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ABSTRACT

In the transductive learning setting, we are provided with a labeled training set
and an unlabeled test set, with the objective of predicting the labels of the test
points. This framework differs from the standard problem of fitting an unknown
distribution with a training set drawn independently from this distribution. In this
paper, we primarily improve the generalization bounds in transductive learning.
Specifically, we develop two novel concentration inequalities for the suprema of
empirical processes sampled without replacement for unbounded functions, mark-
ing the first discussion of the generalization performance of unbounded functions
in the context of sampling without replacement. We further provide two valuable
applications of our new inequalities: on one hand, we firstly derive fast excess risk
bounds for empirical risk minimization in transductive learning under unbounded
losses. On the other hand, we establish high-probability bounds on the generaliza-
tion error for graph neural networks when using stochastic gradient descent which
improve the current state-of-the-art results.

1 INTRODUCTION

In the field of machine learning research, the analysis of stochastic behavior based on empirical
processes is an essential component of learning theory, particularly in understanding and enhanc-
ing algorithm performance. The supremum of empirical processes plays a crucial role in vari-
ous application scenarios, such as empirical process theory, Rademacher complexity theory, Vap-
nik–Chervonenkis theory, etc. In recent years, concentration inequalities for traditional suprema
of empirical processes are fully established fields and have been well studied in the literature such
as [36, 4, 5, 1, 24, 39, 12, 29]. All these inequalities based on the assumption of independent and
identically distributed random variables. However, in many practical contexts, the i.i.d. assumption
does not hold, such as when training and testing data are drawn from different distributions or when
there is temporal dependence among data points. Such scenarios are prevalent in fields like visual
recognition and computational biology, necessitating alternatives to Talagrand’s inequality.

Another significant context in learning theory is transductive learning which was firstly introduced
by [40]. In transductive learning, the training samples are independently and without replacement
drawn from a finite population, as opposed to the classic model of independent and with replacement
sampling. In this setting, the learning algorithm not only acquires a labeled training set but also
receives a set of unlabeled testing instances, with the goal of accurately predicting the labels of
the test points. This configuration naturally arises in numerous applications such as text mining,
computational biology, recommendation systems, visual recognition, and malware detection. In
these cases, the number of unlabeled samples often far exceeds that of labeled samples, and the cost
of labeling the unlabeled samples is high. Consequently, the development of transductive algorithms
that leverage unlabeled data to enhance learning performance has increasingly attracted attention.

In theoretical analysis of transduction learning, we need to sample without replacement, which leads
to big challenge and has not been fully understood yet. [13] firstly extended the global Rademacher
complexities into transductive learning and established the inequalities without replacement. [38]
derived two concentration inequalities using Hoeffding’s reduction method and the entropy method.
Nevertheless, both [13] and [38] considered only bounded function. In real scenarios, where the
maximum value of the function may be large and even unbounded, but the frequency of very large
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values tends to be small. To the best of our knowledge, the analysis in unbounded functions random
variables in transductive learning has not been studied yet.

In this paper, we focus on sampling without replacement with unbounded functions. We introduce
a novel concentration inequality for empirical process upper bounds under the scenario of sam-
pling without replacement, particularly for the case of unbounded functions. This represents the
first attempt to discuss generalization performance for unbounded functions under the condition of
sampling without replacement.

In Section 2, we provide the definition of the transductive learning set-up, including the basic no-
tations and the discussion of two related transductive learning settings introduced by [40]. We also
introduce the notations of the unbounded random variables used in the following sections.

Our new concentration inequalities for the case of unbounded functions are provided in Section 3,
which are, to the best of our knowledge, the first concentration inequalities for sampling without re-
placement for classes of unbounded functions. Furthermore, we discuss two significant applications
of the new inequalities: firstly, we derive high-probability fast excess risk bounds for unbounded
loss in transductive learning based on local uniform convergence in Subsection 4.1; secondly, in
Subsection 4.2, we provide generalization error bounds for Graph Neural Networks (GNNs) with
unbounded loss when utilizing Stochastic Gradient Descent (SGD) which is better than the state-of-
the-art work [37] when m = o(N2/5). All the proofs in this paper are given in Appendix.

Our contributions are summarized as follows:

• We derive two novel concentration inequalities for suprema of empirical processes when
sampling without replacement for classes of sub-Gaussian and sub-exponential functions,
which is the first in transductive learning.

• We provide fast excess risk bounds for transductive learning considering Bernstein condi-
tion with unbounded losses. To the best of our knowledge, existing results do not provide
fast rates in GNNs.

• Applying our inequalities, we obtain the generalization gap of GNNs for node classifica-
tion task for stochastic optimization algorithm. In more detail, we establish high probabil-
ity bounds of generalization error and test error under sub-Gaussian and sub-exponential
losses. Thanks for considering the variance information, our results are better than [37] in
some scenarios.

2 PRELIMINARIES FOR TRANSDUCTIVE LEARNING

In transductive learning, the learner is provided with m labeled training points and u unlabeled test
points. The objective of the learner is to obtain accurate predictions for the test points. Two different
settings of transductive learning were given by [41]. One assumes that both the training and test sets
are sampled i.i.d. from a same unknown distribution and the learner is provided with the labeled
training and unlabeled test sets. Another assumes that the set XN consisting of N arbitrary input
points without any other assumptions regrading its underlying source is given. Then we sample
m ≤ N objects Xm ⊆ XN uniformly without replacement from XN which makes the inputs in
Xm dependent. Finally, for each input x ∈ Xm, the corresponding output Y from some unknown
distribution P (Y |X). Thus we obtain all the labels for the set Xm, we denote the training set as
Sm = (Xm,Ym). The remaining unlabeled set Xu = XN\Xm, u = N −m is the test set.

In this paper we study the second setting, as pointed out by [41], any upper generalization bound in
the second setting can easily yield a bound for the first setting by just taking expectation. Note that
related work [10, 14, 38] considers a special case where the labels are obtained from some unknown
but deterministic function ϕ : X 7→ Y so that P (ϕ(x)|x) = 1. We follow their assumption in
this paper. Then the learner is a function model f(w) w.r.t. the parameters w from some fixed
hypothesis parameter space W which may not necessarily containing ϕ. The choice of the learner
based on both the labeled training set Sm and the unlabeled test set Xu. For brevity, we denote
ℓ(w;x) = c(f(w,x), ϕ(x)) w.r.t. the parameters w and the random variable x, where c : Y2 7→ R+

is the cost function to measure the error of predicted label and real label on a point X . Then we
can define the training error and test error of the learner as follows: R̂m(w) = 1

m

∑
x∈Xm

ℓ(w;x),
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Ru(w) = 1
u

∑
x∈Xu

ℓ(w;x), where hat emphasizes the fact that the training (empirical) error can
be computed from the data.

For technical reasons that will become clear later, we define the overall error to the union of the
training and test sets asRN (w) = 1

N

∑
x∈XN

ℓ(w;X). The main goal of the learner in transductive
setting is to select a proper parameters to minimizing the test error Ru(w), which we will denote
by w∗

u. Since the labels of the test set examples are unknown, we can’t compute Ru(w) and need
to estimate it based on the training sample Xm (and potentially using information from the features
Xu). A common choice is to replace the test error minimization by empirical risk minimization
ŵm = argminw∈W R̂m(w) and to use it as an approximation of w∗

u. For w ∈ W we define the
excess risk:

εu(w) = Ru(w)− inf
w′∈W

Ru(w
′) = Ru(w)−Ru(w

∗
u).

In the following sections, we establish some fundamental notations. We use ∥ · ∥2 to represent the
Euclidean norm of a vector and ∥ · ∥ to denote the spectral norm of a matrix. Throughout this study,
we let B(w′; r) ≜ {w : ∥w −w′∥2 ≤ r}, representing a ball with center vector w′ and radius r.
The gradient of the function ℓ with respect to its first argument is denoted as ∇ℓ. Next, we define
the Orlicz norm to describe unbounded random variables.
Definition 1 ([43]). For α > 0, define the function ψα : R+ → R+ with the formula ψα(x) =
exp(xα)− 1. For a random variable X , define the Orlicz norm

∥X∥ψα = inf{λ > 0 : Eψα(|X|/λ) ≤ 1}.

Furthermore, a random variable X ∈ R is sub-Gaussian if there exists K > 0, such that ∥X∥ψ2 ≤
K. A random variable X ∈ R is sub-exponential if there exists K > 0, such that ∥X∥ψ1 ≤ K. A
random variable X ∈ R is sub-Weibull if for ∀λ > 0, there exists K > 0, such that ∥X∥ψα ≤ K.
Remark 1. Orlicz norm is a classical norm. By choosing an appropriate α, we can define the
tail distribution of random variables to different degrees using the Orlicz norm. This paper mainly
discusses sub-Gaussian and sub-exponential distributions for loss functions. We use concentration
inequality of the sum for sub-Weibull distribution during some proofs in applications, therefore, we
provide this unified definition of unbounded random variables based on the Orlicz norm here.

3 CONCENTRATION INEQUALITIES WITH UNBOUNDED LOSSES

To gain the generalization error bounds for transductive learning with unbounded losses, we develop
the novel concentration inequalities for suprema of empirical processes when sampling without
replacement for unbounded functions.

We firstly introduce some necessary notations and settings. Let C = {c1, . . . , cN} be some fi-
nite set. For m ≤ N , let {X1, . . . , Xm} and {X ′

1, . . . , X
′
m} be sequence of random variables

sampled uniformly with and without replacement from C. Let F be a (countable1 class of func-
tions f : C → R, such that E[f(X1)] = 0 for all f ∈ F . It follows that E[f(X ′

1)] = 0 since
X1 and X ′

1 are identically distributed. Define the variance σ2 = supf∈F V[f(X1)]. Note that
σ2 = supf∈F E[f(X1)

2] = supf∈F V[f(X ′
1)]. Finally define that the supremum of the empirical

process for sampling with and without replacement

Qm = sup
f∈F

m∑
i=1

f(Xi), Q′
m = sup

f∈F

m∑
i=1

f(X ′
i).

Concentration inequalities for sampling with replacement Qm have undergone extensive investiga-
tion, including the exploration of Talagrand-type inequality [36] and its variations as presented by
[5, 4]. In the case of unbounded functions, certain studies, such as [1, 12] have established tail
bounds through truncation methods and Talagrand-type inequalities for suprema of bounded empiri-
cal processes. Nevertheless, as of the current date, no bounds for the suprema of empirical processes

1Note that all results can be translated to the uncountable classes, for instance, if the empirical process is
separable, meaning that F contains a dense countable subset. Details can be referred in page 314 of [3] or page
72 of [5]
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involving unbounded functions for sampling without replacement Q′
m have been established in the

literature.

Next, we will introduce the innovative concentration inequalities for the suprema of empirical pro-
cesses under the condition of sampling without replacement. These new results will be established
separately for sub-Gaussian and sub-exponential functions.
Theorem 1. (Concentration inequality when sampling without replacement for classes of sub-
Gaussian functions) Assume that for all c ∈ C, ∥ supf∈F |f(c)|∥ψ2

< ∞, for any ϵ > 0, we have
the following inequality that

P
{
Q′
m − (1 + η)E[Qm] ≥ ϵ

}
≤ 6 exp

− ϵ2

16(1 + β)mσ2 + 8C2
∥∥max1≤i≤m supf∈F f(Xi)

∥∥2
ψ2

 .

We also have that for any δ ∈ (0, 1), with probability at least 1− δ,

Q′
m ≤ (1 + η)E[Qm] +

√√√√√
16(1 + β)mσ2 + 8C2

∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f(Xi)

∥∥∥∥∥
2

ψ2

 log
6

δ
,

where η, β are some positive constants and C is a positive constants depending on η, β.
Theorem 2. (Concentration inequality when sampling without replacement for classes of sub-
exponential functions) Assume for all c ∈ C, ∥ supf∈F |f(c)|∥ψ1 <∞, for any ϵ > 0, we have the
following inequality that

P
{
Q′
m − (1 + η)E[Qm] ≥ ϵ

}
≤ 2 exp

− ϵ2

16(1 + β)mσ2 + 48C2
∥∥max1≤i≤m supf∈F f(Xi)

∥∥2
ψ1

 .

We also have that for any δ ∈ (0, 1), with probability at least 1− δ,

Q′
m ≤ (1 + η)E[Qm] +

√√√√√
16(1 + β)mσ2 + 48C2

∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f(Xi)

∥∥∥∥∥
2

ψ1

 log
2

δ
,

where η, β are some positive constants and C is a positive constants depending on η, β.

Remark 2. Although the appearance of E[Qm] may seem to be unexpected at first glance, it is usu-
ally desirable to control the concentration of a random variable around its expectation. Fortunately,
it has been demonstrated in [38] that for m = o(N2/5), the difference E[Qm]− E[Q′

m] is bounded
by

√
m. Consequently, our theorems can be employed to effectively manage the deviations of Q′

m
from its expectation E[Q′

m] at a fast rate.

In fact, we draw inspiration from the proof presented in [38] and use Hoeffding’s reduction method to
build the connection between the sequences of random variables sampling with and without replace-
ment. However, extending the results to the classes of sub-Gaussian and sub-exponential functions
presents challenges. On one hand, the classical truncation technique yields tail bounds, nonethe-
less we need to combine the sequences of random variables sampling with and without replacement
using moment generating functions while ensuring their convexity. This is crucial as Hoeffding’s
reduction method requires convexity. On the other hand, the introduction of the unbounded assump-
tion introduces an additional term, which complicates the construction of convex moment generating
functions (MGF) and the application of cheronff’s method.

4 GENERALIZATION BOUNDS FOR TRANSDUCTIVE LEARNING

Our concentration inequalities have broad applications and can serve as an important tool in learning
theory when considering sampling without replacement for classes of sub-exponential functions. In
this section, we will provide two examples to illustrate the risk bounds in transductive learning.

4
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4.1 FAST EXCESS RISK BOUNDS FOR TRANSDUCTIVE LEARNING WITH UNBOUNDED
LOSSES

We apply our newly concentration inequalities to give fast excess risk bounds for transductive learn-
ing on ERM with unbounded losses, which is, to the best of our knowledge, the first results. We
mainly follows the traditional technique called “local Rademacher complexity” developed by [2].
We introduced the definition of Rademacher complexity for completeness.
Definition 2 (Rademacher complexity [44]). For a function class F that consists of mappings from
Z to R, define

RF := Ex,v sup
f∈F

1

n

n∑
i=1

vif(xi) and RnF := Ev sup
f∈F

1

n

n∑
i=1

vif(xi),

as the Rademacher complexity and the empirical Rademacher complexity of F , respectively, where
{vi}ni=1 are i.i.d. Rademacher variables for which P(vi = 1) = P(vi = −1) = 1

2 .

Since Rademacher complexity could be bounded by a computable covering number of F via Dud-
ley’s integral bound [35], we give the definition of covering number for completeness as well.
Definition 3 (Covering number [44]). Assume (M,metr(·, ·)) is a metric space, and F ⊆ M. The
ε-convering number of the set F with respect to a metric metr(·, ·) is the size of its smallest ε-net
cover:

N (ε,F ,metr) = min{m : ∃f1, . . . , fm ∈ F such that F ⊆ ∪mj=1B(fj , ε)},

where B(f, ε) := {f̃ : metr(f̃ , f) ≤ ε}.

To calculate the covering number, we also need the following assumption.
Assumption 1 (Entropy bounds). The parameter class W is separable and there exist C ≥ 1,K ≥ 1
such that ∀ε ∈ (0,K], the L2(P)-covering numbers and the universal metric entropies of G are
bounded as logN (ε,G, L2(P)) ≤ C log (K/ε).
Remark 3. Assumption 1 was widely adopted in fast learning rates in statistic learning [31, 30, 11].
In fact, if W has finite VC-dimension, then Assumption 1 is satisfied [3, 6]. Some literature such as
[23] assume that the envelope function is sub-exponential, which is a much stronger assumption.

It will be convenient to introduce the following operators, mapping functions f defined on XN to
R:

Ef =
1

N

N∑
i=1

f(xi),xi ∈ XN .

Assume that there is a function w∗
N ∈ W satisfying RN (w∗

N ) = infw∈W RN (w). Define the
excess loss class F∗ = {f : f(x) = ℓ(w;x)− ℓ(w∗

N ;x),w ∈ W}.
Theorem 3. Assume that there is a constant B > 0 such that for every f ∈ F∗ we have Ef2 ≤
B · Ef . Suppose Assumptions 1 hold and the objective function ℓ(·; ·) is sub-Gaussian. For any
δ ∈ (0, 1), with probability 1− δ,

εu(ŵm) = O

(
N

mu

(
logm+ log u+

N log 1
δ

m
+
N log 1

δ

u
+

√
logN log

1

δ

))
.

Theorem 4. Assume that there is a constant B > 0 such that for every f ∈ F∗ we have Ef2 ≤
B · Ef . Suppose Assumptions 1 hold and the objective function ℓ(·; ·) is sub-exponential. For any
δ ∈ (0, 1), with probability 1− δ,

εu(ŵm) = O

(
N

mu

(
logm+ log u+

N log 1
δ

m
+
N log 1

δ

u
+

√
log2N log

1

δ

))
.

Remark 4. By utilizing variance information and introducing the Bernstein condition, we present
the first results for fast learning rates under unbounded losses. Applying our concentration inequali-
ties under unbounded conditions to local Rademacher method is not a straightforward task. We need
to skillfully separate variance term and the Orlicz norm term through inequalities while constructing
a suitable partition. Similarly, when employing the localized approach, we need to create a slightly
modified version for partition Emf which is affected by the Hoeffding’s reduction method applied
during the proof of our concentration inequalities given in Section 3.
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4.2 IMPROVED BOUNDS OF GNNS WITH SGD

GNNs have achieved great success in practice, but research on the generalization performance of
GNNs for node classification remains limited. In the real world, training nodes are sampled without
replacement from the entire node set, and test nodes remain visible during training [13, 32], which
perfectly fits the transductive learning setting.

The current state-of-the-art work on generalization error for graph node classification [37] was based
on the concentration inequality for transductive learning provided by [13]. In this subsection, we
aim to obtain a tighter generalization upper bound by applying our new concentration inequalities
introduced in this paper.

Let’s introduce some notations for GNNs firstly. Consider an undirected graph G = {V, E}, where
V represents a set of nodes and E represents the edges between these nodes. The graph has a total of
n = |V| nodes. Each node corresponds to an instance denoted as zi = (xi, yi), comprising a feature
vector xi and a label yi from a space Z = X × Y .

Let X denote the feature matrix, where the i-th row Xi∗ represents the feature xi. The adjacency
matrix is represented as A, and the diagonal degree matrix is denoted as D. Specifically, the diago-
nal entry Dii is computed as the sum of the weights of the edges connected to node i. We introduce
the normalized adjacency matrix Ã = (D+In)

− 1
2 (A+In)(D+In)

− 1
2 , where In is the identity ma-

trix of size n×n, and
√
|Y| corresponds to the square root of the number of categories. This matrix

accounts for self-loops and captures the graph’s normalized connectivity structure, aiding in subse-
quent analyses. We limit the scope of the learner to a given GNN and let w be its learnable parame-
ters. Given the isomorphism between Rp×q and Rpq , our analysis in this work focuses on the more
concise vector space. To achieve this, we introduce a unified vector w = [vec [W1] ; . . . ; vec [WH ]]
to represent the collection {Wh}Hh=1, where vec[·] denotes the vectorization operator that transforms
a given matrix into a vector. In other words, vec [W] = [W∗1; . . . ;W∗q] for W ∈ Rp×q . In this
context, W∗i represents the i-th column of W.

In this section, we apply the concentration inequalities presented in this paper to derive improved
rates of the current optimal results [37] for GNNs with SGD (Algorithm 1). The initialization weight
of the model is denoted as w(1). We use bg to represent the supremum of the gradient when evaluated
at the initialized parameters, defined as bg = supz∈Z

∥∥∇ℓ(w(1); z)
∥∥
2
. The activation function is

represented by ω(·).

We notice that since the full data XN is given, then RN (w) = 1
N

∑N
i=1 ℓ(w;xi) is not a random

variable. Also, for any training sample Xm, the test error Ru(w) can be expressed in terms of
RN (w) and the training error R̂m(w) as follows:

Ru(w) =
1

u

m+u∑
i=m+1

ℓ(w;xi) =
1

u

(
(m+ u)RN (w)−

m∑
i=1

ℓ(w;xi)

)
=

m+ u

u
RN (w)− m

u
R̂m(w).

Thus, for any fixed w ∈ W , the quantity Ru(w) − R̂m(w) = N
u (RN (w) − R̂m(w)), for any ŵ,

we have

Ru(ŵ)− R̂m(ŵ) ≤ sup
w∈W

Ru(w)− R̂m(w) =
N

u
sup
w∈W

RN (w)− R̂m(w).

Note that for any fixed w ∈ W , Ex[RN (w)− ℓ(w;x)] = RN (w)− Exℓ(w;x) = 0, thus, we can
use the transductive setting described in Section 3. Considering the function class Fw := {fw :
fw(x) = RN (w) − ℓ(w;x),w ∈ W} associated with W . For fixed w, RN (w) is not random, at
the same time, centering random variable does not change its variance, so we have

σ2
W = sup

fw∈Fw

V[fw(x)] = sup
w∈W

V[ℓ(w;x)] = sup
w∈W

(
1

N

∑
x∈ZN

(ℓ(w;x)−RN (w))2

)
.

Using Theorem 1 and 2, we can obtain the results that hold without any other assumptions, expect
for the classes of sub-Gaussian or sub-exponential functions on the learning problem

sup
w∈W

(RN (w)− R̂m(w)) ≤ (1 + η)Em + 2

√√√√(4(1 + β)σ2
W

m
+

2C2∥maxx supf∈Fw
fw(x)∥2ψ2

m2

)
log

6

δ
,

6
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Algorithm 1 SGD for Transductive Learning

Input: Initial parameter w(1), step sizes {ηt}, training set {xi}m+u
i=1 ∪ {yi}mi=1.

for t = 1 to T do
Randomly draw jt from the uniform distribution over the set {j : j ∈ [m]}.
Update parameters by

w(t+1) = w(t) − ηt∇ℓ(w(t);xjt).
end for

and

sup
w∈W

(RN (w)− R̂m(w)) ≤ (1 + η)Em + 4

√√√√( (1 + β)σ2
W

m
+

3C2∥maxx supf∈Fw
fw(x)∥2ψ1

m2

)
log

6

δ
,

where let {ξ1, . . . , ξn} be random variables sampled with replacement from XN and denote

Em = E

[
sup
w∈W

(
RN (w)− 1

m

m∑
i=1

ℓ(w; ξi)

)]
.

Next, we need to derive the upper bounds of σ2
W , Em and ∥maxx supf∈Fw

fw(x)∥2ψα , α = 1 or 2
in GNNs with SGD. We present the assumptions only used in this subsection.

Assumption 2. Assume that there exists a constant cX > 0 such that ∥x∥2 ≤ cX holds for all
x ∈ X and there exists a constant cW > 0 such that ∥Wh∥ ≤ cW , h ∈ [H] for w ∈ W .

Remark 5. Assumption 2 necessitates boundness of input features as discussed by [42] and the
boundness of parameters during the training process, which is a common consideration in the gener-
alization analysis of Graph Neural Networks (GNNs) [16, 28, 9, 15]. This assumption play a crucial
role in the analysis of Lipschitz continuity and Hölder smoothness of the objective with respect to
the parameters w.

Assumption 3. Assume that the activation function ω(·) is α̃-Höder smooth. To be specific, let
P > 0 and α̃ ∈ (0, 1], for all u,v ∈ Rd,

∥∇ω(u)−∇ω(v)∥2 ≤ P∥u− v∥α̃2 .

Remark 6. It can be established that Assumption 3 leads to the Lipschitz continuity of the activation
function when α̃ = 0. Furthermore, α̃ = 1 implies the smoothness of the activation function. As a
result, Assumption 3 stands as notably milder in comparison to the assumption found in prior works
[42, 9], which mandates the activation function’s smoothness. In order to facilitate analysis without
introducing a significant disparity between theory and practical application, we often use modified
ReLU function

ω(x) =


0, x ≤ 0,

xq, 0 < x ≤
(

1
q

) 1
q−1

,

x−
(

1
q

) 1
q−1

+
(

1
q

) q
q−1

, x >
(

1
q

) 1
q−1

.

This modified function, controlled by the hyperparameter q ∈ (1, 2], not only satisfies Assumption 3
but also maintains an acceptable approximation to the vanilla ReLU function.

Lemma 1 (Proposition 4.1 in [37]). Suppose that Assumption 2 and 3 hold. Denote by F a specific
GNN, for any w,w′ ∈ W and x ∈ XN , the objective ℓ(w;x) satisfies

|ℓ(w;x)− ℓ(w′;x)| ≤ LF∥w −w′∥2,

and

∥∇ℓ(w;x)−∇ℓ(w′;x)∥ ≤ PF max{∥w −w′∥α̃2 , ∥w −w′∥2},

with constant LF and PF .
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Remark 7. [37] demonstrates that several widely used structured networks in GNNs such as GCN
[20], GCNII [7], SGC [45], APPNP [17] and GPR-GNN [8] satisfy Lemma 1. We leverage the
properties of these network structures in Lemma 1 to derive improved upper bounds using our con-
centration inequalities instead of [13].

The following two assumptions are introduced to obtain the optimization error.
Assumption 4. Assume that there exist a constant G > 0 such that for all x ∈ Z

√
ηt∥∇ℓ(wt;x)∥2 ≤ G

holds for any t ∈ N, where {ηt}Tt=1 is learning rates.
Assumption 5. Assume that there exists a constant σ0 > 0 such that for ∀t ∈ N+, the following
inequality holds

Ejt[∥∇ℓ(w;xjt)∥2] ≤ σ2
0 .

Remark 8. Assumption 4 [26, 27] requires a bound on the product of the gradient and the square
root of the step sizes. This condition is weaker than the commonly employed bounded gradient
assumption [18, 21], as the learning rate naturally approaches zero throughout the iteration pro-
cess. Assumption 5 requires the boundness of variances of stochastic gradients, which is a standard
assumption in stochastic optimization studies [21, 26, 27].

Now, we can derive the risk bounds of GNNs with SGD.
Theorem 5. Suppose Assumptions 2, 3, 4, and 5 hold, and assume the objective function ℓ(·; ·) be
sub-Gaussian. Suppose that the step sizes {ηt} satisfies ηt = 1

t+t0
such that t0 ≥ max{(2P )1/α, 1}.

For any δ ∈ (0, 1), with probability 1− δ,

(a). If α ∈ (0, 12 ), we have

Ru(w
(T+1)
1 )− R̂m(w(T+1)) = O

(
LF

√
N

u
log

1
2 (T )T

1−2α
2 log

(
1

δ

)
+
N log

(
1
δ

)
u
√
m

)
.

(b). If α = 1
2 , we have

Ru(w
(T+1))− R̂m(w(T+1)) = O

(
LF

√
N

u
log(T ) log

(
1

δ

)
+
N log

(
1
δ

)
u
√
m

)
.

(c). If α ∈ ( 12 , 1], we have

Ru(w
(T+1))− R̂m(w(T+1)) = O

(
LF

√
N

u
log

1
2 (T ) log

(
1

δ

)
+
N log

(
1
δ

)
u
√
m

)
.

Remark 9. Similar result for sub-exponential loss functions is given in Appendix C. Generally,
comparing our bound with [37], their bound is of order O

((
1
m + 1

u

)√
m+ u

)
after the LF but our

bounds are of order O
(√

m+u
u

)
, at the same time, we have an extra term m+u

u
√
m

, which is introduced
due to the variance information. Notice that it’s not as if they didn’t have the second term, because
their first term is larger than the second one and so the final magnitude doesn’t change. Our results
are better whenm = o(N2/5). We can take a more visual example to demonstrate the advantages of
our bounds. For m = Θ(N1/5), our bound is of order O

(
1√
m

)
but their bound is of order O

(
m3
)
,

which fails to provide a reasonable generalization guarantee.

Similarly, we can also derive a upper bound of the test error under PL condition following proof
trajectory of [37].
Assumption 6 (PL-condition). Suppose that there exists a constant µ such that for all w ∈ W ,

R̂m(w)− R̂m(ŵ∗) ≤ 1

2µ
∥∇R̂m(w)∥2,

holds for the given set Xm from XN .
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Corollary 1. Suppose Assumptions 2, 3, 4, and 5 hold and assume the objective function ℓ(·; ·)
be sub-Gaussian. Suppose that the learning rate {ηt} satisfies ηt = 2

µ(t+t0)
such that t0 ≥

max{ 2
µ (2P )

1
α , 1}. For any δ ∈ (0, 1), with probability 1− δ,

(a). If α ∈ (0, 12 ), we have

Ru(w
(T+1))− R̂m(w∗) = O

(
LF

√
N

u
log

1
2 (T )T

1
2−α log

(
1

δ

)
+
N log

(
1
δ

)
u
√
m

+
1

Tα

)
,

(b). If α = 1
2 , we have

Ru(w
(T+1))− R̂m(w∗) = O

(
LF

√
N

u
log(T ) log

(
1

δ

)
+
N log

(
1
δ

)
u
√
m

+
1

Tα

)
.

(c). If α ∈ ( 12 , 1), we have

Ru(w
(T+1))− R̂m(w∗) = O

(
LF

√
N

u
log

1
2 (T ) log(1/δ) +

N log
(
1
δ

)
u
√
m

+
1

Tα

)
.

(d). If α = 1, we have

Ru(w
(T+1))−Ru(w

∗) = O
(
LF

√
N

u
log

1
2 (T ) log(1/δ) +

N log
(
1
δ

)
u
√
m

+
log(T ) log3(1/δ)

T

)
.

Remark 10. For completeness, we present Corollary 1 for sub-Gaussian and Corollary 2 (See Ap-
pendix C.2) for sub-exponential. There is nothing special about the proofs, which simply combine
Theorem 5 and Theorem 11 with existing optimization results. The results under the sub-exponential
distribution are provided in Appendix 4.2. It is worth point out that all the popular neural network
structures introduced in [37] can be applied to our results to obtain bounds that make sense.

Our work in this section differs significantly from that of [37]. They used the concentration inequal-
ities based on [13] to derive generalization bounds, while proving that certain modern neural net-
work structures satisfy Lipschitz continuity under their assumptions. In contrast, we employ newly
proposed concentration inequalities that relax the boundness condition and also consider variance
information which obtain improved rates under the same settings.

While previous papers have utilized technologies based on concentration inequalities proposed by
[13] and then bound the transductive Rademacher complexity, deriving the generalization error us-
ing our new inequality is not straightforward. We need to derive the upper bounds for σ2

w, Em, and
∥maxx supf∈Fw

fw(x)∥2ψα , respectively. σ2
w needs to be bounded using concentration inequalities

for unbounded distributions. For the sub-exponential distribution, we even need to introduce the
concentration inequalities under the sub-Weibull distribution to address the issue. Em is introduced
due to the Hoeffding’s reduction method and is distinct from the traditional gap between the pop-
ulation and the samples. This requires us to convert it into Rademacher complexity and then use
the covering number to obtain the upper bound. The term ∥maxx supf∈Fw

fw(x)∥2ψα is introduced
due to the unbounded assumption. We utilize pisier’s inequality [34] to present the max operator
before the Orlicz norm.

5 CONCLUSION

In this paper, we focus on transductive learning settings. Firstly, we introduce two newly concentra-
tion inequalities for the suprema of empirical processes sampled without replacement for unbounded
functions. Using our inequalities, we derive the first fast risk bounds for ERM in transductive learn-
ing under bounded losses. On the other hand, we provide improved risk bounds for GNNs with
SGD, which is better than the state-of-the-art work [37] when m = o(N2/5).

9
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[6] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learn-
ing theory. In Advanced Lectures on Machine Learning, 2004. URL https://api.
semanticscholar.org/CorpusID:669378.

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In International conference on machine learning, pp. 1725–
1735. PMLR, 2020.

[8] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pager-
ank graph neural network. In International Conference on Learning Representations, 2020.

[9] Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in
training graph convolutional networks. Advances in Neural Information Processing Systems,
34:9936–9949, 2021.

[10] Philip Derbeko, Ran El-Yaniv, and Ron Meir. Explicit learning curves for transduction and ap-
plication to clustering and compression algorithms. Journal of Artificial Intelligence Research,
22:117–142, 2004.

[11] Vu C. Dinh, Lam Si Tung Ho, Binh T. Nguyen, and Duy M. H. Nguyen. Fast learning rates
with heavy-tailed losses. In NIPS, pp. 505–513, 2016.

[12] Sjoerd Dirksen. Tail bounds via generic chaining. Electron. J. Probab, 20(53):1–29, 2015.

[13] Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applications.
In Learning Theory, 20th Annual Conference on Learning Theory, volume 4539, pp. 157–171.
Springer, 2007.

[14] Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applications.
Journal of Artificial Intelligence Research, 35:193–234, 2009.

[15] Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. Advances in Neural Information
Processing Systems, 34:27043–27056, 2021.

[16] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pp. 3419–3430.
PMLR, 2020.

[17] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
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A ADDITIONAL DEFINITIONS AND LEMMATA

Theorem 6 ([19]). Let {U1, . . . , Um} and {W1, . . . ,Wm} be sampled uniformly from a finite set
of d-dimensional vectors {v1, . . . ,vN} ⊂ Rd with and without replacement, respectively. Then, for
any continuous and convex function F : Rd → R, the following holds:

E

[
F

(
m∑
i=1

Wi

)]
≤ E

[
F

(
m∑
i=1

Ui

)]
.

Lemma 2 ([38]). Let x = (x1, . . . , xd)
T ∈ Rd. Then the following function is convex for all λ > 0

F (x) = exp

(
λ sup
i=1,...,d

xi

)
.

Theorem 7 (Theorem 4 via Pisier’s inequality [34]). For independent real random variables
Yi, . . . , Yn, we have the following inequality that∥∥∥∥max

i≤n
Yi

∥∥∥∥
ψα

≤ Kαmax
i≤n

∥Yi∥ψα log
1/α n,

where Kα is a positive constant.
Definition 4 (Rademacher complexity [44]). For a function class F that consists of mappings from
Z to R, define

RF := Ex,v sup
f∈F

1

n

n∑
i=1

vif(xi) and RnF := Ev sup
f∈F

1

n

n∑
i=1

vif(xi),

as the Rademacher complexity and the empirical Rademacher complexity of F , respectively, where
{vi}ni=1 are i.i.d. Rademacher variables for which P(vi = 1) = P(vi = −1) = 1

2 .
Definition 5 (Covering number [44]). Assume (M,metr(·, ·)) is a metric space, and F ⊆ M. The
ε-convering number of the set F with respect to a metric metr(·, ·) is the size of its smallest ε-net
cover:

N (ε,F ,metr) = min{m : ∃f1, . . . , fm ∈ F such that F ⊆ ∪mj=1B(fj , ε)},

where B(f, ε) := {f̃ : metr(f̃ , f) ≤ ε}.
Lemma 3 (Dudley’s integral bound [35]). Given r > 0 and class F that consists of functions defined
on Z ,

Rn{f ∈ F : Pn[f2] ≤ r} ≤ inf
ε0>0

{
4ε0 + 12

∫ √
r

ε0

√
logN (ε,F , L2(Pn))

n
dε

}
.

Definition 6 ([43]). A random variable X is sub-Weibull random variables with taill parameter θ
when for any x > 0,

P(X ≥ x) = exp(−bx1/θ), for some b > 0, θ > 0.

Lemma 4. (Concentration of the sum for sub-Weibull distribution [43]) Let that X1, . . . , Xn be
identically distributed sub-Weibull random variables with tail parameter θ. Then, for all x ≥ nKθ,
we have

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ x

)
≤ exp

(
−
(

x

nKθ

)1/θ
)
,

for some constant Kθ dependent on θ.
Theorem 8 ([1]). Let X1, . . . , Xm be independent random variables with values in a measurable
space (S,B) and let F be a countable class of measurable functions f : S → [−a, a], such that for
all i, Ef(Xi) = 0. Consider the random variable

Q = sup
f∈F

m∑
i=1

f(Xi)

13
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and

σ2 = sup
f∈F

Ef(X1)
2.

Then, for all 0 < η ≤ 1, β > 0 there exists a constant C = C(η, β), such that for all t > 0,

P(Q− (1 + η)EQ ≥ t) ≤ exp

(
− t2

2(1 + β)mσ2

)
+ exp

(
− t

Ca

)
,

and

P(Q− (1− η)EQ ≤ −t) ≤ exp

(
− t2

2(1 + β)mσ2

)
+ exp

(
− t

Ca

)
.

Theorem 9. (Tail inequality for suprema of empirical process corresponding to classes of sub-
Gaussian functions) LetX1, . . . , Xm be independent random variables with values in a measurable
space (S,B) and let F be a countable class of measurable functions f : S → R. Assume that for
every f ∈ F and every i, Ef(Xi) = 0 and ∥ supf |f(Xi)|∥ψ2 <∞. Let

Q = sup
f∈F

m∑
i=1

f(Xi)

and

σ2 = sup
f∈F

Ef(Xi)
2.

Then, for all 0 < η < 1 and β > 0, there exists a constant C = C(η, β), such that for all
epsilon > 0,

P(Q− (1 + η)EQ ≥ t) ≤ exp

(
− t2

2(1 + β)mσ2

)
+ 3 exp

(
−
(

t

C∥maxi supf∈F f(Xi)∥ψ2

)2
)
,

and

P(Q− (1− η)EQ ≤ −t) ≤ exp

(
− t2

2(1 + β)mσ2

)
+ 3 exp

(
−
(

t

C∥maxi supf∈F f(Xi)∥ψ2

)2
)
.

Theorem 10. (Tail inequality for suprema of empirical process corresponding to classes of
sub-exponential functions) Let X1, . . . , Xm be independent random variables with values in a
measurable space (S,B) and let F be a countable class of measurable functions f : S → R. Assume
that for every f ∈ F and every i, Ef(Xi) = 0 and ∥ supf |f(Xi)|∥ψ1

<∞. Let

Q = sup
f∈F

m∑
i=1

f(Xi)

and

σ2 = sup
f∈F

Ef(Xi)
2.

Then, for all 0 < η < 1 and β > 0, there exists a constant C = C(η, β), such that for all
epsilon > 0,

P(Q− (1 + η)EQ ≥ t) ≤ exp

(
− t2

2(1 + β)mσ2

)
+ 3 exp

(
− t

C∥maxi supf∈F f(Xi)∥ψ1

)
,

and

P(Q− (1− η)EQ ≤ −t) ≤ exp

(
− t2

2(1 + β)mσ2

)
+ 3 exp

(
− t

C∥maxi supf∈F f(Xi)∥ψ1

)
.

The proofs of Theorem 9 and Theorem 10 are similar with [1], which under the assumption that
the summands have finite ψα Orlicz norm with α ∈ (0, 1) and they analyze the random variable
Q = supf∈F |

∑m
i=1 f(Xi)|. However, in this paper, we consider Q = supf∈F

∑m
i=1 f(Xi). In

consequence we give the sub-gaussian and sub-exponential version (α = 1, 2) for the sake of com-
pleteness here.
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Proof of Theorem 9 and Theorem 10. Without loss of generality, we assume that

t/∥ max
1≤i≤m

sup
f∈F

f(Xi)∥ψα > K(α, η, β), (1)

otherwise we can make the theorem trivial by choosing the constant C = C(α, η, β) to be large
enough. The conditions on the constant K(α, η, β) will be imposed later in the following proof.

Let ε = ε(β) > 0 which will be determined later and for all f ∈ F consider the truncated functions
f1(x) = f(x)1{supf∈F |f(x)|≤ρ} (the truncation level ρ will be determined and fixed later). Define
the functions f2(x) = f(x) − f1(x) = f(x)1{supf∈F |f(x)|>ρ}. Let Fi = {fi : f ∈ F}. Then we
have

Q = sup
f∈F

m∑
i=1

f(Xi) ≤ sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi)) + sup
f2∈F2

m∑
i=1

(f2(Xi)− Ef2(Xi)), (2)

and

Q ≥ sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi))− sup
f2∈F2

m∑
i=1

(f2(Xi)− Ef2(Xi)), (3)

where the above inequalities satisfy because of the fact that Ef1(Xi) +Ef2(Xi) = 0 for all f ∈ F .

Similarly, by Jensen’s inequality, we have

E sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi))− 2E sup
f2∈F2

m∑
i=1

f2(Xi)

≤EQ

≤ sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi)) + 2E sup
f2∈F2

m∑
i=1

f2(Xi).

(4)

Denoting

A = E sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi))

and

B = E sup
f2∈F2

m∑
i=1

f2(Xi).

Combining (2) and (4), we get

P(Q− (1 + η)EQ ≥ t)

≤P

(
sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi)) ≥ (1 + η)EQ+ (1− ε)t

)

+ P

(
sup
f2∈F2

m∑
i=1

(f2(Xi)− Ef2(Xi)) ≥ εt

)

≤P

(
sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi)) ≥ (1 + η)A− 4B + (1− ε)t

)

+ P

(
sup
f2∈F2

m∑
i=1

(f2(Xi)− Ef2(Xi)) ≥ εt

)
.

(5)
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Similarly, combing (3) and (4), we have

P(Q− (1− η)EQ ≤ −t)

≤P

(
sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi)) ≤ (1− η)EQ− (1− ε)t

)

+ P

(
sup
f2∈F2

m∑
i=1

(f2(Xi)− Ef2(Xi)) ≥ εt

)

≤P

(
sup
f1∈F1

m∑
i=1

(f1(Xi)− Ef1(Xi)) ≥ (1− η)A+ 2B − (1− ε)t

)

+ P

(
sup
f2∈F2

m∑
i=1

(f2(Xi)− Ef2(Xi)) ≥ εt

)
.

(6)

Next, we need to choose proper truncation level ρ in a way, which would allow to bound the first
summands on the right-hand sides of (5) and (6) with Theorem 8.

Let us set

ρ = 8E max
1≤i≤m

sup
f∈F

f(Xi) ≤ Kα

∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f(Xi)

∥∥∥∥∥
ψα

. (7)

Notice that by the Chebyshev inequality and the definition of the class F2, we have

P

(
max
k≤m

sup
f∈F

k∑
i=0

f2(Xi) > 0

)
≤ P

(
max
i

sup
f
f(Xi) > ρ

)
≤ 1/8.

Thus by the Hoffmann-Jorgensen inequality [25], we get

B = E sup
f2∈F2

m∑
i=1

f2(Xi) ≤ 8E max
1≤i≤m

sup
f∈F

f(Xi). (8)

In consequence

E sup
f2∈F2

m∑
i=1

(f2(Xi)− Ef2(Xi)) ≤ 16E max
1≤i≤m

sup
f∈F

f(Xi) ≤ Kα

∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f(Xi)

∥∥∥∥∥
ψα

.

Thus, we have∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f2(Xi)− Ef2(Xi)

∥∥∥∥∥
ψα

≤

∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f2(Xi)

∥∥∥∥∥
ψα

+

∥∥∥∥∥E max
1≤i≤m

sup
f∈F

f2(Xi)

∥∥∥∥∥
ψα

≤ 2

∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f2(Xi)

∥∥∥∥∥
ψα

≤ 2

∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f(Xi)

∥∥∥∥∥
ψα

,

where the above inequality holds because ∥ · ∥ψα (α = 1, 2) is a standard norm. Then, by Theorem
6.21 of [25], we obtain∥∥∥∥∥ sup

f2∈F2

m∑
i=1

(f2(Xi)− Ef2(Xi))

∥∥∥∥∥
ψα

≤ Kα

∥∥∥∥∥ max
1≤i≤m

sup
f∈F

f(Xi)

∥∥∥∥∥
ψα

,
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which implies

P

(
sup
f2∈F2

m∑
i=1

f2(Xi)− Ef2(Xi) ≥ εt

)
≤ 2 exp

(
−

(
εt

K
∥∥max1≤i≤n supf∈F f(Xi)

∥∥
ψα

)2)
. (9)

Next, let us choose ε < 1/10 and such that

(1− 5ε)−2(1 + β/2) ≤ (1 + β). (10)

Since ε is a function of β, in view of (7) and (8), we can choose the constant K(α, η, β) in (1) to be
large enough to assure that

B ≤ 8E max
1≤i≤m

sup
f∈F

f(Xi) ≤ εt.

Notice that for every f ∈ F , we have E(f1(Xi)− Ef1(Xi))
2 ≤ Ef1(Xi)

2 ≤ Ef(Xi)
2.

Thus, using inequalities (5), (6), (9) and Theorem 8 (applied for η and β/2), we obtain

P(Q− (1 + η)EQ ≥ t), P(Q− (1− η)EQ ≤ −t)

≤ exp

(
− t2(1− 5ε)2

2(1 + β/2)mσ2

)
+ exp

(
− (1− 5ε)t

K(α, η, β)ρ

)
+ 2 exp

(
−
(

εt

Kα∥max1≤i≤m supf∈F f(Xi)∥ψα

)α)
.

Since ε < 1/10, using (7) we can see that for all t with K(α, η, β) large enough, we have

exp

(
− (1− 5ε)t

K(α, η, β)ρ

)
, exp

(
−
(

εt

Kα∥max1≤i≤m supf∈F f(Xi)∥ψα

)α)

≤ exp

(
−

(
t

C̃(α, η, β)∥max1≤i≤m supf∈F f(Xi)∥ψα

)α)
.

Therefore, for all t,

P(Q− (1 + η)EQ ≥ t), P(Q− (1− η)EQ ≤ −t)

≤ exp

(
− t2(1− 5ε)2

2(1 + β/2)mσ2

)
+ 3 exp

(
−

(
t

C̃(α, η, β)∥max1≤i≤m supf∈F f(Xi)∥ψα

)α)
.

Finally, we use (10) to finish the proof.

Lemma 5. (Moment-generating function inequality for suprema of empirical process corre-
sponding to classes of sub-Gaussian functions) Let X and Q be defined in Theorem 9, then for all
0 < η < 1 and β > 0, there exists a constant C = C(η, β), such that

E exp(λ(Q− (1 + η)EQ)) ≤ exp
(
4(1 + β)mσ2λ2

)
+ 3 exp

2

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

2
 .

Lemma 6. (Moment-generating function inequality for suprema of empirical process corre-
sponding to classes of sub-exponential functions) Let X and Q be defined in Theorem 10, then
for all 0 < η < 1 and β > 0, there exists a constant C = C(η, β), such that

E exp(λ(Q− (1 + η)EQ)) ≤ exp
(
4(1 + β)mσ2λ2)+ exp

(
12

(
Cλ

∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥
ψ1

)2)
.
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Proof of Lemma 5. In the proof we use the notation ≲ between two positive sequences (ak)k and
(bk)k, writing ak ≤ bk, if there exists a constant C > 0 such that for all integer k, ak ≤ Cbk.

According to Theorem 9, we have

P(|Q− (1 + η)EQ| ≥ t) ≤ 2 exp

(
− t2

2(1 + β)mσ2

)
+ 6 exp

(
− t2

C2∥maxi supf∈F |f(Xi)|∥2ψ2

)
.

Let the random variable Y = Q− (1 + η)EQ we have that for any k ≥ 1,

E[|Y |k]

=

∫ ∞

0

P
(
|Y |k > t

)
dt

=

∫ ∞

0

P
(
|Y | > t1/k

)
dt

≤
∫ ∞

0

2 exp

(
− t2/k

2(1 + β)mσ2

)
dt+

∫ ∞

0

6 exp

(
− t2/k

C2∥maxi supf∈F f(Xi)∥2ψ2

)
dt

=
(
2(1 + β)mσ2

)k/2
k

∫ ∞

0

e−uuk/2−1du+ 3k

C ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

k ∫ ∞

0

e−vvk/2−1dv

=
(
2(1 + β)mσ2

)k/2
kΓ(k/2) + 3k

C ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

k

Γ(k/2),

where we denote u = t2/k

2(1+β)mσ2 and v = t2/k

C2∥maxi supf∈F |f(Xi)|∥2
ψ2

in the third equality.

Next, we use the Taylor expansion of the exponential function as follows. For λ > 0, we have

E exp(λY )

=1 +

∞∑
k=2

λkE[|Y |k]
k!

≲1 +

∞∑
k=2

(
2(1 + β)mσ2λ2

)k/2
kΓ(k/2) + 3k(Cλ∥maxi supf∈F f(Xi)∥ψ2)

kΓ(k/2)

k!

=1 +

∞∑
k=1

(
2(1 + β)mσ2λ2

)k
2kΓ(k)

(2k)!
+

∞∑
k=1

(
2(1 + β)mσ2λ2

)k+1/2
(2k + 1)Γ(k + 1/2)

(2k + 1)!

+

∞∑
k=1

6k(Cλ∥maxi supf∈F f(Xi)∥ψ2
)2kΓ(k)

k!

+

∞∑
k=1

3(2k + 1)(Cλ∥maxi supf∈F f(Xi)∥ψ2)
2k+1Γ(k + 1/2)

k!

≤1 +
(
2 +

√
2(1 + β)mσ2λ2

) ∞∑
k=1

(
2(1 + β)mσ2λ2

)k
k!

(2k)!

+

6 + Cλ

∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

 ∞∑
k=1

(Cλ∥maxi supf∈F f(Xi)∥ψ2
)2kk!

(2k)!
,

where the second equality satisfies because of commutative property of positive convergent series.
This implies that
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E exp(λY )

≲1 +

(
1 +

√
(1 + β)mσ2λ2

2

) ∞∑
k=1

(
2(1 + β)mσ2λ2

)k
(2k)!

+

(
3 +

Cλ
∥∥maxi supf∈F f(Xi)

∥∥
ψ2

2

) ∞∑
k=1

(Cλ∥maxi supf∈F f(Xi)∥ψ2
)2k

(2k)!

= exp
(
2(1 + β)mσ2λ2

)
+

√
(1 + β)mσ2λ2

2
(exp

(
2(1 + β)mσ2λ2

)
− 1)

+
Cλ
∥∥maxi supf∈F f(Xi)

∥∥
ψ2

2

exp


Cλ∥∥∥∥∥max

i
sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

2
− 1


+ 3 exp


Cλ∥∥∥∥∥max

i
sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

2


≤ exp
(
4(1 + β)mσ2λ2

)
+ 3 exp

2

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

2
 ,

where the first inequality follows from the inequality that 2(k!)2 ≤ (2k)!.

The proof is complete.

Proof of Lemma 6. According to Theorem 10, we have

P(|Q− (1 + η)EQ| ≥ t) ≤ 2 exp

(
− t2

2(1 + β)mσ2

)
+ 6 exp

(
− t

C∥maxi supf∈F |f(Xi)|∥ψ1

)
.

Similarly, let the random variable Y = Q− (1 + η)EQ we have that for any k ≥ 1,

E[|Y |k]

=

∫ ∞

0

P
(
|Y |k > t

)
dt

=

∫ ∞

0

P
(
|Y | > t1/k

)
dt

≤
∫ ∞

0

2 exp

(
− t2/k

2(1 + β)mσ2

)
dt+

∫ ∞

0

6 exp

(
− t1/k

C∥maxi supf∈F f(Xi)∥ψ1

)
dt

=
(
2(1 + β)mσ2

)k/2
k

∫ ∞

0

e−uuk/2−1du+ 6k

C ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

k ∫ ∞

0

e−vvk−1dv

≤
(
2(1 + β)mσ2

)k/2
kΓ(k/2) + 6k

C ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

k

Γ(k),

where we denote u = t2/k

2(1+β)mσ2 and v = t1/k

C∥maxi supf∈F f(Xi)∥ψ1
in the third equality.
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Next, we use the Taylor expansion of the exponential function as follows. For 0 ≤ λ ≤
1

2C∥maxi supf∈F f(Xi)∥
ψ1

, we have

E exp(λY )

=1 +

∞∑
k=2

λkE[|Y |k]
k!

≤1 +

∞∑
k=2

(
2(1 + β)mσ2λ2

)k/2
kΓ(k/2) + 6k(Cλ∥maxi supf∈F f(Xi)∥ψ1

)kΓ(k)

k!

=1 +

∞∑
k=1

(
2(1 + β)mσ2λ2

)k
2kΓ(k)

(2k)!
+

∞∑
k=1

(
2(1 + β)mσ2λ2

)k+1/2
(2k + 1)Γ(k + 1/2)

(2k + 1)!

+

∞∑
k=2

6

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

k

≤1 +
(
2 +

√
2(1 + β)mσ2λ2

) ∞∑
k=1

(
2(1 + β)mσ2λ2

)k
k!

(2k)!

+ 6

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

2
∞∑
k=0

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

k

≤1 +

(
1 +

√
(1 + β)mσ2λ2

2

) ∞∑
k=1

(
2(1 + β)mσ2λ2

)k
(2k)!

+ 12

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

2

=exp
(
2(1 + β)mσ2λ2

)
+

√
(1 + β)mσ2λ2

2
(exp

(
2(1 + β)mσ2λ2

)
− 1)

+ exp

12

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

2


≤ exp
(
4(1 + β)mσ2λ2

)
+ exp

12

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

2
 ,

where the second equality satisfies because of commutative property of positive convergent se-
ries and the third inequality follows from the inequality that 2(k!)2 ≤ (2k)! and 0 ≤ λ ≤

1

2C∥maxi supf∈F f(Xi)∥
ψ1

.

The proof is complete.

B PROOFS OF SECTION 3

Proof of Theorem 1. Let {U1, . . . , Um} and {W1, . . . ,Wm} be sampled uniformly from a finite set
ofM -dimensional vectors 2 {v1, . . . ,vN} ⊂ RM with and without replacement respectively, where

2We assume that F is a countable class of functions and this can be translated to the uncountable classes.
For instance, if the empirical process is separable, meaning that F contains a dense countable subset. We refer
to page 314 of [3] or page 72 of [5]
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vj = (f1(cj), . . . , fM (cj))
T . According to Lemma 2 and Theorem 6, we get that for all λ > 0:

E
[
eλQ

′
m

]
= E

exp
λ sup

j=1,...,M

(
m∑
i=1

Wi

)
j

 ≤ E

exp
λ sup

j=1,...,M

(
m∑
i=1

ui

)
j

 = E
[
eλQm

]
,

(11)

where the lower index j indicates the j-th coordinate of a vector. According to Lemma 5, the mo-
ment generalization function of Qm can be bounded, which we can derive the following inequalities

E
[
eλQ

′
m

]
≤ E

[
eλQm

]
≤ exp

(
(1 + η)λE[Qm] + 4(1 + β)mσ2λ2

)
+ 3 exp

(1 + η)λE[Qm] + 2

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

2


or, equivalently,

E
[
eλ(Q

′
m−(1+η)E[Q′

m])
]

≤ exp
(
(1 + η)λ(E[Qm]− E[Q′

m]) + 4(1 + β)mσ2λ2
)

+ 3 exp

(1 + η)λ(E[Qm]− E[Q′
m]) + 2

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ2

2
 .

Using Chernoff’s method, we can obtain that for all ϵ ≥ 0 and λ > 0:
P
{
Q′
m − (1 + η)E[Q′

m] ≥ ϵ
}

≤
E
[
eλ(Q

′
m−(1+η)E[Q′

m])
]

eλϵ

≤
exp

(
(1 + η)λ(E[Qm]− E[Q′

m]) + 4(1 + β)mσ2λ2
)

exp(λϵ)

+

3 exp

(
(1 + η)λ(E[Qm]− E[Q′

m]) + 2
(
Cλ
∥∥maxi supf∈F f(Xi)

∥∥
ψ2

)2)
exp(λϵ)

≤
exp ((1 + η)λ(E[Qm]− E[Q′

m]))

(
exp(4(1 + β)mσ2λ2) + 3 exp

(
2
(
Cλ
∥∥maxi supf∈F f(Xi)

∥∥
ψ2

)2))
exp(λϵ)

≤6 exp

(
((1 + η)(E[Qm]− E[Q′

m])− ϵ)λ+

(
4(1 + β)mσ2 + 2C2

∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥2
ψ2

)
λ2

)
,

(12)
where the first inequality applies Chernoff’s method. The third hold under the following two terms

exp
(
4(1 + β)mσ2λ2

)
≥ 1 and exp

(
2
(
Cλ
∥∥maxi supf∈F f(Xi)

∥∥
ψ2

)2)
≥ 1. Using a + b ≤

2ab, ∀a, b ≥ 1, we obtain the third inequality.

The term on the right-hand side of the last inequality achieves its minimum for

λ =
ϵ+ (1 + η)(E[Q′

m]− E[Qm])

8(1 + β)mσ2 + 4C2
∥∥maxi supf∈F f(Xi)

∥∥2
ψ2

. (13)

Insert (13) into (12), when we have the technical condition ϵ ≥ (1 + η)(E[Qm] − E[Q′
m]) where

E[Qm] ≥ E[Q′
m] follows from Theorem 6 by exploiting the fact that the supremum is a convex

function., we obtain the following inequality

P {Q′
m − (1 + η)E[Qm] ≥ ϵ} ≤ 6 exp

− ϵ2

16(1 + β)mσ2 + 8C2
∥∥maxi supf∈F f(Xi)

∥∥2
ψ2

 .
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The proof is complete.

Proof of Theorem 2. The proof of Theorem 2 is similar with Theorem 1. Let two series of ran-
dom variables {U1, . . . , Um} and {W1, . . . ,Wm} be sampled uniformly form a finite set of M -
dimensional vectors {v1, . . . ,vN} ⊂ RM with and without replacement respectively, where
vj = (f1(cj), . . . , fM (cj))

T . According to Lemma 2 and Theorem 6, we get that for all λ ≤ 0:

E
[
eλQ

′
m

]
= E

exp
λ sup

j=1,...,M

(
m∑
i=1

Wi

)
j

 ≤ E

exp
λ sup

j=1,...,M

(
m∑
i=1

ui

)
j

 = E
[
eλQm

]
,

(14)

where the lower index j indicates the j-th coordinate of a vector. According to Lemma 6, the mo-
ment generalization function of Qm can be bounded, which we can derive the following inequalities

E
[
eλQ

′
m

]
≤ E

[
eλQm

]
≤ exp

(
(1 + η)λE[Qm] + 4(1 + β)mσ2λ2

)
+ exp

(1 + η)λE[Qm] + 12

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

2


or, equivalently,

E
[
eλ(Q

′
m−(1+η)E[Q′

m])
]

≤ exp
(
(1 + η)λ(E[Qm]− E[Q′

m]) + 4(1 + β)mσ2λ2
)

+ exp

(1 + η)λ(E[Qm]− E[Q′
m]) + 12

Cλ∥∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥∥
ψ1

2
 .

Using Chernoff’s method, we can obtain that for all ϵ ≥ 0 and 0 ≤ λ ≤ 1

2C∥maxi supf∈F f(Xi)∥
ψ1

:

P
{
Q′
m − (1 + η)E[Q′

m] ≥ ϵ
}

≤
E
[
eλ(Q

′
m−(1+η)E[Q′

m])
]

eλϵ

≤
exp

(
(1 + η)λ(E[Qm]− E[Q′

m]) + 4(1 + β)mσ2λ2
)

exp(λϵ)

+

exp

(
(1 + η)λ(E[Qm]− E[Q′

m]) + 12
(
Cλ
∥∥maxi supf∈F f(Xi)

∥∥
ψ1

)2)
exp(λϵ)

≤
exp ((1 + η)λ(E[Qm]− E[Q′

m]))

(
exp(4(1 + β)mσ2λ2) + exp

(
12
(
Cλ
∥∥maxi supf∈F f(Xi)

∥∥
ψ2

)2))
exp(λϵ)

≤2 exp

(
((1 + η)(E[Qm]− E[Q′

m])− ϵ)λ+

(
4(1 + β)mσ2 + 12C2

∥∥∥∥max
i

sup
f∈F

f(Xi)

∥∥∥∥2
ψ1

)
λ2

)
,

(15)
where the first inequality applies Chernoff’s method and the third hold under the following two

terms exp
(
4(1 + β)mσ2λ2

)
≥ 1 and exp

(
2
(
Cλ
∥∥maxi supf∈F f(Xi)

∥∥
ψ2

)2)
≥ 1. Using a +

b ≤ 2ab, ∀a, b ≥ 1, we obtain the third inequality.

The term on the right-hand side of the last inequality achieves its minimum for

λ =
ϵ+ (1 + η)(E[Q′

m]− E[Qm])

8(1 + β)mσ2 + 24C2
∥∥maxi supf∈F f(Xi)

∥∥2
ψ1

. (16)
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Insert (16) into (15), when we have the technical condition (1 + η)(E[Qm] − E[Q′
m]) ≤ ϵ ≤

12C
∥∥maxi supf∈F f(Xi)

∥∥
ψ1

, we obtain the following inequality

P {Q′
m − (1 + η)E[Qm] ≥ ϵ} ≤ 2 exp

− ϵ2

16(1 + β)mσ2 + 48C2
∥∥maxi supf∈F f(Xi)

∥∥2
ψ1

 .

The proof is complete.

C PROOFS OF SECTION 4

C.1 PROOFS OF SUBSECTION 4.1

From now on it will be convenient to introduce the following operators, mapping functions f defined
on XN to R:

Ef =
1

N

N∑
i=1

f(xi),xi ∈ XN , Emf =
1

N

m∑
xj=1

f(xj),xj ∈ Xm.

Assume that there is a function w∗
N ∈ W satisfying RN (w∗

N ) = infw∈W RN (w). Define the
excess loss class F∗ = {f : f(x) = ℓ(w;x)− ℓ(w∗

N ;x),w ∈ W}.

Let {ξ1, . . . , ξn} be random variables sampled with replacement from XN . The mapping functions
f defined on XN to R. Denote

Er,mf = E

[
sup

f∈F∗:Ef2≤r

(
Ef − 1

m

m∑
i=1

f(ξi)

)]
. (17)

Then we have

Er,mf =E

[
sup

f∈F∗:Ef2≤r

(
Ef − 1

m

m∑
i=1

f(ξi)

)]

≤2Eξ∼XN ,v

[
sup

f∈F∗:Ef2≤r
vi

(
Ef − 1

m

m∑
i=1

f(ξi)

)]

≤2Ev

[
sup

f∈F∗:Ef2≤r

m∑
i=1

viEf

]
+ 2Eξ∼XN ,v

[
sup

f∈F∗:Ef2≤r

1

m

m∑
i=1

vif(ξi)

]
=2RN{f ∈ F∗ : Ef2 ≤ r}.

where the first inequality holds using symmetrization inequality (see Lemma 11.4 [3])

Lemma 7 (Peeling Lemma for sub-Gaussian). Assume that there is a constant B > 0 such that for
every f ∈ F∗ we haveEf2 ≤ B ·Ef . Suppose Assumptions 1 hold and the objective function ℓ(·; ·)
is sub-Gaussian.. Assume there is a sub-root function ψm(r) such that

2BRN{f ∈ F∗ : Ef2 ≤ r} ≤ ψm(r),

where Er,m was defined in (17). Let r∗m be a fixed point of ψm(r).

Fix some λ > 1. For w(r, f) = min{rλk : k ∈ N, rλk ≥ Ef2}, define the following rescaled
version of excess loss class:

Gr =
{

r

w(r, f)
f : f ∈ F∗

}
.
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Then for any r > r∗m and t > 0, with probability at least 1− δ, we have

sup
g∈Gr

Eg − Emg ≤ (1 + η)
√
rr∗m

B

1 +
1

K2

√
log 2

δ


+ 4

√
(1 + β)

(
N

m2

)
r log

12

δ
+ 4

√
2C2K logN

m2
log

12

δ
,

where K,K2, η, β are some positive constants. C is positive constants depending on η, β.

Proof of Lemma 7. We use traditional peeling technologies presented in the proof of the first part of
Theorem 3.3 of [2], but using Theorem 1 in place of Talagrand’s inequality.

Firstly, for any f ∈ F∗, we have

V[f(x)] = Ef2 − (Ef)2 ≤ Ef2. (18)

Let us fix some λ > 1 and r > 0 and introduce the following rescaled version of excess loss class:

Gr =
{

r

w(r, f)
f : f ∈ F∗

}
,

where w(r, f) = min{rλk : k ∈ N, rλk ≥ Ef2}.

Let us consider functions f ∈ F∗ such that Ef2 < r, meaning w(r, f) = r. The functions
g ∈ Gr corresponding to those functions satisfy g = f and thus V[g(x)] = V[f(x)] ≤ Ef2 ≤ r.
Otherwise, if Ef2 > r, then w(r, f) = λkr, and thus the functions g ∈ Gr corresponding to them
satisfy g = f

λk
and Ef2 ∈ (rλk−1, rλk]. Thus we have V[g(x)] = V[f(x)]

λ2k ≤ Ef2

λ2k ≤ r. We
conclude that, for any g ∈ Gr, it holds V[g(X)] ≤ r.

Next we need to upper bound the following quantity:

Vr = sup
g∈Gr

Eg − Emg.

Note that any f ∈ F∗, f(x) is sub-Gaussian, thus for all g ∈ Gr, g(x) is sub-Gaussian. Notice that

1

2
(Eg − Emg) =

1

m

∑
x∈Xm

Eg − g(x)

2
.

Note that (Eg − g(x))/2 is also sub-Gaussian and E[Eg − g(x)] = 0. Since Eg is not random,
using (18), for all g ∈ Gr we also have

V
[
Eg − g(x)

2

]
=

V[g(x)]
4

≤ r

4
,

Besides, we need to bound
∥∥∥maxx supg∈Gr

Eg−g(x)
2

∥∥∥2
ψ2

.

∥∥∥∥max
x

sup
g∈Gr

Eg − g(x)

2

∥∥∥∥2
ψ2

=

∥∥maxx supf Ef − f(x)
∥∥2
ψ2

4λ2k

≤ K2 max
x

∥∥∥∥∥supf ℓ(w;x)

∥∥∥∥∥
2

ψ2

logN ≤ K logN,

where K is a positive constant. The first inequality holds using Theorem [34] and the second in-
equality satisfies because ℓ(·;x) is sub-Gaussian.
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We can now apply either Theorem 1 for the following function class: {(Eg − g(x))/2, g ∈ Gr}.
Here we present the proof based on Theorem 1. Applying it we get that for all δ ∈ (0, 1), with
probability at least 1− δ

2 , we have

1

2
sup
g∈Gr

Eg − Emg

≤1 + η

2
E
[
sup
g∈Gr

Er,mg

]
+

√(
16(1 + β)

(
N

m2

)
1

4
sup
g∈Gr

V[g(x)] +
8C2K logN

m2

)
log

12

δ

≤1 + η

2
E
[
sup
g∈Gr

Er,mg

]
+

√(
4(1 + β)

(
N

m2

)
r +

8C2K logN

m2

)
log

12

δ

≤1 + η

2
E
[
sup
g∈Gr

Er,mg

]
+ 2

√
(1 + β)

(
N

m2

)
r log

12

δ
+ 2

√
2C2K logN

m2
log

12

δ
,

where the last inequality holds because
√
a+ b ≤

√
a+

√
b for any a ≥ 0 and b ≥ 0.

Rewriting above inequality we have

V r ≤ (1 + η)E
[
sup
g∈Gr

Er,mg

]
+ 4

√
(1 + β)

(
N

m2

)
r log

12

δ
+ 4

√
2C2K logN

m2
log

12

δ
. (19)

Now we set F∗(x, y) = {f ∈ F∗ : x ≤ Ef2 ≤ y}, Note that Ef is sub-Gaussian, for f ∈ F∗, for
any δ ∈ (0, 1) with probability at least 1− δ

2 , we have V[f(x)] ≤ Ef2 ≤ B ·Ef ≤ BK2

√
log 2/δ.

Define k to be the smallest integer such that rλk+1 ≤ BK2

√
log 2/δ. Notice that, for any sets A

and B, we have:

E
[

sup
g∈A∪B

Er,mg

]
≤ E

[
sup
g∈A

Er,mg

]
+ E

[
sup
g∈B

Er,mg

]
Since supremum is a convex function ,we can use Jensen’s inequality to show that each of the terms
is positive. Then for any δ ∈ (0, 1), with probability at least 1− δ

2 , we have:

E
[
sup
g∈Gr

Er,mg

]

≤E

[
sup

f∈F∗(0,r)

Er,mf

]
+ E

 sup
f∈F∗(r,2BK2

√
2 log 2/δ)

r

w(r, f)
Er,mf


≤E

[
sup

f∈F∗(0,r)

Er,mf

]
+

k∑
i=0

E

[
sup

f∈F∗(rλi,rλi+1)

r

w(r, f)
Er,mf

]

≤E

[
sup

f∈F∗(0,r)

Er,mf

]
+

k∑
i=0

λ−iE

[
sup

f∈F∗(rλi,rλi+1)

Er,mf

]

≤2RN{f ∈ F∗ : Ef2 ≤ r}+ 2

k∑
i=0

λ−iRN{f ∈ F∗ : rλi ≤ Ef2 ≤ rλi+1}

≤ψm(r)

B
+

1

BK2

√
log 2

δ

k∑
i=0

λ−iψm(rλi+1),

where the last inequality satisfies because Ef is sub-Gaussian. Next, since ψm is sub-root, for any
β ≥ 1, we have ψm(βr) ≤

√
βψm(r). Thus

E[Vr] ≤
√
β ≤ ψm(r)

B

1 +

√
λ

K2

√
log 2

δ

k∑
i=0

λ−i/2

 .

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Taking λ = 4, the right hand side is upper bounded by ψm(r)
B

(
1 + 1

K2

√
log 2

δ

)
. Finally we note

that for r ≥ r∗m, then for all r ≥ r∗m, it holds ψm(r) ≤
√
r/r∗mψm(r∗m) =

√
rr∗m. Thus, for any

δ ∈ (0, 1), with probability at least 1− δ
2

E
[
sup
g∈Gr

Er,mg

]
≤

√
rr∗m
B

1 +
1

K2

√
1 log 2

δ

 . (20)

Combining (20) and (19), according to the union bound, for any δ ∈ (0, 1), with probability at least
1− δ, we have

sup
g∈Gr

Eg − Emg ≤ (1 + η)
√
rr∗m

B

1 +
1

K2

√
log 2

δ


+ 4

√
(1 + β)

(
N

m2

)
r log

12

δ
+ 4

√
2C2K logN

m2
log

12

δ
,

where K,K2, η, β are some positive constants. C is positive constants depending on η, β.

The proof is complete.

Lemma 8. Under the assumptions of Theorem 3, for any δ ∈ (0, 1), with probability at least 1− δ,
we have

RN (ŵm)−RN (w∗
N ) ≤ c1r

∗
m

B log 2
δ

+
c2N log 12

δ

m2
+
c3

√
logN log 12

δ

m
,

where c1, c2 and c3 are some positive constants.

Proof of Lemma 8. According to Lemma 7, we have the following results that, for any r > r∗m,
δ ∈ (0, 1) and λ > 1, with probability at least 1− δ, we have

sup
g∈Gr

Eg − Emg ≤ (1 + η)
√
rr∗m

B

1 +
1

K2

√
log 2

δ


+ 4

√
(1 + β)

(
N

m2

)
r log

12

δ
+ 4

√
2C2K logN

m2
log

12

δ
,

(21)

where Gr is the rescaled excess loss class:

Gr =
(

r

w(r, f)
f : f ∈ F∗

)
,

and w(r, f) = min{rλk : k ∈ N, rλk ≥ Ef2}. Now we want to choose r0 > r∗m in such a way
that the upper bound of (21) becomes of a form r0

λBK′ , we achieve this by setting:

r0 = K′2λ2

(1 + η)
√
r∗m

1 +
1

K2

√
log 2

δ

+ 4B

√
(1 + β)

(
N

m2

)
log

12

δ

2

> r∗m.

Inserting r = r0 into (21), we have

sup
g∈Gr0

Eg − Emg ≤ r0
λBK ′ + 4

√
2C2K logN

m2
log

12

δ
. (22)
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Further, using inequality (u+ v)2 ≤ 2(u2 + v2), we have

r0 ≤ 2(1 + η)2

1 +
1

K2

√
log 2

δ

2

K ′2λ2r∗m + 32(1 + β)

(
N

m2

)
K ′2λ2B2 log

12

δ
. (23)

Recall that for any r > 0 and all g ∈ Gr, the following holds with probability 1

Eg − Emg ≤ sup
g∈Gr

Eg − Emg.

Using the definition of Gr, for all f ∈ F∗, with probability 1, we have the following inequality

E

(
r

w(r, f)
f

)
− Em

(
r

w(r, f)
f

)
≤ sup
g∈Gr

Eg − Emg,

or, rewriting

Ef − Emf ≤ w(r, f)

r
sup
g∈Gr

Eg − Emg.

Next we setting r = r0 and using (22), for any δ ∈ (0, 1), with probability at least 1− δ, we have

∀f ∈ F∗,∀K > 1 : Ef − Emf ≤ w(r0, f)

r0

(
r0

λK ′B
+ 4

√
2C2K logN

m2
log

12

δ

)
.

Next, according to Ef2 ≤ B ·Ef , if for f ∈ F∗, Ef2 ≤ r0, we have w(r0, f) = r0 and using (23),
we have

Ef − Emf ≤ w(r0, f)

r0

(
r0

λK′B
+ 4

√
2C2K logN

m2
log

12

δ

)

≤ 2(1 + η)2K′λr∗m
B

1 +
1

K2

√
log 2

δ

2

+ 32(1 + β)

(
N

m2

)
K′λB log

12

δ
+ 4

√
2C2K logN

m2
log

12

δ
.

Rewriting,

Ef ≤ Emf +
2(1 + η)2K ′λr∗m

B

1 +
1

K2

√
log 2

δ

2

+ 32(1 + β)

(
N

m2

)
K ′λB log

12

δ
+ 4

CK2

√
2 log 12

δ

m
.

(24)

On the other hand, if Ef2 > r0, then w(r0, f) = λir0 for certain value of i > 0 and also Ef2 ∈
(r0λ

i−1, r0λ
i]. Then we have

Ef − Emf

≤w(r0, f)
r0

(
r0

λK ′B
+ 4

√
2C2K logN

m2
log

12

δ

)

≤λ
i−1r0
K ′B

+
4λi−1

√
2C2K logN log 12

δ

m

≤Ef2

K ′B
+

4λi−1
√

2C2K logN log 12
δ

m

≤Ef
K ′ +

4λi−1
√

2C2K logN log 12
δ

m
.
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Thus, we have

Ef ≤ K ′

K ′ − 1
Emf +

4K ′λi−1
√

2C2K logN log 12
δ

(K ′ − 1)m
. (25)

Combing (24) and (25), for any δ ∈ (0, 1), with probability at least 1− δ, we have

∀f ∈ F∗,∀K > 1 : Ef ≤ inf
K′>1

K ′

K ′ − 1
Emf +

2(1 + η)2K ′λr∗m
B

1 +
1

K2

√
log 2

δ

2

+32(1 + β)

(
N

m2

)
K ′λB log

12

δ
+ 4

CK2

√
2 log 12

δ

m
+

4K ′λi−1
√

2C2K logN log 12
δ

(K − 1)m
.

(26)

Finally we recall that the definition of F∗ and put f̂m(·) = ℓ(ŵm; ·)− ℓ(w∗
N ; ·). Notice that

Emf̂m = Emℓ(ŵm)− Emℓ(w
∗
N ) = R̂m(ŵm)− R̂m(w∗

N ) ≤ 0,

and

Ef̂m = RN (ŵm)−RN (w∗
N ),

thus, we have

RN (ŵm)−RN (w∗
N ) ≤ c1r

∗
m

B log 2
δ

+
c2N log 12

δ

m2
+
c3

√
logN log 12

δ

m
,

where c1, c2 and c3 are some positive constants.

The proof is complete.

Lemma 9. Under the assumptions of Theorem 3, for any δ ∈ (0, 1), with probability at least 1− δ,
we have

Ru(ŵm)−Ru(w
∗
u) ≤

N

u

 c1r
∗
m

B log 2
δ

+
c2N log 12

δ

m2
+

c3

√
logN log 12

δ

m


+

N

m

 c1r
∗
u

B log 2
δ

+
c2N log 12

δ

u2
+

c3

√
logN log 12

δ

u

 ,

where c1, c2 and c3 are some positive constants.

Proof of Lemma 9. Note that since w∗
u is also an empirical risk minimizer computed on the test set.,

the results of Lemma 8 also hold for w∗
u with every m in the statement replaced by u. Also note that

the following holds almost surely:

0 ≤ RN (ŵm)−RN (w∗
N )

= RN (ŵm)−RN (w∗
N )− R̂m(ŵm) + R̂m(w∗

N ) + R̂m(ŵm)− R̂m(w∗
N )

≤ RN (ŵm)−RN (w∗
N )− R̂m(ŵm) + R̂m(w∗

N )

=
u

n

(
Ru(ŵm)−Ru(w

∗
N )− R̂m(ŵm) + R̂m(w∗

N )
) (27)

and
0 ≤ RN (ŵu)−RN (w∗

N )

= RN (ŵu)−RN (w∗
N )−Ru(ŵu) +Ru(w

∗
N ) +Ru(ŵu)−Ru(w

∗
N )

≤ RN (ŵu)−RN (w∗
N )−Ru(ŵu) +Ru(w

∗
N )

=
m

n

(
R̂m(ŵu)− R̂m(w∗

N )−Ru(ŵu) +Ru(w
∗
N )
)
,

(28)
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where last equations in both cases use the equation N ·RN (w) = m · R̂m(w) + u ·Ru(w).

Now we are going to use (26) obtained in the proof of Lemma 8. Using (27) and, subsequently,
employing (26) for f = ℓ(ŵm; ·)− ℓ(w∗

N ; ·), where we subtract Emf for both sides of (26), for any
δ ∈ (0, 1), with probability at least 1− δ

2 , we obtain:

0 ≤ Ru(ŵm)−Ru(w
∗
N )− R̂m(ŵm) + R̂m(w∗

N )

≤ N

u

(
inf
K′>1

K ′

K ′ − 1
R̂m(ŵm −w∗

N ) +
2(1 + η)2K ′λr∗m

B

1 +
1

K2

√
log 4

δ

2

+ 32(1 + β)

(
N

m2

)
K ′λB log

24

δ
+ 4

CK2

√
2 log 12

δ

m
+

4K ′λi−1
√
2C2K logN log 24

δ

(K − 1)m

)
.

Similarly, the same argument can be used for w∗
u, which gives that for any δ ∈ (0, 1), with proba-

bility at least 1− δ
2 , we obtain:

0 ≤ R̂m(ŵu)− R̂m(w∗
N )−Ru(ŵu) +Ru(w

∗
N )

≤ N

m

(
inf
K′>1

K ′

K ′ − 1
Ru(ŵu −w∗

N ) +
2(1 + η)2K ′λr∗u

B

1 +
1

K2

√
log 4

δ

2

+ 32(1 + β)

(
N

u2

)
K ′λB log

24

δ
+ 4

CK2

√
2 log 12

δ

u
+

4K ′λi−1
√
2C2K logN log 24

δ

(K − 1)u

)
.

The union bound gives us that both inequalities hold simultaneously with probability at least 1− δ,
summing these two inequalities, we obtain
0 ≤Ru(ŵm)−Ru(w

∗
u)− R̂m(ŵm) + R̂m(w∗

u)

≤N

u

 c1r
∗
m

B log 2
δ

+
c2N log 12

δ

m2
+

c3

√
logN log 12

δ

m

+
N

m

 c1r
∗
u

B log 2
δ

+
c2N log 12

δ

u2
+

c3

√
logN log 12

δ

u

 .

Using the fact the ŵm and w∗
u are the empirical risk minimizers on the training and test set, respec-

tively, we finally get:
0 ≤Ru(ŵm)−Ru(w

∗
u)

≤N

u

 c1r
∗
m

B log 2
δ

+
c2N log 12

δ

m2
+

c3

√
logN log 12

δ

m

+
N

m

 c1r
∗
u

B log 2
δ

+
c2N log 12

δ

u2
+

c3

√
logN log 12

δ

u

 ,

where c1, c2 and c3 are some positive constants.

The proof is completed.

Proof of Theorem 3. Notice that 2BRN{f ∈ F∗ : Ef2 ≤ r} ≤ ψm(r), according to Assump-
tion 1, we have logN (ε,W, L2(P)) ≤ O(log(1/ε)). Using Dudley’s integral bound [35] to find
ψm and solving r ≤ O(Bψm(r)), it is not hard to verify that

r∗ ≤ O
(
B2 logm

m

)
.

Insert the solution r∗ into Lemma 9, for any δ ∈ (0, 1), with probability at least 1− δ, we have

εu(ŵm) = O

(
N

mu

(
logm+ log u+

N log 1
δ

m
+
N log 1

δ

u
+

√
logN log

1

δ

))
.

The proof is complete.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

The detailed proof of Theorem 4 is completely similar with Theorem 3, In consequence, we omit
here and give the Lemmas for sub-exponential.
Lemma 10 (Peeling Lemma for sub-exponential). Assume that there is a constant B > 0 such that
for every f ∈ F∗ we have Ef2 ≤ B · Ef . Suppose Assumptions 1 hold and the objective function
ℓ(·; ·) is sub-exponential. Assume there is a sub-root function ψm(r) such that

2BRN{f ∈ F∗ : Ef2 ≤ r} ≤ ψm(r),

where Er,m was defined in (17). Let r∗m be a fixed point of ψm(r).

Fix some λ > 1. For w(r, f) = min{rλk : k ∈ N, rλk ≥ Ef2}, define the following rescaled
version of excess loss class:

Gr =
{

r

w(r, f)
f : f ∈ F∗

}
.

Then for any r > r∗m and t > 0, with probability at least 1− δ, we have

sup
g∈Gr

Eg − Emg ≤ (1 + η)
√
rr∗m

B

(
1 +

1

K1 log
2
δ

)

+ 4

√
(1 + β)

(
N

m2

)
r log

12

δ
+ 8

√
3C2K log2N

m2
log

12

δ
,

where K,K1, η, β are some positive constants. C is positive constants depending on η, β.
Lemma 11. Under the assumptions of Theorem 4, for any δ ∈ (0, 1), with probability at least 1−δ,
we have

RN (ŵm)−RN (w∗
N ) ≤ c1r

∗
m

B log2 2
δ

+
c2N log 12

δ

m2
+
c3

√
log2N log 12

δ

m
,

where c1, c2 and c3 are some positive constants.
Lemma 12. Under the assumptions of Theorem 4, for any δ ∈ (0, 1), with probability at least 1−δ,
we have

Ru(ŵm)−Ru(w
∗
u) ≤

N

u

 c1r
∗
m

B log2 2
δ

+
c2N log 12

δ

m2
+
c3

√
log2N log 12

δ

m


+
N

m

 c1r
∗
u

B log2 2
δ

+
c2N log 12

δ

u2
+
c3

√
log2N log 12

δ

u

 ,

where c1, c2 and c3 are some positive constants.

C.2 SOME RESULTS FOR SUB-EXPONENTIAL FUNCTIONS IN SUBSECTION 4.2

Theorem 11. Suppose Assumptions 2, 3, 4, and 5 hold. For any w ∈ W , let the loss function
ℓ(w; ·) be sub-exponential. Suppose that the step sizes {ηt} satisfies ηt = 1

t+t0
such that t0 ≥

max{(2P )1/α, 1}. For any δ ∈ (0, 1), with probability 1− δ,

(a). If α ∈ (0, 12 ), we have

Ru(w
(T+1))− R̂m(w(T+1)) = O

(
LF

√
N

u
log

1
2 (T )T

1−2α
2 log

(
1

δ

)
+
N

u

√
log3

(
1
δ

)
m

)
.

(b). If α = 1
2 , we have

Ru(w
(T+1))− R̂m(w(T+1)) = O

(
LF

√
N

u
log(T ) log

(
1

δ

)
+
N

u

√
log3

(
1
δ

)
m

)
.
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(c). If α ∈ ( 12 , 1], we have

Ru(w
(T+1))− R̂m(w(T+1)) = O

(
LF

√
N

u
log

1
2 (T ) log

(
1

δ

)
+
N

u

√
log3

(
1
δ

)
m

)
.

Corollary 2. Suppose Assumptions 2, 3, 4, and 5 hold. For any w ∈ W , let the loss function
ℓ(w; ·) be sub-exponential. Suppose that the learning rate {ηt} satisfies ηt = 2

µ(t+t0)
such that

t0 ≥ max{ 2
µ (2P )

1
α , 1}. For any δ ∈ (0, 1), with probability 1− δ,

(a). If α ∈ (0, 12 ), we have

Ru(w
(T+1))− R̂m(w∗) = O

(
LF

√
Nd

u
log

1
2 (T )T

1
2−α log

(
1

δ

)
+
N

u

√
log3

(
1
δ

)
m

+
1

Tα

)
,

(b). If α = 1
2 , we have

Ru(w
(T+1))− R̂m(w∗) = O

(
LF

√
Nd

u
log(T ) log

(
1

δ

)
+
N

u

√
log3

(
1
δ

)
m

+
1

Tα

)
.

(c). If α ∈ ( 12 , 1), we have

Ru(w
(T+1))− R̂m(w∗) = O

(
LF

√
Nd

u
log

1
2 (T ) log(1/δ) +

N

u

√
log3

(
1
δ

)
m

+
1

Tα

)
.

(d). If α = 1, we have

Ru(w
(T+1))−Ru(w

∗) = sO
(
LF

√
Nd

u
log

1
2 (T ) log(1/δ) +

N

u

√
log3

(
1
δ

)
m

+
log(T ) log3(1/δ)

T

)
.

C.3 PROOFS OF SUBSECTION 4.2

Proof of Theorem 5. In order to obtain high-probability bounds with our new concentration in-
equalities, for the term supfw∈FW

∑
x∈Xm

fw(x) = supw∈W
∑

x∈Xm
(RN (w) − ℓ(w;x)) =

m · supw∈W(RN (w) − R̂m(w)), where we obtain a factor of m in the equation because in Theo-
rem 1 we considered unnormalized sums.

To use Theorem 1, we need to bound
∥∥maxx supfw∈FW

fw(x)
∥∥2
ψ2

, we have∥∥∥∥∥max
x

sup
fw∈FW

fw(x)

∥∥∥∥∥
2

ψ2

≤
∥∥∥∥max

x
sup
w∈W

ℓ(w;x)

∥∥∥∥2
ψ2

≤ K2 max
x

∥∥∥∥ sup
w∈W

ℓ(w;x)

∥∥∥∥2
ψ2

logN ≤ K2K2
2 logN.

where K and K2 are two positive constants. The second inequality holds using Theorem 7 [34]
and the last inequality satisfies because ℓ(·;x) is sub-Gaussian, using property of the tail bound for
sub-Gaussian distribution.

Then we turn to bound σ2
W . For any fixed w ∈ W and any δ ∈ (0, 1), with at least probability 1− δ

2 ,
we have
1

N

∑
x∈ZN

(ℓ(w;x)−RN (w))2 =
1

N

∑
x∈ZN

ℓ(w;x)2 −RN (w)2 ≤ 1

N

∑
x∈ZN

ℓ(w;x)2 ≤ K log
2

δ
,

whereK is a positive constant. the last inequality holds because ℓ(·;x) is sub-Gaussian, then ℓ(·;x)2
is sub-exponential, using property of the tail bound for sub-exponential distribution. Thus for any
δ ∈ (0, 1), with at least probability 1− δ

2 , we have

σ2
W = sup

w∈W

(
1

N

∑
x∈ZN

(ℓ(w;x)−RN (w))2

)
≤ K log

2

δ
(29)
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According to Theorem 1, Let Qm = m · (RN (w) − R̂m(w)), and combined with (29). For any
δ ∈ (0, 1) with probability at least 1− δ, we have

sup
w∈W

(RN (w)− R̂m(w))

≤(1 + η)Em + 2

√(
4(1 + β)K log 2

δ

m
+

2C2K2K2
2 log n

m2

)
log

12

δ

≤(1 + η)Em + 4

√
(1 + β)K log 2

δ log
12
δ

m
+

2
√

2C2K2K2
2 logN log 12

δ

m

≤(1 + η)Em + 4

√
(1 + β)K

m
log

12

δ
+

2
√

2C2K2K2
2 logN log 12

δ

m
.

(30)

where the second inequality holds using
√
a+ b ≤

√
a+

√
b.

Next, we need to bound the Em = E
[
supw∈W

(
RN (w)− 1

m

∑m
i=1 ℓ(w; ξi)

)]
. We have

Em = E

[
sup
w∈W

(
RN (w)− 1

m

m∑
i=1

ℓ(w; ξi)

)]

≤ 2Eξ∼XN ,v

[
sup
w∈W

vi

(
RN (w)− 1

m

m∑
i=1

ℓ(w; ξi)

)]

≤ 2Ev

[
sup
w∈W

m∑
i=1

viRN (w)

]
+ 2Eξ∼XN ,v

[
sup
w∈W

1

m

m∑
i=1

viℓ(w; ξi)

]
= 2RRN (w),

(31)

where the first inequality holds using symmetrization inequality (see Lemma 11.4 [3]).

Recall that for any ŵ, we have

Ru(ŵ)− R̂m(ŵ) ≤ N

u
sup
w∈W

RN (w)− R̂m(w).

Thus, Combining (30), (31) and above inequality, for any δ ∈ (0, 1) with probability at least 1− δ,
we have

Ru(ŵ)− R̂m(ŵ) ≤ 2N(1 + η)RRN (w)

u
+ 4

N

u

√
(1 + β)K

m
log

12

δ
+

2N
√

2C2K2K2
2 logN log 12

δ

mu
.

(32)

Next, we need to bound the Rademacher complexity with traditional Dudley’s integral technique.

Firstly, we denote some notations. Let dW(w,w′) =
(

1
N

∑N
i=1[ℓ(w;xi)− ℓ(w′;xi)]

2
) 1

2

. For

j ∈ N, let αj = 2−jM with M = supw∈WR
dW(w,w(1)), where WR denotes the parameter

space consisting of the initial parameters w(1) together with all possible w(i) that can be obtained
using Algorithm 1. Denote by Tj the minimal αj-cover of WR and ℓ(wj ;x)[w] the element in Tj
that covers ℓ(w;x). Specifically, since {ℓ(w(1);x)} is a M -cover of WR, we set ℓ(w0;x)[w] =
ℓ(w(1);x)[w], ( Note that w(1) is the initialization parameter and wj is the associated parameter of
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ℓ in Tj). For arbitrary n ∈ N:

Ev

[
sup

w∈WR

N∑
i=1

viℓ(w;xi)

]

=Ev

[
sup

w∈WR

( N∑
i=1

(
vi(ℓ(w;xi)− ℓ(wn;xi))[w]

+

n∑
j=1

vi(ℓ(w
j ;xi)[w]− ℓ(wj−1;xi)[w]) + viℓ(w

(1);xi)
))

≤Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w;xi)− ℓ(wn;xi)[w])

)]
+ Ev

[
N∑
i=1

viℓ(w
(1);xi)

]

+

n∑
j=1

Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w
j ;xi)[w]− ℓ(wj−1;xi)[w])

)]
.

(33)

For the first term, we apply Cauchy-Schwarz inequality and obtain

Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w;xi)− ℓ(wn;xi)[w])

)]

≤

(
Ev

[
N∑
i=1

v2i

]) 1
2
(

sup
w∈WR

N∑
i=1

(ℓ(w;xi)− ℓ(wn;xi)[w])2

) 1
2

≤ Nαn.

(34)

By Massart’s Lemma, we have

Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w
j ;xi)[w]− ℓ(wj−1;xi)[w])

)]
≤
√
N sup

w∈WR

dW(wj ,wj−1)
√

2 log |Tj ||Tj−1|.
(35)

By the Minkowski inequality,

sup
w∈WR

dW(wj ,wj−1)

= sup
w∈WR

(
1

N

N∑
i=1

[
ℓ(wj ;xi)[w]− ℓ(w;x) + ℓ(w;x)− ℓ(wj−1;xi)[w]

]2) 1
2

≤ sup
w∈WR

(
1

N

N∑
i=1

[
ℓ(wj ;xi)[w]− ℓ(w;x)

]2) 1
2

+ sup
w∈WR

(
1

N

N∑
i=1

[
ℓ(w;x)− ℓ(wj−1;xi)[w]

]2) 1
2

= sup
w∈WR

dW(wj ,w) + sup
w∈WR

dW(w,wj−1) ≤ αj + αj−1 = 3αj .

(36)
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Plugging (36) into (35), using facts that αj = 2(αj − αj+1) and |Tj | ≥ |Tj−1|, taking summation
over j,

n∑
j=1

Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w
j ;xi)[w]− ℓ(wj−1;xi)[w])

)]

≤6
√
N

n∑
j=1

αj

√
log |Tj | = 12

√
N

n∑
j=1

(αj − αj+1)
√
log |Tj |

=12
√
N

n∑
j=1

(αj − αj+1)
√

logN (αj ,WR, dW)

≤12
√
N

∫ α0

αn+1

√
logN (α,WR, dW) dα ≤ 12

√
N

∫ ∞

αn+1

√
logN (α,WR, dW) dα.

(37)

For the last term, for any δ ∈ (0, 1), with probability at least 1− δ
2 we have

Ev

[
N∑
i=1

viℓ(w
(1);xi)

]
≤

(
N∑
i=1

ℓ2(w(1);xi)

) 1
2

≤ K

√
N log

2

δ
, (38)

where K is a positive constant. The first inequality holds by Khintchine-Kahane inequality [22].
The second inequality satisfies because ℓ(·;x) is sub-Gaussian, therefore, ℓ(·;x) is sub-exponential.
Using Lemma 4, we can derive the inequality.

Taking the limit as n→ ∞, plugging (34), (37) and (38) into (33) and combining with the difination
of Rademacher complexity, for any δ ∈ (0, 1), with probability at least 1− δ

2 , we have

RRN (w) =
1

N
Ev

[
sup
w∈W

N∑
i=1

viℓ(w;xi)

]
≤

K
√

log 2
δ√

N
+

12√
N

∫ ∞

0

√
logN (ε,WR, dW) dε, (39)

where vi is Rademacher random variable. One can verify that dWR
(ℓ(w; ·), ℓ(w′; ·)) =

maxz∈Z |ℓ(w; z)− ℓ(w′; z)| is a metric in WR. we have

dW ≤

(
1

N

N∑
i=1

[
max

w,w′∈WR,x∈Z
ℓ(w; zi)− ℓ(w′;xi)

]2) 1
2

≤ dWR
.

By the definition of covering number, we have N (ε,WR, dW) ≤ N (ε,WR, dWR
). Besides, apply-

ing Lemma 1 yields

dWR
=max

x∈Z
|ℓ(w; z)− ℓ(w′; z)| ≤ LF∥w −w′∥2.

By the definition of covering number, we have N (ε,WR, dWR
) ≤ N

(
ε
LF
,B(w(1), R), dw

)
, where

dw(w,w′) = ∥w −w′∥2 and WR ∈ B(w(1), R).

According to [33], logN
(
ε,B(w(1), R), dw

)
≤ d log(3R/ε) holds. Therefore, we obtain

logN (ε,WR, dW) ≤ d log

(
3LFR

ε

)
. (40)

Furthermore,

d2W(w,w(1)) =
1

N

N∑
i=1

[
ℓ(w;xi)− ℓ(w(1);xi)

]2
≤ L2

FR
2,

where the last inequality is due to Lemma 1. This implies that∫ ∞

0

√
logN (ε,WR, dW)dε =

∫ LFR

0

√
logN (ε,WR, dW) dε. (41)
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Combining (39), (40), and (41), for any δ ∈ (0, 1), with probability at least 1− δ
2 yields

RN (w) ≤
K
√
log 2

δ√
N

+ 12

√
d

N

∫ LFR

0

√
log (3LFR/ε) dε

≤
K
√
log 2

δ√
N

+ 12

√
d

N

(√
log 3 +

3

2

√
π

)
LFR.

(42)

Applying Theorem 47 in [27] to bound R in (42) and plugging in (32) with probability 1− δ/2, we
conclude that with probability at least 1− δ,

Ru(w
(T+1))−R̂m(w(T+1)) =


O
(
LF

√
Nd
u log

1
2 (T )T

1
2−α log

(
1
δ

)
+

N log( 1
δ )

u
√
m

)
If α ∈

(
0, 12

)
O
(
LF

√
Nd
u log(T ) log( 1δ ) +

N log( 1
δ )

u
√
m

)
If α = 1

2

O
(
LF

√
Nd
u log

1
2 (T ) log(1δ ) +

N log( 1
δ )

u
√
m

)
If α ∈

(
1
2 , 1
]
.

The proof is complete.

Proof of Theorem 11. In order to obtain high-probability bounds with out new concentration in-
equalities, for the term supfw∈FW

∑
x∈Xm

fw(x) = supw∈W
∑

x∈Xm
(RN (w) − ℓ(w;x)) =

m · supw∈W(RN (w) − R̂m(w)), where we obtain a factor of m in the equation because in Theo-
rem 2 we considered unnormalized sums.

Then, to use Theorem 2, we need to bound
∥∥maxx supfw∈FW

fw(x)
∥∥2
ψ1

.∥∥∥∥∥max
x

sup
fw∈FW

fw(x)

∥∥∥∥∥
2

ψ1

≤
∥∥∥∥max

x
sup
w∈W

ℓ(w;x)

∥∥∥∥2
ψ1

≤ K2 max
x

∥∥∥∥ sup
w∈W

ℓ(w;x)

∥∥∥∥2
ψ1

log2 N ≤ K2K2
1 log

2 N.

where K and K1 are two constants. The second inequality holds using Theorem 7 [34] and the
last inequality satisfies because ℓ(·;x) is sub-exponential, using property of the tail bound for sub-
exponential distribution

Then we turn to bound σ2
W . For any fixed w ∈ W and any δ ∈ (0, 1), with at least probability 1− δ

2 ,
we have
1

N

∑
x∈ZN

(ℓ(w;x)−RN (w))2 =
1

N

∑
x∈ZN

ℓ(w;x)2 −RN (w)2 ≤ 1

N

∑
x∈ZN

ℓ(w;x)2 ≤ K log2
2

δ
,

where K is a positive constant. the last inequality holds because ℓ(·;x) is sub-exponential. Thus,
ℓ2(·;x) is sub-Weibull random variable with tail parameter 2, using Lemma 4 we can derive the last
inequality. Thus for any δ ∈ (0, 1), with at least probability 1− δ

2 , we have

σ2
W = sup

w∈W

(
1

N

∑
x∈ZN

(ℓ(w;x)−RN (w))2

)
≤ K log2

2

δ
(43)

According to Theorem 2, Let Qm = m · (RN (w) − R̂m(w)) and combined with (43). For any
δ ∈ (0, 1) with probability at least 1− δ, we have

sup
w∈W

(RN (w)− R̂m(w))

≤(1 + η)Em + 4

√√√√( (1 + β)K log2 2
δ

m
+

3C2K2K2
1 log

2N

m2

)
log

12

δ

≤(1 + η)Em + 4

√
(1 + β)K log2 2

δ log
12
δ

m
+

4
√

3C2K2K2
1 log

2N log 12
δ

m

≤(1 + η)Em + 4

√
(1 + β)K log3 12

δ

m
+

4
√
3C2K2K2

1 log
2N log 12

δ

m
.

(44)
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where the second inequality holds using
√
a+ b ≤

√
a+

√
b.

Next, we need to bound the Em = E
[
supw∈W

(
RN (w)− 1

m

∑m
i=1 ℓ(w; ξi)

)]
. We have

Em = E

[
sup
w∈W

(
RN (w)− 1

m

m∑
i=1

ℓ(w; ξi)

)]

≤ 2Eξ∼XN ,v

[
sup
w∈W

vi

(
RN (w)− 1

m

m∑
i=1

ℓ(w; ξi)

)]

≤ 2Ev

[
sup
w∈W

m∑
i=1

viRN (w)

]
+ 2Eξ∼XN ,v

[
sup
w∈W

1

m

m∑
i=1

viℓ(w; ξi)

]
= 2RRN (w),

(45)

where the first inequality holds using symmetrization inequality (see Lemma 11.4 [3]).

Recall that for any ŵ, we have

Ru(ŵ)− R̂m(ŵ) ≤ N

u
sup
w∈W

RN (w)− R̂m(w).

Thus, Combining (44), (45) and above inequality, for any δ ∈ (0, 1) with probability at least 1− δ,
we have

Ru(ŵ)− R̂m(ŵ) ≤ 2N(1 + η)RRN
u

+ 4
N

u

√
(1 + β)K log3 12

δ

m
+

4N
√

3C2K2K2
1 log

2 N log 12
δ

mu
.

(46)

Next, we need to bound the Rademacher complexity with traditional Dudley’s integral technique.

Let dW(w,w′) =
(

1
N

∑N
i=1[ℓ(w;xi)− ℓ(w′;xi)]

2
) 1

2

. For j ∈ N, let αj = 2−jM with M =

supw∈WR
dW(w,w(1)), where WR denotes the parameter space consisting of the initial parameters

w(1) together with all possible w(i) that can be obtained using Algorithm 1. Denote by Tj the
minimal αj-cover of WR and ℓ(wj ;x)[w] the element in Tj that covers ℓ(w;x). Specifically, since
{ℓ(w(1);x)} is a M -cover of WR, we set ℓ(w0;x)[w] = ℓ(w(1);x)[w], ( Note that w(1) is the
initialization parameter and wj is the associated parameter of ℓ in Tj). For arbitrary n ∈ N:

Ev

[
sup

w∈WR

N∑
i=1

viℓ(w;xi)

]

=Ev

[
sup

w∈WR

( N∑
i=1

(
vi(ℓ(w;xi)− ℓ(wn;xi))[w]

+

n∑
j=1

vi(ℓ(w
j ;xi)[w]− ℓ(wj−1;xi)[w]) + viℓ(w

(1);xi)
))

≤Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w;xi)− ℓ(wn;xi)[w])

)]
+ Ev

[
N∑
i=1

viℓ(w
(1);xi)

]

+

n∑
j=1

Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w
j ;xi)[w]− ℓ(wj−1;xi)[w])

)]
.

(47)

For the first term, we apply Cauchy-Schwarz inequality and obtain

Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w;xi)− ℓ(wn;xi)[w])

)]

≤

(
Ev

[
N∑
i=1

v2i

]) 1
2
(

sup
w∈WR

N∑
i=1

(ℓ(w;xi)− ℓ(wn;xi)[w])2

) 1
2

≤ Nαn.

(48)
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By Massart’s Lemma, we have

Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w
j ;xi)[w]− ℓ(wj−1;xi)[w])

)]
≤
√
N sup

w∈WR

dW(wj ,wj−1)
√

2 log |Tj ||Tj−1|.
(49)

By the Minkowski inequality,

sup
w∈WR

dW(wj ,wj−1)

= sup
w∈WR

(
1

N

N∑
i=1

[
ℓ(wj ;xi)[w]− ℓ(w;x) + ℓ(w;x)− ℓ(wj−1;xi)[w]

]2) 1
2

≤ sup
w∈WR

(
1

N

N∑
i=1

[
ℓ(wj ;xi)[w]− ℓ(w;x)

]2) 1
2

+ sup
w∈WR

(
1

N

N∑
i=1

[
ℓ(w;x)− ℓ(wj−1;xi)[w]

]2) 1
2

= sup
w∈WR

dW(wj ,w) + sup
w∈WR

dW(w,wj−1) ≤ αj + αj−1 = 3αj .

(50)

Plugging (50) into (49), using facts that αj = 2(αj − αj+1) and |Tj | ≥ |Tj−1|, taking summation
over j,

n∑
j=1

Ev

[
sup

w∈WR

( N∑
i=1

vi(ℓ(w
j ;xi)[w]− ℓ(wj−1;xi)[w])

)]

≤6
√
N

n∑
j=1

αj

√
log |Tj | = 12

√
N

n∑
j=1

(αj − αj+1)
√
log |Tj |

=12
√
N

n∑
j=1

(αj − αj+1)
√

logN (αj ,WR, dW)

≤12
√
N

∫ α0

αn+1

√
logN (α,WR, dW) dα

≤12
√
N

∫ ∞

αn+1

√
logN (α,WR, dW) dα.

(51)

For the last term, for any δ ∈ (0, 1), with probability at least 1− δ
2 we have

Ev

[
N∑
i=1

viℓ(w
(1);xi)

]
≤

(
N∑
i=1

ℓ2(w(1);xi)

) 1
2

≤ K
√
N log

2

δ
, (52)

where K is a positive constant. The first inequality holds by Khintchine-Kahane inequality [22].
The second inequality satisfies because ℓ(·;x) is sub-exponential, therefore, ℓ2(·;x) is sub-weibull
random variables with parameter 2. Using Lemma 4, we can derive the inequality.

Taking the limit as n→ ∞, plugging (48), (51) and (52) into (47) and combining with the difination
of Rademacher complexity, for any δ ∈ (0, 1), with probability at least 1− δ

2 , we have

RRN (w) =
1

N
Ev

[
sup
w∈W

N∑
i=1

viℓ(w;xi)

]
≤

K log 2
δ√

N
+

12√
N

∫ ∞

0

√
logN (ε,WR, dW) dε, (53)

where vi is Rademacher random variable. One can verify that dWR
(ℓ(w; ·), ℓ(w′; ·)) =

maxz∈Z |ℓ(w; z)− ℓ(w′; z)| is a metric in WR. we have

dW ≤

(
1

N

N∑
i=1

[
max

w,w′∈WR,x∈Z
ℓ(w; zi)− ℓ(w′;xi)

]2) 1
2

≤ dWR
.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

By the definition of covering number, we have N (ε,WR, dW) ≤ N (ε,WR, dWR
). Besides, apply-

ing Lemma 1 yields

dWR
=max

x∈Z
|ℓ(w; z)− ℓ(w′; z)| ≤ LF∥w −w′∥2.

By the definition of covering number, we have N (ε,WR, dWR
) ≤ N

(
ε
LF
,B(w(1), R), dw

)
, where

dw(w,w′) = ∥w −w′∥2 and WR ∈ B(w(1), R).

According to [33], logN
(
ε,B(w(1), R), dw

)
≤ d log(3R/ε) holds. Therefore, we obtain

logN (ε,WR, dW) ≤ d log

(
3LFR

ε

)
. (54)

Furthermore,

d2W(w,w(1)) =
1

N

N∑
i=1

[
ℓ(w;xi)− ℓ(w(1);xi)

]2
≤ L2

FR
2,

where the last inequality is due to Lemma 1. This implies that∫ ∞

0

√
logN (ε,WR, dW)dε =

∫ LFR

0

√
logN (ε,WR, dW) dε. (55)

Combining (53), (54), and (55), for any δ ∈ (0, 1), with probability at least 1− δ
2 yields

RN (w) ≤
K log 2

δ√
N

+ 12

√
d

N

∫ LFR

0

√
log (3LFR/ε) dε

≤
K log 2

δ√
N

+ 12

√
d

N

(√
log 3 +

3

2

√
π

)
LFR.

(56)

Applying Theorem 47 in [27] to bound R in (56) and plugging in (46) with probability 1− δ/2, we
conclude that with probability at least 1− δ,

Ru(w
(T+1))− R̂m(w(T+1)) =


O
(
LF

√
Nd
u

log
1
2 (T )T

1
2
−α log

(
1
δ

)
+ N

u

√
log3( 1

δ )
m

)
If α ∈

(
0, 1

2

)
O
(
LF

√
Nd
u

log(T ) log( 1
δ
) + N

u

√
log3( 1

δ )
m

)
If α = 1

2

O
(
LF

√
Nd
u

log
1
2 (T ) log( 1

δ
) + N

u

√
log3( 1

δ )
m

)
If α ∈

(
1
2
, 1
]
.

The proof is complete.

There is nothing special about the proofs of Corollary 1 and Corollary 2, which simply involve
combining Theorem 5 (or Theorem 11) with an existing optimization result. Here we give the proof
of Corollary 1 as an example.

Proof of Corollary 1. By Lemma 43 in [27], we have

R̂m(wT+1)− R̂m(ŵ∗) =

O
(

1
Tα

)
if α ∈ (0, 1)

O
(

log(T ) log3(1/δ)
T

)
if α = 1.

(57)

By Theorem 5,

Ru(w
(T+1))−R̂m(w(T+1)) =


O
(
LF

√
Nd
u

log
1
2 (T )T

1
2
−α log

(
1
δ

)
+

N log( 1
δ )

u
√
m

)
If α ∈

(
0, 1

2

)
O
(
LF

√
Nd
u

log(T ) log( 1
δ
) +

N log( 1
δ )

u
√
m

)
If α = 1

2

O
(
LF

√
Nd
u

log
1
2 (T ) log( 1

δ
) +

N log( 1
δ )

u
√
m

)
If α ∈

(
1
2
, 1
]
.

(58)

Combing (57) and (58) yields the result.
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