MOSAIC: Multi-agent Orchestration for
Task-Intelligent Scientific Coding

Siddeshwar Raghavan*
Elmore School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN, 47906
raghav12@purdue.edu

Tanwi Mallick
Mathematical and Computer Sciences
Argonne National Laboratory
Lemont, IL, 60439
tmallick@anl.gov

Abstract

We present MOSAIC, a large language model (LLM) based multi-agent framework
for tackling complex scientific coding tasks. Unlike general-purpose programming,
scientific coding requires rigorous algorithmic reasoning, substantial domain ex-
pertise, high numerical precision, extended context management, and the ability
to decompose and solve interdependent subproblems under a larger objective. To
address these challenges, we design and integrate specialized agents responsible
for self-reflection, planning, coding, and debugging inspired by a teacher—student
paradigm. This architecture balances open-ended exploration, ensuring executabil-
ity while maintaining a consolidated context to minimize hallucinations. We
evaluate MOSAIC on the scientific coding benchmark SciCode and show that our
framework, together with its specialized agents, outperforms existing approaches
in accuracy, robustness, and interpretability.

1 Introduction

Large Language Models (LLMs) have recently shown significant advancements, exhibiting capabil-
ities in reasoning, strategic planning, and task execution that are comparable to human cognition.
These advancements have led to the development of multi-agent frameworks, where specialized
agents coordinate to solve intricate challenges that would be challenging for a single model.

Despite these breakthroughs, scientific coding presents unique challenges. Scientific workflows
require precise numerical methods, rigorous error propagation, and strict reproducibility, which often
exceed the current capabilities of both monolithic LLMs and simple agent setups. The presence of
domain-specific knowledge, intricate data dependencies, and the need for formal validation further
complicate code generation and can introduce subtle, difficult-to-detect errors. Scientific coding
datasets like SciCode [10] offer no I/O examples for algorithmic validation, and generating them is far
from trivial. This fundamental difference makes prior multi-agent frameworks such as MapCoder [7],
CodeSIM [8]], and AgentCoder [6] unsuitable for scientific settings, as their code generating pipeline
rely on the availability of test cases.

*Work done at Argonne National Laboratory as a Givens Associate

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: DLAC.

Decomposing intricate scientific problems into coherent, solvable sub-tasks demands both deep
domain expertise and careful orchestration. At the same time, as interdependent sub-tasks grow
longer, LLMs struggle to retain critical context and are increasingly prone to hallucinations and
inconsistencies when operating near the limits of their context windows [[11]], further undermining
their reliability for end-to-end scientific code generation.

Motivated by this research gap, we introduce MOSAIC, a fully autonomous, LLM-agnostic multi-
agent framework for scientific code generation that operates without the need for validation I/O
test cases. In MOSAIC we design and use four specialized agents: self-reflection agent, inspired
by Renze et al. [9], rationale agent to plan the solution, and iterative Coding and Debugger agents
that converts these plans into executable, modular code and in-turn focuses on syntactic correctness.
To preserve context between interdependent subproblems, MOSAIC also implements a lightweight
context window strategy.

Our comprehensive evaluation across three LLM backbones and four optimization baselines (direct
synthesis, chain-of-thought prompting, self-planning, analogical reasoning) demonstrates that MO-
SAIC substantially enhances scientific code generation, outperforming every comparative method
achieving 18.64 % main problem solving rate and 39.92 % subproblem solving rate, compared to
the baseline of 10.76% and 33.01% respectively. To showcase versatility of MOSAIC, we also
evaluate on MBPP [1]], HumanEval [3]], and APPS [4]], where we achieve performance comparable to
existing multi-agent frameworks.

2 Method

We present MOSAIC, a modular multi-agent LLM framework designed to decompose complex
scientific coding problems into accurate and executable solutions. The framework comprises four
core agents: Self-Reflection, Rationale, Coding, and Debugger which collaborate autonomously
to generate and refine code, while a Bucketing module directs problems to domain relevant agent
groups for targeted problem solving. Inspired by knowledge distillation [S], MOSAIC follows a
student—teacher paradigm. The Teacher uses a small subset of ground-truth code from the validation
set as in-domain examples to generate detailed rationales. These do not overlap with the test problems,
instead, they serve as guidance for decomposing unseen domain problems into logical steps. The
Student agents then transform these steps into reliable code with the aid of a consolidated context
window, which retains only function signatures and concise summaries to preserve essential context
without overloading memory with the full history.

Agentic Framework — Science and Coding

Teacher Module
Bucketing Module

Ground Rationale Self-Reflection

@ truth from code Agent Pseudo
. . . code \ - — code
a - =W— K — =
- o Chemistry Problem = R)] *‘
K (E g details —
Biology ' L‘

’) Agent N ¢ ‘(\ prompting
. Material _ Student Module
Science Rationale

Input problem
put p! Agent Problem: N-Body
Gravitational Force,

Physics
Agent

. Prompt: Compute L ¢ ¢
athematics positions and velocities 4 el |::>))
Agent of a system of interaction /9 Ak y I F e
particles that interact only C L’ S L = <:| A
via Newtonian « s [2%
Coding AVt oo) Output
Agent 1 Coding Debugger Gt
Input Prompt Agent Agent

Consolidated
Context Window

Figure 1: Overview of MOSAIC: a four-agent framework inspired by knowledge distillation, where
the Teacher module guides the Student agents to generate executable scientific code.

2.0.1 Self-Reflection Agent

The agent receives the ground truth rationale and learns to evaluate its own intermediate reasoning
steps. It identifies potential mistakes or omissions and refines its logic iteratively before arriving at
the final pseudocode. By verbalizing its thought process and critically analyzing its reasoning path,
the Self-Reflection Agent enhances output reliability, corrects logical flaws, and improves overall
accuracy.

2.0.2 Rationale Agent

The Rationale Agent uses the generated pseudocode as few-shot examples to process scientific
prompts from the test set (new problems). It then produces a clear, step-by-step reasoning plan
similar to the structured guidance offered by the teacher model. Scientific problems typically involve
a sequence of interdependent sub-problems that need to be addressed to reach the final solution. To
address the risk of hallucination as the context window grows [11} 2], we implement a Consolidated
Context Window (CCW) to remain focused on the current task. To ensure efficiency, the CCW
contains only prior function headers and brief one-sentence summaries, rather than full code history.

2.0.3 Coding Agent

The Coding Agent uses the detailed plan provided by the Rationale Agent to generate the cor-
responding code block, maintaining awareness of both the subproblem and the broader problem
context.

2.0.4 Debugger Agent

The final core agent in the framework is the Debugger Agent, which executes the generated code and
performs up to k rounds of error correction in collaboration with the Coding Agent. This iterative
process resolves syntax and import errors, ensuring the final output is executable. Even in the absence
of explicit I/O test cases, the debugger resolves syntax and import errors using examples from related
domains.

3 Experiments

We evaluate MOSAIC primarily on scientific benchmark SciCode [10], general-purpose, and competi-
tive coding benchmarks, comparing against strong baselines and current best performing frameworks.

3.1 Datasets and Comparison Approaches

Our main evaluation uses SciCode [10] (283 subproblems across physics, chemistry, biology, mathe-
matics, and materials science) which requires generating executable code without I/O supervision. We
also test on MBPP [[1] (1k problems), HumanEval [3] (164 problems), and APPS [4] (5k problems) to
assess applicability. Baselines include Direct synthesis, Chain-of-Thought prompting, Self-Planning,
and Analogical reasoning. On general-purpose datasets, we additionally compare with MapCoder
and CodeSIM which has the current best performance.

3.2 Implementation Details

We build on the open-source PyTorch implementation of SciCode [10] for our experiments. Within
MOSAIC, we employ LangGraph to orchestrate agent communication and ensure reproducibility.
For each problem domain, we instantiate a dedicated agent framework to encapsulate only the
domain knowledge and prevent cross-domain interference. Each agent is guided by tailored prompts
that constrain it to its specific role and yield the outputs needed to arrive at the final solution. In
MOSAIC’s teacher module, designed for knowledge distillation via few-shot prompting, we sample
twenty problems from the APPS training set, ten MBPP problems and five problems from the
HumanEval dataset [3]] for few-shot mechanism.

4 Results and Discussion

Table [T] summarizes performance on SciCode across three LLM backbones. MOSAIC consistently
outperforms all baselines in both main and subproblem solving using GPT-40, Claude Sonnet 4, and
Google Gemini 2.5 Flash. We attribute these gains to our multi-agent orchestration strategy, inspired
by knowledge distillation, which guides both algorithmic planning and execution.

LLM Backbone | Methods | Total | Physics | Chemistry | Biology | Material Science | Mathematics
| SciCode Baseline | 7/65 94/283 | 3/30 48/145 | /7 13/42 | 077 5725 | 211 24/50 | 1/10 4724
| Analogical | 165 32283 | 1/30 18/145 | /7 242 | 077 3725 | O/L1 6/50 | 0/10 3724
GPT-40 | CoT | 2/65 38283 | 1/30 21/145 | 07 2/42 |07 3025 | /1 8/50 | 010 4/24
| LATS | 4/65 490283 | 2/30 34/145 | 07 2/42 |77 3025 | 2/11 8/50 | 010 2/24

| MOSAIC (ours)
Claude Sonnet 4 ‘ SciCode Baseline ‘ 9/65 109/283 ‘ 4/30 71/145 ‘ 177 13/42 ‘ 177 9/25 ‘ 2/11 8/50 ‘ 1710 824

12/65 113/283 | 4/30 56/145 | 2/7 14/42 | 0/7 7/25 | 3/11 26/50 | 3/10 10/24

| MOSAIC (ours) | 13/65 118/283 | 4/30 77/145 | 2/7 17/42 | 1/7 8/25 | 3/11 8/50 | 3/10 824
Gemini 2.5 flash ‘ SciCode Baseline ‘ 7/65 112/283 ‘ 5/30 67/145 ‘ 177 14/42 ‘ /7 11/25 ‘ 2/11 9/50 ‘ 1710 1/24
| MOSAIC (ours) | 11/65 117/283 | 5/30 88/145 | 2/7 6/42 | 1/7 525 | 2/11 6/50 | 1/10 1224

Table 1: Performance comparison between baselines and MOSAIC on scientific datasets with different
LLM backbones. Best results are highlighted. The SciCode benchmark consists of 65 main problems
comprising a total of 283 subproblems spanning physics, chemistry, biology, materials science, and
mathematics. A problem is considered solved only when all of its subproblems pass the corresponding
test suites.

TableE] shows performance varies by domain, physics, chemistry, material science and mathematics
show improvements, while biology remains the most challenging. Beyond limited in-domain example
coverage, we observed incorrect order of steps and oversimplified algorithm logic. Such errors
are qualitatively different from those in other domains, where failures are more toward numerical
precision rather than conceptual. These findings suggest that future work may have to focus more
on integrating external scientific knowledge sources through research papers, coding databases
and GitHub repositories alongside agent orchestration. We also observe difficulties with very long
problems (>10 subproblems), where maintaining context across multiple steps remains an open
challenge despite our consolidated context window.

Despite these challenges, MOSAIC achieves substantial gains through a multi-agent design without
any domain specific fine tuning. A primary contributor is the use of separate memory for each domain,
which prevents interference across domains. With domain scoped memory, the Rationale Agent
produces more robust and contextually appropriate plans; for example, an effective strategy for a
physics problem can differ significantly from that for a mathematics problem.

To showcase applicability and performance on general purpose coding datasets, we also evaluated
MOSAIC on MBPP, HumanEval, and APPS. Results in Table [2 show competitive performance with
existing multi-agent frameworks (MapCoder, CodeSIM), indicating that MOSAIC performs well,
beyond scientific coding tasks.

Method HumanEval MBPP APPS

(30 val / 134 test) | (10 val / 500 test)
Direct 89.63 48.80 12.70
CoT 87.20 54.92 11.30
Self-Planning 89.63 49.64 14.70
Analogical 90.85 49.81 12.00
MapCoder 90.26 77.92 22.37
CodeSIM 93.60 80.49 22.56
MOSAIC (ours) 92.53 84.90 24.71

Table 2: Performance comparison between current SOTA and our method on general purpose coding
and competitive coding datasets. Best and Second Best results are highlighted.

5 Conclusion and Future Work

In this paper, we introduced MOSAIC, an intelligent multi-agent orchestration framework for tackling
complex scientific coding challenges. Drawing inspiration from knowledge distillation, MOSAIC em-
ploys a teacher—student paradigm in which the teacher guides the student through few-shot prompting
to generate pseudocode. The framework mitigates hallucinations via a consolidated context window
and performs iterative debugging without the need for sample test sets, thereby achieving substantial
improvements over baseline performance. Experiments validate the effectiveness of the proposed
approach. For future work, we intend to investigate fine-tuning strategies that incorporate domain-
specific knowledge to further enhance performance. Moreover, we plan to explore heterogeneous
agent configurations in which multiple LLM backbones, each specialized for a particular role, operate
collaboratively within the same framework.

6 Acknowledgement

This research was supported by the U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Computing Research, through the SciDAC-RAPIDS?2 institute under Contract
DE-AC02-06CH11357.

References

[1] J. Austin, A. Odena, M. 1. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai,
M. Terry, Q. V. Le, and C. Sutton. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732,2021. URL https://arxiv.org/abs/2108.07732.

[2] S. Banerjee, A. Agarwal, and S. Singla. Llms will always hallucinate, and we need to live with
this. arXiv preprint arXiv:2409.05746,2024. URL https://arxiv.org/abs/2409.05746.

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[4] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik,
H. He, D. Song, and J. Steinhardt. Measuring coding challenge competence with apps. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[5] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531,2015. URL https://arxiv.org/abs/1503.02531.

[6] D.Huang, J. M. Zhang, M. Luck, Q. Bu, Y. Qing, and H. Cui. Agentcoder: Multi-agent-based
code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010, 2024.
URL https://arxiv.org/abs/2312.13010.

[7] M. A. Islam, M. E. Ali, and M. R. Parvez. Mapcoder: Multi-agent code generation for
competitive problem solving. arXiv preprint arXiv:2405.11403, 2024. URL https://arxiv!
org/abs/2405.11403,

[8] M. A. Islam, M. E. Ali, and M. R. Parvez. Codesim: Multi-agent code generation and problem
solving through simulation-driven planning and debugging. arXiv preprint arXiv:2502.05664,
2025. URL https://arxiv.org/abs/2502.05664.

[9] M. Renze and E. Guven. Self-reflection in llm agents: Effects on problem-solving performance.
arXiv preprint arXiv:2405.06682, 2024.

[10] M. Tian, L. Gao, S. D. Zhang, X. Chen, C. Fan, X. Guo, R. Haas, P. Ji, K. Krongchon, Y. Li,
S. Liu, D. Luo, Y. Ma, H. Tong, K. Trinh, C. Tian, Z. Wang, B. Wu, Y. Xiong, S. Yin, M. Zhu,
K. Lieret, Y. Lu, G. Liu, Y. Du, T. Tao, O. Press, J. Callan, E. Huerta, and H. Peng. Scicode: A
research coding benchmark curated by scientists. arXiv preprint arXiv:2407.13168, 2024. URL
https://arxiv.org/abs/2407.13168|

[11] Z.Zhang, C. Wang, Y. Wang, E. Shi, Y. Ma, W. Zhong, J. Chen, M. Mao, and Z. Zheng. LIm
hallucinations in practical code generation: Phenomena, mechanism, and mitigation. Proc.
ACM Softw. Eng., 2(ASSTA):1-23, June 2025. doi: 10.1145/3728894.

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2409.05746
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2405.11403
https://arxiv.org/abs/2405.11403
https://arxiv.org/abs/2502.05664
https://arxiv.org/abs/2407.13168

	Introduction
	Method
	Self-Reflection Agent
	Rationale Agent
	Coding Agent
	Debugger Agent

	Experiments
	Datasets and Comparison Approaches
	Implementation Details

	Results and Discussion
	Conclusion and Future Work
	Acknowledgement

