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ABSTRACT

In the transductive learning setting, we are provided with a labeled training set
and an unlabeled test set, with the objective of predicting the labels of the test
points. This framework differs from the standard problem of fitting an unknown
distribution with a training set drawn independently from this distribution. In this
paper, we primarily improve the generalization bounds in transductive learning.
Specifically, we develop two novel concentration inequalities for the suprema of
empirical processes sampled without replacement for unbounded functions, mark-
ing the first discussion of the generalization performance of unbounded functions
in the context of sampling without replacement. We further provide two valuable
applications of our new inequalities: on one hand, we firstly derive fast excess risk
bounds for empirical risk minimization in transductive learning under unbounded
losses. On the other hand, we establish high-probability bounds on the generaliza-
tion error for graph neural networks when using stochastic gradient descent which
improve the current state-of-the-art results.

1 INTRODUCTION

In the field of machine learning research, the analysis of stochastic behavior based on empirical
processes is an essential component of learning theory, particularly in understanding and enhanc-
ing algorithm performance. The supremum of empirical processes plays a crucial role in vari-
ous application scenarios, such as empirical process theory, Rademacher complexity theory, Vap-
nik—Chervonenkis theory, etc. In recent years, concentration inequalities for traditional suprema
of empirical processes are fully established fields and have been well studied in the literature such
as [361 4, 15 111 241 |39, [12} 29]. All these inequalities based on the assumption of independent and
identically distributed random variables. However, in many practical contexts, the i.i.d. assumption
does not hold, such as when training and testing data are drawn from different distributions or when
there is temporal dependence among data points. Such scenarios are prevalent in fields like visual
recognition and computational biology, necessitating alternatives to Talagrand’s inequality.

Another significant context in learning theory is transductive learning which was firstly introduced
by [40]. In transductive learning, the training samples are independently and without replacement
drawn from a finite population, as opposed to the classic model of independent and with replacement
sampling. In this setting, the learning algorithm not only acquires a labeled training set but also
receives a set of unlabeled testing instances, with the goal of accurately predicting the labels of
the test points. This configuration naturally arises in numerous applications such as text mining,
computational biology, recommendation systems, visual recognition, and malware detection. In
these cases, the number of unlabeled samples often far exceeds that of labeled samples, and the cost
of labeling the unlabeled samples is high. Consequently, the development of transductive algorithms
that leverage unlabeled data to enhance learning performance has increasingly attracted attention.

In theoretical analysis of transduction learning, we need to sample without replacement, which leads
to big challenge and has not been fully understood yet. [13] firstly extended the global Rademacher
complexities into transductive learning and established the inequalities without replacement. [38]
derived two concentration inequalities using Hoeffding’s reduction method and the entropy method.
Nevertheless, both [13]] and [38] considered only bounded function. In real scenarios, where the
maximum value of the function may be large and even unbounded, but the frequency of very large
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values tends to be small. To the best of our knowledge, the analysis in unbounded functions random
variables in transductive learning has not been studied yet.

In this paper, we focus on sampling without replacement with unbounded functions. We introduce
a novel concentration inequality for empirical process upper bounds under the scenario of sam-
pling without replacement, particularly for the case of unbounded functions. This represents the
first attempt to discuss generalization performance for unbounded functions under the condition of
sampling without replacement.

In Section [2] we provide the definition of the transductive learning set-up, including the basic no-
tations and the discussion of two related transductive learning settings introduced by [40]. We also
introduce the notations of the unbounded random variables used in the following sections.

Our new concentration inequalities for the case of unbounded functions are provided in Section [3]
which are, to the best of our knowledge, the first concentration inequalities for sampling without re-
placement for classes of unbounded functions. Furthermore, we discuss two significant applications
of the new inequalities: firstly, we derive high-probability fast excess risk bounds for unbounded
loss in transductive learning based on local uniform convergence in Subsection {1} secondly, in
Subsection we provide generalization error bounds for Graph Neural Networks (GNNs) with
unbounded loss when utilizing Stochastic Gradient Descent (SGD) which is better than the state-of-
the-art work [37] when m = o(N 2/ 5). All the proofs in this paper are given in Appendix.

Our contributions are summarized as follows:

* We derive two novel concentration inequalities for suprema of empirical processes when
sampling without replacement for classes of sub-Gaussian and sub-exponential functions,
which is the first in transductive learning.

* We provide fast excess risk bounds for transductive learning considering Bernstein condi-
tion with unbounded losses. To the best of our knowledge, existing results do not provide
fast rates in GNNs.

* Applying our inequalities, we obtain the generalization gap of GNNs for node classifica-
tion task for stochastic optimization algorithm. In more detail, we establish high probabil-
ity bounds of generalization error and test error under sub-Gaussian and sub-exponential
losses. Thanks for considering the variance information, our results are better than [37] in
some scenarios.

2 PRELIMINARIES FOR TRANSDUCTIVE LEARNING

In transductive learning, the learner is provided with m labeled training points and « unlabeled test
points. The objective of the learner is to obtain accurate predictions for the test points. Two different
settings of transductive learning were given by [41]]. One assumes that both the training and test sets
are sampled i.i.d. from a same unknown distribution and the learner is provided with the labeled
training and unlabeled test sets. Another assumes that the set X 5 consisting of N arbitrary input
points without any other assumptions regrading its underlying source is given. Then we sample
m < N objects X,;,, € Xy uniformly without replacement from X ; which makes the inputs in
X, dependent. Finally, for each input x € X,,, the corresponding output Y from some unknown
distribution P(Y|X). Thus we obtain all the labels for the set X,,,, we denote the training set as
Sm = (Xm, Ym)- The remaining unlabeled set X,, = X n\X,,, u = N — m is the test set.

In this paper we study the second setting, as pointed out by [41], any upper generalization bound in
the second setting can easily yield a bound for the first setting by just taking expectation. Note that
related work [10} 14} 38]] considers a special case where the labels are obtained from some unknown
but deterministic function ¢ : X — ) so that P(¢(x)|x) = 1. We follow their assumption in
this paper. Then the learner is a function model f(w) w.r.t. the parameters w from some fixed
hypothesis parameter space YV which may not necessarily containing ¢. The choice of the learner
based on both the labeled training set S, and the unlabeled test set X,,. For brevity, we denote
{(w;x) = c(f(w,x), $(x)) w.r.t. the parameters w and the random variable x, where ¢ : ? — R
is the cost function to measure the error of predicted label and real label on a point X. Then we

can define the training error and test error of the learner as follows: R,, (W) = LY ex,, Lw;x),
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Ry(w)=1% x, L(w;x), where hat emphasizes the fact that the training (empirical) error can
be computed from the data.

For technical reasons that will become clear later, we define the overall error to the union of the
training and test sets as Ry (W) = % ¢ x,, £(w; X). The main goal of the learner in transductive
setting is to select a proper parameters to minimizing the test error R, (w), which we will denote
by w;. Since the labels of the test set examples are unknown, we can’t compute R, (w) and need
to estimate it based on the training sample X, (and potentially using information from the features
X). A common choice is to replace the test error minimization by empirical risk minimization
Wy, = argming .y ]%m(w) and to use it as an approximation of w;;. For w € WV we define the
excess risk:

eu(W) = Ry(w) — inf R,(W')=R,(W)— Ry,(w}).

u

w’'eW
In the following sections, we establish some fundamental notations. We use || - ||, to represent the
Euclidean norm of a vector and || - || to denote the spectral norm of a matrix. Throughout this study,

we let B(w';r) £ {w: ||w — w’||, < r}, representing a ball with center vector w’ and radius 7.
The gradient of the function ¢ with respect to its first argument is denoted as V/. Next, we define
the Orlicz norm to describe unbounded random variables.

Definition 1 ([43]]). For o > 0, define the function v, : Ry — Ry with the formula 1), (x) =
exp(z®) — 1. For a random variable X, define the Orlicz norm

1 X ||, = inf{A > 0:E¢o (| X]|/N) <1}

Furthermore, a random variable X € R is sub-Gaussian if there exists K > 0, such that || X ||, <
K. A random variable X € R is sub-exponential if there exists K > 0, such that | X |y, < K. A
random variable X € R is sub-Weibull if for VA > 0, there exists K > 0, such that || X ||, < K.

Remark 1. Orlicz norm is a classical norm. By choosing an appropriate «, we can define the
tail distribution of random variables to different degrees using the Orlicz norm. This paper mainly
discusses sub-Gaussian and sub-exponential distributions for loss functions. We use concentration
inequality of the sum for sub-Weibull distribution during some proofs in applications, therefore, we
provide this unified definition of unbounded random variables based on the Orlicz norm here.

3 CONCENTRATION INEQUALITIES WITH UNBOUNDED LOSSES

To gain the generalization error bounds for transductive learning with unbounded losses, we develop
the novel concentration inequalities for suprema of empirical processes when sampling without
replacement for unbounded functions.

We firstly introduce some necessary notations and settings. Let C = {¢1,...,cn} be some fi-
nite set. For m < N, let {Xy,...,X,,} and {X7,..., X/} be sequence of random variables
sampled uniformly with and without replacement from C. Let F be a (countable[ﬂ class of func-
tions f : C — R, such that E[f(X;)] = O for all f € F. It follows that E[f(X7)] = O since
X, and X7 are identically distributed. Define the variance 0 = sup;. > V[f(X;)]. Note that
0% = sup;c r E[f(X1)?] = supser V[f(X])]. Finally define that the supremum of the empirical
process for sampling with and without replacement

m

Qm = sup Zf(Xz)a le = sup Zf(X;)

feF i3 JeF 4

Concentration inequalities for sampling with replacement (,,, have undergone extensive investiga-
tion, including the exploration of Talagrand-type inequality [36] and its variations as presented by
[5. 4]. In the case of unbounded functions, certain studies, such as [1, [12] have established tail
bounds through truncation methods and Talagrand-type inequalities for suprema of bounded empiri-
cal processes. Nevertheless, as of the current date, no bounds for the suprema of empirical processes

"Note that all results can be translated to the uncountable classes, for instance, if the empirical process is
separable, meaning that F contains a dense countable subset. Details can be referred in page 314 of [3] or page
72 of 3]
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involving unbounded functions for sampling without replacement @', have been established in the
literature.

Next, we will introduce the innovative concentration inequalities for the suprema of empirical pro-
cesses under the condition of sampling without replacement. These new results will be established
separately for sub-Gaussian and sub-exponential functions.

Theorem 1. (Concentration inequality when sampling without replacement for classes of sub-
Gaussian functions) Assume that for all ¢ € C, |[sup ¢ £ | f(¢)]|ly, < oo, for any € > 0, we have
the following inequality that

2
P{Q., — (1 +nE[Qmn] > €} <6 - < ,
{Qm — L+ )E[Qm] > €} exp( 16(1 + B)mo? + 8C2 HmaxlgigmSupfe]:f(Xi)HiZ)

We also have that for any § € (0, 1), with probability at least 1 — 4,

Q.. < (1+nE[Qn] + 16(1 + B)mo? + 8C? || max sup f(X;)

log 2
1§1§m,f6]: 8 57

2

where 7, § are some positive constants and C' is a positive constants depending on 7, 5.

Theorem 2. (Concentration inequality when sampling without replacement for classes of sub-
exponential functions) Assume for all ¢ € C, || sup ;x| f(c)|l[y, < 00, for any € > 0, we have the

following inequality that

PLQ., — (1 4+ nE[Qm] > €} < 2exp | — ¢ .
{Qn — L+ NE[Qm] > €} < 2e p( 16(1 + B)mo? + 430> HmaxléiémSqueff(Xv:)Hil)

We also have that for any § € (0, 1), with probability at least 1 — 9,

2
log —,

Qry < (L+NE[Qm] + | [ 16(1 + B)mo? + 48C2 -

X,
lrgr%n;telgf( i)

Y1

where 7, § are some positive constants and C' is a positive constants depending on 7, 5.

Remark 2. Although the appearance of E[@),,] may seem to be unexpected at first glance, it is usu-
ally desirable to control the concentration of a random variable around its expectation. Fortunately,
it has been demonstrated in [38] that for m = o(N?/%), the difference E[Q,,] — E[Q’,] is bounded
by y/m. Consequently, our theorems can be employed to effectively manage the deviations of Q7
from its expectation E[Q/,,] at a fast rate.

In fact, we draw inspiration from the proof presented in [38] and use Hoeffding’s reduction method to
build the connection between the sequences of random variables sampling with and without replace-
ment. However, extending the results to the classes of sub-Gaussian and sub-exponential functions
presents challenges. On one hand, the classical truncation technique yields tail bounds, nonethe-
less we need to combine the sequences of random variables sampling with and without replacement
using moment generating functions while ensuring their convexity. This is crucial as Hoeffding’s
reduction method requires convexity. On the other hand, the introduction of the unbounded assump-
tion introduces an additional term, which complicates the construction of convex moment generating
functions (MGF) and the application of cheronff’s method.

4 GENERALIZATION BOUNDS FOR TRANSDUCTIVE LEARNING

Our concentration inequalities have broad applications and can serve as an important tool in learning
theory when considering sampling without replacement for classes of sub-exponential functions. In
this section, we will provide two examples to illustrate the risk bounds in transductive learning.
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4.1 FAST EXCESS RISK BOUNDS FOR TRANSDUCTIVE LEARNING WITH UNBOUNDED
LOSSES

We apply our newly concentration inequalities to give fast excess risk bounds for transductive learn-
ing on ERM with unbounded losses, which is, to the best of our knowledge, the first results. We
mainly follows the traditional technique called “local Rademacher complexity” developed by [2].
We introduced the definition of Rademacher complexity for completeness.

Definition 2 (Rademacher complexity [44]). For a function class F that consists of mappings from
Z to R, define

1 n
RF :=Ex, sup — E v f(x;) and R,F :=E, sup — E v f (X)),
feF (xs) ferm

as the Rademacher complexity and the empirical Rademacher complexity of F, respecttvely, where
{v;}_, are i.i.d. Rademacher variables for which P(v; = 1) = P(v; = —1) =

Since Rademacher complexity could be bounded by a computable covering number of F via Dud-
ley’s integral bound [35]], we give the definition of covering number for completeness as well.
Definition 3 (Covering number [44]). Assume (M, metr(-,-)) is a metric space, and F C M. The
e-convering number of the set F with respect to a metric metr(-,-) is the size of its smallest e-net
cover:

N(e, F,metr) = min{m : 3f1,..., fn € F such that F C UL, B(f;,€)},
where B(f,¢) := {f : metr(f, f) < e}.

To calculate the covering number, we also need the following assumption.

Assumption 1 (Entropy bounds). The parameter class VV is separable and there existC > 1, K > 1
such that Ye € (0, K], the Lo(IP)-covering numbers and the universal metric entropies of G are
bounded as log N (e,G, L2 (P)) < Clog (K /¢).

Remark 3. Assumption[I]was widely adopted in fast learning rates in statistic learning [311 30, [11].
In fact, if YV has finite VC-dimension, then Assumptionﬂ]is satisfied [3}16]. Some literature such as
[23]] assume that the envelope function is sub-exponential, which is a much stronger assumption.

It will be convenient to introduce the following operators, mapping functions f defined on Xy to
R:

N
1
= N E f(Xi),Xi e Xn.
=1

Assume that there is a function w}, € W satisfying Ry (w}) = infweyw Ry(w). Define the
excess loss class F* = {f : f(x) = l(w;x) — L(wi;x),w € W}.

Theorem 3. Assume that there is a constant B > 0 such that for every f € F* we have Ef? <
B - Ef. Suppose Assumptions |l| hold and the objective function ((-;-) is sub-Gaussian. For any
0 € (0,1), with probability 1 — 4,

N Nlogt Nlogi / 1
eu(vi/m):(9<(logm+1ogu+ 85 + 85 + logNlog)>.
mu m u )

Theorem 4. Assume that there is a constant B > 0 such that for every f € F* we have Ef? <
B - Ef. Suppose Assumptions|l| hold and the objective function {(-;-) is sub-exponential. For any
6 € (0,1), with probability 1 — ),

N Nlogt Nlogt / 1
eu(wm):O<(1ogm+logu+ %85 + %85 + logleog))
mu m U 0

Remark 4. By utilizing variance information and introducing the Bernstein condition, we present
the first results for fast learning rates under unbounded losses. Applying our concentration inequali-
ties under unbounded conditions to local Rademacher method is not a straightforward task. We need
to skillfully separate variance term and the Orlicz norm term through inequalities while constructing
a suitable partition. Similarly, when employing the localized approach, we need to create a slightly
modified version for partition E,,, f which is affected by the Hoeffding’s reduction method applied
during the proof of our concentration inequalities given in Section
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4.2 IMPROVED BOUNDS OF GNNSs WITH SGD

GNNs have achieved great success in practice, but research on the generalization performance of
GNNss for node classification remains limited. In the real world, training nodes are sampled without
replacement from the entire node set, and test nodes remain visible during training [13} 32]], which
perfectly fits the transductive learning setting.

The current state-of-the-art work on generalization error for graph node classification [37]] was based
on the concentration inequality for transductive learning provided by [13]]. In this subsection, we
aim to obtain a tighter generalization upper bound by applying our new concentration inequalities
introduced in this paper.

Let’s introduce some notations for GNNs firstly. Consider an undirected graph G = {V, £}, where
V represents a set of nodes and £ represents the edges between these nodes. The graph has a total of
n = |V| nodes. Each node corresponds to an instance denoted as z; = (x;, y;), comprising a feature
vector x; and a label y; from a space Z = X x ).

Let X denote the feature matrix, where the i-th row X, represents the feature x;. The adjacency
matrix is represented as A, and the diagonal degree matrix is denoted as D. Specifically, the diago-
nal entry D;; is computed as the sum of the weights of the edges connected to node :. We introduce
the normalized adjacency matrix A = (D+1,,)~2 (A+1L,)(D+1I,)" 2, where L, is the identity ma-
trix of size n X n, and \/m corresponds to the square root of the number of categories. This matrix
accounts for self-loops and captures the graph’s normalized connectivity structure, aiding in subse-
quent analyses. We limit the scope of the learner to a given GNN and let w be its learnable parame-
ters. Given the isomorphism between RP*? and RPY, our analysis in this work focuses on the more
concise vector space. To achieve this, we introduce a unified vector w = [vec [W1] ;... ;vec [W y]]
to represent the collection { W, }/__ |, where vec[-] denotes the vectorization operator that transforms
a given matrix into a vector. In other words, vec [W] = [W,q;...; W] for W € RP*9. In this
context, W, represents the i-th column of W.

In this section, we apply the concentration inequalities presented in this paper to derive improved
rates of the current optimal results [37]] for GNNs with SGD (Algorithm[I)). The initialization weight
of the model is denoted as w(!). We use bg to represent the supremum of the gradient when evaluated
at the initialized parameters, defined as b, = sup,. = HVé(W(l); z) ||2 The activation function is
represented by w(-).

We notice that since the full data Xy is given, then Ry(w) = + Zf\;l £(w;x;) is not a random
variable. Also, for any training sample X,,, the test error R, (w) can be expressed in terms of
Ry (w) and the training error R,,(w) as follows:

m-+u m
Ru(w) =~ 3 aw;xn—i(mﬂm By wxl>_m:“m< )= ™ R (w).
1=m+1 1=1

Thus, for any fixed w € W, the quantity R, (W) — R, (w) = & (Ry(w) — R, (w)), for any W,
we have

Ru() = Bo(W) < 51up (W) = Fon () = & sup Ri(w) — R (w).

wew U wew
Note that for any fixed w € W, Ex[Ry(w) — {(w;x)] = Ry(w) — Exl(w;x) = 0, thus, we can
use the transductive setting described in Section 3] Considering the function class Fy := {fw :

fw(x) = Ry(w) — ¢(w;x),w € W} associated with W. For fixed w, Ry (w) is not random, at
the same time, centering random variable does not change its variance, so we have

o3y = sup V[fu(x)] = sup V[E(wix)] = sup (}V ) <e<w;x>RN<w>>2>.

fwe]:w wew wew XEZN

Using Theorem [1|and [2] we can obtain the results that hold without any other assumptions, expect
for the classes of sub-Gaussian or sub-exponential functions on the learning problem

m m2 5’

sup (R (W) = Rin(w)) < (1+7)Em + 2$ (

wew

2
41+ By | 207 maxesuper, f <x>|w2> log &
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Algorithm 1 SGD for Transductive Learning

Input: Initial parameter w(), step sizes {n; }, training set {x;}""" U {y, }7,.
fort =1to T do
Randomly draw j; from the uniform distribution over the set {j : j € [m]}.

Update parameters by
witt) = w® —, ve(w®;x;,).
end for

and

X w 2
i (R () — Fon(o)) < (14 1B +4J <<1+ S, A rcr, (xml) 0§

wew m?2 5 ’
where let {£;,. .., &, } be random variables sampled with replacement from X » and denote
B —E | sp (Ry(w)— = twicy
m =E | sup [ Ry(w)— — w;&i) || -
wew m i—1

Next, we need to derive the upper bounds of 03, Ey, and || maxy sup ez, fw(x)[|7, ;o =1or2
in GNNs with SGD. We present the assumptions only used in this subsection.

Assumption 2. Assume that there exists a constant cx > 0 such that ||x||s < cx holds for all
X € X and there exists a constant cyy > 0 such that ||Wh|| < cw, h € [H] forw € W.

Remark 5. Assumption [2] necessitates boundness of input features as discussed by [42] and the
boundness of parameters during the training process, which is a common consideration in the gener-
alization analysis of Graph Neural Networks (GNNs) [16} 28,9, [15]]. This assumption play a crucial
role in the analysis of Lipschitz continuity and Holder smoothness of the objective with respect to
the parameters w.

Assumption 3. Assume that the activation function w(-) is &-Hoder smooth. To be specific, let
P> 0anda € (0,1), forallu,v € RY,

IVw(u) = Va(v)ll2 < Plu—v|3.

Remark 6. It can be established that Assumption[3|leads to the Lipschitz continuity of the activation
function when & = 0. Furthermore, & = 1 implies the smoothness of the activation function. As a
result, Assumption [3|stands as notably milder in comparison to the assumption found in prior works
[42} 9], which mandates the activation function’s smoothness. In order to facilitate analysis without
introducing a significant disparity between theory and practical application, we often use modified
ReLU function

0,2 <0,
LL)(Z') = xqao < IIS (6) ; )
1\ a1 1\ a1 1\ 71
o= (57T ()

This modified function, controlled by the hyperparameter ¢ € (1, 2], not only satisfies Assumption
but also maintains an acceptable approximation to the vanilla ReLLU function.

Lemma 1 (Proposition 4.1 in [37]). Suppose that Assumption[2landB|hold. Denote by F a specific
GNN, for any w,w’ € W and x € Xy, the objective {(w; X) satisfies

[0(wix) — £(w's%)] < Lrllw — W/l
and
IVl(w;x) = VI(W';x)|| < Prmax{||w — w'[[3, [w — w'[|2},

with constant L x and Pr.
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Remark 7. [37] demonstrates that several widely used structured networks in GNNs such as GCN
[20], GCNII [7], SGC [45]], APPNP [17] and GPR-GNN [8]] satisfy Lemma We leverage the
properties of these network structures in Lemma/I]to derive improved upper bounds using our con-
centration inequalities instead of [13]].

The following two assumptions are introduced to obtain the optimization error.
Assumption 4. Assume that there exist a constant G > 0 such that forall x € Z

Ve[ Ve(we )2 < G

holds for any t € N, where {n;}I_, is learning rates.
Assumption 5. Assume that there exists a constant og > 0 such that for ¥Vt € N, the following
inequality holds

Eji[|VE(w;x50)[%] < a5

Remark 8. Assumption [] [26] 27] requires a bound on the product of the gradient and the square
root of the step sizes. This condition is weaker than the commonly employed bounded gradient
assumption [[18| 21], as the learning rate naturally approaches zero throughout the iteration pro-
cess. Assumption [5|requires the boundness of variances of stochastic gradients, which is a standard
assumption in stochastic optimization studies [21} 26} 27].

Now, we can derive the risk bounds of GNNs with SGD.

Theorem S. Suppose Assumptions and E] hold, and assume the objective function {(-; ) be
sub-Gaussian. Suppose that the step sizes {n. } satisfies n, = ﬁ such that ty > max{(2P)"/ 1}.
Forany ¢ € (0,1), with probability 1 — 6,

(a). If a € (0, 3), we have

. 1-2a Nlog (4
Ru(ngﬂ)) _ Rm(W(T+1)) _ O<Lf\/uﬁlog;(T)T 2 log (1) n og (5)).

5 uy/m

(b). If a = % we have

A N 1\  Nlog(}
R, (wTH)) — R, (wlTHD)) = O(L;\uﬁ log(T') log <6) + uciiiné) )
(c). Ifa € (,1], we have
: N 1\ Nlog(3
Ru(W(T‘H)) _ Rm(W(T+1)) - O<Lf\/1:10g2(T) log (5) 4 ;5%5))

Remark 9. Similar result for sub-exponential loss functions is given in Appendix C. Generally,
comparing our bound with [37], their bound is of order O ((% + l) vm + u) after the L x but our

u

bounds are of order O ( v ”Zf“ ), at the same time, we have an extra term ;”j%, which is introduced
due to the variance information. Notice that it’s not as if they didn’t have the second term, because
their first term is larger than the second one and so the final magnitude doesn’t change. Our results

are better when m = o(IN?/%). We can take a more visual example to demonstrate the advantages of
our bounds. For m = ©(N'/%), our bound is of order © (\/%) but their bound is of order O (m?),
which fails to provide a reasonable generalization guarantee.

Similarly, we can also derive a upper bound of the test error under PL condition following proof
trajectory of [37].
Assumption 6 (PL-condition). Suppose that there exists a constant i such that for all w € W,

R (W) — Ron(W7) < invém(mnz,

holds for the given set X, from X .
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Corollary 1. Suppose Assumptions E] and |5| hold and assume the objective function £(-;-)

be sub-Gaussian. Suppose that the learning rate {n;} satisfies 7, = ——2— such that ty >

) p(t+to)
maux{%@P)E7 1}. Forany 6 € (0,1), with probability 1 — 4,

(a). If a € (0, %) we have

1
(Ti1)y A o VN 1 1a 1 Nlog () 1
R, (w ) — Ry (w™) O(L}-u logz(T)T 10g<6> —1—7“\/% + e )

(b). If a = %, we have

A VN 1 Nlog (1) 1
(T+1)y _ N VIV 1 5 A
R, (w ) — Ry (W) = O(L]: ” log(T') log <5> + wm + T‘”)'
(c). Ifa € (%7 1), we have
R N . Nlog (% 1
Ry (wTH) = Ry (w*) = O<Lf‘uﬁ log? (T log(1/6) + ligﬁ%) + Ta)
(d). If « =1, we have

Ru(w*) = R,(w") = o(m“f log (1) og(1/8) + 21 (5) | loa(T)log"(1/ 5>>.

uy/m T

Remark 10. For completeness, we present Corollary [I| for sub-Gaussian and Corollary [2] (See Ap-
pendix [C.2) for sub-exponential. There is nothing special about the proofs, which simply combine
Theorem 5|and Theorem|[T1|with existing optimization results. The results under the sub-exponential
distribution are provided in Appendix [#.2] It is worth point out that all the popular neural network
structures introduced in [37] can be applied to our results to obtain bounds that make sense.

Our work in this section differs significantly from that of [37]]. They used the concentration inequal-
ities based on [[13] to derive generalization bounds, while proving that certain modern neural net-
work structures satisfy Lipschitz continuity under their assumptions. In contrast, we employ newly
proposed concentration inequalities that relax the boundness condition and also consider variance
information which obtain improved rates under the same settings.

While previous papers have utilized technologies based on concentration inequalities proposed by
[13] and then bound the transductive Rademacher complexity, deriving the generalization error us-
ing our new inequality is not straightforward. We need to derive the upper bounds for ¢2,, E,,, and
| maxy sup s 7, fw (%) pr( , respectively. 02, needs to be bounded using concentration inequalities
for unbounded distributions. For the sub-exponential distribution, we even need to introduce the
concentration inequalities under the sub-Weibull distribution to address the issue. E,, is introduced
due to the Hoeffding’s reduction method and is distinct from the traditional gap between the pop-
ulation and the samples. This requires us to convert it into Rademacher complexity and then use
the covering number to obtain the upper bound. The term || maxy sup ;¢ 7, fw(x)[|7,  is introduced
due to the unbounded assumption. We utilize pisier’s inequality [34] to present the max operator
before the Orlicz norm.

5 CONCLUSION

In this paper, we focus on transductive learning settings. Firstly, we introduce two newly concentra-
tion inequalities for the suprema of empirical processes sampled without replacement for unbounded
functions. Using our inequalities, we derive the first fast risk bounds for ERM in transductive learn-
ing under bounded losses. On the other hand, we provide improved risk bounds for GNNs with
SGD, which is better than the state-of-the-art work [37] when m = o( N?/°).
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A ADDITIONAL DEFINITIONS AND LEMMATA

Theorem 6 ([19])). Let {U,...,Uy} and ng, .oy Win} be sampled uniformly from a finite set
of d-dimensional vectors {v1,...,vn} C R® with and without replacement, respectively. Then, for
any continuous and convex funcnon F :R% — R, the following holds:

(5] ==l ()

Lemma 2 ([38]). Let x = (a1, ... ,2q)T € RY. Then the following function is convex for all A > 0

i=1,...d

F(x) = exp ()\ sup wi> .

Theorem 7 (Theorem 4 via Pisier’s inequality [34]). For independent real random variables
Yi, ..., Yy, we have the following inequality that
1/« n

max Y;
i<n

< K, max ||Y;]
i<n

$o 108

where K., is a positive constant.

Definition 4 (Rademacher complexity [44]). For a function class F that consists of mappings from
Z to R, define

1 n
RF :=Exosup — > vif(x;) and Rn,F:=E,sup — > wvif(xi),
" feFm Z o) ferm Z

as the Rademacher complexity and the empirical Rademacher complexity of F, respectlvely, where
{vi}_, are i.i.d. Rademacher variables for which P(v; = 1) = P(v; = —1) =

Definition 5 (Covering number [44]). Assume (M, metr(-,-)) is a metric space, and F C M. The
e-convering number of the set F with respect to a metric metr(-,-) is the size of its smallest e-net
cover:

N(e, F,metr) = min{m : 3f1,..., fm € F such that F C U™, B(f;,€)},
where B(f,¢) := {f : metr(f, f) < e}.

Lemma 3 (Dudley’s integral bound [35]]). Givenr > 0 and class F that consists of functions defined

on Z,
VT
mn{fefpn[fQ] ST} S 1n>f0{450—|—12/ \/logN(€,f,L2(Pn))d€}

n

Definition 6 ([43]). A random variable X is sub-Weibull random variables with taill parameter 0
when for any x© > 0,

P(X > z) = exp(—bz'/?), for some b > 0,0 > 0.

Lemma 4. (Concentration of the sum for sub-Weibull distribution [43]) Let that X, ..., X, be
identically distributed sub-Weibull random variables with tail parameter 6. Then, for all z > nKj,

we have
N
P > < - =

for some constant Ky dependent on 6.

Theorem 8 ([1]]). Let X1,...,X,, be independent random variables with values in a measurable
space (S,B) and let F be a countable class of measurable functions f : S — [—a, a], such that for
all i, Ef(X;) = 0. Consider the random variable

Supi

feFr i Z

>

=1

13



Under review as a conference paper at ICLR 2025

and

o? = sup Ef(X;)%
fer

Then, for all0 < n <1, 8 > 0 there exists a constant C = C(n, 3), such that for all t > 0,
t2 t
P(Q—-(1 EQ>1t) < - -
(@ —(1+nEQ> )_eXp( 2(1+5)m02)+e><p< Ca),
and
Q- (1—-mEQ< 1) <exp -tV texp (-
g - =P 2(1 + B)ymo? P\7ca)

Theorem 9. (Tail inequality for suprema of empirical process corresponding to classes of sub-
Gaussian functions) Let X, ..., X,, be independent random variables with values in a measurable
space (S,B) and let F be a countable class of measurable functions f : S — R. Assume that for
every f € F and every i, Ef(X;) = 0 and || sup; | f(X;)||y, < oo. Let

Q ngelg ;:1 f(X5)
and

o? = sup Bf(X;)%
fer

Then, for all 0 < < 1 and § > 0, there exists a constant C' = C(n, 8), such that for all
epsilon > 0,

t? t 2
P(Q — (1+m)EQ > 1) < exp (2(1+/3>m02> Foew ( (CII max; SuP.feff(Xi>||w2> )

and

2 t 2
P(Q - (1—-nEQ < —t) < exp (—2(1 T 5)m02> + 3exp <— <C|| T f(XZ_)”%) )

Theorem 10. (Tail inequality for suprema of empirical process corresponding to classes of
sub-exponential functions) Let X, ..., X, be independent random variables with values in a
measurable space (S, B) and let F be a countable class of measurable functions f : S — R. Assume
that for every f € F and every i, Ef(X;) = 0 and || sup [ f(X:)[[[y, < oo. Let

Q= ;gg; f(Xi)

and

o? = sup Bf(X;)%
fer

Then, for all 0 < n < 1 and 8 > 0, there exists a constant C = C(n, 3), such that for all
epsilon > 0,
t2

t
P(Q — (14 n)EQ > t) < exp (—2(1+5)m02> +3exp <_C|| max; sup ¢ r f(XT:)||w1>7

and

2 t
P(Q — (1 —n)EQ < —t) < exp (_W> +3exp <_C|| max; sup e 7 f(Xi)|ly, )

The proofs of Theorem [9] and Theorem [I0] are similar with [1], which under the assumption that
the summands have finite ¢, Orlicz norm with o« € (0,1) and they analyze the random variable
Q = supscx 3212, f(Xi)|. However, in this paper, we consider Q = sup ;e > ;- f(X;). In
consequence we give the sub-gaussian and sub-exponential version (o = 1, 2) for the sake of com-
pleteness here.

14
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Proof of Theorem[9 and Theorem[I0] Without loss of generality, we assume that

t/|| max sup f(X;)|y, > K(o,n,8), (D
1<i<m feF

otherwise we can make the theorem trivial by choosing the constant C = C(«,n, 3) to be large
enough. The conditions on the constant K («, 7, ) will be imposed later in the following proof.

Let e = £(8) > 0 which will be determined later and for all f € F consider the truncated functions
fi(m) = f(2)1sup e |f(x)|<py (the truncation level p will be determined and fixed later). Define

the functions fa(z) = f(x) — f1(z) = f(2)Lisup,c, f(2)|>p}- Let Fi = {fi : f € F}. Then we
have

Q = sup Zf(Xi) < sup Z(fl(Xi) —Efi(X;)) + sup Z(fz@ﬁ:) -Ef(Xi), @

feF i=1 fLeF i=1 foEF2 i=1
and
> s X,L' —E Xz — S X’L —E Xz s 3
Q> f?lel% ZZ:;(fl( ) — Efi(X3)) leel% ZZ;(fz( ) — Ef2(X5)) (3)

where the above inequalities satisfy because of the fact that E f;(X;) + Efo(X;) = 0 forall f € F.

Similarly, by Jensen’s inequality, we have

E sup Z(f1(X¢)flEf1(Xi))f2]E sup Zfz(Xz')

f1e€F1 1 f2€F2 55
<EQ (C))]
< sup f1(X:) —Efi(X;)) +2E sup f2(X5).
ﬁeE;( 1(X5) 1(X5)) sz}‘z; 2(Xi)
Denoting
A=E sup Z(fl(Xi) —Efi1(X:))
fle]'—l i=1
and

B =E sup ng(Xl-).

f2€F2 4

Combining (2) and @), we get
P(Q— (1 +n)EQ = 1)

<P ( sup > (f1(X:) —Ef1(X3)) > (1+n)EQ + (1 — 5)t>

flej:l i=1

+P < sup Y (f2(Xi) — Efa(X4)) > st)

fe€F2 ;4

&)
<P ( sup (1) ~EACX)) > (1+m)A 4B + (1 - e>t>

fher ;35

+P <fsup > (fo(Xi) —Efa(Xi)) > €t> -

26725
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Similarly, combing (3) and (@), we have
P(Q—-(1-nEQ<-t)

<P ( sup > (f1(X) —Efi(X3)) < (1 —n)EQ — (1 — 5)t>

f1€]:1 i=1

+P < sup Y (f2(Xi) —Efa(Xi)) > €t>

fe€F2 ;4

(6)
<P (fsup i(fl(Xz) —Ef1(X;)>(1-nA+2B—(1- €)t>

161 =

+P < sup Y (f2(Xi) — Efa(X1)) > st> :

f2€]:2 i=1

Next, we need to choose proper truncation level p in a way, which would allow to bound the first
summands on the right-hand sides of (3 and (6) with Theorem ]

Let us set
p=8E max Jsctelgf(Xz) < Ka || max ;ggf(Xz) ) @)
Notice that by the Chebyshev inequality and the definition of the class F2, we have
k
P maxsupig(Xi) >0 ] <P|maxsup f(X;) >p]| <1/8.
k<m feF P i f
Thus by the Hoffmann-Jorgensen inequality [25]], we get
B=E sup f2(X;) < 8E max sup f(X;). 3
fzefziz:; I<ism feF
In consequence
E X;) —Efy(X;)) < 16E X)) <K 3 X;
s ;(fz( ) ~Ef2(X) < 168 max sup f(X;) < Ko | max sup f(X;) )
Thus, we have
Jax ]ch)_-fQ(Xi) —Ef2(Xq) < lgiﬁ?ggfz()ﬁ) + Elgiﬁ?ggﬁ(-&)
wa ’I*Z}LY "Z}(Y
< .
<2|| max ?ggfz(Xz)
w(}c
<2 X; ,
=2 g
wa
where the above inequality holds because || - ||, (@ = 1,2) is a standard norm. Then, by Theorem
6.21 of [25]], we obtain
m
sup (f2(X;) — Efa(X5)) < K, || max sup f(X;)|| ,
f2EF> ; " 1<ism peF "
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which implies

P ( sup ih()ﬁ) - Ef2(X5) > €t> < 2exp (— < et T ) ) O
Yo

F2€F2 i K ||lmaxi<i<nsup e f(X

Next, let us choose £ < 1/10 and such that
(1-5e)2(1+B/2) < (1+5). (10)

Since ¢ is a function of 3, in view of ((7) and , we can choose the constant K («, 1, 3) in (1) to be
large enough to assure that

< i) < et.
B < 8E12?§n§2§f(){’> <et

Notice that for every f € F, we have E(f1(X;) — Ef1(X;))? <Ef1(X;)? <Ef(X;)%
Thus, using inequalities , @ @]) and Theorem (applied for 7 and (3/2), we obtain

PQ—-(1+nEQ=1), PQ-(1-nEQ<-1)

<exp (—M) +exp GW)

et «
+ 2ex - .
P ( (Ka max<i<m supfgﬂxima) )

Since € < 1/10, using (7) we can see that for all ¢ with K («, n, 8) large enough, we have
exp (_ (1—5e)t > exp (_ ( et >"‘>
K(a,n,8)p)’ Kallmaxy<i<m super f(Xi)llp

)
Cleun, Bl maxy<icm sup pe e f(Xi) |l

Therefore, for all t,

PQ—-(1+nEQ>1), PQ—-(1-nEQ<—1)

<exp(—w)+3exp — | = t ) .
= 2(1 + 8/2)mo? Ca,n, B)|| maxy <i<m sup e f(Xo) g,

Finally, we use (I0) to finish the proof.

O

Lemma 5. (Moment-generating function inequality for suprema of empirical process corre-
sponding to classes of sub-Gaussian functions) Let X and () be defined in Theorem([9] then for all
0 <n<1landpB > 0, there exists a constant C = C(n, ), such that

Eexp(A(Q — (1 +7)EQ)) < exp (4(1 + B)mo>A?) + 3exp [ 2 [ CA ||max sup f(X;)

vt fer

2

Lemma 6. (Moment-generating function inequality for suprema of empirical process corre-
sponding to classes of sub-exponential functions) Let X and @ be defined in Theorem then
forall 0 < n < 1and 8 > 0, there exists a constant C' = C(n, 3), such that
2
11)1) >

Eexp(A(Q — (14 n)EQ)) < exp (4(1 + ,B)mUQ)\Q) + exp <12 <C)\ ’ max Jéug)__f(Xl)
iofe
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Proof of Lemmal[3] In the proof we use the notation < between two positive sequences (ag) and
(bi )k, writing ay, < by, if there exists a constant C' > 0 such that for all integer k, ay, < Cby,.

According to Theorem [0} we have

t? t*
P(|Q — (1 +n)EQ| > t) < 2exp <_‘2(1 T 5)mg2> + 6 exp <— T, sup, 5 [T, >

Let the random variable Y = @ — (1 4+ n)EQ we have that for any k£ > 1,

E[Y]*)

:/ P(Y[* > t)dt
0

— [Te(v) > 0 at
e )

00 tz/k 0 t2/k
< 2 exp (—)dt +/ 6exp | — dt
/0 2(1 + B)mo? 0 C2[|max; sup e = £ (Xi)|[7,

k
:(2(1+5)m02)k/2k/ e~ u* 2y 4 3k | C ||max sup f(X;) / e vok2 1y
0 v feF 0
P2
= (2(1 + B)mo2)"? kT(k/2) + 3k | C |[max sup £(X;) T(k/2),
v fer
2
h denote u = 5t do = 2/ in the third equalit
where we denote u = W and v = CZHmaXisupfg}"f(Xi)I”i,Q 1n the third equality.

Next, we use the Taylor expansion of the exponential function as follows. For A > 0, we have

Eexp(\Y)

o~ AE[Y]H)

k=2
< (2(1+ B)ymo2X2)*? kT (k/2) + 3k(CA| max; sup e x f(X:)|ly,)FT(k/2)

P> k!
k=2
. i (2(1 + B)maA2)" 2kT (k) . i (201 + BYmo222)" 2 2k + )T (k + 1/2)
2 (2k)! 2 2k + 1)
4 5 BR(O | mane supyer F(X)]10,) T (k)
— k!
. 3(2k + 1)(CA| mas; sup, e r £(X)[l4a)* D (k + 1/2)
3 i
k=1
= (2(1 2)2)" k!
§1+(2+ 2(1+ﬁ)ma2)\2)z +5m" )’
k=1
— (CA i X; 2k )
+ [ 6+ O ||max sup f(X;) Z( || max Sque]—"f( l2) ’
¢ ferF N R (2k)!

where the second equality satisfies because of commutative property of positive convergent series.
This implies that
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Eexp(AY)

<1+ <1+ MW) =, (201 + BHmo®x?)"

2 2 (2Kk)!

O ||max; supfeff Iy, (CAll max; sup e 5 f(X3)[|p, )2
(o g &

(1 2)
=exp (2(1+ B) mJQ)\Q \/ + B Jmo exp 2144 ma2)\2) )

C)\Hmaxzsupfe]_-f H¢2

s
1)

max sup f(X;)
v feF

2

+ 3exp C\ ||max sup f(X

i feF

<exp (4(1+ B)mo®A?) + 3exp | 2 | CA||max sup f(X;)

i feF

2

where the first inequality follows from the inequality that 2(k!)? < (2k)!.

The proof is complete.

Proof of Lemmal6] According to Theorem [I0] we have

2 t
PIQ — (1 +mEQ| 2 1) < 2exp (*2<1 n 5)m02> +6exp (‘cu maxs sup e 1/ (X0 on )

Similarly, let the random variable Y = @ — (1 + n)EQ we have that for any k& > 1,
E[Y|*]

(o)
:/ P(Y[* > ¢t)dt
0
— [Ty s ) ar
| B>

o] t2/k e <] tl/k
< 2ex - |dt —|—/ 6ex (— )dt
/0 P < 2(1+ B)maQ) 0 P C| max; SuUPyreF F(X) Iy,

k
oo
/ e oFdy
0

max sup f(X;)

=21+ ﬁ)moQ)k/2 k/ e M Yy 4+ 6k | C
v feF

0

1

< (21 + Bymo2)""* kT (k/2) + 6k | C ||max sup f(X;) T(k),

vt fer

o $2/k o tL/k . . .
where we denote u = SATByma? and v = ClTmaxs supyc 5 F(XTy, 11 the third equality.
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Next, we use the Taylor expansion of the exponential function as follows. For 0 < A <
we have

1
QCHmaxi SUp e x f(Xi)le ’

E exp(AY)
o~ AE[Y]Y]
=1+ Z T
k=2
o] k
oS (20 B)meN?) "2 KD (k/2) + 6k(CA|| max; sup sz f(Xi)[lyy)FT(k)
T = k!
0 N 0 52)2)F /2
_1+Z (2(1 + B)ymo?A?)" 2kT'(k Z 2(1+ B)mo?X?) (2k + D)I'(k +1/2)
N P (2k)! P (2k + 1)!
k
—&-26 C) |lmax sup f(X;)
k=2 tofer Y1
= (201 2A%) " k!
1+ (2+ V201 +B) 02/\2>Z +ﬂm)(f )
=1
2 k
+6 | CA||maxsup f(X;) Z CA ||max sup f(X;)
tofeF — v feF
1 k=0 1
2
(1+5 mo2A? | o= (2( 1+5 ma2A2)
<I4+ (144 —F—— Z + 12 | CA||max sup f(X;)
k=1 tofer ¥

=exp (2(1 + B)mo?A?) + w(exp (2(1+ B)mo®A?) — 1)

+exp | 12 | CA|lmax sup f(X;)

v fer

P1

<exp (4(1 + ﬂ)maQ)\z) +exp | 12 [ CA||max sup f(X;)

vtofer

Y1

where the second equality satisfies because of commutative property of positive convergent se-
ries and the third inequality follows from the inequality that 2(k!)? < (2k)! and 0 < X\ <
1

QCHInaXi SUp;e f(Xi)”wl

The proof is complete.

B PROOFS OF SECTION[3]

Proof of Theorem[l} Let {Uy,...,Uy} and {W1,..., W,,} be sampled uniformly from a finite set
of M-dimensional vectors E] {fvl, ...,vn} C RM with and without replacement respectively, where

2We assume that F is a countable class of functions and this can be translated to the uncountable classes.
For instance, if the empirical process is separable, meaning that F contains a dense countable subset. We refer
to page 314 of [3]] or page 72 of [5]
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v; = (fi(cj), ..., fa(e;))T. According to Lemmaand Theorem@ we get that for all A > 0:

E [CAQ’m} —E [exp (Aj—f}f?,M (f; W)J)] <E [exp (Aj up (Z uz> )] _ [ AQW] 7
1n

where the lower index j indicates the j-th coordinate of a vector. According to Lemma 5] the mo-
ment generalization function of @,,, can be bounded, which we can derive the following inequalities

E [eAQ/m} <E[e*9"] <exp (14 n)AE[Qn] + 4(1 + B)ymo®A?)

+ 36Xp (1 + n)AE[Qm] +2|CA max sup f(Xl)

v fer

P2
or, equivalently,
E [eM 1= (1+MEIQ),])

<exp ((1+nAEQm] — E[Q,]) +4(1 + B)ma?A?)

+3exp | (1+n)AME[Qn] — E[Q),]) +2 | CA||max sup f(X;)

v fer

P2

Using Chernoff’s method, we can obtain that for all e > 0 and A > 0:
P{Qn — (1 +mE[Qm] > ¢}
E [e (@ —(1+mE [Qin,])]

S e)\e
_ & (14 MAE[Qm] — E[Q1]) +4(1 + B)ma®A%)
n exp(Ae)
exp (14 AEIQu] — EIQM]) +2 (A [maxssupyer £60) )
J’_

exp(Ae)

exp (1 + MAME[Qm] — E[Q}])) (exp<4<1 + B)ma®\*) + Bexp ( (O [[max; supe » £(X H@)Q))
<

<6exp (((1 + 1) (E[Qm] — E[Q7.]) — A + (4(1 + B)ymo” +2C* ‘ max sup f(X;)

v feF

exp(Ae)
Y2 (12)

where the first inequality applies Chernoff’s method. The third hold under the following two terms
2

exp( (1+ B)mg2)\2) > 1 and exp (2 (C’/\ Hmaxz supfeff Hw ) ) > 1. Usinga+0b <

2ab, Va,b > 1, we obtain the third inequality.

The term on the right-hand side of the last inequality achieves its minimum for

e+ (1 +n)(E[Q] — ElQm])
8(1 + B)mo? 4 4C? |max; sup ;e f(X

A= (13)

My,

Insert into (12), when we have the technical condition € > (1 + n)(E[Q,,] — E[Q),]) where
E[Qn] > E[Q),] follows from Theorem [6] by exploiting the fact that the supremum is a convex
function., we obtain the following inequality

€2

16(1 + B)mo? + 8C? ||maxl supser f(X

P{Q:, — (1 +nE[Qm] > €} <6exp | — H
2
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The proof is complete.

O
Proof of Theorem[2] The proof of Theorem [2]is similar with Theorem [T} Let two series of ran-
dom variables {U7y,...,Upn} and {Wy,...,W,,} be sampled uniformly form a finite set of M-
dimensional vectors {vi,...,vxy} C RM with and without replacement respectively, where

v; = (fi(cj), ..., fa(e;))T. According to Lemmaand Theorem@ we get that for all A < 0:

E [eAQin] =FE lexp (Aj_ng,M (; WZ)J)] <E lexp (Aj_?}'l-[')’]w (; ui>j>] =F |:e)‘Q7ni| 7
(14)

where the lower index j indicates the j-th coordinate of a vector. According to Lemma@ the mo-
ment generalization function of @,,, can be bounded, which we can derive the following inequalities

E [e’\Qin} <E [e297] <exp (14 n)AE[Qn] +4(1 + B)maA?)
2

+exp | (1+7)AE[Q.] + 12 | CX ||max sup f(X;)

vtofer

P1
or, equivalently,
E {@(Q;n—(lﬁtn)m@;ﬂ])}

< exp (1 + MAEQu] — EIQ),]) +4(1 + B)mo)?)

+exp | (1+n)AE[Qm] — E[Q7,]) +12 [ CX|jmax sup f(X;)

vtofer

P1

Using Chernoft’s method, we can obtain that foralle > 0and 0 < A < 20 s Sup;g D

P1
P{Qm — (1 +nE[QL] > €}
E [€A<Q;q,—<1+n>m[cz:n1>}

S ee

_exp ((1L+ MAE[Qm] — E[Q0]) +4(1 + B)ma®)?)
- exp(Ae)

exp (14 MAEIQu] - BIQ D) + 12 (O3 maxcsup s /XD, ) )

exp(Ae)

+

exp (14 DAEIQ] - EIQ)) (xp(d(1 + Amo?x2) + exp (12 (O [maxcsupyer (X)) ) )
<

exp(/\e)
) A > )
Y1

1s)
where the first inequality applies Chernoff’s method and the third hold under the following two

2
terms exp (4(1 4+ 8)mo?A?) > 1 and exp (2 (C)\ || max; sup ;¢ » f(X;) 1/)2) > > 1. Using a +
b < 2ab, Va,b > 1, we obtain the third inequality.

<exp (((1 + M) (E[Qm] — E[Qn]) — A+ (4(1 4 Bymo® + 120 ] ma sup (X,)

The term on the right-hand side of the last inequality achieves its minimum for

- ¢+ (Lt ) (E[Qp] — ElQu)

= . (16)
8(1 + B)mo? + 24C? ||max; SUp e £ f(Xl)Hjj1

22



Under review as a conference paper at ICLR 2025

Insert into (15), when we have the technical condition (1 + 7)(E[Q] — E[Q},]) < € <

12C HmaxZ supf@T fX H by We obtain the following inequality

€2

16(1 + B)mo? + 48C? Hmaxl supser f(X

P{Q;, — (1 +nE[Qm] > €} < 2exp | — o
Y1

The proof is complete.

C PROOFS OF SECTION

C.1 PROOFS OF SUBSECTION[4.1]

From now on it will be convenient to introduce the following operators, mapping functions f defined
on Xy to R:

1 m
XfL € XN7 Emf = N Z f(Xj),Xj e X,

Xj:].

HMZ

Assume that there is a function wj, € W satisfying Ry(wy) = infyew Ry(w). Define the
excess loss class F* = {f : f(x) = {(w;x) — l(wi;x),w € W}

Let {&1,...,&,} be random variables sampled with replacement from X n. The mapping functions
f defined on Xy to R. Denote

Er,mf =E
feF=Ef2<r

sup (Ef ;Zﬂ&))]- (17)
i=1
Then we have

By =E l sup <Ef -~y f(&-)ﬂ
i=1

feF-Ef2<r

<2Eemxy [ sup v <Ef - ;Zf(&))]

fEFEf2<r i—1
m
§2Ev sup Z UlEf + 2E£~XN U sup Z vz fz
feF Bf2<r i feF Ef<r M

=2RN{f € F*Ef* <r}.

where the first inequality holds using symmetrization inequality (see Lemma 11.4 [3]])

Lemma 7 (Peeling Lemma for sub-Gaussian). Assume that there is a constant B > 0 such that for
every [ € F* we have Ef* < B-Ef. Suppose Assumpnonslhold and the objective function ((-; )
is sub-Gaussian.. Assume there is a sub-root function V¥, (1) such that

2BRN{f € F* 1 Ef? <1} < (r),
where E,. ,, was defined in . Let r%, be a fixed point of 1, (1).

Fix some X\ > 1. For w(r, f) = min{r\* : k € N,rA\* > Ef?}, define the following rescaled
version of excess loss class:

T %
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Then for any r > r, and t > 0, with probability at least 1 — 9, we have

1 \rrk 1
SupEg_Emggm 14+

9€G, B Ky qog%

N 12 2C2K log N .12
+4\/(1+ﬂ) (m2) rlog = —|—4\/m20glog6,

where K, Ko, n, B are some positive constants. C'is positive constants depending on n, (.

Proof of Lemmal7} We use traditional peeling technologies presented in the proof of the first part of
Theorem 3.3 of [2], but using Theorem [I]in place of Talagrand’s inequality.

Firstly, for any f € F*, we have
VIf(x)] = Ef* = (Ef)* < Ef*. (18)

Let us fix some A > 1 and 7 > 0 and introduce the following rescaled version of excess loss class:

T s
where w(r, f) = min{r\* : k € N,7A\* > Ef?}.

Let us consider functions f € F* such that Ef? < r, meaning w(r, f) = r. The functions
g € G, corresponding to those functions satisfy ¢ = f and thus V[g(x)] = V[f(x)] < Ef? < r.
Otherwise, if Ef? > r, then w(r, f) = A\*r, and thus the functions g € G,. corresponding to them
satisfy g = )\ik and Ef? € (rA*=1,7A*]. Thus we have V[g(x)] = V[)’gf)] < Ifsz < r. We
conclude that, for any g € G,., it holds V[g(X)] < r.

Next we need to upper bound the following quantity:

V. = sup Eg — Eng.
9€G,

Note that any f € F*, f(x) is sub-Gaussian, thus for all g € G,., g(x) is sub-Gaussian. Notice that

(Eg — Eng) :% > Eg—stx)

1
2 2
xeX

Note that (Fg — g(x))/2 is also sub-Gaussian and E[Eg — g(x)] = 0. Since Eg is not random,
using (I§), for all g € G, we also have

v {Eg —QQ(X)] _ V[g4(X)] < 27

2
. Eg—
Besides, we need to bound Hmaxx SUPyeg, %(x)

¥y

2 Hmaxxsuprf—f(x)Hfb2
- 4\2k

max sup

’ Eg —g(x)
X geg, 2

P2
2

log N < K'log N,
2

< K% max
xX

sup £(w; x)
f

where K is a positive constant. The first inequality holds using Theorem [34] and the second in-
equality satisfies because £(-; x) is sub-Gaussian.
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We can now apply either Theorem 1] for the following function class: {(Eg — g(x))/2,9 € G}
Here we present the proof based on Theorem |l l Applying it we get that for all 6 € (0,1), with
probability at least 1 — £, we have

1
5 sup Eg — Eng

2 9€G,
T+n [ ] N\ 1 8C2K log N 12
<——E Erm 16(1 — | = \% ———— | log —
3 B | s Ermg| + \/( (1+5) <m2> 15w 9G]+ ——— 0g
1 + | N 8C2K log N 12
77IE sup E, mg| + (4(1 +0) <2> r+ 20g) log —
2 P m m 0
1 | N 12 2C2K log N 12
+nE sup Ermg +24/(1+P) (2)rlog+2\/czoglog,
2 lgeG, m ) m 0

where the last inequality holds because v/a + b < v/a + /b for any @ > 0 and b > 0.

Rewriting above inequality we have

2
Vr§(1+77)E{sup Er,mg:|+4\/(1+ﬁ)<N)Tl 12+4\/wlogg. (19
9€Gr g m 6

Now we set F*(z,y) = {f € F*:z < Ef2 < y}, Note that E'f is sub-Gaussian, for f € F*, for
any 6 € (0,1) with probability at least 1 — 2, we have V[f(x)] < Ef? < B-Ef < BK+/log2/6.

Define k to be the smallest integer such that rAF*1 < BKy4/log2/5. Notice that, for any sets A
and B, we have:

E [ sup Enmg} <E [sup E,. mg} +E [sup E, mg]
gEAUB geEA geB

Since supremum is a convex function ,we can use Jensen’s inequality to show that each of the terms
is positive. Then for any § € (0, 1), with probability at least 1 — g, we have:

E | sup Er,mg}
LIEG
T
<E sup Er,mf +E sup 7Er,mf
| fEF*(0,r) i fEF*(r,2BK2+/210g2/9) w(r, f)
r
<E| sup E,nf|+) E Ermf
| fEF*(0,r) i ; fef*(w rAIHL) w(r, f)
<E sup  Epnf| + Z AR sup Ermf
_fG]'—*(O,’I“) fe]:* (7.)\1‘,7.)\1‘+1)
k
ORN{f € F i EfP <r}+2) ARy {f e F:rXN < Ef? <rXH
i=0
r
Ymlr) | ZA W (PATTY),

B BK,\/log2 i

where the last inequality satisfies because E f is sub-Gaussian. Next, since v, is sub-root, for any

B > 1, we have ¥, (Br) < /Bt (r). Thus

k
E[V,] < \/BS Y (r) 1+ VA Z)‘_i/z

B Kay/log 2 izo
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B log %

Taking A = 4, the right hand side is upper bounded by =) (1 + K1> Finally we note
2

that for » > r* , then for all » > 77, it holds ¥, (r) < /r/ri,¥m(rs,) = /rrF,. Thus, for any
§ € (0,1), with probability at least 1 — 2

* 1
E [sup Erﬁmg] < "' 1+ ——. (20)
gEGr B Ky, / 1log%

Combining and , according to the union bound, for any § € (0, 1), with probability at least
1 — 4, we have

sup Fg — E,g <

9€G, B Ky qog%

N 12 2C?K log N 12

where K, Ko, 7, 5 are some positive constants. C' is positive constants depending on 7, 5.

The proof is complete.

O

Lemma 8. Under the assumptions of Theorem forany 6 € (0,1), with probability at least 1 — 9,

we have
/ 12
X e e Nlog 12 c3y/log N log 5
Ry (W) — Ry(wh) < —Mm | @708

~ Blog 2 m? m ’

where c1, co and c3 are some positive constants.

Proof of Lemmal8] According to Lemma [7} we have the following results that, for any r > 77,
6 € (0,1) and A > 1, with probability at least 1 — §, we have

1 \TTE 1
SupngEmggw 1+

9EG B Ko /log 2
24/108 5 @1
N 12 2C?K log N 12
+4\/(1 + ) (mz) rlogK +4\/mzlog5,

where G, is the rescaled excess loss class:

/r %k

and w(r, f) = min{r\* : k € N,7A\* > Ef2}. Now we want to choose 79 > 77, in such a way
that the upper bound of becomes of a form 1 7%, we achieve this by setting:

2
/ 1 N 1 .
ro=K*X | Q+n)vr |1+ ——— | +4B,/(1 +B) (—2) log 12 > T,
Kg,/log% m Y

Inserting r = r¢ into (21, we have

sup Fg— E,,g < 10 +4

log —. 22
S SBE og (22)

\/ 2C2Klog N . 12
m2 0
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Further, using inequality (u + v)? < 2(u? + v?), we have

2

1 N 12
ro <21 +n)? [ 14+ ———=——=| K\, +32(1+p) <m2> K"”X2B?log 5 23

Ko, /log %
Recall that for any » > 0 and all g € G, the following holds with probability 1

Fg—FE,g < sup Eg— E,,g.
geG,

Using the definition of G,., for all f € F*, with probability 1, we have the following inequality
E ( ! f> E < ! f) < sup Eg— E
— - X Ay = Sup £g — 9,
w(r, f) " \w(r, f) 9€G, "

By - Byp < 00

or, rewriting

sup Fg — E,g.
9gEG,

Next we setting = ry and using , for any § € (0, 1), with probability at least 1 — §, we have

" w(ro, f) To \/202KlogN 12
: - Lm S _— — 1.
VfeF VK >1 Ef—-E.f o <)\K’B+4 - log 5

Next, according to Ef? < B-Ef,iffor f € F*, Ef? < ry, we have w(rg, f) = 7o and using ,
we have

w(rog, f) 0 \/QCZKlogN 12
—B.f< i
Ef=Enf<—1 (AK’B + mz 08

2(1 4 )2 K' M\, 1 N 12 202K log N | 12

2

< — | K’ = " log —.

< 5 1+ - +32(1+ B) <m2>K)\Blog 5 —1—4\/ 3 log 3
Ko logg

Rewriting,

2

2(1+n)2K' M, - 1

B Noe 2
KQ log 5 (24)
192 OKQQ/QlOgQ
K'ABlog — y4 V0

m

Ef <Enf+

+32(1+0) (12;)

On the other hand, if E f 2 > 1, then w(rg, f) = Airg for certain value of i > 0 and also Ef? €
(roA* =1, 79 AY]. Then we have

Ef_Emf
2
<w(r0,f) ( ro +4\/20 KlogN10g12>

o AK'B m2 )

AiLr, 4)\i’1\/202KlogNlog 2
< +
- K'B m

B 4)\i*1\/2C2KlogNlog L
—K'B m

By 4M—1\/202K10gz\710g%
<o+ :

K m
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Thus, we have

Ko AKX 202K log N log 22
m (K'—D)ym ‘

Combing and (25), for any 6 € (0, 1), with probability at least 1 — 4, we have

Ef <
f*K’—l

(25)

2
K’ 2(1+n)°K' \ry, 1
1K' — 1Emf * 1+

B
Ky /log 2 26)

N\ 12 CKs\[2log 2 4K\~ /202K log Nlog 12
+32(1+6) ( — ) K'ABlog — +4 + T .

Vie F*VK>1: Ef< inf
K'>

Finally we recall that the definition of F* and put f,,(-) = £(Wy,;-) — £(w’; -). Notice that

Emfm = EmE(VAVm) - E’rne(w}k\/‘) = Rm (wer) - Rm(wj\/‘) <0,
and
Efm = RN(VAVm) - RN(“’?V);

thus, we have

* 12 12
Rav(iom) — Ruy(owiy) < A0y N log ¢ coylos VIoa 5

~ Blog 2 m2 m

3

where ¢y, ce and c3 are some positive constants.
The proof is complete. O
Lemma 9. Under the assumptions of Theorem Sorany § € (0,1), with probability at least 1 — 6,

we have
* Nlog 12 cs4/log Nlog 12
Ru(Wim) — Ru(wh) < JZ ( arp | eNlgg @y 5

Blog % m? m
12
N ar N c2N log 12 N c34/log N log
2 2 ,
m \ Blog s U "

where c1, co and cs are some positive constants.

Proof of Lemmal9] Note that since w; is also an empirical risk minimizer computed on the test set.,
the results of Lemma|8|also hold for w}, with every m in the statement replaced by . Also note that
the following holds almost surely:

0 < Rn(Wim) — By (Wy)

= Ry (W) — By (Wy) —

) + Rm (wﬂl) - RnL (W}k\f)
) 27

and

u(Wu) + Ry (W) (28)
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where last equations in both cases use the equation N - Ry (W) = m - Ry, (W) 4 u - Ry (w).

Now we are going to use obtained in the proof of Lemma [§] Using and, subsequently,
employing for f = (W3 ) —€(W}; ), where we subtract E,, f for both sides of (26, for any
d € (0,1), with probability at least 1 — g, we obtain:

0 < Ru(Wim) — Ru(Wi) — Ron (W) + B (W)

inf Ry (W, — Wiy) + 1+

7 !/ _ /
K'>1 K 1 B K2 log%

NY 21 CKp\f2log  4K'X1, 202K log N log 2
+32(14 ) (5 ) K'ABlog = +4——— + & —Tm .

<N< K . Lo 2014 m)2K M, 1
T u

Similarly, the same argument can be used for w, which gives that for any § € (0, 1), with proba-
bility at least 1 — g, we obtain:

0 < Rin(Wo) — Ry (W) — Ru(Wy) + Ry (W)

inf —— R, (W, —wy)+ 1+

’ r_ /
K'>1 K 1 B KQ log%

NY 21 CKy\[2log2  4K'N"1, /202K log N log 28
+32(1+5) (uz)K)‘BIOg5+4 " + K —1)u )
The union bound gives us that both inequalities hold simultaneously with probability at least 1 — §,
summing these two inequalities, we obtain
0 <Ru(Win) = Ru(W) = Rin (W) + R (w3,)
<N ( CiTm n c2Nlog 2 N €34/ logNlogI;) N N ( cars N c2Nlog 2 N C3y/logNlog162> |

“u | Blog3 m2 m m Blog 2 u? u

N ( . K 2(1 + n)2K' A 1

Using the fact the W,,, and w; are the empirical risk minimizers on the training and test set, respec-
tively, we finally get:

0 <Ru(Wm) — Ru(wy)

N ( 1T, +02N10g% +03 log N log < ) +% ( et +62N10g15£ +63 log N log % )7

- Blog 2 m? m Blog 2 u? u

u

where c1, co and c3 are some positive constants.
The proof is completed.

O
Proof of Theorem 3} Notice that 2BRN{f € F* : Ef? < r} < ¢,,(r), according to Assump-

tion [1} we have log NV (e, W, Lo(P)) < O(log(1/¢)). Using Dudley’s integral bound [33] to find
Y, and solving r < O(Bt, (1)), it is not hard to verify that

2
r*<0(310gm)

m

Insert the solution r* into Lemma@], for any § € (0, 1), with probability at least 1 — J, we have

N Nlogi Nlogi 1
su(wm):0< <logm+logu—|— og5+ Og‘s—i—\/logNlog)).
mu m U )

The proof is complete.
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The detailed proof of Theorem []is completely similar with Theorem [3| In consequence, we omit
here and give the Lemmas for sub-exponential.

Lemma 10 (Peeling Lemma for sub-exponential). Assume that there is a constant B > 0 such that
for every f € F* we have Ef? < B - Ef. Suppose Assumptions|I| hold and the objective function
0(-;-) is sub-exponential. Assume there is a sub-root function ,, (r) such that

2BRN{f € F* 1 Ef* <r} <y (r),
where E, ., was defined in (I7). Let r}, be a fixed point of 1}, (r).
Fix some X\ > 1. For w(r, f) = min{r\* : k € N,7A\* > Ef?}, define the following rescaled

version of excess loss class:
T £
gT:{qu:fe]: }
Then for any r > r, and t > 0, with probability at least 1 — §, we have

UL (L)

sup Eg — E,g <
St 9= Kllog%

9€G, B

N 12 3C2K1log? N . 12
+4\/(1+B) (m2> rlog5+8\/m§glog6,

where K, K1,n, B are some positive constants. C' is positive constants depending on 0, S.

Lemma 11. Under the assumptions ofTheoremfor any § € (0,1), with probability at least 1 — 6,

we have
i 2 12
. it coNlog 12 c34/log N10g7
Ry (%) — Ry (W) < —im @7 985

~ Blog? % m?2 m

)

where c1, co and cs are some positive constants.

Lemma 12. Under the assumptions ofTheoremfor any § € (0,1), with probability at least 1 — 6,
we have

2 12
N * csNlog 12  c3y/log” Nlog 75
Ru(VAVm> _ Ru(W*) < ; C1Tp, 2 g 5 + J

u BlOg2 % + m2 m
N cry CQNIOgl(TQ 03\/10g2 N log 15*2
+ — 55 T 5 + s
m \ Blog 5 U U

where c1, co and c3 are some positive constants.

C.2 SOME RESULTS FOR SUB-EXPONENTIAL FUNCTIONS IN SUBSECTION [4.2]

Theorem 11. Suppose Assumptions and [3 hold. For any w € W, let the loss function

0(w; ) be sub-exponential. Suppose that the step sizes {n:} satisfies n; = ﬁ such that to >

max{(2P)"/*,1}. For any § € (0, 1), with probability 1 — 6,

(a). If a € (0, 5), we have

. i . 24 log® (1
Ru(wT+D) = Ry (wT+D) = O<Lleog2(T)Tl 200 ((15) N Og(é))
u u m

(b). If a = %, we have

~ A/ 1 3 (1
Ru(wT+D) — R, (wT+D) = @(LfN log(T) log (;) N W)_
u u
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(c). Ifa € (%, 1], we have

~ 1 1 3 (1
Ry (wTHD) — Ry (WD) = O<Lfm log? (T log (;) LN [loe” (3) )
u u m

Corollary 2. Suppose Assumptions and [5 hold. For any w € W, let the loss function
0(w; ) be sub-exponential. Suppose that the learning rate {n:} satisfies 1y = such that

to > max{%(QP)é, 1}. Forany 6 € (0, 1), with probability 1 — ¢,

2
p(t+to)

(a). Ifa € (0, 3), we have

log? (T)T**log (;) + =

Ru(wTHD) = Ry (w") = O(L; v uNd

(b). If a = %, we have

Ry(wTH)) = Ry (w*) = 0(&@ log(T) log ((1;) LN gt () 1)

(c). Ifa € (%, 1), we have

/A

R N | N [log® (% 1
Ry(wTHY) — Ry (w*) = O(Lf u @log? (1) 1og(1/3) + ) Lgm(é) " T)

(d). If a« =1, we have

Ru(wT) = Ryw?) = 50( L N, flog (3) | log(T)log’(1/ 7).

d, 1
log=z(T") log(1/6) + —
“Clogh (1) log(1/6) + —\| 22 2

C.3 PROOFS OF SUBSECTION[4.2]

Proof of Theorem 5] In order to obtain high-probability bounds with our new concentration in-
equalities, for the term sup;, crz,. D vcx, fw(X) = SUbyew D xex,, (Bn(W) — £(w;x)) =
m - supwew (BN (W) — Ry, (W)), where we obtain a factor of mn in the equation because in Theo-
rem[Il we considered unnormalized sums.

To use Theorem we need to bound ||maxy sup;, ¢z, fw(X) H;, we have

where K and K, are two positive constants. The second inequality holds using Theorem [/| [34]]
and the last inequality satisfies because £(-; x) is sub-Gaussian, using property of the tail bound for
sub-Gaussian distribution.

2
log N < K*KZlog N.
P2

< K% max

x

2 2
max sup £(w;x)

S '
¥o X wew o

sup 4(w;x)
wew

max sup fw(X)
* fwE€Fw

Then we turn to bound ¢3,,. For any fixed w € W and any 6 € (0, 1), with at least probability 1 — g,
we have

3 (Uwix) — Ry(w))? = = 3 fwix)? — Ba(w) < - 3 flwix)? < Klog 2,

x€Zn xX€EZN xX€EZN

where K is a positive constant. the last inequality holds because £(; x) is sub-Gaussian, then £(; x)?
is sub-exponential, using property of the tail bound for sub-exponential distribution. Thus for any
0 € (0,1), with at least probability 1 — g, we have

o3y = sup <]1[ Z (f(w;x) — RN(W))2> < Klog% 29)

wew xXEZN
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According to Theorem |1} Let Q,,, = m - (Ry(w) — R,,(w)), and combined with . For any
0 € (0,1) with probability at least 1 — §, we have

sup (Ry (W) — Ry (w))
wew

414+ B)Klog2 202K2K21 12

m m2 1)

(30)

(1+ B)Klog 2 log 12 N 2\/2C2K2K22 log N log 12
m m

<(1+n)Em + 4\/

2\/2021(21{3 log N log 12

<(T+n)En+4
m

Mlog—+
m 1)

where the second inequality holds using v/a + b < \/a + Vb.
Next, we need to bound the E,,, = E [sup,eyy (Rn(W) — L 37" £(w;&;))]. We have

1 m
E,=E]| su Ry(w) — — L(w; &
o (v - 234 s>)]
<2EN v S i - — E
> ¢~ XN, v:gg\}”( Z >‘| (31)
< 2E, | su v; R +2E¢ex 0 | SUp — vil(w;§;
D ILTA) EEN PRI SRt
= 2RRN (W),

where the first inequality holds using symmetrization inequality (see Lemma 11.4 [3]).

Recall that for any w, we have

Thus, Combining . 31) and above inequality, for any 6 € (0, 1) with probability at least 1 — 4,
we have

R 2N ,/2C?K2K2log N log 12
Rus) — Ry < VOEDRa) (N [TF DR 12 % : o

u u m mu

(32)

Next, we need to bound the Rademacher complexity with traditional Dudley’s integral technique.

1
Firstly, we denote some notations. Let dyy(w,w’) = (% Zf;l[ﬂ(w;xi) — E(w';xi)P) *. For

j € N leto; = 277M with M = supy,cyy,, dw(w, w)), where Wg denotes the parameter

space consisting of the initial parameters w(!) together with all possible w(?) that can be obtained
using Algorithm I 1] Denote by 7} the minimal «j-cover of Wg and ¢(w?; x)[w] the element in 7

that covers ¢(w;x). Specifically, since {¢/(w(!);x)} is a M-cover of Wg, we set £(w’;x)[w] =
¢(wM); x)[w], ( Note that w(!) is the initialization parameter and w” is the associated parameter of
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¢in T}). For arbitrary n € N:

N

sup vl (W;x;)
wEWR ;

E,

weWR

sup (i (vs(0(wies) = €W w]

D (0w ) [w] — 6(w? ™ ) [W]) + vl (w maxz')))] (33)

al N
<E, wseuv]gv)R (;vz W; X;) (wn;xi)[w})> +E, ;Uz‘f(w(l);xi)]
n N
o vi((w?s ) [w] = £(w! =i xi)[wl) ) |-
2 w(z (£(w?s xi)w] = I ]))]

For the first term, we apply Cauchy-Schwarz inequality and obtain

E, lwseuvlaR (ivi(f(vv; ;) —((w"; xz‘)[W])ﬂ

1=

1 1 (34)
N 2 2
< | Ey va sup Z w;ix;) — AW x;)[w])? < Na,.
=1 WGWR
By Massart’s Lemma, we have
E, | sup (Z W %) [W] —é(wjl;x,»)[w]))]
weWRr i=1 (35)
<VN sup dw(w?,wi=1),/2log |T;||Tj_1|.

wEWR

By the Minkowski inequality,

sup dyy (w, wi 1)

weEWR
= sup lEN:V(W x;)[w] — L(w;x) + £(w;x) — £(wi™? x)[w]]2 '
wewr \ IV o ’ o

N 3
< sup (]1[2 [6(w7; %) [w] —E(w;x)]2> (36)

= sup dw(w?,w)+ sup dw(w,w' 1) <a;+a;_1=3aq;.
wEWR weEWR
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Plugging (36) into (35), using facts that a; = 2(aj — avj41) and |T}| > |T}—1|, taking summation
over j,

weWr \ ;3

<6VN Zaﬂ/log\Tuzf Z( —aj1)y/log | Ty

zn:Ev l sup (XN:vi(é(Wj;Xi)[W] f(le;xz')[W])>

(37
:12\/NZ(O£J' - aj+1)\/log/\f(aj, WR, dw)
j=1
(e 75) o0
<12V'N Viog N (a, Wg, dy) da < 12/ N Viog N (o, Wi, dyy) dax
Qn+41 An41
For the last term, for any ¢ € (0, 1), with probability at least 1 — g we have
1
N 3 3
E, L(w A(wV;x;)| <K(/Nlog= 38
;v (W ] (Z ixi) | < 0g %, (38)

where K is a positive constant. The first inequality holds by Khintchine-Kahane inequality [22].
The second inequality satisfies because £(-; x) is sub-Gaussian, therefore, ¢(+; x) is sub-exponential.
Using Lemmafd] we can derive the inequality.

Taking the limit as n — oo, plugging (34), and (38) into (33)) and combining with the difination
of Rademacher complexity, for any 6 € (0, 1), with probability at least 1 — g, we have

RRNn (W) = —IE |:bup Zvl W;X;)

_ K, /log 2 3
wew

VN \F

where v; is Rademacher random variable. One can verify that dyy,, ({(w;-), l(W';-)) =
max,cz [{(w;z) — {(wW'; z)| is a metric in Wgk. we have

/ Vg N(e, Wr,dw)de, (39

1=

N 2\ 2
1
<= c2;) — ' x; < .
dW - (N Zl [w,w’glvg);,xez E(W’ ZZ) E(W ’Xl):| > - dWR
By the definition of covering number, we have N (¢, Wg, dy) < N (g, Wr, dw,, ). Besides, apply-
ing Lemma [I] yields

dwy, = max [6(w;z) — b(w';2)| < Lr|lw — w'|2.
Xe

By the definition of covering number, we have N (e, Wg, dw,,) <N (ﬁ, B(wm, R), dw) , where
dw(w,w') = |w — w'||z and Wy € B(w"), R).
According to [33]], log N (g, B(wM), R), dw) < dlog(3R/<) holds. Therefore, we obtain

3LrR
log N (e, Wg,dy) < dlog ( Ef ) . (40)
Furthermore,
1 & 2
d%/v( W(l NZ [ W; X;) (1);xi)} < L%.—Rz,
i=1
where the last inequality is due to Lemmal[I} This implies that
o0 L]:R
V1og N (g, Wg, dyy)de = V1og N(e, Wg, dyy) de. (41)

0 0

34



Under review as a conference paper at ICLR 2025

Combining , , and , for any § € (0, 1), with probability at least 1 — g yields

K 10g§ \/7 LR
Ry(w) <——— +12¢/ — V01og (BLrR/e) de
VN N Jo (42)
K log%

d 3
S \ = [/ = R.

Applying Theorem 47 in [27] to bound R in @]) and plugging in with probability 1 — §/2, we
conclude that with probability at least 1 — 4,

og( i
0 @ﬂfdbgé(nz@—alog (1) 4+ M g<6)) Fae (0,1)

w/m
~ og( L
R (WD) =R (WD) = 01552 t0g(T) log(4) + Y22lb)) ffa=3
1 Nlog(:
O(Lr¥22 log? (T) log(}) + %ﬁ)) Ifae (3,1].
The proof is complete. O

Proof of Theorem[I1] In order to obtain high-probability bounds with out new concentration in-
equalities, for the term sup;, c 7, D vcx, fw(X) = SUDwew D wex,, (BN(W) — £(w;x)) =

m

m - supy e (Rn (W) — Ry (w)), where we obtain a factor of m in the equation because in Theo-
rem[2l we considered unnormalized sums.

2 2

< K2 max
Y1 *

2
log? N < K2K?log® N.
P

max sup fw(x)
* fw€Fw

max sup {(w;x)
X wew

sup 4(w;x)

Then, to use Theorem we need to bound Hmaxx SUp;, e 7y fw(X) Hil
¥ wew

where K and K are two constants. The second inequality holds using Theorem [/| [34] and the
last inequality satisfies because £(+; x) is sub-exponential, using property of the tail bound for sub-
exponential distribution

S ‘

Then we turn to bound o%,,. For any fixed w € W and any 6 € (0, 1), with at least probability 1 — g,
we have

1 . g 1 o2 9 _ 1 2 92
N Z (f(w;x) — Ry(w))” = N Z {(w;x)® — Ry(w)” < v Z {(w;x)” < K log 5
XEZN XEZN XEZN

where K is a positive constant. the last inequality holds because £(-; x) is sub-exponential. Thus,
¢2(-;x) is sub-Weibull random variable with tail parameter 2, using Lemmawe can derive the last
inequality. Thus for any 6 € (0, 1), with at least probability 1 — g, we have

o}, = sup (;7 Z (U(w;x) — RN(W))2> < Klog2§ (43)

wew XEZN

According to Theorem 2| Let Q,,, = m - (Ry(w) — Ry (w)) and combined with 43). For any
d € (0,1) with probability at least 1 — J, we have

sup (R (W) = R (w))
wew

1+ B)K log? 2
(1+0) &5

3C2K2K2log? N 12
<(1+n)Ep+4 ( 108 )10 e
m m

(44)

(1+ B)K log® Zlog 12 N 4\/302K2K12 log” N log =

m m

(1+ B)K log® 12 . 4\/3C2K2Kf log” N log 2
m m ’

<(1+n)Ep + 4\/

<(1+n)En +4\/
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where the second inequality holds using va + b < \/a + Vb.
Next, we need to bound the E,, = E [supy,ey (Rn(W) — = 37" £(w;&;))]. We have

m

1 m
E,, =E | su Ry(w) — — L(w;&;
P GRS o) |
1 m
< 2E¢~, v i R - 14 3G
< 2Eeniy o | SUD 0 ( N (W) m; (w é‘)ﬂ 45)
“ 1
< 2E, | sup ViRN(W)| +2E¢x 0 | SUp — vil(w;&;
WEW; N( ) X lwewm; ( )]

ZQmRN(W)7

where the first inequality holds using symmetrization inequality (see Lemma 11.4 [3])).

Recall that for any w, we have

A N A
R, (W) — R,,,(W) < — sup Ry(w) — R (w).
U wew
Thus, Combining (44), (45) and above inequality, for any ¢ € (0, 1) with probability at least 1 — §,
we have

. 1 Klog3 12 4N,/3C2K2K?log® Nlog 12
Ru(W) — fm(w) < 2NOFDRBY (N [A+HKog” 7 % ! .

- u u m mu

(46)

Next, we need to bound the Rademacher complexity with traditional Dudley’s integral technique.
1
Let dyy(w,w') = (% SN [e(w; %) —((w’;xi)P)Q. For j € N, let a; = 277 M with M =
SUPwew,, A (W, w(1)), where Wx, denotes the parameter space consisting of the initial parameters
w1 together with all possible w() that can be obtained using Algorithm [} Denote by 7 the
g p 4 g Alg J

minimal a;-cover of Wy and ¢(w7; x)[w] the element in T} that covers ¢(w;x). Specifically, since
{e(w;x)} is a M-cover of Wp, we set {(w’;x)[w] = £(w);x)[w], ( Note that w(!) is the
initialization parameter and w” is the associated parameter of £ in 7). For arbitrary n € N:
N

sup Z v (W Xi)}

wEWR i=1

E,

N
g, | swp (X (wlttwix) — dwsx))[w]

weEWR \ ;1

+ 3 uelwix) ] - (i) ) + ik(w i) ) @7
j=1

N
<E, wseuvraR(;vi(f(W;Xi)—f(W ;Xz‘)[WD> + E,

+) E,
j=1

For the first term, we apply Cauchy-Schwarz inequality and obtain

i=1

N
Z vif(w(l); Xl)]

sup (ﬁ:w(ﬁ(wj;xi)[w} - E(Wj_l;Xi)[W]))] :

wEWR i=1

E, [ sup (fjviw(w;xi) e(w”;xmwbﬂ

weWr \ ;4

< (=,

(48)

W=

N % N
vaD (Sup Z<e<w;xi>—e<w“;xi>[wn2> < Nay,
=1

weWRr ;7
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By Massart’s Lemma, we have

sup (2 (Wi )| 1—e<w“;xz»>[w1>)]

weWR i=1

<VN sup dw(w?,wi~1),/2log |T}||Tj_1|.

wEWR

‘U

(49)

By the Minkowski inequality,

sup dy (', wi )

weWpr

2

weWR

= sup <;] Z [Z(Wj; x;)[w] — £(w;x) + £(w;x) — L(w' xz‘)[w}] 2)

1

< sup <}Vi[e<wﬂ‘;xi)[wle<w;x>}2> + sup (}Vi[mx)e<w“;xi>[w1}2>2

weEWR wEWR

= sup dw(w’,w)+ sup dw(w,w’ ") <aj+a;_1 = 3a;.

wEWR weEWR
(50)
Plugging (50) into (49), using facts that o; = 2(a; — cvj41) and |T}| > |T;_1],
over j,
n N ) .
> Eu| sup (vaawﬂ;x»[w} - e(wﬂl;xmwn)]
j=1 weWr \ ;4
§6\/NZ a;4/log |T;| = 12@2(0@- — aj41)4/log | T
j=1 j=1
- 51
:].2\/NZ(OZJ' —aj+1)\/logN(aj7WR7dW) ( )
j=1
@0
<12V'N Viog N (a, Wrg, dy) da
a:;,l
<12vV'N Vieg N (a, W, dyy) da
Qn 41
For the last term, for any ¢ € (0, 1), with probability at least 1 — £ we have
1
N N 2 9
Zviz(w“);x»] < (Zﬁ(w‘l);xi)) < KVNlog ¥, (52)
i=1 i=1

where K is a positive constant. The first inequality holds by Khintchine-Kahane inequality [22].
The second inequality satisfies because £(-; x) is sub-exponential, therefore, £2(-; x) is sub-weibull
random variables with parameter 2. Using LemmaE], we can derive the inequality.

Taking the limit as n — oo, plugging [@8)), (51)) and (52) into (@7) and combmmg with the difination

Of Rademacher COInpleXlty, fOI‘ any 6 (S (0 1) Wlth pl‘Obablllty at least 1 , WE ha\/e
( ) - Z < \1/ \/ / V 1 N W ( )
»U sup 'U»L X»L o E ,a (15 53
N W = g R W

where v; is Rademacher random variable. One can verify that dyy,({(w;-),0(w';:)) =
max.ecz [0(w;z) — £(W'; z)] is a metric in Wg. we have

N 2\ 2
1
< R g D7 . !np, < .
dw < ( N |:w,w’g\l/%)1§,x62 E(W’ ZZ) K(W ’XZ):| > - dWR

i=1
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By the definition of covering number, we have N (e, Wg, dy) < N (e, W, dw,, ). Besides, apply-
ing Lemma [I] yields

Ay =max [£(w; 2) — ((w'; 2)| < Lr[w —w'll>.
x€E

By the definition of covering number, we have N' (e, Wg, dw,,) < N (ﬁ, B(wY R), dw) , where
dw(w,w') = ||w — W'||2 and Wx € B(wD), R).
According to [33]], log N (e, B(wM), R), dw) < dlog(3R/<) holds. Therefore, we obtain
3L;R>

5

log N(e, Wg, dw) < dlog ( (54)

Furthermore,
1Y 2
Bolw, w) = ; [tw;x) = twVixi)|” < I3R?,

where the last inequality is due to Lemmal[I] This implies that

LrR

/ Viog N (g, Wg, dyy)de = Vg N (g, Wg, dy) de. (55)
0 0

Combining , , and (55)), for any 6 € (0, 1), with probability at least 1 — g yields

Klog 2 d (LR
R < 0 1124/ — Vlog (3LxR/e) de
N(W)_ \/N N/ g( F /)

Klog%

d 3
< — - .
<= +12\/N <\/10g3+ 2\/%) LrR

Applying Theorem 47 in [27] to bound R in and plugging in with probability 1 — §/2, we
conclude that with probability at least 1 — 9,

(56)

Ruw ) = Rn(w ) = 3.0/ Y32 105 (1) og(1) + 2 /220D o=}
O(Lr Y 10gh (1) og(}) + 2/ 2213 fae (41]
The proof is complete. O

There is nothing special about the proofs of Corollary [T] and Corollary 2} which simply involve
combining Theorem 5] (or Theorem [IT)) with an existing optimization result. Here we give the proof
of Corollary [T]as an example.

Proof of Corollary[I} By Lemma 43 in [27], we have

19 i) if o € (0,1)
2 THLy B (ex) Ta , )
Rm(W ) Rm(w ) - o log(T) l;g3(1/5)) o=l (57)

By Theorem 5]

Ruw ™ 0) = R () = 0L i 10g(7) 0g() + 2t o=z OF
O((Lr X 10g3 (T) log(}) + ij’gff)) Ifae (4,1]
Combing (37) and (38) yields the result. O
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