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Summary
We seek to design reinforcement learning agents that build plannable models of the world

that are abstract in both state and time. We propose a new algorithm to construct a skill graph;
nodes in the skill graph represent abstract states and edges represent skill policies. Previous
works that learn a skill graph use random sampling from the state-space and nearest-neighbor
search—operations that are infeasible in environments with high-dimensional observations (for
example, images). Furthermore, previous algorithms attempt to increase the probability of all
edges (by repeatedly executing the corresponding skills) so that the resulting graph is robust
and reliable everywhere. However, exhaustive coverage is infeasible in large environments,
and agents should prioritize practicing skills that are more likely to result in higher reward. We
propose a method to build skill graphs that aids exploration, without assuming state-sampling,
distance metrics, or demanding exhaustive coverage.

Contribution(s)
1. We provide an algorithm that learns a graph-based, plannable abstraction of the environ-

ment, even when the observations are high-dimensional; for example, images.
Context: Prior work learned graph abstractions by assuming a distance metric over the
state-space (for example, Bagaria et al. (2021b); Lee et al. (2022)), and hence cannot be
easily applied to environments with image-based observations.

2. We use ideas from Intrinsic Motivation to design a graph construction algorithm that serves
as a high-level exploration objective without needing to learn an accurate one-step model
of the world—the drive to build the skill graph allows the agent to solve five challenging
exploration problems, directly from pixels.
Context: Most prior work in model-based exploration either operates in non-image based
domains (for example, Sharma et al. (2020b)), or require the agent to learn one-step models
(for example, Hafner et al. (2022); Mendonca et al. (2021)).

3. We provide a method for converting a goal-conditioned value function into a plannable
abstract world model, which allows us to use dynamic programming to determine which
option to execute at each state.
Context: Lo et al. (2024) also study this problem, but they assume that option subgoals
and initiation regions are provided to the agent; furthermore, they use the model for reward-
shaping (Ng et al., 1999) rather than for option selection at decision time.
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Abstract
We seek to design reinforcement learning agents that build plannable models of the1
world that are abstract in both state and time. We propose a new algorithm to con-2
struct a skill graph; nodes in the skill graph represent abstract states and edges repre-3
sent skill policies. Previous works that learn a skill graph use random sampling from4
the state-space and nearest-neighbor search: operations that are infeasible in environ-5
ments with high-dimensional observations (for example, images). Furthermore, previ-6
ous algorithms attempt to increase the probability of all edges (by repeatedly executing7
the corresponding skills) so that the resulting graph is robust and reliable everywhere.8
However, exhaustive coverage is infeasible in large environments, and agents should9
prioritize practicing skills that are more likely to result in higher reward. We show10
that our agent can solve 4 challenging image-based exploration problems more rapidly11
than vanilla model-free RL and state-of-the-art novelty-based exploration. Then, we12
show that the resulting abstract model solves a family of tasks in VISUALPINBALL not13
provided during the agent’s exploration phase.14

1 Introduction15

Hierarchical reinforcement learning (HRL) (Barto & Mahadevan, 2003) augments the agent’s prim-16
itive actions with temporally extended actions called options (Sutton et al., 1999). An agent with17
temporally extended options can plan more effectively because the accuracy of its predictions do18
not degrade as rapidly over time (Sutton et al., 1999; 2011). Furthermore, well-designed options19
empower the agent to explore more efficiently (Machado, 2019). But, where do good options come20
from and how can an agent construct them autonomously solely from interaction with the environ-21
ment? This problem of option discovery (Mcgovern, 2002) has been studied extensively (Precup,22
2001; Mcgovern, 2002; Ravindran, 2004; Konidaris, 2011; Bacon, 2018; Machado, 2019), but most23
algorithms do not simultaneously tackle the complementary problem of learning state abstractions24
(Konidaris, 2019). An agent that simultaneously learns both can build a simplified version of the25
environment (Konidaris et al., 2018), which can then be exploited by off-the-shelf planners to yield26
solutions to complex, long-horizon tasks (Machado et al., 2023; Sutton et al., 2022; 2024).27

One algorithm that simultaneously discovers options and their corresponding state abstractions is28
Deep Skill Graphs (DSG; Bagaria et al., 2021b). DSG learns options that form a graph, where29
the nodes are subgoals and the edges are the policies that navigate between them. To construct30
this graph, DSG first samples a state uniformly at random from the state-space and then selects its31
nearest node ne in the graph. Then, it uses planning inside the graph to reach ne, after which it moves32
towards the randomly sampled state. This simple combination of random sampling and expanding33
the nearest neighbor node is inspired by motion planning (LaValle, 1998) and provably causes the34
graph to expand towards large unexplored regions of the state-space (Lindemann & LaValle, 2004).35
While effective, DSG makes the following assumptions that limit its applicability: (a) the ability to36
sample meaningful states uniformly at random from the state-space (a state-sampler), and (b) the37
ability to efficiently compute the nearest neighbor node in the graph (a distance metric).38
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Figure 1: (a) In the original DSG algorithm, a state is sampled uniformly at random (blue star) from
the state-space S and the graph is pulled towards it via its nearest neighbor node (green). (b) In
the new algorithm, IM-DSG, the agent uses intrinsic motivation to identify a node to expand using
an exploration value function Vnovelty. (c) Once the agent reaches the expansion node, it executes
an exploration policy πnovelty, and the most novel state in the resulting trajectory τ is identified as a
target for a new skill.

How can we incrementally build the skill graph so that it retains its expansion property, but does not39
require a state-sampler or nearest-neighbor search to do so? Instead of generating a random state40
and pulling the graph towards it (see Figure 1(a)), we use ideas from intrinsic motivation (Barto,41
2013; Schmidhuber, 2010) to identify an existing node for expansion and push the graph outward42
from it (Figure 1(b); Lindemann & LaValle 2004). The agent plans with its existing skills to reach43
the expansion node, and then executes a low-level exploration policy trained using RL to maximize44
a novelty-based intrinsic reward (Sutton, 1990; Taïga et al., 2019). Since the intrinsic reward is45
likely to be higher in states that are outside the graph, executing the exploration policy will result46
in a trajectory that will tend to move away from the existing graph, i.e, towards those states where47
the agent does not yet have a reliable abstract model (Figure 1(c)). The agent then identifies the48
most interesting state (Chentanez et al., 2005) in that trajectory and builds a new skill to target it49
(Simsek & Barto, 2004). Over time, the agent refines the skill that reaches this new node in the50
graph, and in doing so, converts this once novel region into an area over which it has gained mastery51
via its abstract model (Veeriah et al., 2018). We call this algorithm Intrinsically Motivated Deep52
Skill Graphs (IM-DSG).53

We test IM-DSG in a series of exploration problems with image-based observation spaces, to which54
DSG cannot be applied. Our qualitative results show that IM-DSG discovers options that achieve55
intuitively meaningful subgoals in the environment and that the acquired skill graph incrementally56
expands outward from the start state. Quantitatively, we show that our method outperforms pure57
novelty-maximization techniques (Taïga et al., 2019) as well as baseline model-free RL (Kaptur-58
owski et al., 2019) in MINIGRID (Chevalier-Boisvert et al., 2023), VISUAL TAXI (Dietterich, 2000;59
Diuk et al., 2008; Allen et al., 2021), and SOKOBAN (Schrader, 2018); finally we show that the60
learned abstract model is useful in a multi-task context to achieve held-out goals in a zero-shot61
fashion in VISUAL PINBALL (Konidaris & Barto, 2009; Rodriguez-Sanchez & Konidaris, 2024).62
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2 Background and Related Work63

We model the interaction of the agent with its environment as a Markov Decision Process64
M = (S,A,R, T, γ) (Sutton & Barto, 2018). To aid in reward maximization, our agent will dis-65
cover options o ∈ O = (Io, πo, βo) (Sutton et al., 1999), where Io(s) is the probability that o can66
be initiated in state s, πo is a policy which outputs primitive actions and βo : s → {0, 1} denotes the67
termination region of the option, which we also call the subgoal of the option. Additionally, each68
option has a maximum horizon of H steps and an effect set Eff(o) ⊆ βo, which denotes the set of69
states in which the option actually enters its subgoal βo (Konidaris et al., 2018).70

Universal Value Function Approximators (UVFAs) (Schaul et al., 2015) provide a scalable way71
to learn goal-conditioned value functions Vg : S → R, Qg : S × A → R and their corresponding72
goal-conditioned policies πg : S → A (Kaelbling, 1993) using function approximation. We use73
UVFAs to parameterize option value functions and policies: instead of representing each option’s74
policy separately (Sutton et al., 2011), all options can condition the same function approximator on75
its own subgoals (Bagaria et al., 2021a): πo(s) = argmaxa Qg(s, a) = argmaxa Qβo

(s, a).76

Exploration in RL. In tabular RL, uncertainty about the transition and reward models can be77
captured using visitation counts: if the bonus reward (Sutton, 1990) for action a from state s de-78
cays as 1/

√
N [s, a], the agent can rapidly learn the optimal policy π∗ (Lattimore & Szepesvári,79

2020; Strehl & Littman, 2008). When the environment is too big to permit tabular counting, counts80
can be generalized to pseudocounts N(s) (Bellemare et al., 2016): states that are similar to one81
another have similar pseudocounts. Coin Flip Network (CFN) (Lobel et al., 2023) is a simple,82
principled, and state-of-the-art technique which uses a neural network ϕ to predict pseudocounts83
in high-dimensional state-spaces. Novelty seeking agents exhibit impressive performance (Kaptur-84
owski et al., 2022), but they do not learn a model suitable for high-level planning. Our algorithm85
combines novelty maximization (which we refer to as “low-level exploration”) with a drive to learn86
an abstract, plannable model of the world (“high-level exploration”).87

Option discovery methods. A large body of work has sought to discover options from the set88
of primitive actions available to the agent. At a high-level, option discovery techniques can be89
categorized in the following way:90

• Reward-driven methods. Option critic (Bacon et al., 2017) and feudal methods (Dayan & Hin-91
ton, 1993; Vezhnevets et al., 2017; Nachum et al., 2018b; Levy et al., 2019) learn skills using the92
overall reward maximizing objective of the agent. Since all learning stems from the extrinsic re-93
ward function, they struggle in hard exploration problems with sparse rewards; there are some rare94
exceptions (McClinton et al., 2021), but they are plagued by the difficulty that the action-space for95
the high-level policy is the entire state-space of the environment (Nachum et al., 2018a).96

• Empowerment maximizing methods learn a diverse set of options (Eysenbach et al., 2019b;97
Zahavy et al., 2021) that increase the agent’s control over its environment (Mohamed &98
Jimenez Rezende, 2015; Choi et al., 2021; Gregor et al., 2016). These algorithms have shown99
promise in challenging control (Sharma et al., 2020a) and exploration problems (Baumli et al.,100
2021; Hansen et al., 2021; Campos Camúñez et al., 2020). Among these, DADS (Sharma et al.,101
2020a) combines empowerment with high-level planning, but it decomposes the agent’s life into102
separate training and test phases, i.e., they do not provide a way to interleave exploration and103
model learning. Furthermore, methods like DADS require learning one-step transition models,104
perhaps explaining why they have not been applied to image-based problems.105

• Spectral methods use the graph Laplacian (Chung & Graham, 1997) to find the principal direc-106
tions of the state-space (Mahadevan & Maggioni, 2007) for exploration (Machado et al., 2017).107
Typically, an option is associated with each eigenvector of the Laplacian; these options demon-108
strate strong exploratory properties (Jinnai et al., 2019; 2020; Klissarov & Machado, 2023). Both109
empowerment and spectral methods are promising directions for exploration research, but have110
not yet been combined with model-based planning, which is our core motivation.111
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Deep Model-based RL methods like Dreamer (Hafner et al., 2018) and MuZero (Schrittwieser112
et al., 2021) learn a physics-based model of the environment for planning. These algorithms have113
demonstrated impressive results in a variety of domains (Hafner et al., 2023). However, all learning114
(even in LEXA (Mendonca et al., 2021) and Director (Hafner et al., 2022), which learn temporal115
abstractions) is predicated on accurately approximating one-step transition and reward models in the116
agent’s native state-action space. One-step models suffer from the “curse of horizon” (Sutton et al.,117
1999): model prediction errors compound over time (Talvitie, 2017). Our work seeks to bypass the118
challenges of model-learning in the raw state-action space: model-free policies are learned in the119
low-level and temporally-extended models are learned and used in the high-level.120

Go-Explore shares a similar motivation to our algorithm: exploration is more effective when ini-121
tiated from the frontiers of the agent’s experience (Ecoffet et al., 2021). But, they require a pre-122
specified “cell” representation and exploit the near-determinism of Atari domains (Machado et al.,123
2018) to return to the frontier (Oh et al., 2018). Crucially, Go-Explore does not learn a plannable124
model while doing exploration, which is the focus of our work.125

Existing graph-based HRL methods like deep skill graphs (DSG) (Bagaria et al., 2021b; Lee126
et al., 2022; Lo et al., 2022; 2024) do not generalize to image-based observation spaces. Others127
do Konidaris et al. (2018); Lo et al. (2022); Mann et al. (2015); Sutton et al. (2024); Rodriguez-128
Sanchez & Konidaris (2024), but assume that options are given. Eysenbach et al. (2019a); Huang129
et al. (2019); Campos Camúñez et al. (2020); Nasiriany et al. (2019); Sharma et al. (2020a) decom-130
pose the agent’s training into a pre-training stage and a planning phase: skills are learned over the131
entire domain and then planning is done to improve learned skills. These methods typically perform132
uniform resets: the agent is randomly reset to a new location at the beginning of every episode (Ey-133
senbach et al., 2019a; Huang et al., 2019; Zhang et al., 2021); this bypasses the exploration problem,134
which is a key motivation for our work.135

3 Intrinsically Motivated Deep Skill Graphs136

Exploration and planning are deeply intertwined. Exploration aids planning by preferentially seek-137
ing out data from regions where the model is currently too weak to support effective planning. But,138
planning also supports effective exploration: the agent can plan with its abstract model so that it can139
reach interesting areas reliably, and then conduct local exploration in a more targeted fashion. The140
Intrinsically Motivated Deep Skill Graphs (IM-DSG) agent interleaves exploration and planning in141
this way. To support planning, it builds a graph-based model of the environment. Exploration pro-142
ceeds both inside the graph (to strengthen the existing model) and outside it (to increase the region143
over which the agent can plan). Inside the graph, the agent refines skills that are currently weak and144
could lead to high reward; outside the graph, the agent uses a novelty and reward maximizing policy145
to search for new salient regions that can be reached reliably in the future using its model.146

3.1 Semantics of the Skill Graph147

Before discussing our algorithm for discovering options and planning with them, we first outline the148
major components of the skill graph:149

Nodes and Edges. The skill graph is a weighted and directed graph G = (N , E,W ). Each node150
n ∈ N represents the terminating states of an option on—i.e., its subgoal—determined by the151
termination condition βon : s → {0, 1}. For each node n, we can measure the extent to which a152
state s belongs to n by considering the effect of executing option on from any state in the state space:153

n(s) := Eff(on)(s) = P(s | on); (1)

that is, the distribution of states after executing on. Moving forward, we slightly abuse notation by154
taking expectations with respect to the states of a node, Es∼n[·] to mean expectations taken with155
respect to the effect distribution Es∼Eff(on)[·].156
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An edge eni→nj
∈ E exists between nodes ni and nj if executing the option policy πonj

from157
states in node ni is likely to reach node nj (Konidaris et al., 2018). The weight of an edge is158
the probability of successfully traversing it in a single option execution, which is equivalent to the159

initiation probability of option oj from states inside node ni: wni→nj = Es∼ni

[
Ionj

(s)
]

(Bagaria160

et al., 2023).161

Mapping from states to nodes and back. Given a state s, N (s) denotes the set of nodes that s162
maps to:163

N (s) = {n ∈ N | βon(s) = 1}. (2)

Of course, it is possible that a state does not satisfy any option’s termination condition; so, we aug-164
ment the nodes in the graph with a null vertex φ such that N (s) = {φ} for such states; informally,165
φ represents “falling off the graph”.166

The descendants D(n) of a node n is the set of nodes that can be reached from n with nonzero167
probability, while staying inside the graph:168

D(n) = {n′ ∈ N | G.has-path(n, n′)}, (3)

where G.has-path(n, n′) is a sub-routine implemented using breadth-first search on the adjacency169
matrix representation of the graph G. By combining Equations 2 and 3, we can enumerate the nodes170
reachable from the current state st as D(st) = ∪n∈N (st)D(n).171

3.2 Graph Construction Algorithm172

At a high-level, the graph construction algorithm proceeds as follows: the IM-DSG agent first iden-173
tifies which node in the graph to expand (Section 3.2.1), then it constructs (Section 3.2.4) and solves174
an abstract MDP (Section 3.2.5), which yields a policy over options that guides the agent to the175
expansion node. After following this abstract policy and reaching the expansion node, the agent176
executes a low-level exploration policy (Section 3.2.6), and finally extracts a new node from the177
resulting trajectory to add it to the skill graph (Section 3.2.7).178

3.2.1 Identifying the Expansion Node179

To select an expansion node, we need to quantify how much each node would contribute to graph
expansion: nodes that cause the graph to extend further should have a higher probability of being
selected for expansion. To capture this idea, we first construct an intrinsic reward function that is
higher the further away a state is from the graph. But rather than relying on distance functions, which
are usually unavailable in high-dimensional observation spaces, we use pseudocounts (Bellemare
et al., 2016): the further away a state is from the graph, the fewer times it has likely been visited.
We use Coin Flip Networks (CFN) (Lobel et al., 2023) to estimate pseudocounts and use it as our
intrinsic reward:

rnovelty(s) =
1√

Nϕ(s)
,

where Nϕ(s) is the pseudocount of state s as approximated using CFN parameters ϕ.180

We now have an intrinsic reward function rnovelty that is higher along the frontiers of the graph,181
where the agent has less experience. To turn this into an expansion probability, we ask: if the agent182
executes a novelty-maximizing policy πnovelty starting from each graph node, how much intrinsic re-183
ward can it expect to accumulate? Fortunately, this concept is well captured by the exploration value184
function Vnovelty. But, solely using novelty will result in graph expansion in all possible directions;185
to forego exhaustive coverage and prioritize high reward regions, we add the intrinsic and extrinsic186
rewards together while learning Vnovelty. Concretely, we define the utility of expanding a node n as187

U(n) = Es∼n

[
Vnovelty(s)

]
= Es∼n

[∑∞
t=1 R(st, at) + b · rnovelty(st) | s0 = s

]
; we use b = 0.01.188
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Finally, we restrict the choice of expansion node to the set of nodes that are reachable from the189
current state, i.e, the descendants of the nodes that map to the current state of the agent st. Therefore,190
we define the probability of expanding a node n as follows:191

nexpansion ∼ Pn =
U(n)∑

n′∈D(st)
U(n′)

=
Es∼n

[
Vnovelty(s)

]
∑

n′∈D(st)
Es′∼n′

[
Vnovelty(s′)

] ,∀n ∈ D(st). (4)

3.2.2 Estimating Edge Probabilities192

Every edge in the skill graph has a weight pni→nj
, which represents the probability with which an193

option onj
initiating from states in node ni will successfully terminate in node nj . As pointed out194

earlier, this is equivalent to the expected initiation probability of option onj , where the expectation195
is taken with respect to states inside the node ni. Following Bagaria et al. (2023), we interpret the196
agent’s goal-conditioned value function (UVFA) (Schaul et al., 2015) as an initiation probability:197

pni→nj
= Es∼ni

[
Ioj (s)

]
≈ Es∼ni

[
Vnj

(s)
]
:= vni→nj

. (5)

It is possible to infer the edge probabilities from the UVFA because the goal-conditioned reward198
function that is used to train it is Ro(s) = βo(s), i.e., it is +1 for states inside the option’s subgoal199
region and 0 otherwise. However, naively using the UVFA prediction as edge probability can hinder200
learning because:201

1. vni→nj for an edge can be low if traversing it is actually unlikely in a single option execution202
(even under an optimal policy) or because the agent does not yet have enough data, and,203

2. when we add new nodes to the graph, the probability of reaching them will initially be low. To204
increase these edge probabilities, the agent must continually practice the options that target them,205
but this is unlikely to happen owing to their low starting probabilities.206

Therefore, to address these issues, we are optimistic about the value of the edge probabilities:207

p+ni→nj
:= vni→nj + U(ni, nj) ≈ vni→nj +

c√
N [ni, nj ] + 1

, (6)

where U(ni, nj) represents the uncertainty about our value prediction vni→nj
, which we obtain208

using N [ni, nj ] (Brafman & Tennenholtz, 2002; Strehl & Littman, 2008), the number of times the209
agent has executed option onj starting from states in node ni (c ∈ [0, 1] is a hyperparameter).1 When210
N [ni, nj ] is low, the agent is optimistic about traversing that edge, and so it is encouraged to practice211
the corresponding option policy. But, as the agent attempts to traverse edge eni→nj

, the count212
N [ni, nj ] increases, and the optimistic bias decays; eventually, the edge probability approaches the213
goal-conditioned value, which we expect to become more accurate with more data. By incorporating214
an optimistic bias via the edge probabilities, we ensure that the policies computed by the planner215
achieve a form of exploration within the graph, which prioritizes paths that reach the expansion216
node while improving newly added skills.217

3.2.3 Deciding when there is an edge between two nodes218

Using Equation 6, we can determine the probability of traversing an edge in a single option exe-219
cution. Naïvely, this would result in a dense, fully-connected graph, which would be problematic:220
suppose there is an existing node n1 and we just added a new node n2 that is far away (even un-221
der an optimal policy) from n1. The agent’s initial desire to connect them would be high (because222
N [n1, n2] will be low). As a result, the agent will spend a lot of time realizing that n1 and n2 should223
actually have a low probability of being directly connected to one another. Not only is this sample-224
inefficient, it also results in graph construction slowing down over time: for every new node added225

1Since the counts are over discrete states of the AMDP, we simply maintain tabular counts in a |S̄| × |S̄| matrix.
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to the graph, the agent must determine how the new node relates to every other existing node. To226
mitigate this issue, we use the following heuristics to determine when two nodes n1 and n2 should227
have an edge connecting them:228

• Observed multi-step transition. When we observe a transition between two nodes n1 → n2229
within H steps (the maximum horizon of an option), we connect them with an edge.230

• High goal-conditioned value. We connect nodes n1 → n2 with an edge when the goal-231

conditioned value between them, Es∼n1

[
Vn2(s)

]
, is high enough. To ensure that the resulting232

model is amenable to planning, we add edges only when we are highly confident that execution233
of one option will allow for the execution of another (Konidaris et al., 2018). We instantiate this234
principle via an adaptive threshold that is high to begin with, and tapers to a fixed hyperparameter235
τ ∈ [0, 1] when more experience is gained:236

en1→n2 = I

[
Es∼n1

[
Vn2(s)

]
− c√

min {N [n1], N [n2]}
> τ

]
, (7)

where I is the indicator function and N [n] is the number of times the agent has visited node n. The237
inverse square root term acts as an uncertainty penalty that diminishes as more data is collected.238

3.2.4 Constructing the Abstract MDP239

After the agent identifies the expansion node nexpansion, it needs to compute a plan that will guide it240
from its current state st to nexpansion. Our graph has two properties that will inform an appropriate241
choice of planning algorithm:242

1. Probabilistic transitions. The skill graph has probabilistic edges because (a) the environment’s243
transition function and the agent’s option policies are stochastic, and (b) the option policies are244
being learned online, causing the abstract transition function to also appear stochastic and non-245
stationary (Nachum et al., 2018b; Levy et al., 2019; Bagaria et al., 2021a). We represent these246
dynamics with a transition matrix, T̄ , where each entry T̄ij is the probability that executing the247
option targeting node nj from node ni successfully leads to node nj . When option execution is248
unsuccessful, we assume the agent “falls off” the graph, modeling it by assigning the remaining249
probability (1− T̄ij) to an absorbing failure state φ.250

2. Incorporating extrinsic reward. Given two paths from st that both reach nexpansion, we would251
prefer one that collects extrinsic rewards along the way. This allows us to form a reward-252
respecting abstract model (Sutton et al., 2024), and prioritizes skill refinement in parts of the253
graph that are likely to result in higher reward. To incorporate this, we define a reward matrix, R̄,254
where each entry R̄ij is the sum of extrinsic rewards collected during the execution of the option255
and an intrinsic reward that is high at the expansion node. Formally, we write: R̄ij = κR̄ext

ij +R̄int
j ,256

where κ ∈ R scales the extrinsic reward, and R̄int
j equals 1 if node nj is the expansion node, and257

0 otherwise.258

We also define an abstract discount factor, γ̄, which reflects the probability of staying within the259
graph during an option execution. Putting these elements together, our AMDP is defined as: M̄ =260
(S̄, Ā, R̄, T̄ , γ̄), where S̄ and Ā represent the set of nodes in the skill graph. Planning on this261
abstract MDP is a Stochastic Shortest Path (SSP) problem (Bertsekas & Tsitsiklis, 1991). We solve262
this SSP using value iteration (Bellman, 1966), which yields a deterministic abstract policy π̄. This263
abstract policy maps each node (abstract state) to an option, guiding the agent toward the expansion264
node while balancing the collection of extrinsic rewards and exploration of uncertain edges. An265
illustrative example of this AMDP construction is provided in Figure 7 in Appendix C.266

3.2.5 Navigating to the Expansion Node267

The abstract policy π̄ tells the agent which options to execute to reach the expansion node. While268
following π̄, if the agent finds itself in a state that is not in the graph (st ∈ φ), it targets the269
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closest node in the graph: ot = argmaxo Vβo
(st),∀o ∈ O. Each option execution corresponds to270

rolling out the corresponding option policy πo(s), which is trained using recurrent deep Q-learning271
(Kapturowski et al., 2019) to maximize the pseudo reward function Ro(s) = βo(s). In practice,272
all option policies are parameterized using the same goal-conditioned policy π(s|g; θ) (Schaul et al.,273
2015) and each option conditions the policy with goal states sampled from its own termination region274
(Bagaria et al., 2021a). To improve the sample-efficiency of learning effective option policies, we275
use hindsight experience replay (Andrychowicz et al., 2017).276

3.2.6 Generating Behavior Outside the Graph277

After reaching the expansion node, the IM-DSG agent attempts to extend the graph. It does so by
executing the low-level exploration policy πCFN, which is trained to maximize the weighted sum of
intrinsic and extrinsic rewards:

RCFN(s, a) = R(s, a) + b · rnovelty(s),

where rnovelty(s) = 1/
√
Nϕ(s), b ∈ [0, 1] controls the exploration-exploitation trade-off (we use278

b = 0.01) and Nϕ(s) is the CFN visitation count prediction for state s. We use recurrent deep Q-279
learning (Kapturowski et al., 2019) to learn Vnovelty and πnovelty. The result of this policy execution280
is a trajectory τnovelty, which is likely to move outward, toward regions where the agent’s abstract281
model is more uncertain; this is a way of doing exploration outside the graph.282

3.2.7 Adding a New Node to the Graph283

Having generated a low-level exploration trajectory τnovelty in the frontier of the graph, the agent must284
now identify a new node to add to the graph. Again, we take inspiration from intrinsic motivation285
methods (Simsek & Barto, 2004): the agent identifies the state in τnovelty with the highest predicted286
novelty; if the novelty of that state is higher than the running mean of the novelty-based rewards,287
then we flag it as a new target and add it to the skill graph:288

starget = argmax
s∈τnovelty

[
rnovelty(s)

]
if max

s

[
rnovelty(s)

]
> µt + kσt, else φ, (8)

where µt is the running mean and σt is the running standard deviation of rnovelty, computed incre-289
mentally over the lifetime of the agent (Welford, 1962); k ∈ R+ is a hyperpameter (we use k = 1).290
Equation 8 identifies a target state, which we need to convert to a termination classifier so that it291
can serve as a node in the skill graph. We could use domain knowledge (for example, the “cell”292
representations of Ecoffet et al. (2021)), pixel-wise equality (Veeriah et al., 2018), or a temporal dis-293
tance based classifier (Savinov et al., 2018); we opt for simplicity and use an off-the-shelf template294
matching algorithm, which is a simple call to OpenCV’s matchTemplate(s, g) (Bradski, 2000):295

nnew = βonew(s) = matchTemplate(s, starget). (9)

3.2.8 Summary of Graph Discovery Algorithm296

Algorithm 1 summarizes IM-DSG. The agent maintains two value functions Vg, Vnovelty and two297
policies πg, πnovelty; R2D2 (Kapturowski et al., 2019) is used to learn both sets of policies and value298
functions. The agent first chooses an expansion node using Equation 4. Which option is executed is299
then determined by solving the resulting Abstract MDP using value iteration. New nodes are added300
to the graph by executing πnovelty from the expansion node. Finally, graph edges are updated based301
on Vg and edge traversal counts N [i, j]. The choice of expansion node and subsequent low-level302
exploration encourage the skill graph to expand along directions that jointly maximize novelty and303
extrinsic reward.304
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Algorithm 1 Intrinsic Motivation Directed Skill Graph (IM-DSG)

1: Initialize:
2: Initialize CFN to learn psuedocounts Nϕ, value function Vnovelty, and policy πnovelty.
3: Initialize goal-conditioned R2D2 to learn value function Vg and policy πg .
4: Initialize graph G with null node {φ} and no edges.
5: while True do
6: Sample expansion node using Equation 4.
7: Construct AMDP using procedure described in Section 3.2.4.
8: Solve AMDP using value iteration to get abstract policy π̄.
9: Follow abstract policy until agent reaches expansion node or episode terminates.

10: if agent reached expansion node then
11: Roll out exploration policy πnovelty to get trajectory τ .
12: end if
13: Potentially add a new node from τ to the graph using Equation 8.
14: Update Vg and πg using Hindsight Experience Replay (HER).
15: Update πnovelty to maximize the sum of intrinsic and extrinsic rewards: R(s, a)+b·rnovelty(s).
16: Update the edge traversal N [i, j] and node visitation counts N [i] using the full trajectory.
17: Update the edge probabilities in the skill graph G using Vg (Sections 3.2.2 and 3.2.3).
18: end while

4 Experiments305

We evaluate the IM-DSG agent on five challenging exploration problems, all of which have306
image-based observations and discrete actions (details in Appendix A). We chose the MINIGRID307
(Chevalier-Boisvert et al., 2023) environments because they were identified as being challenging308
for existing RL algorithms by the survey of Colas et al. (2022). We chose SOKOBAN (Schrader,309
2018) because the survey of Hamrick et al. (2020) identified it as being a problem in which both310
learning and planning are important for good performance. Finally, we chose VISUALTAXI and311
VISUALPINBALL because non-image versions of these domains have been used extensively to eval-312
uate state abstraction and option discovery algorithms in isolation (for example, Lo et al., 2024;313
Konidaris & Barto, 2009; Dietterich, 2000).314

4.1 Qualitative Evaluation315

To build intuition, we first qualitatively evaluate the IM-DSG agent. Specifically, we want to under-316
stand what the skill-graph looks like, what parts of it the agent uses most frequently, and whether317
the skill graph aids more effective exploration.318

4.1.1 Visualizing the Skill Graph in MINIGRID319

Figure 2 is a visualization of the skill graph at the end of training in MINIGRID-KEYCORRIDOR.
To visualize each node in the graph, we randomly sample a state in which that termination condition
was triggered; only the location and inventory is visualized here for simplicity. Each node is colored
based on its probability of serving as the expansion node. Furthermore, the transparency αn of a
node is its average abstract value:

αn = max
{
Ene

[
V̄ne(n)

]
, 0.05

}
,

where the expectation is over the node expansion probability distribution Pn (Equation 4), V̄g(n)320
is the abstract value of node n when targeting node g (obtained via Value Iteration on the AMDP;321
Section 3.2.4). The transparency of an edge is the average transparency of the nodes that it connects.322

Understanding Figure 2. Nodes in the top-right room have a higher expansion probability. This323
is because (a) navigating to the top-right room is novel as it requires unlocking the red door with324

9



Under review for RLC 2025, to be published in RLJ 2025

Figure 2: Discovered skill graph in MINIGRID-KEYCORRIDOR. The domain is shown in the
bottom-right inset: it involves picking up a key in the bottom-left room, opening a locked door and
then picking up a ball in the top-right room. The left subplot shows the subgraph where the agent
does not have a key in its possession (other state variables are not shown for simplicity). The nodes
and edges of the graph are shaded based on their expected abstract value E[V̄ (n)]. Although we
visualize the location and inventory, the agent itself only observes images. The graphs show that,
when the agent lacks the key, it aims to explore down the corridor and in the rooms at the bottom of
the maze, but when it does have the key, interesting options are on the path to the goal.

Figure 3: Example of hierarchical policy execution in SOKOBAN: (left) start state in which no box
(boxes shown in yellow) is in its desired location (target locations are shown in red). (Middle)
selected expansion node which has 2 out of 3 boxes placed in their desired locations; the agent
uses planning to get to this state. (Right) After reaching the expansion node, the agent does local
exploration using πnovelty, which reaches the task goal.

the red key, and (b) once the agent enters the top-right room, it can solve the remainder of the325
task easily. These two facts result in high Vnovelty and hence high expansion probabilities, which is326
why the graph in the bottom-left and top-right rooms have high abstract value. Nodes in the central327
corridor also have high abstract value because the agent must navigate through them for the majority328
of its target expansion nodes. This demonstrates that the agent focuses on parts of the graph that are329
either important for expansion by themselves, or those subgraphs that serve as hubs, i.e., they lead330
to other sub-graphs that are important for expansion (Şimşek et al., 2005; Shah & Srivastava, 2024).331
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Figure 4: Comparing the performance of our proposed algorithm, IM-DSG (blue), novelty-based
CFN (orange) and vanilla model-free R2D2 (green). Each curve represents the mean reward and the
shaded area represents the standard deviation over 5 random seeds.

4.1.2 Exploration in SOKOBAN332

Figure 3 shows IM-DSG’s high-level policy when it encounters the task-goal for the first time: the333
expansion node is chosen to be a state that corresponds to placing two out of the three boxes in334
their correct locations. The agent plans with its learned options to reach this state. Subsequent335
novelty-driven exploration is more targeted as it only seeks to explore those states in which most of336
the task has already been solved, increasing the probability that random exploration would find the337
proverbial “needle in a haystack”.338

4.2 Quantitative Evaluation339

First, we seek to understand whether the IM-DSG agent can solve challenging exploration problems340
in a more sample-efficient manner than our baselines. Second, even though the graph construction341
is prioritized along directions where the agent expects to gather extrinsic reward, we want to under-342
stand whether the graph can still be used in a multi-task context to solve goal-reaching problems343
that were not encountered during training.344

4.2.1 Sample Efficient Exploration in Single Task MDPs345

We compare the IM-DSG agent to the following baselines:346

• Flat model-free RL. R2D2 is a distributed variant of DQN that uses a recurrent neural network347
to represent the value function (Kapturowski et al., 2019). Since the IM-DSG agent uses R2D2 to348
learn policies, we include it as our model-free baseline.349

• Novelty driven exploration. We use CFN to explore outside the graph, and it is a state-of-the-art350
technique for novelty-driven RL; so, we include it as our exploration baseline.351

Figure 4 shows our quantitative results: we find that the IM-DSG agent consistently outperforms352
R2D2 and CFN in our domains. This suggests that although novelty-maximizing exploration is in353
principle sufficient to solve these problems, the discovery and use of the model for planning leads354
to a more sample-efficient agent in these domains.355

Model-based planning ablation. Figure 5 (left) shows that when we disable planning, the IM-356
DSG agent is unable to solve the MINIGRID-KEYCORRIDOR problem. This indicates that high-357
level planning with the learned skill graph is essential–simply combining CFN with HER is not358
enough to solve this task in the allotted training budget. This ablation also serves a rough comparison359
to algorithms like Skew-Fit (Pong et al., 2019) and Omega (Pitis et al., 2020) that combine HER with360
novelty-based exploration, but do not do model-based planning.361
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Figure 5: Ablation and graph usefulness in a multi-task context. (left) Ablating the use of plan-
ning in IM-DSG in MINIGRID-KEYCORRIDOR: bars represent the average per-episode reward
during training. (middle) Evaluation performance in VISUALPINBALL on 10k randomly sampled
goal states not used during training: comparison against HER in terms of test-time rewards, train-
time rewards, and coverage, which is the fraction of the maze explored during training. All error
bars represent standard deviation over 5 random seeds. (right) Solution trajectories found by the
IM-DSG agent for 4 randomly sampled test-time goals (shown using black stars); the blue dot in the
top-left of the maze is the start state, the big red ball in the bottom is the train-time goal. Note that,
unlike in the original, this version of pinball uses images as observations.

4.2.2 Generalization to New Goals in VISUALPINBALL362

In this section, we test whether the skill graph discovered during exploration can be used to solve363
other, unseen tasks at test-time. In particular, we train our agent to solve the VISUALPINBALL364
problem, which requires guiding the ball to the big red circle at the bottom of the maze. After365
training, we present the agent with 10k randomly sampled held-out goals and test its ability to reach366
these goals. We compare our agent against Hindsight Experience Replay (HER; Andrychowicz367
et al., 2017), which in principle can also generalize to unseen goals at test-time. We follow the368
experimental setup of Sharma et al. (2020a); more details can be found in Appendix B.369

Figure 5 shows that IM-DSG outperforms HER at test-time. To understand why, we compare their370
train-time performances and find that HER is unable to explore the maze as extensively as IM-DSG,371
as a result of which, it is unable to reach goals that are far away from the start-state at test-time.372

5 Discussion and Conclusion373

We introduced an algorithm that builds a graph abstraction of large MDPs with image-based ob-374
servations. Nodes of this graph correspond to option termination regions, edges represent option375
policies, and edge probabilities are determined using option initiation functions. The skill graph ex-376
pands towards the frontier of the agent’s experience without assuming access to state-sampling or a377
distance metric; the acquired graph enables planning in increasingly large portions of the state-space.378

Our method suffers from at least the following limitations:379

• Each option drives the value of all state variables to a certain range of values. In more complex380
environments, it may be unnecessary, or even impossible, to control all state variables at once.381

• After reaching the expansion node, the IM-DSG agent executes the low-level exploration policy382
(CFN) until the end of the episode; more fine-grained control over when to enter and exit low-level383
exploration (Pislar et al., 2022) would generalize our algorithm to continuing problems without384
episode resets.385

Despite these shortcomings, IM-DSG takes a small step towards the eventual goal of building RL386
agents that continually discover their own state and action abstractions (Gershman, 2017; Konidaris,387
2019), and use them for effective exploration (Gopnik, 2020) and planning (Sutton et al., 2024).388
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A Domain Descriptions697

Figure 6: Domains used to test the IM-DSG agent. From top-left in left to right order: MINIGRID-
DOORKEY, MINIGRID-KEYCORRIDOR, SOKOBAN, VISUALTAXI, and VISUALPINBALL.

1. MINIGRID-DOORKEY: To reach the goal, the agent must first pick up a key and then use that698
key to unlock a door. There is no intermediate reward for picking up the key, only a sparse699
terminating reward for reaching the goal. Each episode lasts a maximum of 200 steps.700

2. MINIGRID-KEYCORRIDOR: This domain also has a key and a locked door, but additionally has701
other doors that can be open and closed. The goal is to pick up the purple ball that is placed in702
locked room (center-right room in Figure 6(c)). Each episode lasts a maximum of 1000 steps.703

3. SOKOBAN: In this classic puzzle, the agent must place 3 boxes into their target locations (red704
border squares in Figure 6). The environment provides intermediate rewards for putting each box705
into its place and a terminating reward for correctly placing the final box. Each episode lasts a706
maximum of 200 steps.707

4. VISUALTAXI: this is an image-based version of the classic Taxi problem (Dietterich, 2000). A708
passenger awaits in one of four depots and must be dropped off at a destination depot. Success-709
ful completion of the full task yeilds a sparse terminating reward of +1. Each episode lasts a710
maximum of 50 steps.711

5. VISUALPINBALL: image-based version of the under-actuated Pinball domain (Konidaris &712
Barto, 2009; Bacon et al., 2017) in which the agent provides acceleration to the ball in one713
of 4 directions (or no-op), causing the velocity of the ball to change over time. We pick the714
hardest configuration from Konidaris & Barto (2009) during training, and sample goal locations715
at random during testing. Test-time goals are communicated to the agent as images of the pinball716
in the desired location. Each episode lasts a maximum of 1000 steps.717
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Figure 7: Summary illustration of a toy abstract MDP (AMDP) with 3 nodes. i and j are two
ordinary nodes, ne is the expansion node and the skull node shows a fictitious node that represents
“falling off the graph”. The transition probabilities T̄i→j are obtained using the UVFA Vθ and
edge-traversal counts N [i, j]; the reward R̄i→j and discount models γ̄ are obtained via monte carlo
estimation from option executions.

B VISUALPINBALL Experiment Details718

Both the IM-DSG agent and the Hindsight Experience Replay (HER) agent get the same training719
budget of 50M frames. During evaluation, both algorithms are tested on the same set of 10k goals720
and are given a budget of 10M frames to achieve them. Each episode lasts for at most for 1k steps.721
Error bars are computed over 5 training runs of the respective agents.722

To compute the coverage metric shown in Figure 5 (right), we first need to compute the maximum723
possible coverage in the maze. This is done by first discretizing the (x, y) plane into 100 × 100724
squares, and then subtracting the approximate area occupied by the obstacles in the maze. To com-725
pute the coverage achieved by the two agents, we consider what fraction of the free space is occupied726
by all the states visited by the two agents.727

Test-time modifications for VISUALPINBALL. During training, IM-DSG picks the expansion728
node based on Vnovelty. At test-time, this would not be a good strategy because there is no reason that729
Vnovelty would guide the agent to the test-time goal. So instead, we pick the expansion node to be the730
one that is closest to the test-time goal gtest:731

ntest
expansion = argmax

n
Es∼n

[
Vgtest(s)

]
(10)

C AMDP Construction732

Figure 7 illustrates a 3 node toy AMDP: ne is the expansion node, i and j are intermediate nodes and733
the skull represents the null node φ. Nodes of the graph are abstract states and outgoing edges from734
a node are available options. The abstract model, which is a combination of T̄ , R̄, γ̄, is estimated735
using the agent’s goal-conditioned value function Vg and Monte Carlo estimation respectively.736
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Hyperparameter Value Tuned

Learning rate 0.0001, 0.00001 Yes
Trace length 40 No

Sequence period 20 No
Batch size 32 No

Burn-in length 0 No
Max replay size 500000 No

Target update period 600, 1200 Yes
Discount factor 0.997 No

Number of actors 32 No

Table 1: R2D2 Hyperparameters.

Hyperparameter Value Tuned

τ from Eq 5 0.7, 0.8, 0.9 Yes
c from Eq 6 0.1, 0.2 Yes
k in Eq 8 1, 2 Yes

Table 2: IM-DSG Specific Hyperparameters.

D UVFA Training737

We represent the agent’s goal-conditioned value function using the following neural network archi-738
tecture: a convolutional neural network (CNN; Goodfellow et al., 2016) torso encodes the image739
representing the current state s into Φ1(s); another CNN encodes the goal g into Φ2(g), where g is740
sampled from an option’s effect set. Φ1(s) is input into an LSTM (Goodfellow et al., 2016); the out-741
put of the LSTM, yt is concatenated with Φ2(g) and then passed through a multi-layered perceptron742
(MLP), which outputs the Q-value for each action in the MDP’s action space. The goal encoder is743
identical to the state encoder, whose exact architecture, along with that of the LSTM and MLP, are744
taken without modification from Kapturowski et al. (2019). We follow Bagaria & Schaul (2023) and745
use novelty to pick which of the achieved goals in a trajectory should be replayed in hindsight.746

E Hyperparameters747

Table 1 lists the hyperparameters for R2D2, Table 2 lists those hyperparameter settings that are748
specific to IM-DSG, and finally, Table 3 lists those IM-DSG hyperparameters that were environment749
specific.750

Hyperparameter DoorKey KeyCorridor VisualTaxi VisualPinball Sokoban

Option Horizon H 200 400 50 200 50
Descendant threshold 0 0 0.3 0 0

Table 3: IM-DSG Hyperparameter settings for different domains
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