nondegenerate case. O

Corollary F.3 (Reparameterization equivalence). For any smooth loss L, optimizing M\ ; in

L(F: ;(Ae,j)) is a strictly monotone reparameterization of optimizing (3 in L(Fy ;(5)): OL/OX =
(OLJOF) F'(B*) (0B* /OX) with F'(5*) > 0.
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F.3 KL-CONTROLLED INTERPRETATION OF THE GATE

From F ;(B) — pu,; = B~ 1KL(pth(ﬂ)) and equation

Gi 0y _

1 (Bmax)
KL
IB;]( ) (pt ” t ﬂmax (pt ”q )

so A specifies the fraction of the achievable KL improvement realized at step ¢.

F.4 ONE-PASS IMPLEMENTATION

Form the augmented value stream o; ; = [v;j, €’V ] and compute > ienm, Pe(i)Vij

[pej, >; pe(i)ePmaxvii ] in one pass. Then Fex = fBraxlog (>, pe(i)ePmaxvii) and equa-
tion [7] l—cquatlon [ follow.

F.5 GEOMETRY, STABILITY, AND ADDITIONAL PROPERTIES

For completeness we collect properties proved in Appendix [Ef (i) DV variational form F(3) =
max,{E,[v] — f7'KL(q||p)} with maximizer ¢/*) « peP?; (ii) gradient V,F(3) = ¢,
Hessian V2F(8) = B(Diag(q®)) — q(ﬁ)q(ﬁ)—r) and /2-smoothness; (iii) small-3 expansion
F(B)=pn+ gVarp(v) + O(3%); (iv) mask preservation; shift/scale laws; concavity in p; convexity
in unnormalized logits; difference-of-convex in normalized logits; (v) complexity preservation and
capacity consequences when f is large.

F.6 COMPLEXITY SUMMARY

LTL requires one expectation and one masked LSE at /3, per channel, both over M;, thus matching
the prior’s asymptotic complexity (O(T"?) for softmax; O(T) for kernel/SSM priors) while enabling
dynamic temperature control in a single pass.

G DETAILS FOR TWO-LEVEL GATED FEM

G.1 INNER GATE AS HIDDEN TEMPERATURE: PROPERTIES AND PROOF

Lemma G.1 (Monotonicity and smoothness). F; ; is continuous on [0, 00), differentiable on (0, c0),
and
d

dﬁFt,](B) B2 KUq? [l pe) >0, (24)

with equality iff v. ; is p-a.s. constant. Moreover Fy ; is convex and 3 /2-smooth in v. ;.

Proof. Standard Donsker—Varadhan calculus yields F;;(8) = maxgeamr){Eqlv. ;] —
(1/8)KL(q||p:) }- Envelope differentiation gives equation Convexity/smoothness follow from

the Fisher covariance of qtg . O

Proposition G.2 (Inner gate as hidden-temperature free energy). For each channel j and any X\, ; €
[0, 1] there exists a unique Brid,t,; € [0, Bmax, ;] Such that

Ftv]’(}\td) Bhld t.j log E pt exp 5h1d t,j U; ])
Moreover, Ny j — Bhnia i, is strictly increasing unless v. ; is pi-a.s. constant.

Proof. Let A, ;(B) = Fy ;(8) — F;(0). By Lemma|[G.1} A, ; is continuous, strictly increasing on
[0, Bmax,j] unless v. ; is constant. For any \; ; €[0, 1], define

Bhid,t,j = A;‘;(At,jAtJ (Bmax,j)) € [Oa ﬁma)@j]a
which is unique by strict monotonicity. Substituting yields E’j()\t, ;) = Fi j(Phid,t,;) as claimed.

O
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Reverse-KL improvement over the mean. For any 5 > 0,
1
Fig(B) = me + 5 KUmilai3), (25)

o} ﬁtyj()\) improves over fi; ; by a controlled reverse-KL term at the hidden temperature. This
explains the mean— soft-max interpolation effect of the inner gate.

G.2 COMPLEXITY, SINGLE-PASS COMPUTATION, AND STREAMING

Proposition G.3 (Complexity preservation). Computing equation[IOequation [[1] requires one ex-
pectation and one masked log-sum-exp at Bax per channel, hence matches the asymptotic time
complexity of the prior p; (e.g., O(T?) for softmax; O(T) for kernel/SSM priors).

Proof. Compute ). (i) [v;, exp(Bmax©v;)] once, then split to obtain p; and F;***. This re-
quires one expectation and one masked log-sum-exp per channel on the prior support M;, matching
the prior’s asymptotic time (softmax O(7?); kernel/SSM O(T)). The outer gate g; is a pointwise
modulation. O

Streaming compatibility. For associative priors (kernel/SSM), the normalized read is computed
by the same scan used for p;; concatenating a constant “1” channel yields the normalizer and nu-
merator in one pass. The LSE branch uses the same support M; and thus preserves streaming.

Numerical stability. We use standard LSE stabilization per channel: subtract max;(Bmax,;Vi,;)
inside the exponential and add it back after the logarithm. Gradient clipping for By,.x prevents
overflow when tasks push toward hard selection.

G.3 CONTAINMENT OF MIXER FAMILIES

Proposition G.4 (Formal containment). (i) Ay = 0 gives oy = >, p(i) (9: ©v;), matching per-
channel linear reweighting. (ii) 0 < Ay < 1 yields a monotone, convex aggregator in each channel
that interpolates between [ ; and max; v; j as A ; increases. (iii) Allowing A, g+ to depend on
(ctx, i, pe, F{2%) realizes token-separable couplings of the form . f(oy i, v;) and adds cross-
token competition through the log-sum-exp term.

Proof. Direct substitution of the choices for A; and identification of limits 5 — 0 and 8 — oo per
channel. O

G.4 CAPACITY AND HARD-SELECTION LIMITS

Proposition G.5 (Capacity and limits on the prior support). With A ~1 and sufficiently large B ax,
the per-channel posterior concentrates on its own arg-max over the prior support My = {i : p(i) >
0}, so the achievable channel-index assignment capacity attains |My|P. In the limit Ay = 0, FEM
reduces to the expectation baseline (the original read of the selection prior).

Proof. Fix channel j and let A; ; = min;;« (vs+ j—v; ;) > 0 be the margin at the arg-max index ¢*.
For any 8 > By(A¢ ;), the posterior qgﬁ.) places at least 1 — exp(—/SA; ;) mass on ¢*, and Fy ;(5) 1
vix j. Across channels, with A, ~ 1 and sufficiently large Buax, the joint posterior concentrates

independently per channel over M;, achieving |M;|? distinct index assignments. Setting A\; = 0
recovers fi;. O

G.5 GRADIENTS AND CURVATURE

For channel j,

OF;(B) _ (), PFGB) _ 4l 10i — 1t — o (0@
g =l 5= = sl i = -l (06 ().
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Thus gradients are the posterior weights and the Hessian is a Fisher covariance scaled by 3, giving
stable, value-aware competition. Backprop through equation[I0]is a convex combination of the mean
and LSE branches with coefficients 1 — A; and ;.

G.6 INVARIANCES AND SENSITIVITY TO PRIORS

For any constants a; > 0 and b;, F} ;(5;a;vi; + b;) = a;Fy j(a;8;v; ;) + b;. Multiplying prior
probabilities by a positive scalar and renormalizing leaves I} ; unchanged; reweighting p; within

(8)

M, shifts the posterior via ¢, ;

o py exp(pBv. ;), which is exploited by the outer and inner gates.

H PARAMETERIZATIONS OF THE PRIOR SELECTION IN FEM

Unified interface. At step ¢, let the accessible index set be Z; = {1,...,t} and let a nonnegative
score s : Z; — R define the prior selection by

Dt (Z) = <= /3 1 <1,
Zrﬁt St (T)
with s;(¢) = 0 for ¢ > ¢ (causal mask). FEM then optimizes, per channel j, the DV free energy
Fig(B) = 67 og Yo peli) ™, g/ () ox puli) €7

i<t

(26)

Below we specify s; (hence p;) for each prior family, along with the streaming recurrences and time
complexity. Throughout, M; = {i <t : s4(i) > 0} is the support carried into FEM (we enforce
a4t K pr).

H.1 SOFTMAX-ATTENTION PRIOR

Scores and normalization. Given masked scores ¢ (i) = (g, ki) + by ; with £,(i) = —oo fori > ¢,

exp{£:(i)}

50 =exp{t®},  pl) = == @y

27)

This is the standard row-softmax over causal scores.

Complexity. Matrix form A = softmax,ow (QK " + B + M) yields O(T?) time and O(T?)
memory (or O(T?) time, O(T') KV-cache in the autoregressive setting).

H.2 GATED LINEAR ATTENTION (GLA) PRIOR

Positional encoding and positivity. We inject relative position with RoPE, then map queries/keys
to the nonnegative orthant:

g: = ReLU(RoPE(q;)) +¢ € RY, ki = ReLU(RoPE(k;)) + ¢ € RY,,
where ¢ > 0 is a small constant for numerical stability.

Decay gating. Let g <0 be alearned (scalar / per-head / per-channel) gate and define the cumulative
envelope

¢
D, = exp( Z gT) (clipped in practice).
T=1
The causal time-decay factor between index i and step ¢ is K;; = D;D; ' = exp(Zizi +19-) €
(0,1].

Scores and normalization. The nonnegative score and prior are

5:(1) = Ky <(it»,;:i> 1{i < t}, pe(i) = StT(j)a Zy = Zst(r). (28)
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Equivalently, with an associative scan form,

Zi = (Deds, Y D'k ), Y osili)vi = (Ded Y DM (Reww) ). 29)
r<t i<t r<t
B, Ay

Hence the baseline normalized read is

<tht7 At>

M= DG, By

Streaming recurrences. Both states update in O(1) per step:

Bt :Bt71+Dt_1kt7 At :At,1+Dt_1(i<(3t® ’Ut).

A one-pass implementation appends a constant channel to values: oy = [v51], Ay =
> ,<; D; (k- ® ©,.); then [num, den] = (D; gy, A;) and p1; = num/den.

Complexity. GLA preserves the O(T) streaming complexity (per head), with the same
associative-scan cost as standard linear attention. FEM operates over the same support M; = {i :
p¢(1) > 0} and adds one masked log-sum-exp per channel (at fixed or LTL-controlled temperature).

H.3 LINEAR RNN-STYLE PRIORS

(LRNN-softmax) AFT-style normalized exponential weights. Let k; € R™ be per-step logits
and define
si(i) = exp{k;}1{i <t}, Zy = Zexp{k,}. (30)
r<t
Streaming recurrence:
Sy =8i1+eMuy, Zy=7Z, 4 +eM, = Ep vl = St/Z.
(We stabilize with k; — max,<; k, in practice.)

(LRNN-decay) Input-conditioned exponential decay. Let g, € R<( be a learned generator and

define
t

se(i) = exp( 3 gT> 1{i < t}. 31)

T=1+1
. o N 1 .
With I’y = exp(ZTSt g-) we have s;(i) = T', T'; " and the streaming form
Ct = thl + F;lﬂh Z st(i)vi = Ft Ct, Zt = Ft ZF;l
i<t i<t

Thus numerator and denominator share the envelope T';, preserving O(T) cost. (Conceptually,
LRNN-decay recovers the decay portion of GLA without the dot-product features.)

Complexity. Both LRNN-softmax and LRNN-decay are O(T") with O(1) updates; FEM adds one
masked log-sum-exp per channel.
H.4 SSM/MAMBA-STYLE PRIORS

Positive impulse-response SSM. Consider a causal linear state-space operator with nonnegative
impulse Hy(7) > 0:

(Sou)r = ZHe(t — i) u, Hy(7) = CAAY 'Bal{r > 1} + D1{r = 0},

i<t

where (Aa, Ba, Ca, D) are stable, nonnegative discretizations.
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Scores and normalization. Set

si(i) = Ho(t—i)1{i <t},  Zy = > Hp(t—7) = (Spl)r. (32)

r<t

Both numerator and denominator come from the same scan (once with u; = v;, once with u; = 1),
so the O(T) streaming complexity is preserved. In practice we parameterize to ensure Hy(7) > 0
(e.g., softplus for (A, B, C, D) and negative-softplus for the diagonal generator).

H.5 LocAL CONDITIONING OF THE PRIOR

Let ¢; € R¥¢ be the output of a learnable, O(T') time-decay conditioner (low-rank causal convolu-
tion). We modulate the prior parameters and value-path gates by

0, = 0,+GP(cy), Be() = pi(-10y), B = v;0(1+0{"), A = Mo (1+0M), G = g0 (1+n?),

where GP) and (") are small MLPs. This preserves the streaming/parallel cost of the chosen prior.

H.6 SUPPORT, MASKING, AND COMPLEXITY SUMMARY

We always enforce s;(i) = 0 for ¢ > ¢ and for hard-masked indices, hence M; = {i <t : s:(i) >
0}. FEM’s per-channel variational step operates on M; and adds exactly one masked log-sum-exp
per channel (at a fixed or LTL-controlled temperature), so the asymptotic time complexity matches
that of the prior: softmax O(7?), GLA/LRNN/SSM O(T).

Prior family Scores s¢(i) Complexity (per head)
Softmax attention exp{{(qs, ki) + be;} O(T?3d)
Gated linear attention (GLA) eXr=it1 97 (G, ki) o(Td)
LRNN-softmax (AFT) exp{k;} O(Td)
LRNN-decay exp(X:tT:H1 9r), 9r <0 o(Td)
SSM/Mamba Ho(t — i), Ho(-) > 0 O(Td)

Remark (RoPE & positivity mapping). Any invertible positional transform (g, k) — (T'q, Tk)
can precede score evaluation. In our GLA prior we use RoPE followed by a ReLU +¢ mapping on

both queries and keys to guarantee nonnegative feature vectors (g, k;) € RZ, before decay gating
and normalization. B

H.7 WIDTH AND PARAMETER BUDGETING FOR THE PRIOR
Let the input/value width be D and let FEM use a working width d on the value path. We allocate

a parameter ratio > 0 for the prior parameterization (queries/keys and decay gate in GLA), scaled
with d. Ignoring biases and norms, the per-head linear parameters decompose into five projections:

Dxd+ Dxd + Dxd +dxD+ Dx(rd) = 4Dd + Ddr.
N—— —— —— —— N ,
value outer gate g temperature A output prior (Q/K + decay)

The prior block D X (rd) is split among ¢, k; projections and the decay gate. To keep the total
parameter count equal to classic attention (4D?), two convenient choices are

d=2,r=4 or ()d=22 r=2,
since 4Dd + Ddr = 4D? in both cases. In (i), the grior (Q/K) runs at D-dim width—identical to
standard attention—while the value path uses d = 5. In (ii), the value width increases to d = %
with a balanced prior split (e.g., dim(Q) = dim(K) = %), and the remaining budget supports the
decay gate. Both settings preserve the asymptotic time complexity of the chosen prior (softmax
O(T?); GLA/LRNN/SSM O(T)).
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I Low-RANK CONVOLUTION: TIME-DECAY CONDITIONER (TDC)

1.1 DEFINITION AND STREAMING FORM

Given token features z1.7 € RT*P let ; = LN(x;) and choose a hidden width H, < D. Define
s; = softplus(z;W;) € R¥e,  wy = £, W, € R”<,  a; = softplus(z, W) € R,
with Wy, W,,, W, € RP*He_ The positive envelope is

¢
fi= exp( - Z sT) € Re  (element-wise).

T=1

The TDC output is the causal, input-conditioned separable convolution

Et:ftG)zt:(ui®fi> :zt:exp(— zt: ST) oOu,; € RA-, (33)
i=1 i=1

T=14+1

K

A calibrated shortcut and projection produce the conditioning features:
h; = SiLU(norm(a;)) © LN(hy), ¢ = h,W, € RP-,

where W, € RH<*De and norm(-) rescales to unit £ norm.

Proposition 1.1 (Rank-1-in-time kernel and O(1) updates). The kernel in equation |33| factors as
K;; = fi © (f))71, i.e, rank-1 in time for each channel. Hence the convolution admits O(1)
streaming updates:

Ci=Ci1+tu O f, Tlt:ftQCt-
The per-sequence cost is O(T H.) and the per-step memory is O(H..).

Proof. By definition, K;, = exp( - Zi:i_ﬂ sT) = exp( — ngt sT) ® exp(ZTSi sT) =
f: © (Ff;)~!. Substituting into equationyields the stated streaming form. O

Stability. The softplus parameterization ensures s; > 0, hence f; € (0, 1] element-wise; this
prevents exploding envelopes and ensures well-conditioned division in u;/ f; with standard ¢ stabi-
lization.

1.2 CouprLING TDC TO FEM

We use disjoint slices of ¢; to modulate (i) the parameterization of the prior selection p;(+; 6;) and
(i) FEM’s value-path gates:

Prior modulation: 0, = 0, + NG, A6, = GP)(¢), pe(i) = pt(i;ét), (34a)

Value gate: v =v,0(1+ nt(v)), nt(v) e W] c e, (34b)
Outer gate: g = g ® (1 + nt(g)), nt(g) € [77(9)] C ¢, (34c)
Temperature gate: Al = A O (1+ n,g)‘)), nt(A) e M) c e (34d)

FEM then applies equation with (pt,v;,g¢, A¢) replaced by (ﬁt,'z}i,gt,j\t), yielding
position-aware, locally conditioned selection without changing the prior’s asymptotic complexity.

1.3 COMPLEXITY AND COMPATIBILITY

Proposition 1.2 (Complexity preservation). TDC adds O(T H,.) time and O(H.) memory per layer
and does not alter the asymptotic complexity of FEM’s read, which remains O(T?) for softmax
priors and O(T) for kernel/SSM priors. The per-step coupling in equation|34|is pointwise in t and
thus streaming-compatible.
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Relation to recent convolutional/SSM designs. TDC follows the spirit of low-rank,
input-conditioned time-decay filters used in SSM/DeltaNet-style models and the local convolutional
augmentations commonly paired with Mamba-like architectures. Our use is FiLM-like: TDC learns
a compact context ¢; that modulates both the selection prior and FEM gates, providing local adap-
tivity while preserving streaming costs.

Implementation notes. We apply standard LSE stabilization per channel in FEM’s log-sum-exp
branch, and clamp the envelope by computing f; = exp(—cumsum(s;)) in log-space with an ¢
floor. The projections G®), [()], [(9)], [nM] are small MLPs with per-channel outputs; their
widths are tuned so that H. < D.

J  FEM AS A UNIVERSAL FAST-WEIGHT PROGRAMMER

Putting the pieces together, the final Free Energy Mixer realizes a unified, parallel fast-weight pro-
gram:

o = g1 ©® [(1 — S\t) © Eivplvi] + At @ By © logZﬁt(i) exp(Bmax © ;) }, (35)
———

i <t
mean (high-entropy) ‘=

max free energy (low-entropy)

where the prior p; and the value-path gates (0;, g, ;\t) are locally conditioned by TDC as in equa-
tion[34] Equation equation 35]shows that the mixer is simultaneously:

* a temporal mixer (log-sum-exp across indices, with causal masking and per-channel competi-
tion);

* an entropy mixer (inner temperature via S\t; mean<+>soft-max interpolation);
* alocal-feature mixer (position-aware modulation injected by TDC);

* a dual-gated mixer (inner temperature gate over indices ¢; outer amplitude gate over timesteps
t).

Crucially, the assignment capacity over the prior support attains the upper bound |M;|? (per-channel
posterior selection), the variational objective is solved exactly (DV optimality), and the overall time
complexity matches that of the chosen prior (softmax O(T?), kernel/SSM O(T)), up to the O(T H..)
convolution overhead. FEM thus serves as a broadly applicable, universal fast-weight programmer
that upgrades expectation-based reads to value-aware, memory processing without sacrificing paral-
lel efficiency.

J.1 RELATION TO PRIOR POOLING AND SELECTION METHODS

Our Free Energy Mixer (FEM) is related to but distinct from several existing approaches:

* Log-Sum-Exp (LSE) pooling. FEM is not simply a generalized mean that interpolates
between average and max pooling. Instead, from a Donsker—Varadhan variational view, it
uses values to tilt an arbitrary prior distribution p;. This yields per-channel, value-aware
posteriors rather than only adjusting the softness of pooling.

* Entmax / Sparsemax. These operate directly on the scoring distribution over (g, k),
changing how probability mass is allocated. FEM instead treats this distribution as a prior
and introduces cross-token competition through the values. The two directions are comple-
mentary and could be combined.

* Gumbel-Softmax / Top-k. Such methods emphasize hard selection, sampling, or ranking,
often requiring non-parallel sampling or offline sorting. In contrast, FEM remains fully dif-
ferentiable, parallel in one pass, and preserves the asymptotic complexity of the underlying
prior.
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K ADDITIONAL IMPLEMENTATION DETAILS

Our detailed experimental setup is available in the linked code repository. All language model-
ing experiments, including both training and inference, were conducted on 8x Nvidia H100 GPUs,
while all non-language modeling tasks were trained on 8x Nvidia L40S GPUs. We use 42 as the
random seed. The training and inference precision is bfloat16. For each task, we replaced the
standard Transformer block with an FEM Transformer block, substituting the attention layer with
FEM-{SM, GLA, Mamba, AFT}, while keeping all other settings unchanged to ensure a fully con-
sistent experimental environment. Parameter budgeting was carefully applied to keep overall model
size and architecture comparable to the baselines. The additional low-rank convolution used in our
parameterization introduces less than 1% extra parameters (with H. = d/16).

Special configurations required by the experimental setup when specified. Otherwise, all linear
projections are randomly initialized from a centered normal distribution with a standard deviation
of 0.02. All biases and embeddings are initialized to zero. For the maximum inverse temperature,
we initialize it to zero and then apply the parameterization softplus(x+1.8) to ensure that its initial
value is around 1 and remains strictly positive throughout training.

L  ADDITIONAL DATASET DESCRIPTION

Language Model Evaluation Setup. We adopt the Open LLM Leaderboard (OLL) protocol and
a complementary suite of general-ability tasks. The Open LLM Leaderboard core covers MMLU-
Pro (5-shot, accuracy), GPQA (0-shot, normalized accuracy), BBH (3-shot, normalized accuracy),
MATH (4-shot, exact match), and MuSR (0-shot, normalized accuracy), plus IFEval for instruction
following, where we report strict pass rates for instruction- and prompt-level constraints (Wang
et al., 2024} Rein et al. 2023; Suzgun et al., 2022; Hendrycks et al.l 2021; |Sprague et al., 2023;
Zhou et al., 2023). Following OLL, we use the normalized-accuracy metric acc,, for multiple-
choice tasks, which subtracts the random-guess baseline and rescales scores to a common range for
fair cross-task comparison (Hugging Facel 2025). To broaden coverage, we also evaluate on widely
used general-ability benchmarks: ARC (Challenge/Easy), HellaSwag, PIQA, BoolQ, WinoGrande,
COPA, OpenBookQA, and SciQ, reporting accuracy or acc,, as standard; unless noted, these are
evaluated in O-shot (Clark et al., 2018} [Zellers et al., 20195 Bisk et al.l [2019; [Clark et al., 2019;
Sakaguchi et al., 2020; Roemmele et al.} 201 1; Welbl et al.,[2017). We perform the evaluations with
Im-evaluation-harness (Gao et al., [2021)).

MAD We assess our architecture using the Mechanistic Architecture Design (MAD) framework,
a recently introduced methodology for cost-efficient evaluation of deep learning models [Poli et al.
(2024). MAD provides a set of capability-focused benchmarks—including in-context recall, fuzzy
recall, selective copying, and compression—that probe core sequence modeling abilities. It has been
validated across more than 500 language models ranging from 70M to 7B parameters, showing a
strong correlation between performance on these synthetic tasks and compute-optimal perplexity at
scale. By leveraging MAD as a reliable predictor of large-scale behavior, we can identify architec-
tural advantages without relying on the prohibitive compute costs of full-scale training.

Time Series Forecasting We evaluate our module on several standard time series forecasting
benchmarks, following the setup of Lu & Yang| (2025). (1) Weather (Wu et al., 2021 21 me-
teorological variables (e.g., temperature, humidity) collected every 10 minutes in 2020 from a Ger-
man weather station. (2) Solar (Lai et al., 2018)’t Solar power output recorded every 10 minutes
in 2006 from 137 U.S. photovoltaic plants. (3) ETT (Zhou et al., 2021ﬂ Transformer load and
temperature data from July 2016 to July 2018, sampled at 15-minute (ETTm1/ETTm?2) and hourly
(ETTh1/ETTh2) intervals, covering 7 key operational features.

Zhttps://www.bgc-jena.mpg.de/wetter/
*http://www.nrel.gov/grid/solar-power—data.html
*nttps://github.com/zhouhaoyi/ETDataset
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M FEM-MLP INTERACTION: AN NTK AND FAST-WEIGHT PERSPECTIVE

This section provides a mathematical description of how the Free Energy Mixer interacts with the
MLP within a Transformer block. FEM performs a per-channel, value-aware fast-weight update that
adapts the effective kernel directly at the mixing site, while the MLP focuses on feature synthesis
and processing. This division of responsibilities improves data efficiency and preserves both the
parallelism and the asymptotic time complexity.

M.1 NOTATION AND PLACEMENT WITHIN A BLOCK

We adopt the column-vector convention. Let h; € RP be the hidden state at index i < ¢, and let the
value path use a working width d:

v; = Wy h; € RY, e = (1= Aie) fte + Ate B, or = g+ © (Wouwy),

where ¢ € [d] indexes the value channels. Here

pre =Y pi(i)vie,  F™ =

i<t

1
log Zpt(i) eﬁ’maxvqx,c7
ﬁmax ’L<t

and u; = (ug1,-..,uq)’ € RY. The matrices Wy € RP*4 and W € RP*4 are the value and
output projections, and we define

b :=Woe; € R?
as the j-th output direction. The outer gate g; € R, is applied elementwise. The selection prior
pt € A({1,...,t}) is nonnegative and masked, supplied by mechanisms such as softmax attention,
kernelizable/linear attention, linear RNNs, or SSMs. FEM replaces the per-head convex read with a
per-channel free-energy read computed on the same masked support.

FEM weights and LTL. For channel ¢ € [d], the inner (temperature) gate A, . € [0, 1] defines the
effective per-channel weights
pe(i) exp{Bvi.}
ngt Pt (T) exp{ﬂ vr,c} ’
(c)

where ¢, ; is the value-aware posterior over the masked support. Linearized temperature learning
(LTL) shows that

W) = (1= Aee) o) + McdlD (D), a300) =

(1= Ate) it + Ae B8 = Fre(Bhia,e)

for a unique hidden temperature 57, ; . € [0, Smax] that varies strictly monotonically with A ..
Hence optimizing ); . is equivalent to optimizing § while requiring only one expectation and a
single masked log-sum-exp per channel.

M.2 LOCAL FREE-ENERGY GEOMETRY: FAST WEIGHTS AT THE MIXER

Fix step ¢ and channel c. The per-channel free energy and its posterior are

1 . v, c)y. pt(@) eﬁw'c
Frel®) = Glogd_p(ie™™e, ai3li) = 5= g
i<t <

The gradient equals the posterior and the Hessian is a Fisher covariance scaled by 3:

Vo FreB)=a, V2 F.(8)=pDiag(q) —qq¢"] =0,  |[V2Frc(B)lop < B/2.

Moreover,

Fro(B) = Ep,[v.c] + BKL(pilla()),  FL.(8) = B2KL(q\llpe) > 0,

with exponential posterior concentration under value margins. These properties identify FEM as
an exponentiated-gradient (mirror-ascent) fast-weight update applied to the prior p; along the value
direction v. .
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M.3 VALUE-PATH JACOBIAN AND NTK CONTRIBUTION INSIDE A FEM-MLP BLOCK

Treat g, and A; as constants with respect to Wy when forming the NTK for the value pa-

rameter group. Writing b; := Wg e; € R? for the j-th output direction and wy(i) =
(wi (), ..., wea(i))T € RY, we have
aom

= 9t.j Z hi [Diag(wy(i)) b;] " € RP*?, wi (1) = (1= Ae) pe(7) + At g ﬁmx(')-

i<t

oWy

Hence the value-path NTK contribution between outputs (¢, j) and (s, j') is

%) _ /0ot Qo jr
Kit4) (s, = <3Wé’ m;/jv>
= 9t,j9s.,5' ZZ(h“h Qb) ( S(T)@bj’)
i<t r<s

_gt]gS]ZWOjC WO] czzwtc wsc <h27h>

c=1 i<t r<s

This form makes explicit both the role of the output projection (via b;) and the per-channel, value-
aware weights wy (7).

Channel-token rank. Let Welassic Jy/FEM ¢ Rdxt collect token weights per channel on the value
path: .

(W) ey = (i), (WM = we (i)
Then rank (W!assi¢) = 1 (all rows identical), whereas rank (W} ¥M) can reach min{d, ¢} because
channels can select different indices in the same step. This rank gap explains why a single con-

vex read cannot realize generic channel-wise selectors, while FEM can approximate them at finite
temperature.

M.4 GATE-INDUCED CROSS-TERMS AND PRIOR SELF-CORRECTION

Beyond the direct value-path term above, additional chain-rule terms arise because o, ; depends
on the inner gate \; ; and the outer gate g; ;, both of which are parameterized from value-derived
statistics:

80t7j _ (80t7j) 8ot,j 8/\t7j 8(ut,thax) n Got,j 5'gt7j 8()

BWV 8WV direct 8)\t,j 8(/1,t,thaX) 8WV agt}j 8() BWV
The first term yields & (V); the second and third induce additional NTK components K *<V) and

K(9) that propagate value information through the gate parametrizations. These contributions should
be accounted for separately in a parameter-group NTK decomposition.

FEM also contributes a prior-path NTK term through the sensitivity of the free energy to the prior
logits. If p; = softmax(b;) then

Vi, Fi.o(B) = ; (q,("g Dt).

Gradients with respect to the query and key parameters therefore move the prior p; toward the value-

aware posterior qt(cg in a single pass, implementing online kernel adaptation at the score level.

M.5 COMPOSITION WITH THE MLP: ROLE SEPARATION IN THE NTK

Let ¢ denote the MLP in the same block, and J (0, ) its Jacobian. The block-level NTK decomposes
as

Kijock((t,5); (5,5")) = Js(00) Krpna((t,9): (5,4)) Jo(05) T + Knwe((t,5), (s,5')),
with
Kppy = KV + KOSV 4 g9 4 K(@QK) 4 cross-terms.
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Since K() already encodes value-aware, per-channel cross-token competition, the MLP receives
inputs whose coordinates have undergone a selective, information-budgeted fast-weight update. The
MLP can therefore concentrate on feature synthesis and consolidation, rather than attempting to
reconstruct channel-wise index identities that are provably lost after a first convex mixing without
FEM.

M.6 CONSEQUENCES FOR THE MLP’S WORKLOAD AND EMPIRICAL SIGNATURES

This analysis suggests two empirical signatures, both observed in our ablations. First, adding the
LSE branch (+L) and temperature control (+T) yields large gains, as they enable value-aware com-
petition at the mixing site and reduce the load on downstream MLPs. Second, when the mixer
handles fast-weight programming and the MLP focuses on feature synthesis and knowledge consol-
idation, FEM improves data efficiency on retrieval-heavy and algorithmic tasks without increasing
parameter budgets.

Summary. FEM upgrades the readout from a head-synchronous convex average to a per-channel,
value-aware variational update with stable geometry and single-pass temperature control. In an
NTK view, this is an online kernel adaptation step at the mixer, after which the MLP performs
feature synthesis on a selectively retrieved representation. This yields a clean separation of roles
that preserves parallelism and asymptotic complexity while expanding the class of functions that
can be realized in a single block.

N ADDITIONAL DISCUSSION: SIGNIFICANCE AND MOTIVATION

N.1 HIGH-LEVEL PERSPECTIVE FROM LLM SCALING LAWS
Let

f i size — ability

denote the empirical scaling law that maps model size (under comparable data and optimization) to
emergent capability. Viewed through this perspective, research on attention mechanisms naturally
splits into two complementary directions.

Efficiency-oriented work. This line of work keeps the semantics of attention essentially un-
changed, but makes each point on the curve f cheaper to realize. Typical approaches include kernel-
izable or streaming variants that replace the growing KV-cache with fixed-width sufficient statistics,
enabling efficient scans while trying to preserve the original attention behavior. Such improvements
extend the practical regime of the existing scaling law without modifying the underlying function f.

Expressivity-oriented work. This line aims to increase capability at a fixed parameter budget by
enlarging the architecture’s representable function class. In attention, a central bottleneck is the
read: standard attention stores values losslessly but mixes them via a token-separable convex aver-
age, which synchronizes channels and blocks even simple per-channel indexing. Recent works (like
Differential Transformer) has started to relax this constraint by extending convex mixing to affine
mixing with signed (including negative) weights, allowing more expressive selection behavior from
the same value bank (Ye et al.| [2025 [Lv et al.l | 2025)). In the same spirit, replacing expectation-style
reads with richer, value-aware per-channel mechanisms seeks to upgrade the algorithmic expressive-
ness of the architecture without changing its asymptotic complexity. In the context of scaling laws,
such improvements aim not merely to move more efficiently along the curve f : size — ability, but
to fundamentally reshape the function f itself by increasing ability at fixed model size.
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N.2 A COMPUTE-EXPRESSIVITY TRADE-OFF PATH IN MODEL STRUCTURE

The design of attention mechanisms, from the perspective of the developmental progression of both
effective and efficient sequence modeling, can be regarded as follows:

t t
d(g) " Se

or = f(x1.4) = o = g(zi,x1.4) = o = Q05 Q. = Softmax(qu,) = 0= —F—0,
—_—— ; ; ¢ (b(Qt)TZt
(0) = = —— ———

(1) (2) ®)
where, at the functional level, both f and g can be realized (up to arbitrary precision on com-
pact domains) by flattening their arguments and applying a sufficiently wide MLP, and where
Sy =Y, d(ki)v] and z = >, ¢(k;) are fixed-width sufficient statistics in linear/kernelized
attention. Each rightward step lowers asymptotic cost and, crucially for causal training, strengthens
causal training parallelism: the ability to compute all 7' — 1 token-level losses in one parallel for-
ward. Nodes (0)—(1) lack efficient output-parallel sharing across timesteps (each target requires its
own materialized context or independent map), whereas Nodes (2)—(3) obtain output parallelism by
sharing global operators across all steps: a masked score matrix applied to a shared value bank for
(2), or associative scans over fixed-width states for (3).

Intermediate designs between the nodes. Along the compute-expressivity frontier based on soft-
max attention, there are two movement directions. A leftward move (between Nodes (1) and (2))
accepts a modest increase in read-side cost to gain expressivity at fixed parameter budgets; examples
include token-separable nonlinear mixers such as >, a ; 0(3: ® v;) and FEM. A rightward move
(between Nodes (2) and (3)) accepts some loss in representable functions and memory storage to
obtain larger efficiency and stronger causal training parallelism, like gated linear attention (GLA)
and grouped query attention (GQA). These designs therefore occupy different, reasonable operating
points on the frontier, reflecting distinct trade-offs between computation and expressiveness.

A consolidated comparison. Table[f|summarizes compute cost, causal training parallelism, mem-
ory states, representable classes, and minimal non-representables. The overall pattern is clear: mov-
ing toward more efficient computations (matrix-parallel evaluation or fixed-state streaming/scan)
systematically reduces what the model can represent. Conversely, recovering same-step channel-
wise selection requires paying for additional capacity, either through richer read-side interactions
(such as per-channel, cross-token competition before the first mixing) or through increased architec-
tural resources such as larger states or more heads.

N.3 TWwO DIRECTIONS FOR ATTENTION: EFFICIENCY AND EXPRESSIVITY

Efficiency direction. This line preserves the expectation semantics of the read and reduces cost
via factorization, sparsity/low rank, fused kernels, or state-collapsed streaming mechanisms. It ex-
tends the practicable reach of the existing scaling law by making the same f(size) cheaper to realize
at longer contexts or larger batch sizes. However, it inherits the limitations of token-separable ex-
pectation reads and, for fixed-state designs, the consequences of state collapse.

Expressivity direction. This line retains lossless storage and upgrades the read so that the KV
cache functions as a dynamic selection database capable of per-channel indexing. From a classic
data-structure viewpoint, a per-head convex average cannot implement even basic two-dimensional
array indexing in one step; FEM remedies this gap by converting the score-induced prior into a
value-aware posterior that can concentrate independently per channel, all at the prior’s asymptotic
cost. In scaling-law terms, the goal is to raise ability at fixed size, effectively lifting or reshaping the
function f, rather than only moving more economically along it.

Directional summary. Starting from Node (2), efficiency work tends to move further rightward,
pushing streaming and fixed-state implementations while accepting additional expressivity losses.
Our study moves leftward from Node (2) toward Node (1): we keep the prior’s time complexity and
masking semantics but restore per-channel selection at read time, thereby turning the lossless mem-
ory storage into enhanced algorithmic expressiveness and general ability under the same parameter
budget. This complementary direction targets the mechanism of the scaling function f itself, by
increasing ability at fixed size rather than merely reducing the cost of reaching the same ability.
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O ADDITIONAL RUNTIME EFFICIENCY ANALYSIS

We replace the attention layer in a GPT-2 style Transformer (hidden size 768, 12 heads, 12 lay-
ers) with various alternatives and evaluate all models at sequence length 1024. We experiment with
three prior types within our Free Energy Mixer (FEM): softmax attention (SM), gated linear atten-
tion (GLA), and Mamba. To isolate the overhead of the free-energy branch, we report results for
the branch alone (denoted +L,T,G) as well as for the full model including the convolutional path
(+C,L,T,G), highlighting the impact of these components on computational efficiency.

In FEM, the implementations of softmax attention, gated linear attention, and Mamba are taken from
the FlashAttention (flash_attn), Flash Linear Attention (fla), and Mamba
(mamba_ssm) libraries, respectively (see our code repository for details). In addition, we com-
pare against recent baselines: RWKV7, linear attention (LinAttn), HGRN2, PaTH Attention, and
Gated Slot Attention, whose implementations are all taken from Flash Linear Attention
(fla). All runs use a single NVIDIA L40S GPU, batch size 8, and FP32 precision. We report
the mean latency over 500 steps following 50 warm-up steps. Fwd denotes full-sequence inference
without KV or hidden-state caches. FLOPs are estimated using the PyTorch profiler on the same
configuration: FwdFLOPs measures the total number of floating-point operations in a single for-
ward pass, TrainFLOPs in a single training step (forward + backward), and the per-token metrics are
obtained by dividing by the number of tokens in the batch.

As shown in the table below, even without optimally fusing the operations in the free-energy branch
with the mixing backend kernels, the additional cost introduced by the +L,T,G branch remains rea-
sonable. Moreover, even with the full structure (+C,L,T,G), FEM with softmax attention and Mamba
backends still achieves upper-mid performance among recent baselines. Thus, even if we treat fur-
ther kernel- and system-level optimizations as future work, the current FEM-SM implementation
already offers a computational advantage over PaTH Attention, a recent computation-engineered
softmax-attention-based architecture.

P TOY PROBLEM: SINGLE-LAYER CHANNEL-WISE ARGMAX

We construct a minimal synthetic task to illustrate the inability of a single convex read to perform
channel-wise selection and to contrast it with FEM.

Data. Each sample contains a value matrix V' € R7*P_ For every channel j, a winner index aj is
drawn uniformly from {1,...,T} and we set

Vaj,j:A"_Ej? Viiaj,jNN(QJQ)a
with margin A=1 and std level 0=0.05. The target output is the channel-wise maximum
* P ..
Yi = 225 Vi
Since different channels typically select different winners, y* almost always lies outside the convex

hull of {V; .} and cannot be produced by a single convex mixture. We use =128, D=512, number
of heads H = 4, with 200,000 training and 2,000 validation examples.

Models and training. We compare two single-layer value mixers that map input V € RT*P to
an output in R” taken from the last position directly after the value mixing. 1) Softmax attention : a
causal self-attention selection producing multi-head convex combination of the value vectors above.
2) FEM: a single FEM layer with the same softmax prior and a free-energy read of the value vectors.
We disabled the outer gating and low-rank convolution modules of FEM for more fair comparison.
Both models are trained with mean-squared error, AdamW, batch size 64, learning rate 102, for
2,000 steps.

Metrics. We report MSE and a per-channel index accuracy measuring whether the correct winner
index is recovered. Given prediction y € RP the predicted winner for channel j is

P . 2

a; = arg min (Vi; —y;)".
Index accuracy is the fraction of channels with a; = a;, averaged over the validation set. Random
guessing yields accuracy 1/7T (about 0.8% for T' = 128).
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Validation MSE vs Steps Per-Channel Index Accuracy
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Figure 3: Single-layer toy per-channel argmax task. Left: validation MSE over training steps.
Right: per-channel index accuracy. FEM rapidly fits the channel-wise argmax, while a softmax
attention layer stays near chance level, reflecting the limitation of convex mixing.

Results. FEM quickly learns the per-channel argmax mapping, while a single softmax attention
selection does not. FEM’s validation MSE decreases steadily and its index accuracy rises from
chance level to essentially 100% for T'=128, D=512, recovering the correct winner in every chan-
nel. The softmax attention baseline shows almost no improvement: its MSE remains near the initial
value and its index accuracy stays around 1—2%, close to the random baseline 1/7'.
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Node Form Time complexity Memory state Representable
and causal training (read-time) class vs. strict
parallelism non-representables

(0) General map oy = f(x1.4) Naively O(T?); no Full 1., (lossless All measurable
efficient causal storage and causal maps; no
training readout) exclusion
parallelism: each
target loss requires
materializing a
distinct, large
flattened/padded
context (no shared
value bank across
outputs)

(1) Additive 0y = Naively O(TQ) Full x.; (lossless Additive over

map-reduce > i<t 9(xi, 1) with map-reduce; storage and tokens at the

(2) Value-path
linearization

(3) Fixed-state
kernelization

Ot =
Zigt Qg Vi, &=
softmax(q " k)

0r — COMED
T p(q) T2

Sy =Y d(ki)v,
z =) (ki)

token-map parallel
but output-wise
reduces are
independent: maps
cannot be shared
across different
outputs, yielding
weak causal
training
parallelism

Matrix-parallel
O(T?): all T
outputs in one

masked QK " pass parallel efficiency

and a single AV,
full causal training
parallelism via a
shared value bank
and linear mixing

O(T) with

associative scans;

readout); Each ¢
can read the full
prefix

Requires full
lossless x1.¢
storage; achieves

by replacing
per-channel
dynamic readout
with per-head
convex mixing

Memory storage
collapses to

full per-pass causal fixed-width

training
parallelism via
shared fixed-width
prefix statistics

sufficient statistics

(St , Zt). Not
lossless.

output; loses the
one-hot, flattened
positional
addressability
since all token
contributions are
additively
superposed in the
same space, SO
positional
matching must be
recovered through
learned positional
mechanisms with
appropriate
inductive bias;
excludes
non-additive
global functionals.
Image per head
lies in conv{v;}
with channel-
synchronized
weights; excludes
same-step
channel-wise
indexing (e.g.,
coordinate-wise
argmax) unless all
selected indices
coincide; heads at
most ¢ patterns;

Depends only on
sufficient statistics;
identity-level
retrieval
impossible at long
horizons; Gating
may enrich the
prior yet remains
state-collapsed.

Table 6: Compute-expressivity trade-offs across four nodes. Rightward moves reduce cost and
increase causal training parallelism, but each step provably removes function families available to

earlier nodes.
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Table 7: Latency, throughput, and peak GPU memory on GPT-2 (768/12/12) setting, sequence length
1024, batch size 8, FP32 on a single L40S GPU. Fwd = full-sequence inference.

Model Latency Latency Throughput Throughput MemPeak MemPeak Fwd Train Fwd Train
Fwd (s) Train (s) Fwd (tok/s) Train (tok/s) Fwd (GB) Train (GB) FLOPs FLOPs FLOPs/tok FLOPs/tok
RWKV7 0.0832 0.2367 98417.56 34610.31 11.08 1148 147T 4.41T 179.35M 538.0¢M
LinAttn 0.0652 0.1368 125587.32 59881.77 6.01 6.16 1.39T 4.18T 169.94M 509.75M
HGRN2 0.0680 0.1481 120405.72 55326.95 6.66 6.94 1.39T 4.18T 169.89M 509.65M

PaTHAttention 0.0693 0.2098 118161.31 39051.39 5.62 5.82 1.40T 4.21T 171.29M 513.84M
GatedSlotAttention 0.0765 0.1901 107069.10 43082.50 7.72 8.08 1.51T 4.52T 184.04M 552.11M

SM (Naive) 0.1306 0.3334 62740.89 24574.18 9.61 10.34  1.70T 5.11T 207.84M 623.41M
SM (Flash) 0.0649 0.1471 126304.94 55697.16 4.89 4.99 1.39T 4.18T 169.89M 509.65M
SM (+L,T.G) 0.0693 0.1615 118154.14 50733.90 5.82 5.92 1.39T 4.18T 169.92M 509.75M
SM (+C,L,T,G) 0.0732 0.1853 111955.25 44217.70 7.67 7.77 1.40T 4.21T 171.43M 514.19M
GLA 0.0824 0.2213 99389.45 37016.71 9.95 10.17  1.70T 5.11T 208.03M 623.90M

GLA (+L,T.G) 0.0875 0.2344 93674.03 34946.88 10.89 11.08  1.70T 5.11T 208.07M 624.02M
GLA (+C,L,T.G) 0.0934 0.2566 87675.64 31924.23 12.74 1293  1.72T 5.15T 209.57TM 628.46M

Mamba 0.0606 0.1249 135144.49 65603.32 4.60 4.70 1.28T 3.84T 156.33M 468.97M
Mamba (+L,T,G) 0.0586 0.1438 139778.42 56978.94 6.77 6.87 1.22T 3.67T 149.29M 447.83M
Mamba (+C,L,T,G) 0.0647 0.1831 126581.53 44743.67 7.97 8.07 1.23T 3.70T 150.44M 451.25M
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