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ABSTRACT

Lipschitz regularized f -divergences are constructed by imposing a bound on the
Lipschitz constant of the discriminator in the variational representation. These
divergences interpolate between the Wasserstein metric and f -divergences and
provide a flexible family of loss functions for non-absolutely continuous (e.g. em-
pirical) distributions, possibly with heavy tails. We first construct Lipschitz regu-
larized gradient flows on the space of probability measures based on these diver-
gences. Examples of such gradient flows are Lipschitz regularized Fokker-Planck
and porous medium partial differential equations (PDEs) for the Kullback-Leibler
and α-divergences, respectively. The regularization corresponds to imposing a
Courant–Friedrichs–Lewy numerical stability condition on the PDEs. For empiri-
cal measures, the Lipschitz regularization on gradient flows induces a numerically
stable transporter/discriminator particle algorithm, where the generative particles
are transported along the gradient of the discriminator. The gradient structure
leads to a regularized Fisher information which is the total kinetic energy of the
particles and can be used to track the convergence of the algorithm. The Lipschitz
regularized discriminator can be implemented via neural network spectral normal-
ization and the particle algorithm generates approximate samples from possibly
high-dimensional distributions known only from data. Notably, our particle algo-
rithm can generate synthetic data even in small sample size regimes. A new data
processing inequality for the regularized divergence allows us to combine our par-
ticle algorithm with representation learning, e.g. autoencoder architectures. The
resulting particle algorithm in latent space yields markedly improved generative
properties in terms of efficiency and quality of the synthetic samples. From a
statistical mechanics perspective the encoding can be interpreted dynamically as
learning a better mobility for the generative particles.

1 INTRODUCTION

We construct new algorithms that are capable of efficiently transporting arbitrary empirical distri-
butions to a target data set. The transportation of the empirical distribution is constructed as a (dis-
cretized) gradient flow in probability space for Lipschitz-regularized f - divergences. Samples are
viewed as particles and are transported along the gradient of the discriminator of the divergence to-
wards the target data set. We take advantage of representation learning concepts, e.g. autoencoders,
and make these algorithms efficient even in high-dimensional sample spaces by defining particle
algorithms in latent space. Their accuracy is guaranteed by a new data processing inequality. One
of our main tools is Lipschitz regularized f -divergences which interpolate between the Wasser-
stein metric and f -divergences. Such divergences Dupuis & Mao (2022); Birrell et al. (2022a;c),
discussed in Section 2 provide a flexible family of loss functions for non-absolutely continuous dis-
tributions. In Machine Learning one needs to build algorithms to handle target distributions Q which
are singular, either by their intrinsic nature such as probability densities concentrated on low dimen-
sional structures and/or because Q is usually only known through N samples (the corresponding
empirical distribution Q̂N is always singular). Another key ingredient in our construction is that
we build gradient flows where mass is transported along the gradient of the optimal discriminator
in the variational formulation of the divergences. The time discretization of such gradient flows for
empirical distributions gives rise to a so-called transporter/discriminator particle algorithm which
transports an initial empirical distribution P̂N toward the target Q̂N . The Lipschitz regularization
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provides numerically stable, mesh free, particle algorithms that can act as generative models for
high-dimensional target distributions. Moreover the gradient structure yields a dissipation functional
which corresponds to the kinetic energy of the particles (a Lipschitz regularized version of Fisher
information) and which can be used to control the convergence of the algorithm. The third new
element in our methods is the use of representation learning to reduce the sample space dimension.
We construct latent particle algorithms by building a Lipschitz regularized gradient flow in latent
space. The fidelity of the latent space particle algorithm is guaranteed by a new data processing in-
equality for Lipschitz regularized divergence which ensures that convergence in latent space implies
convergence in real sample space. The proposed generative approach is validated on a wide variety
of datasets and applications ranging from image generation to gene expression data integration.

Related work. Our approach is inspired by the MMD and KALE gradient flows from Arbel et al.
(2019); Glaser et al. (2021) based on an entropic regularization of the MMD metrics, and related
work using the Kernelized Sobolev Discrepancy Mroueh et al. (2019). Furthermore, the recent work
of Dupuis & Mao (2022); Birrell et al. (2022a) built the mathematical foundations for a large class of
new divergences which contains the Lipschitz regularized f -divergences and used them to construct
GANs, and in particular symmetry preserving GANs Birrell et al. (2022c)). Lipschitz regularizations
(or related spectral normalization) have been shown to improve the stability of GANs Miyato et al.
(2018); Arjovsky et al. (2017); Gulrajani et al. (2017). Our particle algorithms share similarities
with GANs Goodfellow et al. (2014); Arjovsky et al. (2017), sharing the same discriminator but
having a different generator step. They are also broadly related to the Wasserstein gradient flows
Fan et al. (2022) which build a suitable neural method for the JKO-type schemes,Jordan et al. (1998).
Furthermore, our methods are closely related to continuous time normalizing flows (NF) Chen et al.
(2018a); Köhler et al. (2020); Chen et al. (2018b), diffusion models Sohl-Dickstein et al. (2015); Ho
et al. (2020) and score-based generative flows Song & Ermon (2020); Song et al. (2021). However,
the aforementioned continuous time models, along with variational autoencoders Kingma & Welling
(2013) and energy based methods LeCun et al. (2006), are all likelihood-based. On the other hand,
particle gradient flows such as the ones proposed here, can be classified in the same category of
generative models that include GANs. Here there is more flexibility in selecting the loss function
in terms of a suitable divergence or probability metric, enabling the comparison of even mutually
singular distributions, e.g. Arjovsky et al. (2017). In Section A and Section F.1 we compare further
our particle methods to other generative particles algorithms such as RKHS-based gradient flows and
score-matching methods. Gradient flows in probability spaces related to the Kullback-Leibler (KL)
divergence, such as the Fokker-Planck equations and Langevin dynamics Roberts & Tweedie (1996);
Durmus & Moulines (2017) or Stein variational gradient descent Liu & Wang (2016); Liu (2017);
Lu et al. (2019), form the basis of a variety of sampling algorithms when the target distribution Q has
a known density (up to normalization). The weighted porous media equations form another family
of gradient flows based on α-divergences Markowich & Villani (2000); Otto (2001); Ambrosio et al.
(2005); Dolbeault et al. (2008); Vázquez (2014) which are very useful in the presence of heavy
tails. Our gradient flows are Lipschitz-regularizations of such classical PDE’s (Fokker-Planck and
porous media equations), see Appendix B for a PDE and numerical analysis perspective on such
flows. Finally, deterministic particle methods and associated probabilistic flows of ODEs such as the
ones derived here for Lipschitz-regularized gradient flows for (f,Γ) divergences, were considered in
recent works for classical KL-divergences and associated Fokker-Planck equations as sampling tools
Maoutsa et al. (2020); Boffi & Vanden-Eijnden (2022), for Bayesian inference Reich & Weissmann
(2021) and as generative models Song et al. (2021). Our latent generative particles approach is
inspired by latent diffusion models using auto-encoders Rombach et al. (2021) and by autoencoders
used for model reduction in coarse-graining for molecular dynamics, Vlachas et al. (2022); Wang &
Gómez-Bombarelli (2019); Stieffenhofer et al. (2021).

2 LIPSCHITZ-REGULARIZED f -DIVERGENCES

In the paper Dupuis & Mao (2022), continuing with Birrell et al. (2022a) a new general class of
divergences has been constructed which interpolate between f -divergences and integral probability
metrics and inherit desirable properties from both. In this paper we focus on one specific fam-
ily which we view as a Lipschitz regularization of the KL-divergence (or f -divergences) or as an
entropic regularization of the 1-Wasserstein metric. We denote byP(Rd) the space of all Borel prob-
ability measures on Rd by P1(Rd) =

{
P ∈ P(Rd) :

∫
|x|dP (x) <∞

}
. We denote by Cb(Rd) the

2



Under review as a conference paper at ICLR 2023

bounded continuous function and by ΓL = {f : Rd → R : |f(x) − f(y)| ≤ L|x − y| for all x, y}
the Lipschitz continous functions with Lipschitz constant bounded by L (note that aΓL = ΓaL).

f-divergences. If f : [0,∞) → R is strictly convex and lower-semicontinuous with f(1) = 0 the
f -divergence of P with respect to Q is defined by Df (P∥Q) = EQ[f(

dP
dQ )] if P ≪ Q and set to be

+∞ otherwise. We have the variational representation (see e.g. Birrell et al. (2022a) for a proof)

Df (P∥Q) = sup
ϕ∈Cb(Rd)

{
EP [ϕ]− inf

ν∈R
{ν + EQ[f

∗(ϕ− ν)]}
}

(1)

where f∗(s) = supt∈R {st− f(t)} is the Legendre-Fenchel transform of f . We will use the KL-
divergence with fKL(x) = x log x and the α-divergence: fα = xα−1

α(α−1) with Legendre transforms

f∗
KL(y) = ey−1 and f∗

α ∝ y
α

(α−1) (see the Appendix). For KL the infimum over ν can be solved
analytically and yields the Donsker-Varadhan with a logEQ[e

ϕ] term (see Birrell et al. (2022b) for
more on variational representations).

Wasserstein metrics. The 1-Wasserstein metrics WΓ1(P,Q) with transport cost |x − y| is an
integral probability metrics, see Arjovsky et al. (2017). By keeping the Lipschitz constant as a
regularization parameter we set

WΓL(P,Q) = sup
ϕ∈ΓL

{EP [ϕ]− EQ[ϕ]} (2)

and note that we have WΓL(P,Q) = LWΓ1(P,Q).

Lipschitz-regularized f -divergences. The Lipschitz regularized f -divergences are defined di-
rectly in terms their variational representations, by replacing the optimization over bounded contin-
uous functions in (1) by Lipschitz continuous functions in ΓL.

DΓL

f (P∥Q) := sup
ϕ∈ΓL

{
EP [ϕ]− inf

ν∈R
{ν + EQ[f

∗(ϕ− ν)]}
}
. (3)

Some of the important properties of Lipschitz regularized f -divergences, which summarizes results
from Dupuis & Mao (2022); Birrell et al. (2022a) are given in Theorem 2.1. It is assumed there
that f is super-linear (called admissible in Birrell et al. (2022a)), that is lims→∞ f(s)/s = +∞.
This excludes the case of α-divergences for α < 1, for which the existence of optimizers is a more
delicate problem, but parts of the theorems remain true.
Theorem 2.1. Assume that f is superlinear and strictly convex. Then for P,Q ∈ P1(Rd) we have

1. Infimal Convolution Formula: DΓL

f (P∥Q) = inf
γ∈P(Ω)

{
WΓL(P, γ) +Df (γ∥Q)

}
. In particu-

lar we have 0 ≤ DΓL

f (P∥Q) ≤ min
{
Df (P∥Q),WΓL(P,Q)

}
.

2. Interpolation and limiting behavior of DΓL

f (P∥Q):

lim
L→∞

DΓL

f (P∥Q) = Df (P∥Q) and lim
L→0

1

L
DΓL

f (P∥Q) = WΓ1(P,Q) . (4)

3. Optimizers: There exists an optimizer ϕL,∗ ∈ ΓL, unique up to a constant in supp(P )∪supp(Q).
Remark 2.2. The optimizer γL,∗ in the infimal convolution formula exists, is unique and dγL,∗ ∝
(f∗)′(ϕL,∗)dQ (see Birrell et al. (2022a) for details). For example for KL, dγL,∗ ∝ eϕ

L,∗
dQ.

3 LIPSCHITZ-REGULARIZED GRADIENT FLOWS AND THEIR
TRANSPORTER/DISCRIMINATOR REPRESENTATION

Background. Gradient flows in latent spaces (for example in GANs) or in the space of probability
measures (for example in diffusion models and score matching algorithm play a central role in
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generative modeling. It is well-known Jordan et al. (1998) that the Fokker Planck equation (FPE)
can be thought as the gradient flow of the KL divergence

∂tpt = div

(
pt∇

δDKL(pt∥q)
δpt

)
= div

(
pt∇ log

(
pt
q

))
(5)

where pt and q are the densities at time t and the stationary density respectively. A similar result
relates weighted porous media equation and gradient flows for f divergences Otto (2001). From a
generative model perspective where Q is known only through samples (and may not have a density
in the first place as Q is concentrated on low dimensional structure), one cannot use such flows
without further regularization. Score matching and diffusion models start by regularizing the data
by adding small amount noise to the data (see Sohl-Dickstein et al. (2015); Ho et al. (2020) andSong
& Ermon (2020); Song et al. (2021)). Next, we propose a different and complementary approach
by regularizing the divergence in (5) directly. We refer to Section A and Section F.1 for further
connections between these different approaches and the last Example in Section 6.

Lipschitz-regularized gradient flows. Given a target probability measure Q, we build an evolu-
tion equation for probability measures based on the Lipschitz regularized f -divergences DΓL

f (P∥Q)
by considering the PDE

∂tPt = div

(
Pt∇

δDΓL

f (Pt∥Q)

δPt

)
, P0 = P ∈ P1(Rd) (6)

where
δD

ΓL
f (P∥Q)

δP is the first variation of DΓL

f (P∥Q) (to be discussed below in Theorem 3.1). An
advantage of the Lipschitz regularized f -divergences is its ability to compare singular measures and
so (6) is to be understood in the sense of distributions (integrating against test functions). For this
reason we use the probability measure Pt notation in (6), instead of density notation pt as in the FPE
(5). In the limit L→∞ and if P ≪ Q, (6) yields the FPE (5) (for KL divergence) and the weighted
porous medium equation (for α-divergences) Otto (2001); Dolbeault et al. (2008), see Appendix B.

The following theorem was first proved in Dupuis & Mao (2022) for KL and can be generalized to
the f -divergences considered in Theorem 2.1 (see the proof in Appendix C.

Theorem 3.1. Assume f is superlinear and strictly convex and P,Q ∈ P1(Rd). Then we have

δDΓL

f (P∥Q)

δP
(P ) = ϕL,∗ . (7)

In more details, let ρ be a signed measure of total mass 0 and let ρ = ρ+ − ρ− where ρ± ∈ P1(Rd)
are mutually singular. If P + ϵρ ∈ P1(Rd) for sufficiently small |ϵ| then DγL

f (P + ϵρ∥Q) is
differentiable at ϵ = 0 and

lim
ϵ→0

1

ϵ

(
DΓL

f (P + ϵρ∥Q)−DΓL

f (P∥Q)
)
=

∫
ϕL,∗dρ . (8)

Combining Theorem 3.1 with (6) leads to a new class of PDEs:

Transporter/Discriminator PDE:

∂tPt = div(Pt∇ϕL,∗
t ), where ϕL,∗

t = argmax
ϕ∈ΓL

{EPt [ϕ]− EQ[f
∗(ϕ)]} (9)

Remark 3.2. (a) The transporter/discriminator PDE (9) makes sense when P and Q are replaced by
their empirical measures P̂N , Q̂N based on N IID samples. This will be the basis of our numerical
algorithm in Section 4 (see Algorithm 1). (b) Also (9) makes sense if P and Q are mutually singular
(e.g. when Q is supported on a low-dimensional structure). We can view (9) as a Lipschitz regular-
ization of classical PDEs which allows particle-based approximations based on data. In particular,
the Lipschitz condition on ϕ ∈ ΓL enforces a finite speed of propagation of at most L in the trans-
port equation in (9). This is in sharp contrast with the Fokker Planck equation given in Appendix B
which is a diffusion equation, see Appendix B.2 for more details and practical implications.
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4 LIPSCHITZ-REGULARIZED GENERATIVE PARTICLES

In this section we build a numerical algorithm to solve the transporter/discriminator gradient flow
when N IID samples from the target distribution are given. For a map T : Rd → Rd and P ∈
P(Rd), the pushforward measure is denoted by T#P (i.e. T#P (A) = P (T−1(A)). The forward-
Euler discretization of the system (9) yields:

Euler method for the Transporter/Discriminator PDE:

Pn+1 =
(
I −∆t∇ϕL,∗

n

)
#
Pn, where ϕL,∗

n = argmax
ϕ∈ΓL

{EPn
[g]− EQ[f

∗(ϕ)]} (10)

When only N IID samples {X(i)}Ni=1 of the target distribution Q are available we build a particle
system by considering N IID samples {Y (i)}Ni=1 from some initial measure P (M ̸= N samples
are also possible) and (10) becomes

Lipschitz regularized generative particles:

Y
(i)
n+1 = Y (i)

n −∆t∇ϕL,∗
n (Y (i)

n ) , ϕL,∗
n = argmax

ϕ∈ΓL

{∑N
i=1 ϕ(Y

(i)
n )

N
−
∑N

i=1 f
∗(ϕ(X(i)))

N

}
(11)

The empirical measure P̂N
n = N−1

∑N
i=1 δY (i)

n
built from (11) gives a solution of the system (10) if

we use as target the empirical measure Q̂N = N−1
∑N

i=1 δX(i) and as initial condition the empirical
measure P̂N = N−1

∑N
i=1 δY (i)

0
. Finally we note that (11) is a time-discretization of the Lagrangian

formulation of (9), i.e. the ODE/variational problem

d

dt
Yt = −∇ϕL,∗(Yt, t) , where ϕL,∗ = argmax

ϕ∈ΓL

{
EPt [ϕ]− inf

ν∈R
{ν + EQ[f

∗(ϕ− ν)]}
}

. (12)

Algorithm 1: Lipschitz regularized generative particles algorithm
Require: f defined in (2) and its Legendre conjugate f∗, L: Lipschitz constant, ν: scalar

parameter for optimizing f divergence,
1 T : number of updates for the particles, γ: time step size, N : number of particles

Require: W = {W l}Dl=1: parameters for the neural network ϕ : Rd → R, D: depth
of the neural network, δ: learning rate of the neural network, TNN: number of updates
for the neural network.

Result: {Y (i)
T }Ni=1

2 Sample {X(i)}Ni=1 ∼ Q, a batch from the real data
3 Sample {Y (i)

0 }Ni=1 ∼ P0 = P , a batch of prior samples
4 Initialize ν ← 0, W randomly and W l ← L1/D ∗W l/∥W l∥2
5 for n = 0 to (T − 1) do
6 for m = 0 to TNN − 1 do
7 gradW,ν ← ∇W

[
N−1

∑N
i=1 ϕ(Y

(i)
n ;W )−

{
N−1f∗

(
ϕ(X

(i)
n ;W )− ν

)
+ ν
}]

8 W ←W + δ ∗ gradW , ν ← ν + δ ∗ gradν
9 W l ← L1/D ∗W l/∥W l∥2

10 end
11 Y

(i)
n+1 ← Y

(i)
n − γ∇ϕL

n(Y
(i)
n ;W ), i = 1, · · · , N

12 end
// The height of ϕ is adjusted by the optimization over ν.

This keeps ϕ(X
(i)
n ;W ) values to reside in the domain of f∗ and

allows to avoid the degeneracy.

Remark 4.1. (a) The transport mechanism given by (11) is linear. However, nonlinear interactions
between particles as introduced via the discriminator ϕ̂L,∗

n are created due to the velocity field∇ϕL,∗
n

which depends on all particles that comprise P̂N
n and Q̂N at each step n. (b) Computationally, the
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discriminator optimization (over Lipschitz continuous functions) is implemented, for example, via
spectral normalization for neural networks architectures. Moreover the gradient of the discriminator
is computed only at the positions of the particles. (c) The Lipschitz bound L on the discriminator
space implies a pointwise bound |∇ϕL,∗

n (Y
(i)
n )| ≤ L and thus the particle speed is bounded by L.

Hence the Lipschitz regularization imposes a speed limit L on the particles, ensuring the stability of
the algorithm for suitable choices of L. This implicit grid is reminiscent of the Courant, Friedrichs,
and Lewy (CFL) condition for the stability of discrete scheme. These are fundamental features for
the performance and the stability of Algorithm 1 derived from (11) (see Sections 6) and Appendix
B.

Kinetic energy of particles: The gradient structures implies, see Theorem B.1, that, for (9),
the derivative of the regularized divergence satisfies d

dtD
ΓL

f (Pt∥Q) = −IΓL

f (Pt∥Q) where
IΓL

f (Pt∥Q) = EPt
[|∇ϕL,∗|2] which is interpreted as a Lipschitz-regularized Fisher Information.

As L → ∞ one recovers for example the Fisher Information used for the Fokker-Planck equation.
For the Algorithm 1 the Lipshitz-regularized Fisher information

IΓL

f (P̂N
n ∥Q̂N ) =

∫
|∇ϕL,∗

n |2P̂N
n (dx) =

1

N

N∑
i=1

|∇ϕL,∗
n (Y (i)

n )|2 , (13)

is equal to the total kinetic energy of the particle since∇ϕL,∗
n (Y

(i)
n ) is the velocity of the ith particle

at time n. Clearly when the total kinetic energy IΓL

f (P̂N
n ∥Q̂N ) is zero, the algorithm will stop.

5 LATENT GENERATIVE PARTICLES: GRADIENT FLOWS IN LATENT SPACE

A standard paradigm of machine learning is that target measures are often supported on low di-
mensional structures. We leverage this insight, in the form of an auto-encoder, to construct particle
algorithms in a latent, lower dimensional space. The resulting latent particle algorithms are both
more accurate and efficient, even in high-dimensional sample spaces, and their performance is guar-
anteed by a new Data Processing Inequality in Theorem 5.1. Assume Q = QY is supported on some
low dimensional set S ⊂ Y = Rd, an encoder map E : Y → Z where Z ⊂ Rd′

, d′ < d and a
decoder map D : Z → Y are invertible in S, i.e. D ◦ E(S) = D(Z) = S. We denote by E#QY the
image of the measure QY by the map E , i.e. for A ⊂ Z , we define E#QY(A) = QY(E−1(A)) and
likewise for D#P

Z . The following theorem expresses how information remains controlled under
encoding/decoding and guarantees the performance of the approximation D#P

Z in the real space.
The latter is achieved by an a posteriori estimate (14), in the sense of numerical analysis, where the
approximation in the tractable latent space Z will bound the error in the real space Y .
Theorem 5.1. Suppose that

1. Perfect encoding. For QY the encoder E and the decoder D are such that D#E#QY =
QY .

2. Lipschitz decoder. The decoder is Lipschitz continuous with Lipschitz constant aD.

Then, for any PZ ∈ P1(Z) we have

DΓL

f

(
D#P

Z∥QY) ≤ D
ΓaDL

f

(
PZ∥E#QY) . (14)

This theorem and more general versions thereof for other representation learning tools beyond au-
toencoders, is proved in Appendix D.2. The proof is a consequence of a new, tighter data processing
inequality derived in Birrell et al. (2022a) that involves both transformations of probabilities and
discriminator spaces Γ.
Remark 5.2. In practice an autoencoder is trained on data using the empirical measure Q̂N and
suitable loss function and neural network architectures. Assumption 2 in Theorem 5.1 can easily be
enforced using e.g. spectral normalization. Assumption 1 is a reasonable, but somewhat idealized,
version of the requirement that the autoencoder captures adequately the features of the dataset Q. In
particular the dimension of the latent space Z needs to be selected carefully (see Section 6).
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Gradient flow in latent spaces. If ϕZ
t is the discriminator in latent space leading to the gradient

flow (9), ∂tPZ
t = div(PZ

t ∇ϕZ
t ) then, in the particle algorithm, each particle is transported follow-

ing (the time-discretization of) the ODE żt = −∇ϕZ
t (zt), as in Section 4. The Algorithm 2 can be

found in the Appendix D.3. Upon decoding we find the transport ODE in real space is

ẏt =

(
∂D
∂z

(zt)

)T

żt = −
(
∂D
∂z

(zt)

)T
∂D
∂z

(zt)∇yϕ
Y
t (D(zt)) (15)

where ∂D
∂z (zt) is the Jacobian of D at the point zt and the reconstructed discriminator ϕY is given

by ϕZ = ϕY ◦ D. Using (15) we can therefore interpret the encoding as learning a mobility µt =
∂D
∂z (zt)

T ∂D
∂z (zt), i.e., learning a better geometry in real space. This leads to a gradient flow in real

space with non-trivial mobility, cf. (9),

∂tP
Y
t = div

(
µtP

Y
t ∇ϕY

t

)
. (16)

We note that the mobility concept is well-known in computational materials science where it is used
to model kinetics of species and interfaces, see for instance Cahn (1965); Zhu et al. (1999); Wang
et al. (2020). Finally, we note a similar computation to (15) in Mroueh et al. (2019) regarding the
interpretation of GAN’s as a gradient flow. The differences (and similarities) between (Lipschitz-
regularized) Generative particle algorithm (GPA) and GAN are summarized in Figure 4 and Table
1, where in the latter we also include a comparison between mobilities.

GPA GPA in a latent space GAN
Discriminator ϕY ∈ Lip(Y) ϕZ ∈ Lip(Z) ϕY ∈ Lip(Y)

Generator (IY −∆t∇ϕY)#P
Y
n

(
D ◦ (IZ −∆t∇ϕZ)

)
#
PZ
n Gθ(z), z ∼ N (0, IZ)

Updates Particles Particles Generator parameters
y ∈ Y z ∈ Z θ ∈ R|θ|

Mobility µ (16) IY
∂D
∂z (zt)

T ∂D
∂z (zt)

∂G(θt,z)
∂θ

T ∂G(θt,z)
∂θ

Table 1: Comparison of features in GPA, GPA in the latent space and GAN. Note that GPA consists
of one neural network for the discriminator while GAN has two neural networks for the discriminator
and the generator, respectively. We use the notations Y = Rd and Z = E(Y) for distinguishing the
real space and the latent space. A schematic diagram in Figure 4 shows how the Latent GPA and the
GAN interact between the latent and the real spaces.

6 EXPERIMENTS

We present three types of experiments: (1) generating MNIST images from a small number of
data, see Figure 1; (2) merging gene expression data sets which are very high-dimensional (and
thus require a latent space description) but also have a low number samples on the order of the low
hundreds since they correspond to patients, see Figure 2; (c) generating heavy-tailed distributions
where KL or maximum likelihood-based methodologies will necessarily fail since an f -divergence
is required, see Figure 3. Overall, we found that GPA perform best in learning from small number of
samples, learning distributions with heavy tails, and exhibit enhanced learning when a latent space
is available.

1. Learning MNIST from a few data. Our (fKL,Γ1)-GPA is found to perform well in generating
images using a small number of samples while GANs struggle with limited data. We stress from the
digit-conditional MNIST data generation example in Figure 1 that (fKL,Γ1)-GPA could generate
images from ten digit labels out of 200 samples. We compare the performance with (fKL,Γ1)-GAN
and the well-known Wasserstein GAN. FID values and the improvement of our result with latent
GPA can be found in Appendix F.2.

2. Merging of microarray gene expression data sets Using GPA, we can transport arbitrary
source data to arbitrary target data even if a relatively small number of samples is available from the
target. Furthermore, combining our algorithm with representation learning, we introduce a bioinfor-
matics application of our algorithm in the analysis of gene expression data. Gene expression datasets
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(a) (fKL,Γ1)-GPA, 200 samples (b) (fKL,Γ1)-GAN, 200 samples (c) Wasserstein-GAN, 200 samples

(d) (fKL,Γ1)-GPA, 2000 samples (e) (fKL,Γ1)-GAN, 2000 samples (f) Wasserstein-GAN, 2000 sam-
ples

Figure 1: MNIST; Learned digits by different generative models (column) with different num-
ber of training data (row). The (fKL,Γ1)-GPA was able to learn digits from a small data set, while
the other methods failed. Using sufficiently large training data, GANs outperformed in capturing the
scale, which can be observed by the more intense color contrast between a digit and its background.
See FID scores in Table 6.

are not only high-dimensional but also small-sized thus it is crucial to increase the sample size by in-
tegrating together all available datasets from the same disease. However, this is not a straightforward
process since it is well known that gene expression datasets may have different statistics even when
they target the same disease; a phenomenon referred to as “batch effects” Tran et al. (2020). We pro-
pose to mitigate batch effects via the latent generative particle algorithm and match the statistics of
the two datasets. Figure 2 presents the results on applying our algorithm between two breast cancer
datasets from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).
More technical details and experiments can be found in the Appendix F.3.

3. GPA and Porous medium equations for heavy-tailed targets Similarly to score-based meth-
ods (see equation 22 in Section A) developed in Boffi & Vanden-Eijnden (2022) to solve the FP
equation 5, our proposed methods will allow to develop new particle systems algorithms for solving
porous medium equations with steady state probability measure Q and density q:

∂tpt = div
(
pt∇f ′

(
pt
q

))
(17)

For the special case where the f -divergence is an α-divergence with fα(x) ∼ xα, we obtain a
power law in equation 17 and ultimately the well-known porous media equations, e.g. Bonforte
et al. (2010); Otto (2001); Dolbeault et al. (2008), used for applications to actual porous medium
flow, typically in dimension 3. However, here we propose porous medium equations and associated
particle algorithms as statistical learning tools for pdfs with heavy tails. For instance, score-based
methods, are KL-based, see Song et al. and the discussion in Section A, hence they are not suit-
able for heavy tailed distributions: we refer to the collapse in the algorithms that minimize KL
divergence observed in Figure 2 in Birrell et al. (2022a), in stark contrast to the stable behavior of
suitable (f,Γ)-divergences for heavy tails. For this reason, we propose GPA algorithms based on
the porous medium equation equation 17 and its more stable Lipschitz-regularized particles-based
solution given by the Algorithm 1 as a new efficient and reliable way for generating samples from
heavy-tailed targets Q. See the example in Figure 3. Our methods are also partly theoretically
grounded on of asymptotics and related functional inequalities results for porous medium equations,
e.g. Dolbeault et al. (2008); Bonforte et al. (2010).
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(a) Particles in the latent space (b) Particles in the real space (c) MMD

Figure 2: (Gene expression data; Merging Breast Cancer datasets). We merged gene data using
our latent GPA in significantly lower dimensions. Two distinct gene data sets but from the same
disease decrease their dimension from 54,675D into d′ = 2, 5, 10, 20, 50, 100, 200 using normalized
PCA. Then, latent particles are transported using GPA. blue: source (206 samples), red: target
(245 samples), black: transported (206 samples). (a) Latent particles in the Rd′

with d′ = 20
which are encoded by the PCA. (b) Transported samples are reconstructed to the real space. The
2D visualizations are obtained using the UMAP algorithm McInnes et al. (2018). (c) The MMD
distance Gretton et al. (2012) between the reconstructed datasets. blue: MMD(PY

0 , PY
T ), red:

MMD(QY , PY
T ), T = 25K. The transported distribution has smaller distances from the target

distribution when d′ = 5, 10, 20, 50, 200.

(a) α = 2 Lipschitz-regularized GPA (b) Score matching and annealed Langevin dynamics

Figure 3: (2D Mixture of Student-t) (fα,Γ1)-GPA with α = 2 for a heavy tailed target and
comparison with score based model. 200 target samples from Student-t(ν) with ν = 0.5 are
provided to transport 500 particles which are uniformly distributed in the plotted region at time
t = 0. Blue: target, Orange: output. (a) The choice of divergence fα with α = 2 and propagation
of particles through the (fα,Γ1)-GPA captures the heavy-tailed target. (b) Noise conditional score
network (NCSN, score based model Song et al.) evolves particles by learning the vector field, the
score ∇ logQ(x), from data. However, a mixture of disjoint distributions makes it hard to learn the
score where the data is sparse. NCSN tackles the problem by injecting different levels of noise on
the data and learning the scores of noise-injected distributions. Then it propagates particles through
annealed Langevin dynamics using a sequence of scores sσ with different noise levels σ. When
the level of injected noise gets smaller as much as σ ≤ 1, score-matching of the perturbed data
for Student-t was extremely hard. In addition, particles transportation through (annealed) Langevin
dynamics might not lead to the convergence to the heavy tailed distribution. A similar comparison
for a mixture of Gaussians can be found in Figure 6.
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7 REPRODUCIBILITY STATEMENT

Each figure contains main parameters such as divergence-specifying f , Lipschitz constant L, and
dataset parameter. In Appendix Section E, experimental setting for the experiments in the main text
and appendix are described in these aspects:

• Data sets
• Neural network architectures
• Computational resources.

In Supplementary material, source code, all dependent libraries, and documentation (README.md)
are attached. README.md specifies the required open-source libraries and the entire parameters
set including random seeds for reproducing individual experiments.

10
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A CONNECTIONS OF GPA WITH SCORE GENERATIVE METHODS

In this Section we discuss connections of GPAs with diffusion-type generative models in particular
with score-based models which seem to be the most closely related. Score-based generative mod-
eling (SGM) relies closely on concepts and methods related to Langevin samplers, e.g. Durmus
& Moulines (2017). Given Rd–valued samples {Y (i)}Ni=1 from an unknown probability Q with
distribution q, we want to produce more realizations from Q. In SGMs, the score of the unknown
distribution, ∇ log q(y) is learned from the training set. An optimization problem to learn the score
is defined as follows Song & Ermon (2020): we search for s : Rd → Rd in a function space F
parametrized by θ (typically neural networks),

min
θ

L(θ) = min
θ

1

2

∫
Rd

∥s(y; θ)−∇ log q(y)∥2q(y)dy. (18)

The key observation in (18) is that the loss functional can be estimated via available samples from Q
without any evaluation of the density q (of Q) or ∇ log q, Hyvärinen (2005). Indeed, by expanding
the square and integrating by parts in (18) we arrive at an equivalent loss function J(θ):

argminθL(θ) = argminθL0(θ) = argminθEQ

[
1

2
∥s(y; θ)∥22 +∇y · s(y; θ)

]
. (19)

Since computing the divergence of s(x; θ), when it is expressed as some neural network is quite ex-
pensive, the complexity of this last loss functional (19) can be further reduced by using a Hutchinson-
type randomization Hutchinson (1989) for the efficient evaluation of∇y · s(y; θ), by developing the
so-called ”sliced score matching” method Song et al. (2020). Lastly, we remark that it may initially
appear that the selection of the loss functional (18) is somewhat ad hoc as in many other successful
machine learning algorithms. However, using the Girsanov Theorem it can be shown that (18) has
rigorous information-theoretic underpinnings because it is related to the minimization of the KL
divergence on path-space, Song et al..

After learning the score from the minimization of (19), namely ŝ(y) = s(y; θ∗) ≈ ∇ log q(y), there
are several directions that can be taken towards generative modeling. The most naı̈ve option is to
simulate trajectories of the overdamped Langevin dynamics using the learned score:

dYt = ŝ(Yt)dt+
√
2dWt , where ŝ(y) ≈ ∇ log q(y) . (20)

As discussed in Song & Ermon (2020), naı̈vely applying this approach is not practical: (a) Langevin
dynamics will not sample from the true data distribution when the data lies on a lower dimensional
manifold; (b) the score cannot be accurately estimated for regions with little data; (c) Langevin
dynamics mixes poorly, and therefore generates poorly, especially for multi-modal systems. To
overcome these challenges, Song & Ermon (2020); Song et al. (2021) propose to add noise to the
available data from Q in a systematic fashion. In Song & Ermon (2020), the authors propose to
build a noise-conditional score network, in which a sequence of noisy datasets are generated by
adding different noises to the given dataset. In the end, we simulate an annealed Langevin dynamics
analogue to (20):

dYt = σ2(t)∇ log q(Yt)dt+
√
2σ(t)dWt , (21)

with the annealing schedule σ(t). The distribution of Yt at some finite cut-off time T is supposed
to approximate the data distribution q. Indeed (21) is shown to mix better, and estimate the score
better in regions of low probability, Song & Ermon (2020). In Song et al. (2021), the author propose
an alternative method by considering a forward-backward formulation. However all these Langevin
dynamics approaches require tuning — mainly since the annealing schedule or the forward model
need to be user-prescribed and is problem-dependent, like all annealing methods.

Connections between Score-based methods and GPA. The distribution pt of the solution Yt of
the SGM (20) is the solution of classical Fokker Planck (FP) equation (5), given a target distribution
q. The FP is of course a diffusion equation, but it can also be viewed as a transport equation taking
the form ∂tpt = ∇ · (v(xt, t)pt) , with velocity field v(x, t) = ∇ δKL(pt∥q)

δpt
. In analogy to (12) we

can write the solution of this transport formulation as the density of particles evolving according to
its Lagrangian formulation

d

dt
Yt = v(Yt, t) = ∇ log q(Yt)−∇ log pt(Yt) , where Yt ∼ Pt . (22)
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In Song et al. (2021), the authors proposed the deterministic probability flow (22) as an alternative
to generative stochastic samplers such as (20) and (21) due to advantages related to better statistical
estimators.

In the perspective of GPAs, we can write (22), in an equivalent transport/variational problem that
employs the variational formulation of the KL divergence, (1). First, we note that ϕ∗(x) = log pt(x)

q(x)

is the maximizer (discriminator) of this variatonal representation, Birrell et al. (2022b). Next, no-
tice that (22) can also be written in the equivalent particle/variational form (12) which for the KL
divergence, and due to ϕ∗(x) = log pt(x)

q(x) , takes the form

d

dt
Xt = v(X, t) = −∇ϕ∗(X, t) , where ϕ∗ = argmax

{
EPt [ϕ]− inf

ν∈R

{
ν + EQ[e

ϕ−ν−1]
}}

.

(23)

It is evident that (23) is mathematically equivalent to (22), since ϕ∗(x) = log pt(x)
q(x) . However,

the particle/variational problem (23)–through its generalization (12)–allows us to use a much wider
variety of divergences that–unlike KL used in score-based methods–are suitable for probability dis-
tributions supported at lower dimensional manifolds, are singular such as empirical distributions, or
have heavy tails. These are precisely the featues of the GPA developed in in this paper, based on
(f,Γ)-divergences.

B PDE, CONVERGENCE & LEARNING RATES

Here, we discuss how PDE perspectives and tools provide insights for the analysis, stability and
convergence for the proposed generative particle algorithms. We focus on continuous time for con-
venience. By recalling Theorem 2.1,part 4. and γL,∗ → P as L→∞ (if P is absolutely continuous
with respect to Q) in Remark 2.2, (9) becomes a Lipschitz-regularized f -divergences gradient flow
(with its limit as L→∞), i.e.

∂tPt = div
(
Pt∇f ′

(
dγL,∗

dQ

))
︸ ︷︷ ︸

Lip. regularized f -divergence flow

−→
L→∞

∂tPt = div
(
Pt∇f ′

(
dPt

dQ

))
︸ ︷︷ ︸

f -divergence flow

(24)

The right hand side of (24) is a nonlinear operator which encodes the Lipschitz regularization in
the discriminator space. This defines a new class of PDE gradient flows where absolute continuity
between Pt and Q for every t ≥ 0, is not required, contrary to gradient flows of f -divergences (ob-
tained as L → ∞.) We discuss these connections next in the context of two well-known PDEs, the
(linear) Fokker-Planck and the (non-linear) porous media equation. Rewriting the limiting equation
in terms of the density ht =

dPt

dQ we have

1. Lipschitz-regularized Fokker-Planck. For the KL, f(x) = x log(x) we obtain

∂tPt = div

(
Pt∇ log

(
dγΓL,∗

t

dQ

))
−→
L→∞

∂tht = (∆+∇ log(q) · ∇)ht (25)

2. Lipschitz-regularized Weighted Porous Medium equation (WPME). For the α-divergence
with fα(x) = 1

α(α−1)x
α we obtain a regularization of the porous media equation Otto (2001);

Dolbeault et al. (2008)

∂tpt =
1

α− 1
div

pt∇

(
ηΓL,∗
t

q

)α−1
 −→

L→∞
∂tht =

1

α
(∆ +∇ log q · ∇)hα

t (26)

B.1 CONVERGENCE TO EQUILIBRIUM AND FUNCTIONAL INEQUALITIES

Functional inequalities are fundamental methods for guaranteeing the convergence of gradient flow
PDE to their equilibrium states and therefore are natural tools for studying convergence properties
for the corresponding particle-based algorithms. A first step is to compute the rate of change of the
divergence along solutions Pt of (9).
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Theorem B.1. [Lipschitz regularized dissipation] Along a trajectory of a smooth solution {Pt}t≥0

of (9) with source probability distribution P we have the following rate of decay identity:
d

dt
DΓL

f (Pt∥Q) = −IΓL

f (Pt∥Q) ≤ 0 (27)

where we define the Lipschitz-regularized Fisher Information as

IΓL

f (P∥Q) =

∫
|∇ϕL,∗|2P (dx) = EP

[∣∣∣∣∇f ′
(
dγL,∗

dQ

)∣∣∣∣2
]
. (28)

Consequently, for any T ≥ 0, we have DΓL

f (PT ∥Q) = DΓL

f (P∥Q)−
∫ T

0
IΓL

f (Ps∥Q)ds .

Remark B.2. (a) For the generative particles the Lipschitz-regularized Fisher Information can be in-
terpreted as their total kinetic energy, see Paragraph 12. (b) When f = fKL, as L→∞, we recover
the usual Fisher information IΓf (P∥Q) = EP

[
|∇ log

(
p
q

)
|2
]

which is used to prove convergence
to the equilibrium state for the Fokker-Planck equation 25.

Functional inequalities, such as the classical Poincaré and the Logarithmic Sobolev-type inequal-
ities, and many generalizations thereof see Markowich & Villani (2000); Otto & Villani (2000);
Toscani & Villani (2000); Dolbeault et al. (2008); Wang (2005) are a powerful to prove convergence
to equilibrium (e.g exponential or polynomial convergence), building on dissipation estimates such
as Theorem B.1. For example, if for some λ > 0, a Sobolev inequality DΓ

f (P∥Q) ≤ 1
λI

Γ
f (P∥Q)

holds (true when Q is sub-Gaussian), then we obtain exponential convergence to Q for any P0:
DΓ

f (Pt∥Q) ≤ e−λtDΓ
f (P0∥Q). There exits various results, e.g. Carrillo et al. (2006); Dolbeault

et al. (2008); Markowich & Villani (2000); Wang (2008), reviewed in the Section B.3, B.4, on func-
tional inequalities when L = ∞ which have been used to prove convergence to equilibrium (at
exponential or polynomial rate) for Fokker-Planck and/or the porous media equation when the tar-
get distribution are Gaussian distribution, stretched exponential and Student-t type distribution. The
existence of functional inequalities for Lipschitz-regularized gradient flows is an open question.

B.2 NUMERICAL ANALYSIS FOR LIPSCHITZ REGULARIZED PDES AND GENERATIVE
PARTICLES

For a Lipschitz-regularized gradient flow (24), the transporter/discriminator representation (9) im-
plies that the domain of dependence is determined by the velocity fields ∇ϕL,∗

t whose norm is
bounded by the Lipschitz constant L. Therefore the domain of dependence of the solution is finite
and is contained in a cone of slope L that emanates from any point (x, t) back to the time plane
t = 0.

From a numerical analysis point of view, (10) is an explicit numerical scheme pn+1−pn

∆t =

div
(
pn∇ϕL,∗

n (x)
)
. For corresponding spatial discretization schemes there is an abundance of nu-

merical methods which we can use to get some numerical analysis insight into our particle schemes
(10). In particular, the Courant, Friedrichs, and Lewy (CFL) condition for stability of discrete
schemes asserts that a numerical method can be convergent only if its numerical domain of depen-
dence contains the true domain of dependence of the continuous PDE, LeVeque (2007). In our
context, the CFL condition means supx |∇ϕ

L,∗
t (x)|∆t

∆x ≤ Cmax where Cmax = 1 for such explicit
schemes, LeVeque (2007). Clearly, the Lipschitz regularization enforces a CFL type condition with
a learning rate ∆t proportional to the inverse of L. It remains an open question how to rigorously
extend this CFL analysis to particle-based algorithms where the spatial discretization grid ∆x is
known only implicitly as noted in Remark 4.1(b), see also related questions in Carrillo et al. (2017).
Nevertheless, in our experiments we explore the inversely proportional relation between L and ∆t
suggested by the CFL analysis.

B.3 FOKKER-PLANCK EQUATION, AND ITS CONVERGENCE TO EQUILIBRIUM STATE

Generalized Fokker Planck as the gradient flow of f -divergences. Let pt is the density of Pt.
The associated gradient flow is given by the generalized Fokker-Planck equation

∂tpt = ∇ ·
(
pt∇

δDf (P∥Q)

δP
(pt)

)
= ∇ ·

(
pt∇f ′

(
pt
q

))
(29)
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The Fokker Planck as gradient flow of KL. When f = fKL, we obtain the known Fokker-Planck
equation

∂tpt −∆pt +∇ ·
(
pt
∇q
q

)
= 0.

B.3.1 EXPONENTIAL DECAY WHEN q ∝ e−V AND V IS λ-CONVEX

In this section for simplicity that the probability densities of both source and target distributions
exist and are denoted by p, q. We consider the Cauchy problem of the Fokker-Planck equation given
in Section B with

p(t = 0, ·) = p ≥ 0 and
∫

p = 1. (30)

The next theorem in Markowich & Villani (2000) gives us the conditions that a probability measure
satisfies in order to logarithmic Sobolev inequalities and consequently exponential decay.
Theorem B.3. Let q ∈ L1(Rd) and V be λ-convex (i.e. D2V (x) ≥ λId for all x ∈ Rd), where Id is
the identity matrix of dimension d. Then, q satisfies a logarithmic Sobolev inequality with constant
λ, i.e. DKL(p∥q) ≤ 1

2λI(p∥q), and the solution of the homogeneous Fokker-Planck equation goes
to equilibrium in KL divergence, with a rate e−2λt at least.

Typical examples that satisfy the conditions of Theorem B.3 are

q(x) =
e−|x|β∫
e−|x|β , for x ∈ Rd with β ≥ 2 (31)

When β = 2, the target probability distribution with density q is the Gaussian with variance σ and
zero mean, i.e.

q(x) =
1

(2πσ)d/2
e−

|x|2
2σ ,

(i.e. V (x) = |x|2
2σ ). By applying Theorem B.3, we get that for any initial probability distribution P

which is absolutely continuous with respect to Q,
DKL(pt∥q) ≤ DKL(p0∥q)e−2t/σ (32)

where we have also used that the Stam-Gross Logarithmic Sobolev inequality, i.e. DKL(p∥q) ≤
σ
2 I(p∥q), see formula (14) in Markowich & Villani (2000).

B.3.2 POLYNOMIAL DECAY WHEN q ∝ e−V AND V IS DEGENERATELY CONVEX AT INFINITY

We consider a potential V ∈W 2,∞
loc such that

∫
q = 1 and degenerately convex at infinity, i.e.

U(u)− a ≤ V (u) ≤ U(u) + b (33)
where a, b are nonnegative constants and U is convex degenerate, i.e.

D2U(u) ≥ c(1 + |u|)β−2, c > 0 and β ∈ (0, 2) (34)
Without loss of generality we assume that U takes its unique minimum at 0. We further assume that
for some b, c, C0 > 0

∇V (u) · u ≥ c|u|b − C0 (35)
A typical potential that satisfies (33), (34) and (35) is V = |x|β with 0 < β < 2. Before we state
the next theorem in Toscani & Villani (2000), we further define the following quantities

Ms(p) :=

∫
p(x)(1 + |x|2)s/2, s > 2 and δ :=

2− β

2(2− β) + (s− 2)
∈ (0,

1

2
) (36)

Theorem B.4. Let V be a potential satisfying assumptions (33), (34) and (35). Let p0 be a proba-
bility density such that DKL(p0∥q) < ∞, Ms(p0) < ∞ given in (36) for s > 2 . Let also {pt}t≥0

be a (smooth) solution of the Fokker-Planck equation with potential V and with initial datum p0.
Then, there is a constant C depending on DKL(p0∥q),Ms(p0). and s such that for all t > 0,

DKL(pt∥e−V ) ≤ C

tκ
, with κ =

1− 2δ

δ
=

s− 2

2− β
. (37)

where δ is given in (36).

Note that as β → 2, one recovers the usual logarithmic Sobolev inequality as discussed in
Sect. B.3.1. We summarize the said examples in the following table.
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Table 2: Rate of convergence to equilibrium state q ∝ e−V in KL divergence

Examples of q ∝ e−V Rate of convergence in KL divergence

q ∝ e−|x|β , β ≥ 2 at least e−2λt

Special case: N (0, σ) at least e−2λt, with λ = 1
σ

q ∝ e−|x|β , 0 < β < 2 O(t−κ), κ as in (37)

B.4 WEIGHTED POROUS MEDIUM EQUATIONS AND THEIR CONVERGENCE TO EQUILIBRIUM
STATE

B.4.1 WEIGHTED POROUS MEDIUM EQUATION

The gradient flow of f -divergences for likelihood ratio. One may rewrite (29) in terms of the likeli-
hood ratio denoted by ht and defined as

ht =
dpt
dq

(38)

By using the operator identity (q being the multiplication operator by the function q), i.e.
∇q = q (∇+∇ log q)

we have that

∇ · pt∇f ′
(
pt
q

)
= q(∇+∇ log q)ht∇f ′(ht)

and thus we can rewrite (29) as
∂tht(x) = (∇+∇ log q) · ht∇f ′ (ht) (39)

Moreover if we denote ∇∗ the adjoint of ∇ on L2(q) we have ∇∗ = −(∇+∇ log q) and thus (39)
has the form

∂tht(x) = −∇∗ht∇f ′(ht) (40)
Let now fα(x) =

xα−1
α(α−1) , we rewrite

h∇hα−1 =
1

β
∇vβ = vβ−1∇r =⇒ v = hα−1 and h = vβ−1 =⇒ β =

α

α− 1

and thus we obtain
∂tht(x) =

1

α
(∆ +∇ log q · ∇)hα

t (41)

for t ≥ 0 and x ∈ Rd corresponding to a non-negative initial condition h(x, 0) = h0(x), x ∈ Rd is
called weighted Porous Medium equation. For existence and uniqueness, see Dolbeault et al. (2008).
Remark B.5. The formula for f∗

α is given by

f∗
α(y) =


(α−1)

α
(α−1)

α y
α

(α−1)1y>0 +
1

α(α−1) , α > 1

∞1y≥0 +

(
1

α(1−α)
α

(1−α)
|y|−

α
(1−α)1y>0 − 1

α(1−α)

)
1y<0 , α ∈ (0, 1)

(42)

Remark B.6. For completeness, we discuss a related gradient flow known as granular media equa-
tion. To be precise, the 2-Wasserstein gradient flow of F(p) = 1

2MMD[p, q]2 where MMD[p, q] is
the Maximum mean discrepancy (MMD) Gretton et al. (2012). By recalling (2), MMD is defined as

MMD[p, q] = sup
g∈BRKHS(0,1)

{EQ[g]− EP[g]}

and its maximizer ϕ∗(z) = fq,p(z) =
∫
k(x, z)q(x)dx −

∫
k(x, z)p(x)dx = k ⋆ p(z) − k ⋆ q(z)

is called witness function between the probability densities q and p. In fact, g∗ is the difference
between the mean embeddings of q and p which finally makes MMD be re-written as the RKHS
norm of the unnormalized g∗, i.e.

MMD[p, q] = ∥ϕ∗∥H (43)
Then the gradient flow equation associated to F leads to the granular media equation, i.e

∂tpt(x) = div (p∇ · (k ⋆ p− k ⋆ q)) ≡ div (pt∇ϕ∗
t ) (44)
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B.4.2 FUNCTIONAL INEQUALITIES FOR THE WEIGHTED POROUS MEDIUM EQUATION

In this section, we apply Theorem 4.5 in Dolbeault et al. (2008) to Weighted Porous Medium for the
likelihood ratio ht =

pt

q and we prove polynomial decay in KL and χ2-divergence. Before we state
the result we first define the Lr-Poincaré inequality and Lr-logarithmic Sobolev inequality (see also
Dolbeault et al. (2008)).
Definition B.7. Let q be a probability measure on a Riemannian manifold (M, g). Then the entropy
is defined as follows: for any smooth function f ∈ C1(M)

Entq(f) :=

∫
f log

(
f∫
fdq

)
dq (45)

while

Varq(f) :=

∫ (
f −

∫
fdq

)2

dq (46)

Definition B.8. Let q be a probability measure on a Riemannian manifold (M, g). Let also ν be
a positive measure on (M, g). We assume that q ∈ (0, 1]. We say that (q, ν) satisfies Lr-Poincaré
inequality with constant CP if and only if, for any nonnegative function f ∈ C1(M)[

Varq(f
2r)
]1/r ≤ CP

∫
|∇f |2dν (47)

We say that (q, ν) satisfies Lr-logarithmic Sobolev inequality with constant CLS if and only if, for
any nonnegative function f ∈ C1(M)[

Entq(f
2r)
]1/r ≤ CLS

∫
|∇f |2dν (48)

Theorem B.9. If (q, q) satisfies a L2/3-Poincaré Sobolev inequality, for some constant CP > 0,
then for any non-negative initial condition h0 ≡ p0

q ∈ L2(q), we have for every t ≥ 0

χ2(pt∥q) ≤
([

χ2(p0∥q)
]−1/2

+
8

9
CPt

)−2

. (49)

Reciprocally, if the above inequality is satisfied for any g0, then (q, q) satisfies a L2/3-Poincaré
Sobolev inequality with constant CP > 0.
Theorem B.10. Let α > 1. If (q, q) satisfies a L1/α-logarithmic Sobolev inequality, for some
constant CLS > 0, then for any non-negative initial condition h0 such that DKL(p0∥q) < ∞, we
have for every t ≥ 0

DKL(pt∥q) ≤
(
[DKL(p0∥q)]1−α

+
4(α− 1)

α
CLSt

)−1/(α−1)

. (50)

Reciprocally, if the above inequality is satisfied for any g0, then (q, q) satisfies a L1/α-logarithmic
Sobolev inequality with constant CLS > 0.

Next we discuss two examples of probability distributions satisfy Lr-Poincaré inequality and Lr-
logarithmic Sobolev inequality:

Let r ∈ (0, 1] and β ∈ [ 12 , 1). The probability measure

dq =
1

2Γ
(
1 + 1

β

)e−|x|βdx, x ∈ R (51)

satisfies a Lr-Poincaré inequality and Lr-logarithmic Sobolev inequality.

Let r ∈ [1/2, 1), then for β > 2r
1−r the probability measure

dq =
β

(1 + |x|)1+β
dx, x ∈ R (52)

satisfies a Lr-Poincaré inequality and a Lr-logarithmic Sobolev inequality.
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Table 3: Rate of convergence to equilibrium state q ∝ e−V in χ2-divergence

Examples of q ∝ e−V Rate of convergence in χ2 divergence

q = e−|x|β

2Γ(1+ 1
β )

, 0 < r ≤ 1 , 1/2 ≤ β < 1 given in (49)

q = β
(1+|x|)1+β , 1/2 ≤ r < 1 , β ≥ 2r

1−r given in (49)

C FIRST VARIATION OF REGULARIZED DIVERGENCES

In this section we prove the following theorem
Theorem C.1. Assume f is superlinear and strictly convex and P,Q ∈ P1(Rd).

1. For x /∈ supp(P ) ∩ supp(Q) define ϕL,∗(y) = supx∈supp(Q)

{
ϕL,∗(x) + L|x− y|

}
then

ϕL,∗ is Lipschitz continuous on Rd.

2. ϕL,∗ = sup{h(x) : h ∈ ΓL, h(y) = ϕL,∗(y), for every y ∈ supp(Q)}

3. Let ρ be a signed measure of total mass 0 and let ρ = ρ+ − ρ− where ρ± ∈ P1(K) are
mutually singular. If P + ϵρ ∈ P1(K) for sufficiently small |ϵ| then DγL

f (P + ϵρ∥Q) is
differentiable at ϵ = 0 and we have

lim
ϵ→0

1

ϵ

(
DΓL

f (P + ϵρ∥Q)−DΓL

f (P∥Q)
)
=

∫
ϕL,∗dρ .

In other words we have
δDΓL

f (P∥Q)

δP
(P ) = ϕL,∗

Proof. The proof of 1. is straightforward by using the triangular inequality of norms. For 2., since
h ∈ ΓL, we have that h(x) ≤ h(y)+∥x−y∥. This implies that for y ∈ supp(Q) and x /∈ supp(Q),
h(x) ≤ infy∈supp(Q){h(y) + ∥x − y∥} = infy∈supp(Q){ϕL,∗(y) + ∥x − y∥} = ϕL,∗(x). Since
ϕL,∗(y) ∈ ΓL, this concludes the proof. For 3., we use the variational formula (3) for DΓL

f (P +

ϵρ∥Q) where we suppose that P + ϵρ ∈ P1(Rd).

DΓL

f (P + ϵρ∥Q) = sup
ϕ∈ΓL

{
EP+ϵρ[ϕ]− inf

ν∈R
{ν + EQ[f

∗(ϕ− ν)]}
}

≥
∫

ϕ∗,L d(P + ϵρ)− inf
ν∈R

{
ν +

∫
f∗(ϕ∗,L − ν)dQ

}
= ϵ

∫
ϕ∗,Ldρ+DΓL

f (P∥Q) (53)

Thus
lim inf
ϵ→0+

1

ϵ

(
DΓL

f (P + ϵρ∥Q)−DΓL

f (P∥Q)
)
≥
∫

ϕ∗,Ldρ

For the other direction: Let us define F (ϵ) = DΓL

f (P + ϵρ∥Q). By Theorem 18 and 71 in Birrell
et al. (2022a), F (ϵ) is convex, lower semicontinuous and finite on [0, ϵ0]. Due to the convexity of
F , F is differentiable on (0, ϵ0) except for a countable number of points. Let ϵ ∈ (0, ϵ0) such that
F is differentiable and δ > 0 small. Also, let ϕ∗,L

ϵ be the optimizer of DΓL

f (P + ϵρ∥Q) satisfying
ϕ∗,L
ϵ (0) = 0 so that

DΓL

f (P + ϵρ∥Q) =

∫
ϕ∗,L
ϵ d(P + ϵρ)− inf

ν∈R

{
ν +

∫
f∗(ϕ∗,L

ϵ − ν)dQ

}
By using the same argument as before in the proof, we have that

DΓL

f (P + (ϵ+ δ)ρ∥Q)−DΓL

f (P + ϵρ∥Q) ≥ δ

∫
ϕ∗,L
ϵ dρ (54)
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and

DΓL

f (P + (ϵ− δ)ρ∥Q)−DΓL

f (P + ϵρ∥Q) ≥ −δ
∫

ϕ∗,L
ϵ dρ (55)

which gives us that∫
ϕ∗,L
ϵ dρ ≤ lim

δ→0

1

δ

(
DΓL

f (P + (ϵ+ δ)ρ∥Q)−DΓL

f (P + ϵρ∥Q)
)

= F ′(ϵ)

= lim
δ→0

1

δ

(
DΓL

f (P + ϵρ∥Q)−DΓL

f (P + (ϵ− δ)ρ∥Q)
)

≤
∫

ϕ∗,L
ϵ dρ (56)

Consequently,

F ′(ϵ) =

∫
ϕ∗,L
ϵ dρ (57)

Let F ′
+(0) = limϵ→0+

1
ϵ (F (ϵ)− F (0)). By convexity, for any sequence {ϵn}n∈N such that ϵ0 >

ϵn ↓ 0, we have

F ′
+(0) = lim

n→∞
F ′(ϵn) = lim

n→∞

∫
ϕ∗,L
ϵn dρ

By applying the Arzelá-Ascoli to ϕ∗,L
ϵn , and then doing a diagonalization argument, there exists

a subsequence of {nk}k≥0 ⊂ {n}n≥0, such that ϕ∗,L
ϵnk

converges pointwise to a function ϕ∗,L
0 ∈

LipL(Rd). For simplicity, from now on we denote n the convergent subsequence.

At this point, we recall that for any ϵ ∈ (0, ϵ0), ϕ∗,L
ϵ (0) = 0. For any x, |ϕ∗,L

ϵ (x) − ϕ∗,L
ϵ (0)| ≤

L∥x∥d which implies that
|ϕ∗,L

ϵ (x)| ≤ L∥x∥d
Thus by the dominated convergence theorem

F ′
+(0) = lim

n→∞

∫
ϕ∗,L
ϵn dρ =

∫
ϕ∗
0dρ

By the lower semicontinuity of DΓL

f (·∥Q), we have

DΓL

f (P∥Q) ≤ lim inf
n→∞

DΓL

f (P + ϵnρ∥Q)

= lim inf
n→∞

{
EP+ϵnρ[ϕ

∗,L
ϵn ]− inf

ν∈R

{
ν + EQ[f

∗(ϕ∗,L
ϵn − ν)]

}}
= lim inf

n→∞
EP+ϵnρ[ϕ

∗,L
ϵn ]− lim sup

n→∞
inf
ν∈R

{
ν + EQ[f

∗(ϕ∗,L
ϵn − ν)]

}
≤ EP [ϕ

∗,L
0 ]− inf

ν∈R

{
ν + EQ[f

∗(ϕ∗,L
0 − ν)]

}
≤ DΓL

f (P∥Q) (58)

where for the second inequality we use the dominated convergence theorem, (57) and that by Fatou’s
lemma

lim sup
n→∞

∫
ϕ∗,L
ϵn dQ ≥ lim inf

n→∞

∫
ϕ∗,L
ϵn dQ ≥

∫
ϕ∗,L
0 dQ

Since both sides of the inequality coincide, ϕ∗,L
0 must be the optimizer. By Theorem 3.1, part 1. and

Theorem C.1, part 2., we have that ϕ∗,L
0 (x) ≤ ϕ∗,L for all x. Thus

F ′
+(0) =

∫
ϕ∗
0dρ ≤

∫
ϕ∗dρ.

which concludes the proof.
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D DETAILS ON LATENT GENERATIVE PARTICLES

D.1 GENERALIZATION OF ENCODER AND DECODER FUNCTIONS

In the Section 5, we built Theorem 5.1 based on an encoder map E : Y → Z (for instance Y = Rd,
Z ⊂ Rd′

, d′ << d) and a decoder map D : Z → Y . For the generalization purpose, we identify
these mappings as dirac kernels KE(y, dz) = δE(y)(dz) and KD = δD(z)(dy).

1. A pullback function induced by the kernel KE is given as

KE [f ](y) :=

∫
f(z′)KE(y, dz

′) = f(E(y)) (59)

for f ∈Mb(Z), y ∈ Y
2. A push-forward measure induced by the kernel KE maps P(Y) → P(Z) and defines a

push-forward measure which is given as

KE [P ](B) :=

∫
KE(y,B)P (dy) = P ◦ E−1(B) (60)

for P ∈ P(Y) and a Z-measurable set B.

Likewise, the kernel KD induces a pullback function and a push-forward measure in the opposite
direction. In the previous formulation, the QY -perfect encoding property D#E#QY = QY can be
rewritten as QY = KD[KE [Q

Y ]]. Given any PY ∈ P(Y), we have the latent probability mea-
sure PZ = KE [P

Y ] ∈ P(Z) and the reconstructed probability measure P̃Y = KD[KE [P
Y ]] ∈

P(D(Z)) where D(Z) ⊂ Y = Rd. In general, P̃Y ̸= PY .

Transition probability kernels are defined in the form of conditional distributions: Kp(y, dz) =
p(dz|y) from Y to Z and Kq(z, dy) = q(dy|z) from Z to Y . The kernel-induced pullback functions
Kp[f ](y) =

∫
f(z′)p(dz′|y) = EZ|Y=y∼p(dz|y)[f(Z)|Y = y] or Kq[g](z) =

∫
f(y′)q(dy′|z) =

EY |Z=z∼q(dy|z)[g(Y )|Z = z] are interpreted as conditional expectations. In addition, the ker-
nels induce push forward measures PZ(dz) = p(dz|y)PY(dy) for PY ∈ P(Rd) or RY(dy) =

q(dy|z)RZ(dy) for RZ ∈ P(Rd′
). For the Q-perfect encoding property, we require these kernels

to satisfy dQY(dy) = q(dy|z)p(dz|y)dQY(dy).

D.2 DATA PROCESSING INEQUALITY AND PROOF OF THEOREM 5.1

The proof of Theorem 5.1 is a consequence of a, new, tighter data processing inequality derived in
Birrell et al. (2022a) that involves both transformations of probabilities and discriminator spaces Γ.
Theorem D.1 (Data processing inequality for (f,Γ) -divergences). Given a real valued con-
vex function f , P,Q ∈ P(Ω), and a probability kernel K from (Ω,M) to (N,N ), if Γ ⊂ N is
nonempty, then

DΓ
f (K[P ]∥K[Q]) ≤ D

K[Γ]
f (P∥Q). (61)

Proof. From the variational formulation of divergences, we have

DΓ
f (K[P ]∥K[Q]) = sup

ϕ∈Γ,ν∈R

∫ ∫
(ϕ(y)−ν)K(x, dy)P (dx)−

∫ ∫
f∗(ϕ(y)−ν)K(x, dy)Q(dx).

(62)
Since f∗ is convex, Jensen’s inequality gives∫

f∗(ϕ(y)− ν)K(x, dy) ≥ f∗
(∫

(ϕ(y)− ν)K(x, dy)

)
(63)

for all x ∈ Ω. Hence,

DΓ
f (K[P ]∥K[Q]) ≤ sup

ϕ∈Γ,ν∈R
EP [K[ϕ]− ν]− EQ[f

∗(K[ϕ]− ν)] = D
K[Γ]
f (P∥Q). (64)
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Now we state and prove the generalized version of the Theorem 5.1.
Theorem D.2. Suppose that

1. Perfect encoding. For QY the encoder E and decoder D are such that KD[KE [Q
Y ]] =

QY .

2. KD[ΓY ] ⊂ ΓZ . The pullback functions induced by the decoder kernel is included in the
real function space.

Then, for any PZ ∈ P(Rd′
) we have

DΓY
f (KD[P

Z ]||QY) ≤ DΓZ
f (PZ ||KE [Q

Y ]). (65)

Proof. Since the encoder E and the decoder D perfectly reconstruct QY ,

DΓY
f (KD[P

Z ]∥QY) = DΓY
f (KD[P

Z ]∥KD[KE [Q
Y ]]).

From data processing inequality,

DΓY
f (KD[P

Z ]∥KD[KE [Q
Y ]]) ≤ D

KD[ΓY ]
f (PZ∥KE [Q

Y ]).

By the assumption that KD[ΓY ] ⊂ ΓZ ,

D
KD[ΓY ]
f (PZ∥KE [Q

Y ]) ≤ DΓZ
f (PZ∥KE [Q

Y ]).

D.3 LATENT GENERATIVE PARTICLES ALGORITHM

Algorithm 2: Latent Lipschitz regularized generative particles algorithm
Require: f defined in (2) and its Legendre conjugate f∗, L: Lipschitz constant, ν: scalar

parameter for optimizing f divergence, T : number of updates for the particles, γ:
time step size, N : number of particles

Require: W = {W l}Dl=1: parameters for the neural network ϕ : Rd′ → R, D: depth of the
neural network, δ: learning rate of the neural network, TNN: number of updates for
the neural network.

Require: E : Rd → Rd′
: trained encoder, D : Rd′ → Rd: trained decoder.

Result: {Y (i)
T }Ni=1

1 Sample {X̄(i) = E(X(i)) ∈ Rd′}Ni=1 where {X(i)} ∼ Q is a batch from the real data

2 Sample {Ȳ0
(i)

= E(Y (i)) ∈ Rd′}Ni=1 where {Y (i)} ∼ P0 = P is a batch of prior samples

3 Apply Lipschitz regularized generative particles algorithm 1 on X̄(i) and Ȳ0
(i)

4 Reconstruct Y (i)
T = D(ȲT

(i)
)

E EXPERIMENTAL SETTING

Neural network architectures. We use the discriminator ϕ (compared to GAN setting) which is
implemented using a neural network. In Table 4 we provide the architecture of the neural networks
used to produce the experimental results. The Lipschitz constraint on ϕ is implemented by spectral
normalization (the weight matrix in each layer of the D layers in total has spectral norm ∥W l∥2 =
L1/D) which is interpreted as a hard constraint. Imposing a gradient penalty term in the loss (soft
constraint) was tried, but there were some problems: required additional tuning for the initial weight
scales, and did not successfully restrict particle speeds bounded by L. Therefore we keep imposing
the hard constraint in the entire paper.

Data sets and important parameters. See Table 5. More details can be found in Supplementary
material README.md.
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(a) GPA in latent space
(b) GAN

Figure 4: Workflow of different generative models. green: real space, yellow: latent space, blue:
parameter space

CNN Discriminator
5× 5 Conv SN, 2× 2 stride (1→ ch1)

leaky ReLU
5× 5 Conv SN, 2× 2 stride (ch1 → ch2)

leaky ReLU
5× 5 Conv SN, 2× 2 stride (ch2 → ch3)

leaky ReLU
Flatten with dimension ℓ3

W 4 ∈ Rℓ3×d with SN, b4 ∈ Rd

ReLU
W 5 ∈ Rd×1 with SN, b5 ∈ R

Linear

(a) Image data (MNIST, CIFAR10)

FNN Discriminator
W 1 ∈ Rd×ℓ1 with SN, b1 ∈ Rℓ1

ReLU
W 2 ∈ Rℓ1×ℓ2 with SN, b2 ∈ Rℓ2

ReLU
W 3 ∈ Rℓ2×ℓ3 with SN, b3 ∈ Rℓ3

ReLU
W 4 ∈ Rℓ3×1 with SN, b4 ∈ R

Linear

(b) Low dimensional data with dimension d

Table 4: Neural network architectures of the discriminator ϕ : Rd → R

Computational resources. Low dimensional examples are computed in the tensorflow-CPU en-
vironment: tensorflow-gpu=2.8.0 with CPU model Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz
∼ 2.11 GHz. Image generation examples are computed in the tensorflow-GPU environment:
tensorflow-gpu=2.7.0 with 1-GPU model Tesla K80 in Google cloud platform.

F ADDITIONAL EXPERIMENTS

F.1 COMPARISON WITH OTHER GENERATIVE DYNAMICS

We compare the GPA and other generative dynamics such as RKHS-based methods (Figure 5) and
score-based methods by examples of 2D Mixture of Gaussians (Figure 6).

F.2 ADDITIONAL LATENT GENERATIVE PARTICLES EXAMPLE

We applied (fKL,Γ1) generative particle algorithm in the latent space and reconstructed to the high
dimensional image data. In the high dimensional space, we first sampled initial particles from the
logistic distribution and target data in [0, 1]28×28 for MNIST and in [0, 1]32×32×3 for CIFAR10. For
each of MNIST and CIFAR10, autoencoder with 128d latent dimension were trained. Then GPA
was done in the 128d latent spaces. The number of training samples are N = 200, 2000.

F.3 MICROARRAY GENE EXPRESSION DATA

The flexibility on the choice of source distributions and the small sample size regime enable our
generative particles algorithm to be used for medical data-processing purpose. In addition, using
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Dataset f L
data NN learning

∆t NQparameter structure rate

MNIST KL 1 conditioned CNN (128, 128, 128) 0.001 0.5 200,
2K

KL 1

d = 2, 5, 10 FFN (32, 32, 32)

0.1 5.0 245Gene d = 20, 50, FFN (64, 64, 64)data 100
d = 200 FFN (128, 128, 128)

2D
α = 2 1Student-t ν = 0.5 FFN (32, 32, 32) 0.005 1.0 500

Mixture

MNIST KL 1 conditioned FNN (256, 512, 256) 0.001 0.5 200,
d′ = 128 2K

CIFAR10 KL 1 conditioned FNN (256, 512, 256) 0.001 0.1 200,
d′ = 128 2K

2D
KL

1, 10,
σQ = 0.5 FFN (32, 32, 32) 0.005 1.0 200Gaussian 100,

Mixture 1 None
2D

KL 1Gaussian σQ = 1.0 FFN (32, 32, 32) 0.005 0.5 500
Mixture 2

Table 5: Data sets and important parameters

Sample size 200 2000
(fKL,Γ1)-GPA 4571.98 5143.55
(fKL,Γ1)-GAN 5603.55 1270.13

Wasserstein-GAN 5653.20 1879.18

(a) Final FID for MNIST: GPA and GANs.

Sample size 200 2000
MNIST 1107.57 1048.84

CIFAR10 87.34 75.10

(b) Final FID of MNIST and CIFAR10 (latent GPA).

Table 6: Conditional image generation performance summary. See Figure 1, 7.

latent generative particles scheme, we can effectively handle high-dimensional data, such as gene
expression data, typically in the dimension of 5 ∼ 6 × 105 depending on the probes in a signif-
icantly reduced dimensions.We suggest batch normalization/data merging as an application of our
algorithm.

Dataset. We tested on publicly available gene expression data sets from Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) :

• Breast cancer: Accession number GSE47109 (206 samples), GSE10843 (245 samples)

The former forms the source dataset, and the latter forms the target dataset. The source and the
target data lie in the same dimensional space R54,675.

Auto-encoder. We applied PCA on the combined matrix for the source data and the target data
which have been firstly normalized to mean zero and variance one. The normalized PCA can be
interpreted as a linear auto-encoder. The PCA decoder is Lipschitz continuous with L =

√
d′.

(Let y =
∑d′

i=1 zivi,y
′ =

∑d′

i=1 z
′
ivi ∈ Rd. The decoder D(z) =

∑d′

i=1 zivi satisfies ∥D(z) −

D(z′)∥ = ∥
∑d′

i=1(zi − z′i)vi∥ ≤ ∥z − z′∥
√∑d′

i=1 ∥vi∥2 =
√
d′∥z − z′∥ by Cauchy-Schwarz

inequality. )

Outputs See Figures 8, 9 for the transported particles in the latent space for varying d′ =
2, 5, 10, 20, 50, 100, 200 and the reconstructed space.
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(a) Trajectory of (fKL,ΓL)-generative particle algorithm (b) Divergences of (fKL,ΓL)- generative
particle algorithm

(c) Trajectory of KALE flow Glaser et al. (2021) (Different
regularizations)

(d) Trajectory of KL ULA Durmus & Moulines
(2017), MMD flow Arbel et al. (2019)

Figure 5: (2D Mixture of Gaussians 1) Comparison with RKHS based generative dynamics. (a)
(fKL,ΓL)-generative particles algorithm with different values for L. The particles are transported to
the 4 wells faster as L gets larger, however for large L the algorithm become unstable (L ≥ 100).
Learning rates are chosen as γ = 1.0, δ = 0.005. (c) KALE flow can be compared with (fKL,ΓL)-
generative particles algorithm in the sense of being a different regularization technique. The KALE
gradient flow regularizes the RKHS norm of ϕ∗ while (fKL,ΓL)-generative particles algorithm reg-
ularizes the norm of ∇ϕ∗. The KALE flow Glaser et al. (2021) fails to capture the 4 wells in a
reasonable amount of time. Here a Gaussian kernel with σ = 0.5 is chosen for the RKHS kernel.
Learning rate is chosen as 0.001. (d) Bottom: MMD Arbel et al. (2019) gradient flow (without
extra noise). A Gaussian kernel with σ = 0.5 is used for the RKHS. Top: For comparison KL
gradient flow trained with the unadjusted Langevin algorithm (ULA) Durmus & Moulines (2017).
The comparison with KL ULA and MMD flow suggests that the use of regularization enables the
convergence without further techniques such as adding noise.
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(a) KL Lipschitz-regularized GPA (b) Score matching and annealed Langevin dynamics

Figure 6: (2D Mixture of Gaussians) (fKL,Γ1)-GPA and the score based model (Noise con-
ditional score network, NCSN). 200 target samples from Mixture of Gaussians with σQ = 1.0
are provided to transport 500 particles which are uniformly distributed in the plotted region at time
t = 0. Blue: target, Orange: output. (a) The choice of divergence fKL and propagation of parti-
cles through the (fKL,Γ1)-GPA captures the target. (b) shows learning a mixture of Gaussians is
tractable using NCSN. Compare with a heavy-tailed target example in Figure 3.

(a) MNIST (fKL,Γ1) L-GPA, 200 samples, 128d
latent dimension

(b) MNIST (fKL,Γ1) L-GPA, 2000 samples, 128d
latent dimension

(c) CIFAR10 (fKL,Γ1) L-GPA, 200 samples,
128d latent dimension

(d) CIFAR10 (fKL,Γ1) L-GPA, 2000 samples,
128d latent dimension

Figure 7: GPA in the 128d latent space. 200 samples are generated from 200, 2000 training data.
See FID values in table 6.
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(a) dim 2 (b) dim 5

(c) dim 10 (d) dim 20

(e) dim 50 (f) dim 100

(g) dim 200 (h) MMD

Figure 8: (Gene expression data, BreastCancer) Latent samples. blue: source, red: target,
black: transported. (h) The distance between the latent distributions. blue: MMD(PZ

0 , PZ
T ), red:

MMD(QZ , PZ
T ), black: MMD(PZ

0 , QZ) with T = 25, 000.
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(a) dim 2 (b) dim 5

(c) dim 10 (d) dim 20

(e) dim 50 (f) dim 100

(g) dim 200 (h) MMD

Figure 9: (Gene expression data, BreastCancer) Reconstructed samples. blue: source, red:
target, black: transported. (h) The distance between the reconstructed distributions. blue:
MMD(PY

0 , PY
T ), red: MMD(QY , PY

T ), black: MMD(PY
0 , QY) with T = 25, 000.
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