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ABSTRACT

After observing a type of object, we humans could easily recognize similar objects
on an unseen scene. However, such generalization ability for the neural network
remains not fully explored in current researches. In this paper, we study a new
problem named Referring Self-supervised Learning (RSL) on 3D scene under-
standing: Given the 3D synthetic models with labels and the unlabeled 3D real
scene scans, our goal is to distinguish the identical semantic objects on an un-
seen scene according to the referring synthetic 3D models. Unlike current tasks,
the purpose of RSL is to study how to transfer the neural network’s knowledge
from the 3D models to unseen 3D scenes, where the main challenge is solving
the cross-scene -domain and -task gap between the referring synthetic model and
real unseen scene. To this end, we propose a simple yet effective self-supervised
framework to perform two alignment operations. First, physical alignment aims to
make the referring models match the scene with data processing techniques, and
then convex-hull regularized feature alignment introduces learnable prototypes to
project the point features of referring models to a convex hull space, where the
feature acts as a convex combination of the learned prototypes (for both referring
model and real scene) and this regularization eases the alignment. Experiments
show that our method achieves the average mAP of 55.32% on the ScanNet dataset
by referring only to the synthetic models from the ModelNet dataset. Furthermore,
it can be regarded as a pretext task to improve the performance of the downstream
tasks in 3D scene understanding.

1 INTRODUCTION

The human perception system has a powerful generalization ability across different scenes, domains
and tasks. For example, after observing many multi-category objects, humans conclude the typical
characters of the identical semantic objects and the unique characters between different categories.
Therefore, they could easily distinguish the identical semantic object on an unseen scene, no matter
where the object is. However, such cross-scene and cross-domain generalization ability of the neural
network remains under-explored.

Most current works for the neural network are task-, scene- and domain-specific, which indicate
that a specific neural network is trained for a specific task with a corresponding training dataset.
Moreover, the network performs the cross-scene, cross-domain, and cross-task adaptation needs
massive data labelling and computational resources. Based on this consideration, this paper investi-
gates a new problem on the neural network’s cross-scene and cross-domain generalization ability for
3D scene understanding. Given 3D referring models with labels and the unlabeled 3D scenes, our
goal is to distinguish the identical semantic objects on an unseen scene according to the referring
3D models. We name it Referring Self-supervised Learning (RSL). The referring models with class
tags are synthetic and easily accessible, and the 3D scenes are unlabeled scans acquired from the real
world. The purpose is to study how to perform the effective and efficient cross-scene cross-domain
and cross-task knowledge transferring like humans on a 3D world.

Unlike existing works, the challenging issues of the proposed Referring Self-supervised Learning
are the cross-scene, cross-domain and cross-task gaps. First, it differs naturally from supervised
learning (Ouaknine et al. (2021); Chen et al. (2021); Zhu et al. (2021); Li et al. (2021)), which
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is task-specific and often limits to very few scenarios. The straightforward idea is to utilize the
unsupervised domain adaptation (Saenko et al. (2010); Wang et al. (2020)), which transfers the
knowledge from the source domain to the target domain where target labels are not necessary, or
few-shot/semi-supervised learning (Yu et al. (2020); Zhao et al. (2021)) via using a small proportion
of labelled data. However, these studies are task-specific (from classification to classification or
segmentation to segmentation) and scene-specific, while RSL emphasizes the cross-scene, cross-
domain and cross-task generalization ability of the neural network, which is under-explored in these
works.

In this paper, we formulate RSL on point cloud and instantiate it with the point-wise classification
problem. The main challenges are the cross-domain (synthetic to real) cross-scene (single model
to the indoor scene) and cross-task (classification to segmentation) gap. Specifically, unlike the
referring models are independent and complete, the objects in a scene are nearby other objects and
are often partially observed. They also vary in geometric properties, where the objects in a real scan
are irregular and noisy due to the limitation of scanning equipment while the synthetic models are
clean. To this end, we propose a simple yet effective framework to handle the domain gaps, where
it mainly includes two alignment operations, i.e, physical alignment and convex-hull regularized
feature alignment.

Specifically, we first design a series of data processing approaches to perform the physical alignment
between the synthetic models and the object in a real scene, including rotation, scaling, cropping,
and mix up with other models and the scene. Besides, the huge distribution difference between
the synthetic model and the real-world scene makes the alignment hard. A natural alternative is
to impose restrictions on these distributions to ease the alignment. Inspired by the convex hull
theory (Rockafellar (2015)), i.e, any convex combinations of the points must hold and restrain in the
convex hull, we propose a novel module to project the point features into the convex hull space that
regularizes these distributions. The basic idea is to set a group of learnable prototypes as the support
points to formulate a convex hull. These prototypes are designed to indicate the base properties of 3D
models according to the objective function, where the convex hull is a closure subspace surrounded
by the learned prototypes. When inferring an unseen scene, the point features are projected to the
convex hull by a convex combination of prototypes. In this way, the convex hull regularized feature
representation has a better generalization ability to recognize the target objects when inferring an
unseen scene.

We conduct the experiments on ModelNet (Wu et al. (2015)) and ScanNet (Dai et al. (2017)), where
ModelNet provides the synthetic model for referring, and the scene scans in ScanNet are for eval-
uation. Our method achieves the average mAP of 55.32% o ScanNet dataset without any manually
annotated scans. Furthermore, RSL can be a pretext task to pre-training the network. The proposed
method has significantly improved the existing methods with different proportions of labelled data,
demonstrating a promising way for representation learning.

The contributions of our work are as follows.

• Inspired by the human perception system, we formulate and investigate a new problem
about the networks’ cross-domain cross-scene and cross-task generalization ability.

• We propose a novel framework to perform the alignment between the synthetic models and
the objects in an unseen scene via physical space and convex-hull regularization.

• Our method achieves promising results to infer the interesting objects on unseen scenes.

• Our work indicates a feasible way for representation learning on point cloud to improve the
downstream tasks.

2 RELATED WORK

Deep Learning on Point Cloud Point cloud, as a 3D data representation, has been used exten-
sively in various 3D related tasks, such as shape classification (Liu et al. (2021)), 3D segmentation
(Ouaknine et al. (2021); Chen et al. (2021); Zhu et al. (2021)), 3D detection (Li et al. (2021)) and
registration (Lu et al. (2021); Zeng et al. (2021)). Due to its unordered nature, the network for
processing the point cloud is less mature than 2D images. Various network architectures have been
proposed for learning with point clouds. They mainly focus on designing mechanisms for aggre-
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gating neighbourhood information. PointNet based methods (Qi et al. (2017a;b); Wu et al. (2019))
mainly apply multi-layer perception networks directly on the coordinates of input point cloud for
feature extraction and cropping operation is usually employed for local feature aggregation. Contin-
uous convolutional networks (Wang et al. (2018); Yang et al. (2021)) aim at exploring the underlying
continuous structures represented with discrete points and define convolution kernels in continuous
spaces. Sparse convolution-based methods (Graham (2015); Su et al. (2018); Choy et al. (2019))
mainly represent the 3D point cloud with sparse rectangles or permutohedral lattice and define 3D
convolution kernels accordingly. As an extension of standard 2D convolution, various architectures
designed for 2D convolution can also be employed with 3D sparse convolution. In our work, we
use the MinkowskiNet (Choy et al. (2019)), a kind of sparse convolutional network, with U-Net like
architecture as the backbone for learning point cloud representations.

Transfer Learning in 3D Transfer learning has been widely employed in various deep learning-
based tasks. Generally, transfer learning can be roughly classified into three categories including
pre-training (Yosinski et al. (2014); Mahajan et al. (2018)), domain adaptation (Saenko et al. (2010);
Wang et al. (2020)) and few-shot learning (Yu et al. (2020); Zhao et al. (2021)). The main purpose
of using transfer learning is to improve the generalization and stability of neural networks. It is
especially important when the neural networks are trained with limited labelled data. In 3D scenar-
ios, transfer learning becomes much more important due to the difficulty of acquiring 3D labelled
data. PointContrast (Xie et al. (2020)) extends contrastive learning technique for learning point-wise
representations that are beneficial to various downstream tasks. (Hou et al. (2021)) integrates the
spatial scene contexts into a contrastive training paradigm and achieved considerable improvements
on supervised and weakly supervised downstream tasks. In this paper, we instantiate the referring
self-supervised learning on point cloud and transfer object-level classification labels from 3D syn-
thetic models to real scanned scenes for scene segmentation tasks.

3D Data Augmentation Data augmentation, as a fundamental way for enlarging the quantity and
diversity of training datasets, plays an important role in various deep learning tasks. It is especially
important in the 3D deep learning scenario, which is notoriously data hungry. Simple data aug-
mentation schemes like random rotation, translation, jittering, scaling, and cropping are commonly
used in point cloud deep learning methods. Such simple techniques can usually achieve much more
performance gain compared with complex network architecture designs. Recently, several attempts
have been made on designing new 3D data augmentation schemes and studying 3D data augmen-
tation techniques in systematic ways. PointAugment (Li et al. (2020)) proposes a learnable point
cloud augmentation module to make the augmented data distribution better fit with the classifier,
and the augmentation module is trained in an adversarial way. PointMixup (Chen et al. (2020))
extends Mixup (Zhang et al. (2017)) scheme from 2D image to 3D point cloud, it augments the data
by interpolating between data samples. PointCutMix (Zhang et al. (2021)) further extend Mixup
strategy and perform mixup on part level. In our work, we propose a novel Mixup strategy for refer-
ring self-supervised learning on 3D point cloud. Unlike most existing works, which mainly use data
augmentation to improve the robustness and generalization of the network, we in addition use such
schemes to align the 3D referring models to the corresponding objects in the real scanned scenes.

Memory Networks The Prototype-based Memory network has been applied to various problems.
NTM (Graves et al. (2014)) introduces an attention-based memory module to improve the general-
ization ability of the network. Gong et al. (Gong et al. (2019)) adopt a memory augmented network
to detect the anomaly. Prototypical Network (Snell et al. (2017)) utilize category-specific memo-
ries for few-shot classification. Liu et al. (Liu et al. (2019)) and He et al. (He et al. (2020)) solve
the long-tail issue with the prototypes. In this paper, we adopt the learnable prototypes for domain
alignment via mapping feature to closure and compact feature space.

3 REFERRING SELF-SUPERVISED LEARNING

Problem Definition Given a set of 3D referring models with labels {(Mi, Gi), i = 1, 2, 3, ..., N}
and a bunch of unlabeled 3D scene scans {Sj , j = 1, 2, 3, ...,M}, our goal is to distinguish the
identical semantic objects on a scan. We formulate it as the referring self-supervised learning and
instantiate it as a point-wise classification problem, i.e, producing the possibility of each point that
belongs to specific classes. If directly training the referring models for point-wise classification and

3



Under review as a conference paper at ICLR 2022

Physical 

Alignment

…

CAD Models with labels

…

…

…

…

Unlabeled Scene Scans

…

Mixed Point Cloud

…

Model Point features

Point-wise

Feature

Extraction

Prototypes

Contrastive

Learning

Convex-hull 

Regularization

… … … … … … … … … …
𝑥𝑡
𝑖 ො𝑥𝑡

𝑖

𝑎𝑡,𝑘
𝑖

𝑝𝑘

Prototypes

Class-specific anchors

Model Point features

Projected Model features

Matrix multiplication

𝜃(. )

𝜑(. )

Figure 1: The framework of our method. Firstly, the referring models are aligned to the objects
in a real scene scan via physical data alignment, including random rotation, scaling, cropping, and
mixing up with the scene. Secondly, we extract the point-wise feature from the mixed point cloud
and map the point features into a convex hull space surrounded by a group of learned prototypes. In
the end, the aligned point features are clustering with the class-specific anchors in metric space.

then inferring on an unseen scan, the performance is unacceptable (Table 1) because there are huge
gaps in the point feature between the 3D referring models and the identical semantic objects in an
unseen scene scan.

Approach Overview As illustrated in Figure 1, our method handles the domain gaps from two
aspects. Firstly, we physically align the referring models close to the objects in a real scene scan
using data processing techniques. Secondly, a convex-hull regularized feature alignment is proposed,
in which we map the point features into a unified convex hull space surrounded by a group of learned
prototypes. In the end, we perform contrastive learning on the mapping features. In what follows,
we will present these components in detail.

3.1 PHYSICAL DATA ALIGNMENT

Physical-level alignment is an intuitive and straightforward option to make the alignment easier. A
series of data processing approaches are introduced to cope with the referring models to align them
to the objects in a real scene scan, including 1) Point sampling from the computer-aided design
(CAD) models, 2) scaling, rotation, cropping, and 3) mix up with the scene.

Point Sampling CAD models are presented in Mesh format that consists of the vertexes and faces.
To unify the data format, we transfer the model mesh to a uniform point cloud by Poisson Disk
Sampling (Yuksel (2015)), and ensure the density closer to the scene scan.

Scaling, Rotation and Cropping We scale the size of the referring models to match the object in
a real scene scan for consistent local feature extraction. Besides, random rotation transformation is
also applied to capture the visual diversity of an object. Finally, considering that the object in a scene
scan is always partial observed, a random cropping strategy is designed to simulate this scenario.
Specifically, we first randomly sample 2∼5 points from the model as anchor points and then cluster
all points based on their Euclidean distance to the anchor points. When training the model, one of a
cluster will be randomly filtered.

Mix Up with Scene Scan Unlike the referring model, the point feature of the target object in a
real scene scan is always affected by the surrounding object. Therefore, we take some unlabeled
scans to mix up with the referring models to alleviate the adverse effect. Specifically, we randomly
place the referring models into the scene floor, with or without filtering the compacted scan points.
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3.2 CONVEX-HULL REGULARIZED FEATURE ALIGNMENT

Since the network is only trained on the referring models, the feature space is typically out-of-the-
distribution to the object in a scene scan, leading to low inferring accuracy on an unseen scene.
Inspired by the convex hull theory, we propose a novel module to project the point features into
a convex hull space via the learnable prototypes. In the following, we revisit the convex hull and
describe how prototypes are used for feature projection.

Revisiting Convex Hull Theory Convex hull is a fundamental concept in computational geome-
try. It is defined as the set of all convex combinations of points, where the convex combination is a
linear combination where all coefficients are non-negative and sum to 1. By definition, if a point is
presented as a convex combination of the points, it must remain in the convex hull. In this way, the
distributions from two different domains can be constrained and easier for alignment. Therefore, we
aim to project all features into a convex hull to ease the alignment difficulty.

Formulation We set a group of learnable prototypes {pk}Kk=1 with pk ∈ RD and K > D, where
K denotes the number of prototypes, and D is the dimension of a prototype. Note that prototypes
are directly learned from the referring models and updated according to the task objective function.
Given the point features {xit}Tt=1 with xit ∈ RD extracted by the encoder E from the i-th referring
model with T points. The corresponding mapping feature {x̂it}Tt=1 is obtained by the following
function.

x̂it =

K∑
k=1

ait,k ∗ pk,
K∑

k=1

ait,k = 1, (1)

where the function ait,k serves as the coefficient to the corresponding prototype, defined as follows.

ait,k = exp(λ ∗ d(θ(xit), ϕ(pk)))/Γ,Γ =

K∑
k=1

exp(λ ∗ d(θ(xit), ϕ(pk))), (2)

where d(·) measures the similarity between the point feature and the k-th prototype. We utilize dot
product operation in this work. θ(·) and ϕ(·) denote the key and the query function (Vaswani et al.
(2017)), respectively. λ is the inversed temperature term (Chorowski et al. (2015)).

Essentially, The feature embedding x̂t is a convex combination of the prototypes, and the coefficient
ait,k > 0. Therefore, x̂t is mapped into a convex W ⊂ RD, where W is a closure and compact
metric space that surrounded by the learned prototypes.

In the inferring phase, the point feature x ∈ RD from an unseen scan first accesses the most relevant
prototypes to obtain the coefficients. Then, it is transferred to a mapping feature x̂ ∈W which is the
convex combination of the prototypes. In this way, the feature space of the referring models and the
objects in an unseen scene are projected to the unified subspace W, leading to the network a better
generalization ability.

3.3 CONTRASTIVE LEARNING ON METRIC SPACE

As all point features are projected to the subspace W, we cluster these points to ensure they are
inner-class compact and inter-class distinguishable. We set the class-specific anchors {hc}Cc=1 with
hc ∈ RD to indicate the clustering centers in metric space, which include C − 1 foreground classes
and one background class. Given the point features {x̂it}

N,T
i=1,t=1 from N referring models{Mi}Ni=1,

we pull in whose points to the corresponding anchor while pushing away from the rest of anchors
according to their semantic labels {Gi}Ni=1. Therefore. The points are compact inner class and
distinguishable inter classes in the metric space W. For simplicity, we adopt Cross-Entropy loss in
this paper. Therefore, the objective function L is as follows.

L = −
N∑
i=1

T∑
t=1

d(x̂it, hGi
) +

N∑
i=1

T∑
t=1

log(

C∑
c=1

exp(d(x̂it, hc))). (3)
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When inferring an unseen scene scan Sj with the point features {x̂jt}Ti=1, the possibility distribution
of the t-th point that belongs to each class is determined by the similarities between the point feature
x̂jt and the class-specific anchors {hc}Cc=1.

lct = exp(d(x̂jt , hc))/γ, γ =

C∑
c=1

exp(d(x̂jt , hc)), (4)

where lct is the possibility that the t-th point belongs to the c-th class, γ is a normalization term.

4 EXPERIMENTS

4.1 DATASET

We conduct the experiments on ModelNet and ScanNet, where ModelNet provide the synthetic
model for referring, and the scene scans in ScanNet are for evaluation.

ModelNet ModelNet40 (Wu et al. (2015)) is a comprehensive clean collection of 3D CAD models
for objects, composed of 9843 training models and 2468 testing models in 40 classes. We transfer
the model mesh to 8196 uniform points by Poisson disk sampling (Yuksel (2015)). There are 11
identical classes to the ScanNet dataset, including the chair, table, desk, bed, bookshelf, sofa, sink,
bathtub, toilet, door, and curtain. We take the 9843 models as the referring models in RSL.

ScanNet ScanNetV2 contains 1603 scans, where 1201 scans for training, 312 scans for validation
and 100 scans for testing. The 100 testing scans are used for the benchmark, and their labels are
unaccessible. We take the 1201 scans to mix up with the referring models for training, and the rest
of the 312 scans are used to evaluate the performance.

Table 1: Evaluation on the ScanNet. MinkUNnet is the baseline method. DA, Mix and FA donate
data alignment, point mixing up and feature alignment by the prototypes, respectively. GT indicates
training with ground truth.

Method AmAP chair bookshelf sofa table

MinkUNet 17.81 13.91 31.69 10.44 15.20
MinkUNet+DAnoCropping 21.28 18.42 39.68 14.41 12.60

MinkUNet+DA 22.91 16.24 41.92 20.32 13.18
MinkUNet+Mix 32.91 46.24 32.32 22.51 30.56

MinkUNet+DA+MixnoNega 41.01 54.71 32.71 47.55 25.10
MinkUNet+DA+MixnegaSc 29.65 31.34 32.60 26.74 27.93
MinkUNet+DA+MixnegaMo 23.14 16.73 43.73 16.38 15.74

MinkUNet+DA+Mix 49.45 66.63 49.54 45.14 36.48
MinkUNet+DA+Mix+FAK48 51.19 58.78 55.79 49.32 40.90
MinkUNet+DA+Mix+FAK128 54.82 68.54 50.13 52.41 48.20
MinkUNet+DA+Mix+FAK192 51.22 65.47 41.82 51.76 45.82
MinkUNet+DA+Mix+FAT1 55.32 64.27 51.59 58.28 47.15
MinkUNet+DA+Mix+FAT8 53.85 64.49 53.24 55.33 42.33
MinkUNet+DA+Mix+FAcos 53.10 60.41 47.34 62.40 42.24

MinkUNet+GT 81.55 91.03 75.55 85.05 74.56
MinkUNet+DA+Mix+FAK128+GT 83.02 92.20 78.89 87.67 73.32

4.2 EVALUATION METRIC

The goal is to detect the objects (point clouds) that belong to the same class with referring models.
Therefore, we calculate the class-specific point-wise possibility on the scan and adopt the mean
Average Precision (mAP) to measure the performance for each class. AmAP is the average mAP of
all classes.

6



Under review as a conference paper at ICLR 2022

Table 2: The performance when fine-tuning on the labelled data. We omit the % to show the per-
formance. † means that the network is pre-trained on the referring models by our method. @x%
indicates x% of labelled data are used for fine-tuning. The number in () donates the improved accu-
racy compared with purely supervised training.

Method mIoU chair bookshelf sofa table others

MinkUNet@5% 50.24 77.9 65.7 57.4 57.7 44.6
MinkUNet†@5% 56.12(5.88) 86.1(8.2) 71.0(5.3) 79.3(21.9) 64.3(6.6) 48.1(3.5)
MinkUNet@10% 54.86 82.7 66.5 75.1 60.9 50.7
MinkUNet†@10% 59.03(4.17) 86.5(3.8) 72.8(6.3) 79.8(4.7) 66.3(5.4) 54.7(4)
MinkUNet@50% 59.76 86.0 66.5 75.1 66.2 56.3
MinkUNet†@50% 62.00(2.24) 87.3(1.3) 68.9(2.4) 76.7(1.6) 69.1(2.9) 58.6(2.3)
MinkUNet@100% 63.05 89.2 73.8 80.0 69.4 59.2
MinkUNet†@100% 64.93(1.88) 91.1(1.9) 75.3(1.5) 81.5(1.5) 71.7(1.7) 61.1(1.9)

4.3 IMPLEMENTATION DETAILS

We adopt MinkowskiNet14 (Choy et al. (2019)) as the backbone to extract the point-wise feature.
Thus, the feature dimension D set to be is 96. The key θ(·) and the query ϕ(·) function are linear
transformation and output 16-dimensional vectors. The voxel size of all experiments is set to be
5 cm for efficient training. Our method is built on the Pytorch platform, optimized by Adam with
the default configuration. The batch size for the ScanNet and ModelNet are 4 and 20, respectively,
indicating that one scan is mixed up with five referring models. Since there is no colour in the
referring models, we set the feature in the Scannet dataset to be a fixed tensor (1), identical to that
in the ModelNet. Training 200 epochs cost 20 hours on a GTX 2080 TI GPU. During training, we
randomly rotate the models and scans along the z-axis, randomly scales the model and scan with
scaling factor 0.9-1.1, and randomly displace the model’s location within the scan. If the model’s
points overlap with the scan’s points, we randomly filter the overlapped points or maintain them.
We take the chair, bookshelf, sofa and table as foreground classes to evaluate the performance and
utilize the remaining classes as background for contrastive learning.

4.4 RESULTS AND DISCUSSION

In this section, we report the performance by only training the referring models and the performance
improvements by fine-tuning the network on the labelled data. Besides, we discuss the potential
directions for future works.

Baseline To build the baseline method (MinkUNet in Table 1) for comparison, we first manually
align the referring models to the same scale with the objects in the scene, then extract the point
feature for individual models and classify the points based on the model tags. During the inferring
phase, we directly apply the trained network on the scan for point-wise classification. We treat class
separately and use the mAP as the evaluation metric.

Self-supervised Learning with Referring Models The training process of our full method
(MinkUNet+DA+Mix+FA) is shown in Figure 1. By contrastive learning the referring models
without any annotated scene scans, our method achieves 55.32% AmAP to identify four types of
objects on the ScanNet validation dataset, including the chair, bookshelf, sofa and table. Com-
pared with the baseline method, the improvements for the individual class are 51%, 20%, 48% and
32%, respectively. We also show the upper bound performance by training on the annotated scans
(MinkUNet+GT), which is 81.55% AmAP, indicating that there is still much room for improvement.
When training on both referring models and ground truth (MinkUNet+DA+Mix+FAK128+GT), the
performance is higher than that only training on ground truth. The qualitative evaluation is shown
in Figure 2, indicating the network is well adaptive to the scenes, even only training on the referring
models. More cases could be found in supplementary materials.

Fine-tuning with Labeled Scans Our method is beneficial for the downstream task. As shown in
table 2, we first pre-train the network by the referring models and then fine-tune the network with
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Figure 2: Visualization of inferring on an unseen scene by our method. We show the pairs of ground
truth (left) and the inferring results (right). From top to bottom are chair, bookshelf, sofa and table,
respectively.

different proportions of labelled scans for scene segmentation, where @5% indicates 5% of labels
are used for fine-tuning and † means that the network is pre-trained with the referring models. We
adopt mIoU as the evaluation metric. As shown in Table 2, compared and purely supervised coun-
terparts (MinkUNet@5%, MinkUNet@10%, MinkUNet@50%, MinkUNet@100%), the significant
improvement could be observed when the network is first pre-trained on the referring models. It is
because that the network learns meaningful features from the referring models. Another reason is
that the referring models alleviate the long-tail distribution issue. For example, refer to the sofa from
the settings MinkUNet@5% and MinkUNet†@5%, the IoU is improved by 21.9%.

Discussions In the current implementation of the Referring Self-supervised Learning, only syn-
thetic 3D models are used for training networks. Since 3D models only provide 3D geometry infor-
mation, other modalities of data may provide supplementary information for more accurate percep-
tion in the real world, such as the colour information by images and semantic information by word
embedding. We left it in future work.

4.5 ABLATION STUDY

We conduct experiments on ScanNet to verify the effectiveness of different components in our
method, including data alignment (DA), point mixing up (Mix), and feature alignment by the proto-
types (FA). In the following, we present the configuration details and give more insights into what
factors affect the performance.

Effect of Data Alignment MinkUNet+DA indicates that DA is applied on the baseline, including
random scaling, rotation, and cropping. These operations aim to cover the diversities of the objects in
a real scan. DAnoCropping is the data alignments without random cropping. As shown in Table 1, the
performance greatly improved with the use of DA (MinkUNet (17.81 AmAP) VS MinkUNet+DA
(22.91 AmAP) and MinkUNet+Mix(32.91 AmAP) VS MinkUNet+DA+Mix (49.45 AmAP)). Be-
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sides, we find the random cropping is beneficial for performance improvement because the objects
in the real scan are often partially observed. To summary, suitable data alignment that makes syn-
thetic models more realistic is critical for the network to learn valid features that can be adaptive to
the real scenes.

Effect of Mixing Up MinkUNet+Mix donates the point mix up is used in the baseline. Observing
from (MinkUNet, MinkUNet+Mix) and (MinkUNet+DA, MinkUNet+DA+Mix), the AmAP im-
proved by 15% and 27%, respectively. By mixing up the models and the scene scans, the model
feature is augmented by the surrounding objects, closer to the real objects in an unseen scene. Thus,
the performance is improved accordingly.

We dig into the details of the mixing up by exploring the following configurations. Firstly,
we take out the negative samples in the mixup operation MixnoNega, so the network is only
trained on foreground classes of referring models. By comparing MinkUNet+DA+Mix and
MinkUNet+DA+MixnoNega, the performance is decreased by 8%, indicating that contrasting nega-
tive samples is also critical to distinguish the foreground classes. It is because that there are similar
characters that exist in different classes of models, for example, the right angle in bed and sofa,
which fuse the network. Therefore, contrastive learning negative samples force the point feature to
encode the contextual semantic feature, reducing the false positive rate.

Secondly, to explore how to conduct negative samples, we try to take the points from the scene
as the negative samples for contrastive learning (MinkUNet+DA+MixnegaSc). We find that the
performance (29.65 AmAP) is significantly worse than MinkUNet+DA+Mix (49.45 AmAP), which
uses the referring models as negative samples. It is probably that the network learns the artefacts to
distinguish the referring models from the scene. The artefacts are caused by the mixing up operation,
such as the overlapped/disjointed point cloud. As a result, the network could not generalize the
knowledge to a clear scene without such artefacts. Therefore, by contrastive learning on the positive
and negative referring models that both with artefacts, the network learns geometric features for
classification.

Lastly, to understanding the role of mixing scene, we only mix up the referring models together
and excludes the scan points in the configuration of MinkUNet+DA+MixnegaMo. The performance
is significantly lower than MinkUNet+DA+Mix (23.14 AmAP VS 49.45 AmAP). It shows that the
realistic background is critical for the network to infer an unseen scene.

Effect of Feature Alignment Since feature domain gaps exist between the referring models and
the objects in a scan, we use the prototypes to align their features into unified feature space in the
configuration MinkUNet+DA+Mix+FA. The experiment shows that the improvement is about 6%
for AmAP (MinkUNet+DA+Mix VS MinkUNet+DA+Mix+FAK128). The inversed temperature
λ is hyper-parameters for the feature mapping module, indicating the smoothness of the coeffi-
cients. We present the results when λ is 1, 4 and 8, respectively. (MinkUNet+DA+Mix+FAT1,
MinkUNet+DA+Mix+FAK128 and MinkUNet+DA+Mix+FAT8). Observing the experiments, we
find that a more smooth coefficient achieves a better AmAP.

The number of prototypes K is another hyper-parameter. We respectively evaluate
them with the configurations MinkUNet+DA+Mix+FAK48, MinkUNet+DA+Mix+FAK128, and
MinkUNet+DA+Mix+FAK192. The network achieves the best performance when K is set to be
128. Besides, we show the result when the key θ(·) and the query function ϕ(·) are identity map-
ping function in the setting MinkUNet+DA+Mix+FAcos.

5 CONCLUSION

We study a new problem named Referring Self-supervised Learning (RSL) to explore the neural
network’s cross-scene and cross-domain generalization ability. To solve the issues raised by this
problem, we propose a simple yet efficient framework that consists of physical data alignment and
convex-hull regularized feature alignment. Like a human behaved in the real world, the neural net-
work recognizes specific objects in a real unseen scene by only learning from the synthetic referring
models. Besides, Considering RSL as a pretext of representation learning, the performance is sig-
nificantly improved in the downstream task.
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