
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SWIFT HYDRA: SELF-REINFORCING GENERATIVE
FRAMEWORK FOR ANOMALY DETECTION WITH MUL-
TIPLE MAMBA MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite a plethora of anomaly detection models developed over the years, their
ability to generalize to unseen anomalies remains an issue, particularly in critical
systems. This paper aims to address this challenge by introducing Swift Hydra, a
new framework for training an anomaly detection method based on generative AI
and reinforcement learning (RL). Through featuring an RL policy that operates on
the latent variables of a generative model, the framework synthesizes novel and
diverse anomaly samples that are capable of bypassing a detection model. These
generated synthetic samples are, in turn, used to augment the detection model,
further improving its ability to handle challenging anomalies. Swift Hydra also
incorporates Mamba models structured as a Mixture of Experts (MoE) to enable
scalable adaptation of the number of Mamba experts based on data complexity,
effectively capturing diverse feature distributions without increasing the model’s
inference time. Empirical evaluations on ADBench benchmark demonstrate that
Swift Hydra outperforms other state-of-the-art anomaly detection models while
maintaining a relatively short inference time. From these results, our research
highlights a new and auspicious paradigm of integrating RL and generative AI for
advancing anomaly detection.

1 INTRODUCTION

Anomaly detection remains one of the most pressing and challenging tasks in various applications
ranging from cybersecurity in critical systems to big data analysis (Liao et al., 2013; Zhang et al.,
2021b; Leibig et al., 2017; Yu et al., 2017; Sahu et al., 2024). In simple terms, an anomaly detection
method often involves training a machine learning (ML) model that aims to identify unusual patterns
in data that deviate from expected behaviors. One real-world challenge in realizing such an approach
is the scarcity of available anomalies to train on and the lack of prior knowledge about unseen
anomalies. For that reason, supervised methods, including techniques such as one-class metric
learning (Görnitz et al., 2013; Pang et al., 2018a; Liu et al., 2019; Ruff et al., 2020) and one-sided
anomaly-focused deviation loss (Pang et al., 2021; 2019c; Zhang et al., 2020), tend to overfit to
known anomaly patterns and struggle to generalize to unseen anomalies.

Unsupervised methods (Venkataramanan et al., 2020; Zaheer et al., 2020; Zhou et al., 2020; Li et al.,
2022; Livernoche et al., 2024), on the other hand, have gained traction for training anomaly detec-
tion models with synthetic anomalies, thereby demonstrating an auspicious approach to tackle the
data scarcity and generalization issues. Common techniques (Schlegl et al., 2017; Nazari & Branco,
2021) using generative AI models such as Variational Auto Encoders (VAEs) (Kingma & Welling,
2013) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2016) to generate novel
synthetic anomalies on which a detection model can be trained. In order to significantly augment
the generalization ability of anomaly detection models, the generated samples should be realistic and
challenging enough to bypass detection. However, current methods based on these techniques lack a
strategic strategy to generate such samples. Moreover, they often struggle to synthesize diverse and
high-quality anomalies due to the high complexity of training the generative models (e.g., vanishing
gradients and model collapse issues) (Salimans et al., 2016; Arjovsky & Bottou, 2017). Other state-
of-the-art models (Zhang et al., 2021a; An & Cho, 2015; Xu et al., 2022) encode the training data
distribution and then determine the anomaly score of a newly observed data point using their recon-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

struction loss. This is based on the assumption that, since normal instances significantly outnumber
anomalies, these model should show higher reconstruction losses for anomalies. Nonetheless, neu-
ral networks can memorize and reconstruct anomalies well. As a result, the reconstruction losses
for both normal and anomalous samples become indistinguishable, undermining the effectiveness of
anomaly detection (Child, 2021).

In this work, we take a new approach to foster a more strategic mechanism for generating synthetic
anomalies that can tackle the above-mentioned challenges. Specifically, we introduce a reinforce-
ment learning (RL) agent to guide the training of a Conditional VAE (C-VAE) (Sohn et al., 2015)
model capable of synthesizing anomalous samples that are both challenging and diverse, which can
be used to substantially augment anomaly detection models. The RL agent operates on the latent
space of the C-VAE model and its reward function is strategically designed to balance the entropy of
the generated samples and their ability to evade detection, presenting a key advantage of our train-
ing framework in generating more effective anomalies. Furthermore, with this reward function, we
theoretically show that the agent can explore deterministically in the latent space to yield feasible
actions, thereby tackling one of the most crucial efficiency problems in RL.

Additionally, the complexity of data generated presents a challenge for training an efficient anomaly
detection model. We establish a lower bound on the error rate for any single detection model, show-
ing that even an over-parameterized model cannot fully capture the intricate features of increasingly
complex generated data. Moreover, this over-parameterized model could lead to significantly pro-
longed inference times, which is not ideal for real-time applications. This necessitates a scalable
anomaly detection model capable of capturing the increasingly diverse feature distributions. To
achieve this, we train Mamba models (Gu & Dao, 2024) structured as a Mixture of Experts (MoE)
(Shazeer et al., 2017; Chen et al., 2022; Nguyen et al., 2024) where each expert specializes in dif-
ferent feature regions. Together with a proposed MoE training scheme, this allows for a scalable
inference with arbitrarily complex input data without increasing inference times, as only relevant
experts are activated for specific input. Our contributions are summarized as follows:

• We introduce a new systematic framework, namely Swift Hydra, for training an anomaly
detection model based on synthetic anomalies strategically generated by an RL-guided C-
VAE model. The efficiency of the detection model is enhanced via a Mixture of Mamba
Experts, thereby enabling high detection accuracy while maintaining short inference time.

• We establish a theorem showing that the RL agent can perform gradient descent on the
latent space to yield feasible actions in early training episodes. We also propose a new
training scheme for MoE that tackles the “winner-take-all” issue (Fedus et al., 2022).

• Comprehensive experiments are conducted on ADBench, a benchmark including 57
datasets from various domains, to demonstrate the outperforming detection accuracy and
the efficiency of inference of our model. The result suggests that RL and generative AI
together inspire a new and promising paradigm for advancing anomaly detection.

2 PRELIMINARIES AND NOTATION

Anomaly Detection. Given observations from a system, represented by x = {x1, x2, . . . , xN}
where x ∈ RP×N , P is the feature space dimension and the objective is to determine whether each
observation xi ∈ RP , for i ∈ [N], is an anomaly. The approach to anomaly detection can vary
depending on the availability of labeled data. In the unsupervised setting, the assumption is that
no labeled data is available, and the dataset comprises a mix of unidentified normal and anomalous
instances. In the supervised setting, a dataset D = {(xi,yi), i = 1, 2, . . . , N} is used where
each xi is labeled as normal (yi = −1) or anomalous (yi = 1). This dataset is fully labeled
with a known proportion of anomalies and normal data, rendering the detection process similar to
binary classification with unbalanced classes, where there are typically fewer anomalous than normal
instances. The semi-supervised or one-class classification method acts as a hybrid approach, where
the training involves only normal data (D contains only yi = −1), and anomalies, if present, are
identified during inference. This method can also extend to partially labeled datasets, where some
anomalies are labeled during training.

Class-Conditional Data Generation. In our work, we employ a Conditional Variational Autoen-
coder (C-VAE) (Sohn et al., 2015), denoted by Fθ = Mϕ ◦ Gψ , conditioned on anomalous data

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: The Swift Hydra Framework consists of two main modules: the Self-Reinforcing Gener-
ative Module and the Inference Module. The first module includes a C-VAE, an RL agent, and a
large Mamba-based Detector. Initially, the C-VAE is trained on the original dataset (referred to as
the Combined Dataset in episode 0). In the early stages, the RL agent generates diverse anomalies
by refining latent vectors z, then shifts to producing anomalies that more effectively deceive the de-
tector. The top l anomalies are added back to the original dataset, creating a new combined dataset
to further improve the Generative Model. The second module employs a Mixture of Mamba Experts
(MoME), where lightweight models specialize in different parts of the dataset, providing the same
performance as the large detector but with significantly faster inference.

(y = 1). The parameters ψ and ϕ represent the encoder and decoder, respectively, while θ encapsu-
lates both sets of C-VAE parameters. The C-VAE operates as follows:

Fθ =Mϕ ◦ Gψ, x̂i = Fθ(xi, yi) =Mϕ(Gψ(xi, yi)) =Mϕ(zi, yi) (1)

where x̂i ∈ RP represents the reconstructed observation. The generator is trained by optimizing the
Evidence Lower Bound (ELBO):

LELBO
C-VAE = Eqψ(zi|xi,yi) [log pϕ(xi | zi, yi)]− Eqψ(zi|xi,yi)

[
log

qψ(zi | xi, yi)
pϕ(zi | yi)

]
(2)

In the above equation, Eqψ(zi|xi,yi) [log] is called the reconstruction loss term, which aims
to measure how well the model can reconstruct the input data from the latent representation.
Eqψ(zi|xi,yi)

[
log

qψ(zi|xi,yi)
pϕ(zi|yi)

]
is called the KL divergence term, which serves to regularize the latent

space by making the distribution of the latent variables close to a prior distribution, typically a stan-
dard Gaussian. Note that our C-VAE model is a combination of linear functions and 1-Lipschitz acti-
vation functions in which all layers are normalized. To generate a new anomalous sample x̃i ∈ RP ,
we sample from zi ∈ Rd ∼ N (µ, σ), where d is the latent space dimension, and µ and σ are
optimized parameters at the bottleneck. The decoder then transforms zi into x̃i =Mϕ(zi, yi = 1).

3 SWIFT HYDRA

This section introduces our Swift Hydra framework, as illustrated in Figure 1, which comprises
two main modules: a Self-Reinforcing Generative Module and an Inference Module. First, the
Self-Reinforcing Generative Module trains a generative model using RL to synthesize diverse and
challenging anomalies. These generated samples are later appended to the original dataset D. Sec-
ond, from this new dataset, the Inference Module trains an efficient detector using the Mixture of
Experts (MoE) technique, which includes a combination of multiple lightweight Mamba models
specializing in different data clusters and a gating network directing each data point to the top k
experts for collaborative prediction.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SELF-REINFORCING GENERATIVE MODULE

This module includes two main models: a C-VAE generator, Fθ, that synthesizes new anomalies,
and a large Mamba-based detector Wκ : RP → [0, 1] parameterized by κ that maps a sample xi
to a probabilistic score of it being an anomaly. Unlike conventional methods where the generator
Fθ relies solely on feedback from the detector Wκ to generate new samples which could lead to
a model collapse (Salimans et al., 2016; Hassanaly et al., 2022) or vanishing gradient (Arjovsky
& Bottou, 2017) problem, we instead leverage an RL agent to guide the training of Fθ. This RL
agent, represented by a policy πω , explores the latent distribution p(z) of Fθ and targets areas that
would encourage the generator Fθ to synthesize diverse and challenging anomalies that can bypass
the detectorWκ. These synthetic samples are then used to augment the current training dataset and
retrain Fθ, ultimately improving its ability to generate better anomalies in future episodes.

Dataset definitions. The datasetD is split into a training set, Dtrain, and a testing set, Dtest. In our
approach, the goal is to attain high accuracy on the Dtest even with a small training dataset Dtrain.
Let Dbalanced = {(x, y) ∈ Dtrain | j = min(|{y = −1}|, |{y = 1}|), |{y = −1}| = j, |{y =
1}| = j} be a dataset balanced between normal and anomalous data points, with equal cardinalities
determined by the smaller class. Note that, as episodes progress, the generatorFθ combined with the
RL-agent πω adds more anomalous samples to Dtrain, expanding the anomalous data in Dbalanced.
Since Dbalanced ensures equal numbers of anomalous and normal data, the increase in anomalous
data leads to a corresponding expansion of normal data as well. In the RL context, for each episode,
e, we denote Dtraine and Dbalancede as the evolving training and balanced datasets, respectively.

Training process. For each episode e (comprising h steps), the C-VAE generator Fθ is trained with
batches ofDtraine dataset, while the detectorWκ is trained withDbalancede . Next, an anomalous data
point (x, y = 1) is sampled at random fromDtraine,anomalous, and converted into a latent representation
z = Gψ(x, y = 1). The RL policy is tasked with generating a modification vector δ in the latent
space, i.e. πω : z → δ. This δ results in a new sample in the latent space as ẑ = z + δ. At the end
of the episode, a new dataset is obtained X̂ = {Mϕ(ẑ0, y = 1), . . . ,Mϕ(ẑh, y = 1)}. From the
newly generated set X̂ , the top l samples that lead to the highest rewards are selected and denoted as
X̂<l. A formal definition of the reward is provided in the next section. At each episode, the selected
samples are then merged with Dtraine−1 , forming the evolving dataset Dtraine = Dtraine−1 ∪ X̂<l. Note
that we set D0 = Dtrain to ensure that the model Fθ does not deviate from the acceptable range
of the original data (Shumailov et al., 2024). The dataset Dtraine is used to retrain the generator
Fθ, enhancing its ability to generate high-quality data in future episodes. As e increases, Dtraine
is incorporated into Dbalanced. Thus, Dbalancede also grows across episodes. Due to page limit, we
refer readers to Appendix A.1 for the pseudocode and further details about the training process.

3.1.1 GENERATING SAMPLES AS A MARKOV DECISION PROCESS

The process of policy modeling can be structured as a Markov Decision Process (MDP) (Bellman,
1957), M def

= (S,A, T,R). This includes (i) a finite sets of states S, (ii) a finite set of actions
A, (iii) a transition distribution T (s′ | s, a) where s, s′ ∈ S, a ∈ A and (iv) a reward function
R : S ×A → R. We specific each component as follows:

States (s): A state is defined by latent space representations si = {zi,Dtraine | zi = Gψ(xi),xi ∈
Dtraine,anomalous}, where zi is the latent vector produced by the encoder Gψ from the input data xi.

Actions (a): An action ai = (µi, σi) is a vector of two components: µi ∈ Rd (predicted mean) and
σi ∈ Rd (predicted scale). The modification vector δi = σi · ϵ + µi, where ϵ ∼ N (0, I), and the
latent vector is updated as ẑi = zi + δi.

Rewards (R): The reward function is strategically designed to encourage the generation of a set of
samples that are diverse and reduces the detector’s confidence. The function is defined as follows:

R(Mϕ(ẑi, yi = 1), e) = γe · H(Dtraine ∪Mϕ(ẑi, yi = 1))− logWκ(Mϕ(ẑi, yi = 1)), (3)

whereH(Dtraine ∪Mϕ(ẑi, y = 1)) is the entropy ofDtraine after incorporatingMϕ(ẑi, yi = 1) and
is aimed at promoting the generation of diverse samples (additional details on the calculation of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

entropy of Dtraine are provided in Appendix A.3). The functionWκ(Mϕ(ẑi, yi = 1)) assesses the
detector’s likelihood of classifying the generated sample as anomalous, with the goal of reducing
this probability to decrease the detector’s confidence.

The hyperparameter γ ∈ [0, 1] dictates the desired rate of entropy reduction. This γ implies that the
policy πω focuses on exploring rare samples to increase the diversity of Dtraine,anomalous in the early
episodes. Once sufficient data has been explored, the reward function shifts to encourage the agent
to exploit this data, generating new samples that are more effective at bypassing the detector.

Transition Dynamics (T): When an action ai = (µi, σi) is taken, a new anomalous data point
x̂i = Mϕ(ẑi, yi = 1) is added to X̂ . The new state si+1 is then formed by randomly selecting
xi+1 ∈ Dtrain

e,anomalous, where si+1 = {zi+1,Dtrain
e | zi+1 = Gψ(xi+1)}.

3.1.2 ONE-STEP TO FEASIBLE ACTIONS

The RL agent πω , which is tasked with generating a new sample x̂i from xi, can be trained using
conventional methods. However, during early training episodes, the agent would often struggle to
find suitable actions that maximize the reward function because πω has not yet learned effective
strategies. In fact, an action ai = (µi, σi) may be invalid if the updated latent vector ẑi derived
from ai falls outside the supported range of the trained model Fθ. Even with advanced exploration
techniques such as those in (Eysenbach & Levine, 2022; Pathak et al., 2017; Burda et al., 2019;
Ecoffet et al., 2021), this issue remains challenging for πω to overcome due to the high-dimensional
and continuous nature of the action space.

A naive strategy to address this is to use the observed data distribution p(x) (i.e., adding Gaussian
noise to xi) to generate new samples x̂i. The encoder then provides their latent representation
ẑi = Gψ(x̂i, y = 1), and the modification vector δ̂i = ẑi − zi is employed to guide exploration at
that step. After that, a feasible action ãi = (δ̂i, σi) is derived from δ̂i to replace the invalid action
ai = (µi, σi) of the RL agent in the current step. Once a feasible action is identified, the agent learns
it in a supervised manner, facilitating more effective exploration in future steps. However, randomly
modifying observations in the input space p(x) can be complex. Instead, we rely on the following
theorem to find feasible actions:

Theorem 1. (Reward Estimation Consistency). If the reward function R is differentiable, Fθ is
well-converged, and ẑi := zi− ϵ · ∇zi(−R(Mϕ(zi, yi = 1), e)) for some small ϵ, thenR (x̂i, e) >
R (xi, e), where x̂i =Mϕ(ẑi, yi = 1). (Proof in Appendix B.1)

In other words, ifFθ is well-converged and maintains both continuity (i.e., nearby points in the latent
space yield similar content when decoded) and completeness (i.e., points sampled from the latent
space produce meaningful content when decoded), the C-VAE described in Equation 2 can explore
new states s (i.e., anomalous observations) by utilizing the latent feature space p(z) (which is learned
from the original space p(x)). This allows us to search for feasible x̂i in the lower-dimensional and
less noisy latent space p(z) as an alternative to creating feasible actions. Specifically, Theorem 1
implies that we can deterministically search for ẑi in a manner that maximizes the reward function
specified in Equation 3 using gradient descent (Ruder, 2017). From that, a feasible action ãi =

(δ̂i, σi) is derived where δ̂i = ẑi − zi. With this approach, the policy, value, and reward models are
trained simultaneously during these early episodes, allowing the RL agent to generalize effectively
and reduce invalid actions in future episodes. Thus, the need for using one-step to feasible actions is
eliminated in subsequent stages. Further details on this process can be found in Appendix A.2 with
a preliminary analysis given in Appendix C.5.

3.2 INFERENCE MODULE

At the conclusion of the first module, the detectorWκ has been augmented by the newly generated
dataset and can be used as the final anomaly detection model. Due to the increasingly diverse
training data generated byFθ, we had to initially overparameterize the detectorWκ. For that reason,
deployingWκ directly as the final detection model would not be scalable due to the high inference
cost. Furthermore, the theorem below establishes a lower bound on the detection error, showing that
any single detection model is subject to this lower bound regardless of the number of parameters.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 2. (Inefficiency of single detector in handling evolving balance data). Suppose a feature
space X ⊂ RP contains Un normal clusters and Ua anomalous clusters, where each cluster u-th ∈
[Un + Ua] is modeled as a Gaussian distribution N (µu, σ

2IP). Let Vcluster be the cluster’s volume
and Λ be the total overlapping volume between normal and anomalous clusters, where the number
of anomalous data points is equal to the number of normal data points, the training loss Ltrain (Wκ)
is lower bounded by 1

4 ·
Λ

Ua·Vcluster −Λ
2

in a case of linearWκ. (Proof in Appendix B.2)

This theorem aligns with the findings in (Chen et al., 2022), emphasizing the inefficiency of us-
ing a single classifier. To address this issue, in this second module, we use the MoE approach
to train an efficient detector on the dataset generated by the first module. Instead of relying on a
single large-scale detector, this technique leverages multiple “expert” models with each one special-
izes in a subset of the input data. The balanced dataset Dbalancee is first decomposed into clusters
{C1, C2, . . . , CU}, where the number of clusters U is determined using the elbow method (Yuan &
Yang, 2019). We train a set of Mamba models {f1, f2, . . . , fM}, each acting as an expert for a spe-
cific data cluster following the Sparsely-Gated Mixture-of-Experts approach (Shazeer et al., 2017),
and where fm(x;W) is the output of the m-th expert network with input x and parameter W.

Gating network. In mixture-of-experts approach, the experts are complemented by a gating net-
work that directs inputs to the most appropriate expert. Given an input x ∈ RP, the gating network
is defined as the following function:

h(x,ℵg,ℵnoise) = x · ℵg + StandardNormal(.) · Softplus (x · ℵnoise) (4)

where ℵg,ℵnoise ∈ RP×M are weight matrices that determine the linear transformation and noise
contribution, respectively. From the output of h(x,ℵg,ℵnoise), a key step is to apply the top k expert
selection mechanism, denoted by TopK(h(x,ℵg,ℵnoise), k), where it selects the top k largest values
from the vector h(x,ℵg,ℵnoise), which represents the performance scores (e.g., accuracy) of different
expert networks. The elements in h(x,ℵg,ℵnoise) that are not within the top k are replaced by −∞,
effectively excluding them from further consideration. Finally, a softmax function is applied to these
top k values to normalize them, i.e., λ(x,ℵg,ℵnoise) = Softmax(TopK(h(x,ℵg,ℵnoise), k)). This
setup forms a Mixture of Mamba Expert, and the output of the MoE layer is then expressed as:

F(x,ℵg,ℵnoise,W) =
∑
m∈Tx

λm(x,ℵg,ℵnoise)fm(x;W) (5)

where Tx ⊆ [M] represents the indices of selected experts (|Tx| = k).

Tackling “winner-take-all”. During early training of MoE, experts have arbitrary performance
scores, hence the gating network could randomly allocate more samples to a particular expert. With
more training data, this expert outperforms others, thus receiving even more samples. This is referred
to as the ”winner-take-all” phenomenon (Oster & Liu, 2005; Fedus et al., 2022), which reduces the
MoE to a single lightweight expert, limiting its ability to generalize. While this expert may excel, it
fails to capture the diverse features across U clusters, undermining the model’s overall performance.

We tackle this “winner-take-all” issue by temporarily deactivating the gating network during this
early training stage and, instead, proposing a probabilistic approach to ensure diversity in cluster
assignments across experts, while also considering the complexity of each cluster. For each expert
fi, where i ∈ [M], instead of assigning clusters based on fixed criteria, we dynamically adjust the
probability of an expert fi selecting a cluster ui ∈ [U], with the probability inversely proportional
to how frequently the cluster has already been assigned to other experts. More importantly, we
introduce a scaling factor that adjusts this probability based on the size of the cluster. For larger
clusters, which are likely more complex, we reduce the penalty of being selected multiple times, as
these clusters require more experts to fully capture their complexity. Specifically, the probability of
expert fi selecting cluster u is given by:

P(u | x, {nu}, {su}) =
exp

(
c0 − α

su
· nu

)
∑
u′∈[U] exp

(
c0 − α

su′
· nu′

) (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where su is the size of cluster u, nu is the number of times cluster u has already been assigned, α is
the base penalty factor, and c0 is a constant initialization score for cluster selection. Then, the expert
fi will select u ∼ Categorical (P (u | x, {nu} , {su}) , u ∈ [U]) as its cluster.

Note that, due to the probabilistic nature of the selection algorithm, there could be clusters that are
not selected by any experts. Therefore, we overspecify the number of experts M . As demonstrated
in a theorem from (Nguyen et al., 2024), doing so does not increase prediction time. This is because
F(x,ℵg,ℵnoise,W) selects only the top k (typically 2 or 3) best experts for making predictions.
After training each expert with its selected cluster, we train the gating network to minimize the
overall classification loss (e.g., MSE or Cross Entropy Loss). With this setup, we also establish a
theorem to demonstrate the effectiveness of our training mechanism as follows:

Theorem 3. (MoME efficiently handles evolving balance data). Let Ltest(F) and Ltest(Wκ) repre-
sent the expected error on the test set for the Mixture of Mamba Experts (MoME) model and a single
detector, respectively. For any value of Λ, employing MoME with {f1, f2, . . . , fM} guarantees that
the minimum expected error on the training set is Ltrain(F) = 0 and the expected error on the test
set satisfies Ltest(F) ≤ Ltest(Wκ). (Proof in Appendix B.3)

The above theorem demonstrates that a Mixture of Mamba Experts model can effectively fit all the
data in the training set. Moreover, the expected error on the test set when using the Mixture of
Mamba Experts will always be less than or equal to that of a single detector. Once the experts are
well-trained, we activate the gating network and use it for routing samples.

4 EXPERIMENTAL EVALUATION

Settings. We conduct experiments to evaluate the performance of our Swift Hydra framework using
the ADBench benchmark (Han et al., 2022), which includes a comprehensive collection of 57 widely
used anomaly detection datasets spanning various tasks, from image analysis to natural language
processing, as detailed in Appendix C.6. We also evaluate a version of Swift Hydra without MoME,
i.e., a single large detector is used in the Inference Module. The implementation specifics, such
as the training algorithm, model architecture, hyperparameter, model size and training costs are
provided in Appendix C.1. We will release the source code once the paper is published.

Metrics. In our evaluation, we focus on the performance of the Swift Hydra, particularly in terms of
AUC-ROC and TIF (total inference time to predict all data in ADBench). Additionally, we analyze
the distribution of generated data at each episode and compare it to the distribution of the test data.

Baselines. For the anomaly detection task, we compare Swift Hydra against several state-of-the-art
(SOTA) semi-supervised and unsupervised learning methods included in ADBench. These meth-
ods are Rejex (Perini & Davis, 2023), ADGym (Jiang et al., 2023) and DTE (Livernoche et al.,
2024). We also compare the distribution of our generated data against that of data generated by
oversampling techniques such as SMOTE (Chawla et al., 2002), Borderline-SMOTE (Han et al.,
2005), ADASYN (He et al., 2008), SVM-SMOTE (Nguyen et al., 2011), CBO (Xu et al., 2021),
Oversampling GAN (Nazari & Branco, 2021) and VAE-Geometry (Chadebec et al., 2023). For each
method, we use the best-performing hyperparameters as provided in its original paper.

Methods DTE Rejex ADGym Swift Hydra (Single) Swift Hydra (MoME)
AUCROC TIF AUCROC TIF AUCROC TIF AUCROC TIF AUCROC TIF

Train/Test Ratio (40/60%) 0.82 4.02 0.78 3.89 0.86 6.12 0.91 13.11 0.93 4.01

Train/Test Ratio (30/70%) 0.80 4.13 0.77 4.09 0.82 7.03 0.90 14.38 0.91 4.79

Train/Test Ratio (20/80%) 0.79 4.31 0.76 4.22 0.79 8.17 0.87 16.13 0.90 5.22

Train/Test Ratio (10/90%) 0.78 4.42 0.74 4.39 0.77 9.14 0.86 18.52 0.87 5.84

TIF = Total Inference Time (Seconds)

Table 1: The performance of Swift Hydra and the baselines on the ADBench is evaluated based
on two criteria: AUC-ROC and total inference time (TIF). Here, the AUC-ROC is the average
calculated across all 57 datasets, while the TIF represents the total time the model takes to predict
all data points across all datasets. We vary the train/test ratios to illustrate how the size of the training
data impacts the performance. The best AUC-ROC values are highlighted.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Episode 2 Episode 8 Episode 32 Episode 128

Figure 2: The distribution of the evolving training set Dtraine and test set Dtest is visualized using
the Cardiotocography dataset, one of the 57 datasets from ADBench, generated by Swift Hydra in
each episode. The data points are dimensionally reduced using T-SNE (van der Maaten & Hinton,
2008). Note that the light blue points represent the generated datapoints from previous episodes,
providing insight into the trend of generating anomalous data across episodes.

AUC-ROC Evaluation. As shown in Table 1, the average AUC-ROC scores show that both ver-
sions of Swift Hydra - single large detector and MoME - consistently outperform other state-of-the-
art (SOTA) methods with respect to various training sizes (i.e., 40%, 30%, 20%, and 10% of the
whole dataset). Notably, with only 10% of the dataset, Swift Hydra outperforms DTE in the semi-
supervised setting and Rejex in the unsupervised setting. This demonstrates that our RL algorithm
can train a generative model to synthesize effective anomalies that can later be used to train a high-
performing detection model. We refer readers to Appendix C.2 for a comparative analysis with more
SOTA detection methods and oversampling techniques, and Appendix C.3 for a toy example to il-
lustrate the generalization ability of Swift Hydra. Appendix C.4 presents a series of ablation studies
evaluating the impact of the Self-Reinforcing Module, the effectiveness of the probabilistic cluster
assignments (as described in Equation 6), and the influence of the KL term and the reconstruction
term in Equation 2 on the AUC-ROC of Swift Hydra.

Inference Time Evaluation. In terms of total inference time across 57 datasets, Table 1 shows that
Rejex has the shortest time, which is expected as it relies on conventional lazy learning methods
such as Isolation Forest. DTE, which is based on a diffusion model, requires only a few steps to
reconstruct backward and determine whether a sample is anomalous, resulting in relatively short
inference times. Although ADGym optimally selects which ML models to use for each dataset, the
experiment shows that its overall prediction time is still relatively high compared to that of Swift
Hydra (MoME). Swift Hydra (Single) achieves high AUC-ROC scores; nevertheless, its prediction
time is significantly longer because a single large model is designed to capture the entire diverse
dataset generated by the Self-Reinforcing Generative Module. In contrast, Swift Hydra (MoME) not
only attains the best AUC-ROC scores but also has efficient prediction times that are comparable to
DTE with respect to the training sizes of 40% and 30%. Overall, Swift Hydra (MoME) offers the
best balance between AUC-ROC performance and inference time among the tested methods.

Generated Data Distribution. We visualize the distribution of data generated over time by our
Self-Reinforcing Generative Module in Figure 2. Initially, the model explores a broad spectrum of
widely dispersed anomalous data points. As the episodes progress, a discernible pattern emerges:
the generated anamalous points increasingly cluster towards the boundary that separates normal
from anomalous data. In fact, this transitional zone at the boundary highlights the anomalies that are
not easily distinguishable from normal data points. Hence, this dynamic progression shows that our
generative method significantly enriches the diversity of anomalous data points while simultaneously
pushing for the most challenging anomalies, thus strengthening the detector’s generalization ability.

Figure 3 shows a comparative analysis on the generated data distribution of our method and that of
other oversampling methods. As can be seen, methods like SMOTE, Borderline-SMOTE, SVM-
SMOTE, ADASYN, and CBO only generate data points within the boundary of the anomalous data
in the training set, while our approach allows data points to be generated beyond these boundaries.
This enables our method to potentially generate anomalous data points that can cover the distri-
bution of the test set. Although VAE-Geometry and Oversampling GAN also explore beyond the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

SMOTE Borderline-SMOTE SVM-SMOTE ADASYN

CBO VAE-Geometry Oversampling GAN Swift Hydra

Figure 3: The distribution of the evolving training set Dtraine and test set Dtest is visualized using
the Cardiotocography dataset, one of the 57 datasets from ADBench, generated by the oversampling
methods in our baselines. The data points are dimensionally reduced using T-SNE (van der Maaten
& Hinton, 2008).

Figure 4: The performance of the RL-Agent is represented by the reward (right y-axis), while the
performance of the Mamba-based Detector (single model) is measured by AUC-ROC (left y-axis).
Both metrics are plotted against the number of episodes (x-axis) across three challenging datasets
from ADBench. Note that both reward and AUC-ROC are averaged over multiple roll-outs.

boundary, they have limitations. Oversampling GAN suffers from model collapse (Salimans et al.,
2016; Hassanaly et al., 2022): during the early training steps, if it finds one data point that is very
good at fooling the detector, it will only focus on generating samples around that point in subse-
quent steps. VAE-Geometry performs better as it generates more diverse data points. However, it
is highly sensitive to hyperparameters to learn the data manifold correctly, hence, it is less effective
compared to our method. Both Figures 2 and 3 demonstrate that data generated by Swift Hydra
provides comprehensive coverage over the range of anomalous data in the test set, even though no
knowledge about the test data is provided during training.

Soundness of the Reward Function. Figure 4 shows that the reward trend (average of multiple
roll-outs) closely follows the increase in AUC-ROC. This demonstrates the soundness of our reward
function, as the RL agent optimizes the reward function, either by predicting actions itself or using
feasible actions as discussed in Section 3.1.2, leading to the maximization of AUC-ROC in the test
set. Interestingly, even though the RL agent receives no feedback on how it performs on the test set
(no knowledge about the test set is provided during training), it still manages increase the AUC-ROC
over time. This suggests that our reward function helps improve the detector’s generalization ability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORK

Anomaly Detection. Due to the high cost and difficulty of data annotation, most recent anomaly
detection (AD) research has focused on unsupervised methods with various data distribution as-
sumptions (Aggarwal, 2017; Liu et al., 2008; Zong et al., 2018; Li et al., 2020; 2022; Xu et al.,
2022). Common approaches like GAN-based (Donahue et al., 2017; Schlegl et al., 2017), self-
supervised (Hojjati et al., 2022; Sehwag et al., 2021; Georgescu et al., 2021; Li et al., 2021), and
one-class classification (Shen et al., 2020; Hu et al., 2020) typically rely solely on normal data
for training, making it difficult to identify anomalies due to the absence of true anomaly patterns.
Reconstruction-based methods (An & Cho, 2015; Xu et al., 2022) use anomaly reconstruction loss
to detect outliers but are often unreliable as neural networks can memorize and generalize even with
a few samples of anomalies. More recent supervised or weakly-supervised methods (Pang et al.,
2018b; 2019a;d; Ruff et al., 2020; Zhou et al., 2021) treat anomalies as negative samples to improve
sensitivity, but they risk overfitting and heavily depend on the diversity and quality of the dataset.

Advanced methods like ADGym (Jiang et al., 2023) have improved anomaly detection through op-
timized data processing, augmentation, network design, and training, but they may fail if settings
do not align with the target domain. Learning to Reject (Perini & Davis, 2023) uses uncertainty
scores to reject rather than forcibly predict uncertain samples; however, it often rejects data near the
normal-anomaly boundary, reducing detection performance. DTE (Livernoche et al., 2024) lever-
ages diffusion models to estimate posterior densities, but the decoder can still memorize and recon-
struct anomalies, complicating reliable scoring. AnomalyClip (Zhou et al., 2024) captures general
anomalies in images using object-agnostic text prompts but is limited to image-based tasks.

Oversampling-based techniques. Traditional oversampling techniques tackle imbalanced data by
generating synthetic samples. SMOTE (Chawla et al., 2002) interpolates between minority points to
increase diversity but does not focus on challenging samples. Variations like CBO (Xu et al., 2021),
Borderline-SMOTE (Han et al., 2005), and SVM-SMOTE (Nguyen et al., 2011) generate samples
near boundaries to improve representation but risk introducing noise and overfitting in complex
distributions. ADASYN (He et al., 2008) targets harder instances for sample generation, enhancing
performance but potentially causing redundancy if not carefully managed.

Recent techniques like Oversampling GAN (Nazari & Branco, 2021) and VAE-Geometry (Chadebec
et al., 2023) use deep learning to generate more generalized samples. Oversampling GAN may suf-
fer from issues like vanishing gradients or model collapse, limiting sample diversity. VAE-Geometry
employs a Variational Autoencoder that preserves the geometric structure of the data during augmen-
tation, producing synthetic samples that more accurately reflect the true distribution. However, its
accuracy depends on correctly learning the data manifold and is highly sensitive to hyperparameters;
failure to capture complex structures can result in inaccurate sample generation.

RL-Guided Generative AI. Reinforcement Learning (RL) has been used to guide Generative AI
(GenAI) in large language models (LLMs), as seen in ”Learning from Human Feedback” (Dubois
et al., 2023) and ReST (Gulcehre et al., 2023), enhancing generative capabilities through reward
models. The direct use of RL to guide the sample generation process of generative models in
anomaly detection remains underexplored, with this approach only recently gaining traction through
the ReST framework for LLMs.

6 CONCLUSION

We propose Swift Hydra, a framework designed to reinforce a generative model’s ability to syn-
thesize anomalies in order to augment anomaly detection models. The framework features an RL
agent to guide the training of a C-VAE model that generates diverse and challenging anomalies. We
further propose a mechanism to help the RL agent choose an action more efficiently during training.
Additionally, due to the diverse nature of the generated dataset, we introduce a Mixture of Mamba
Experts to train an efficient anomaly detector, where each expert specializes in capturing specific
data clusters. As a result, our model demonstrates strong generalization capabilities and fast infer-
ence, as evidenced by experiments conducted on the ADBench benchmark against state-of-the-art
anomaly detection models. Our research highlights a promising paradigm of integrating RL and
generative AI for advancing anomaly detection. It can be leveraged for generating and synthesizing
data in other application contexts where collecting real data is expensive and scarce.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Charu C Aggarwal. An introduction to outlier analysis. In Outlier analysis, pp. 1–34. Springer,
2017.

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using recon-
struction probability. 2015. URL https://api.semanticscholar.org/CorpusID:
36663713.

Martin Arjovsky and Leon Bottou. Towards principled methods for training generative adversarial
networks. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=Hk4_qw5xe.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679–
684, 1957.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Clément Chadebec, Elina Thibeau-Sutre, Ninon Burgos, and Stéphanie Allassonnière. Data aug-
mentation in high dimensional low sample size setting using a geometry-based variational au-
toencoder. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):2879–2896,
2023. doi: 10.1109/TPAMI.2022.3185773.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards un-
derstanding the mixture-of-experts layer in deep learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 23049–23062. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

Rewon Child. Very deep {vae}s generalize autoregressive models and can outperform them
on images. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=RLRXCV6DbEJ.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning, 2017. URL
https://arxiv.org/abs/1605.09782.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=4hturzLcKX.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First re-
turn, then explore. Nature, 590(7847):580–586, Feb 2021. ISSN 1476-4687. doi: 10.1038/
s41586-020-03157-9. URL https://doi.org/10.1038/s41586-020-03157-9.

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust
RL problems. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=PtSAD3caaA2.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23(1), jan 2022. ISSN 1532-4435.

Mariana-Iuliana Georgescu, Antonio Barbalau, Radu Tudor Ionescu, Fahad Shahbaz Khan, Marius
Popescu, and Mubarak Shah. Anomaly detection in video via self-supervised and multi-task
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12742–12752, 2021.

11

https://api.semanticscholar.org/CorpusID:36663713
https://api.semanticscholar.org/CorpusID:36663713
https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://proceedings.neurips.cc/paper_files/paper/2022/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://openreview.net/forum?id=RLRXCV6DbEJ
https://openreview.net/forum?id=RLRXCV6DbEJ
https://arxiv.org/abs/1605.09782
https://openreview.net/forum?id=4hturzLcKX
https://doi.org/10.1038/s41586-020-03157-9
https://openreview.net/forum?id=PtSAD3caaA2
https://openreview.net/forum?id=PtSAD3caaA2

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data, 2023. URL https://arxiv.org/abs/2106.11959.

Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward supervised anomaly detection.
Journal of Artificial Intelligence Research, 46:235–262, 2013.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling,
2023. URL https://arxiv.org/abs/2308.08998.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method in
imbalanced data sets learning. In International conference on intelligent computing, pp. 878–887.
Springer, 2005.

Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. ADBench: Anomaly
detection benchmark. Advances in Neural Information Processing Systems (NeurIPS), 35:32142–
32159, 2022.

Malik Hassanaly, Andrew Glaws, Karen Stengel, and Ryan N King. Adversarial sampling of un-
known and high-dimensional conditional distributions. Journal of Computational Physics, 450:
110853, 2022.

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328, 2008. doi:
10.1109/IJCNN.2008.4633969.

Hadi Hojjati, Thi Kieu Khanh Ho, and Narges Armanfard. Self-supervised anomaly detection: A
survey and outlook. arXiv preprint arXiv:2205.05173, 2022.

Wenpeng Hu, Mengyu Wang, Qi Qin, Jinwen Ma, and Bing Liu. Hrn: A holistic approach
to one class learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 19111–19124. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/dd1970fb03877a235d530476eb727dab-Paper.pdf.

Minqi Jiang, Chaochuan Hou, Ao Zheng, Songqiao Han, Hailiang Huang, Qingsong Wen, Xiyang
Hu, and Yue Zhao. Adgym: Design choices for deep anomaly detection, 2023. URL https:
//arxiv.org/abs/2309.15376.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl. Lever-
aging uncertainty information from deep neural networks for disease detection. Scientific reports,
7(1):1–14, 2017.

Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning
for anomaly detection and localization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9664–9674, 2021.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier
detection. In 2020 IEEE international conference on data mining (ICDM), pp. 1118–1123. IEEE,
2020.

12

https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2308.08998
https://proceedings.neurips.cc/paper_files/paper/2020/file/dd1970fb03877a235d530476eb727dab-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/dd1970fb03877a235d530476eb727dab-Paper.pdf
https://arxiv.org/abs/2309.15376
https://arxiv.org/abs/2309.15376

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen. Ecod: Unsuper-
vised outlier detection using empirical cumulative distribution functions. IEEE Transactions on
Knowledge and Data Engineering, 2022.

Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung. Intrusion detection
system: A comprehensive review. Journal of Network and Computer Applications, 36(1):16–24,
2013.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pp. 413–422. IEEE, 2008.

Wen Liu, Weixin Luo, Zhengxin Li, Peilin Zhao, Shenghua Gao, et al. Margin learning embedded
prediction for video anomaly detection with a few anomalies. In IJCAI, volume 3, pp. 023–3,
2019.

Victor Livernoche, Vineet Jain, Yashar Hezaveh, and Siamak Ravanbakhsh. On diffusion modeling
for anomaly detection. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=lR3rk7ysXz.

Ehsan Nazari and Paula Branco. On oversampling via generative adversarial networks under dif-
ferent data difficulty factors. In Nuno Moniz, Paula Branco, Luis Torgo, Nathalie Japkow-
icz, Michał Woźniak, and Shuo Wang (eds.), Proceedings of the Third International Work-
shop on Learning with Imbalanced Domains: Theory and Applications, volume 154 of Pro-
ceedings of Machine Learning Research, pp. 76–89. PMLR, 17 Sep 2021. URL https:
//proceedings.mlr.press/v154/nazari21a.html.

Hien M. Nguyen, Eric W. Cooper, and Katsuari Kamei. Borderline over-sampling for imbalanced
data classification. Int. J. Knowl. Eng. Soft Data Paradigm., 3(1):4–21, April 2011. ISSN
1755-3210. doi: 10.1504/IJKESDP.2011.039875. URL https://doi.org/10.1504/
IJKESDP.2011.039875.

Huy Nguyen, Pedram Akbarian, Fanqi Yan, and Nhat Ho. Statistical perspective of top-k sparse
softmax gating mixture of experts. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=jvtmdK69KQ.

Matthias Oster and Shih-Chii Liu. Spiking inputs to a winner-take-all network. In Y. Weiss,
B. Schölkopf, and J. Platt (eds.), Advances in Neural Information Processing Systems, volume 18.
MIT Press, 2005. URL https://proceedings.neurips.cc/paper_files/paper/
2005/file/881c6efa917cff1c97a74e03e15f43e8-Paper.pdf.

Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. Learning representations of ultrahigh-
dimensional data for random distance-based outlier detection. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18,
pp. 2041–2050, New York, NY, USA, 2018a. Association for Computing Machinery. ISBN
9781450355520. doi: 10.1145/3219819.3220042. URL https://doi.org/10.1145/
3219819.3220042.

Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. Learning representations of ultrahigh-
dimensional data for random distance-based outlier detection. In KDD, pp. 2041–2050, 2018b.

Guansong Pang, Chunhua Shen, Huidong Jin, and Anton van den Hengel. Deep weakly-supervised
anomaly detection. ArXiv, 1910.13601, 2019a. URL https://arxiv.org/abs/1910.
13601.

Guansong Pang, Chunhua Shen, and Anton van den Hengel. Deep anomaly detection with deviation
networks, 2019b. URL https://arxiv.org/abs/1911.08623.

Guansong Pang, Chunhua Shen, and Anton Van Den Hengel. Deep anomaly detection with deviation
networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 353–362, 2019c.

Guansong Pang, Chunhua Shen, and Anton van den Hengel. Deep anomaly detection with deviation
networks. In KDD, pp. 353–362, 2019d.

13

https://openreview.net/forum?id=lR3rk7ysXz
https://proceedings.mlr.press/v154/nazari21a.html
https://proceedings.mlr.press/v154/nazari21a.html
https://doi.org/10.1504/IJKESDP.2011.039875
https://doi.org/10.1504/IJKESDP.2011.039875
https://openreview.net/forum?id=jvtmdK69KQ
https://proceedings.neurips.cc/paper_files/paper/2005/file/881c6efa917cff1c97a74e03e15f43e8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2005/file/881c6efa917cff1c97a74e03e15f43e8-Paper.pdf
https://doi.org/10.1145/3219819.3220042
https://doi.org/10.1145/3219819.3220042
https://arxiv.org/abs/1910.13601
https://arxiv.org/abs/1910.13601
https://arxiv.org/abs/1911.08623

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guansong Pang, Choubo Ding, Chunhua Shen, and Anton van den Hengel. Explainable deep few-
shot anomaly detection with deviation networks. arXiv preprint arXiv:2108.00462, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 488–489, 2017. doi: 10.1109/CVPRW.2017.70.

Lorenzo Perini and Jesse Davis. Unsupervised anomaly detection with rejection, 2023. URL
https://arxiv.org/abs/2305.13189.

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017. URL https:
//arxiv.org/abs/1609.04747.

Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-
Robert Müller, and Marius Kloft. Deep semi-supervised anomaly detection. In ICLR. OpenRe-
view.net, 2020.

Abhijeet Sahu, Truc Nguyen, Kejun Chen, Xiangyu Zhang, and Malik Hassanaly. Detection of false
data injection attacks (fdia) on power dynamical systems with a state prediction method. arXiv
preprint arXiv:2409.04609, 2024.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In Advances in neural information processing systems,
pp. 2234–2242, 2016.

Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery, 2017. URL https://arxiv.org/abs/1703.05921.

Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
outlier detection. arXiv preprint arXiv:2103.12051, 2021.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hier-
archical one-class network. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 13016–13026. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson.
The curse of recursion: Training on generated data makes models forget, 2024. URL https:
//arxiv.org/abs/2305.17493.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation us-
ing deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/
paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Shashanka Venkataramanan, Kuan-Chuan Peng, Rajat Vikram Singh, and Abhijit Mahalanobis. At-
tention guided anomaly localization in images. In Computer Vision – ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII, pp. 485–503, Berlin,
Heidelberg, 2020. Springer-Verlag. ISBN 978-3-030-58519-8. doi: 10.1007/978-3-030-58520-4
29. URL https://doi.org/10.1007/978-3-030-58520-4_29.

14

https://arxiv.org/abs/2305.13189
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1703.05921
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://proceedings.neurips.cc/paper_files/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
https://arxiv.org/abs/2305.17493
https://arxiv.org/abs/2305.17493
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1007/978-3-030-58520-4_29

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy, 2022. URL https://arxiv.org/abs/
2110.02642.

Zhaozhao Xu, Derong Shen, Tiezheng Nie, Yue Kou, Nan Yin, and Xi Han. A cluster-based
oversampling algorithm combining smote and k-means for imbalanced medical data. Infor-
mation Sciences, 572:574–589, 2021. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.
2021.02.056. URL https://www.sciencedirect.com/science/article/pii/
S0020025521001985.

Weiren Yu, Jianxin Li, Md Zakirul Alam Bhuiyan, Richong Zhang, and Jinpeng Huai. Ring: Real-
time emerging anomaly monitoring system over text streams. IEEE Transactions on Big Data, 5
(4):506–519, 2017.

Chunhui Yuan and Haitao Yang. Research on k-value selection method of k-means clustering algo-
rithm. J, 2(2):226–235, 2019.

M. Zaheer, Jin ha Lee, M. Astrid, and Seung-Ik Lee. Old is gold: Redefining the adversar-
ially learned one-class classifier training paradigm. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 14171–14181, 2020. URL https://api.
semanticscholar.org/CorpusID:215786155.

Jianpeng Zhang, Yutong Xie, Guansong Pang, Zhibin Liao, Johan Verjans, Wenxing Li, Zongji Sun,
Jian He, Yi Li, Chunhua Shen, and Yong Xia. Viral pneumonia screening on chest x-rays using
confidence-aware anomaly detection. IEEE Transactions on Medical Imaging, PP:1–1, 11 2020.
doi: 10.1109/TMI.2020.3040950.

Ying Zhang, Jianhui Wang, and Bo Chen. Detecting false data injection attacks in smart grids:
A semi-supervised deep learning approach. IEEE Transactions on Smart Grid, 12(1):623–634,
2021a. doi: 10.1109/TSG.2020.3010510.

Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu, Hengbo Liu, Qingsong Wen, Liang Sun,
Junwei Jiang, Lunting Fan, and Min Ke. Cloudrca: A root cause analysis framework for cloud
computing platforms. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pp. 4373–4382, 2021b.

Kang Zhou, Yuting Xiao, Jianlong Yang, Jun Cheng, Wen Liu, Weixin Luo, Zaiwang Gu, Jiang
Liu, and Shenghua Gao. Encoding Structure-Texture Relation with P-Net for Anomaly De-
tection in Retinal Images, pp. 360–377. 11 2020. ISBN 978-3-030-58564-8. doi: 10.1007/
978-3-030-58565-5 22.

Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jiming Chen. AnomalyCLIP: Object-
agnostic prompt learning for zero-shot anomaly detection. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
buC4E91xZE.

Yingjie Zhou, Xucheng Song, Yanru Zhang, Fanxing Liu, Ce Zhu, and Lingqiao Liu. Feature
encoding with autoencoders for weakly supervised anomaly detection. TNNLS, 2021.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In ICLR,
2018.

15

https://arxiv.org/abs/2110.02642
https://arxiv.org/abs/2110.02642
https://www.sciencedirect.com/science/article/pii/S0020025521001985
https://www.sciencedirect.com/science/article/pii/S0020025521001985
https://api.semanticscholar.org/CorpusID:215786155
https://api.semanticscholar.org/CorpusID:215786155
https://openreview.net/forum?id=buC4E91xZE
https://openreview.net/forum?id=buC4E91xZE

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DETAILS OF SWIFT HYDRA

A.1 SELF-REINFORCING GENERATIVE MODULE

Algorithm 1: Self-Reinforcing Generative Module
Input: E, T as number of episodes, number of steps per episode respectively
evolving datasets Dtraine , Dbalancee , Dtraine,anomalous for each episode e ∈ [1, E]
C-VAE-based Generator Fθ = Gψ ◦Mϕ

Mamba detectorWκ

Output: Trained models Fθ,Wκ, policy πω , and datasets Dtraine , Dbalancee
// Initialize models and policy

1 Initialize Policy πω , Generator Fθ, and DetectorWκ

2 for e = 1 to E do
// Train VAE model on current training set

3 TrainVAE(Dtraine ,Fθ)
// Train detector model on balance training data

4 TrainDetector(Dbalancee ,Wκ)
5 Initialize trajectory B = ∅

// Generate new samples to expand training dataset
6 for t = 0 to T do
7 z = Fθ(x) for x ∈ Dtraine,anomalous

8 Sample action a = (µ, σ) using policy πω based on state s = (z,Dtraine)
9 δ = σ · ϵ+ µ where ϵ ∼ N (0, I)

10 Form new latent vector z′ = z + δ
11 if z′ within supported range then
12 x′ =Mϕ(z

′, y = 1)

13 else
// Adjust action if out of feasible range

14 z′ = OneStepToFeasibleAction(z,Dtraine)
15 x′ =Mϕ(z

′, y = 1)
// Calculate feasible action

16 a = (δ̂ = z′ − z, σ)
17 Calculate rewardR(s, a, e)
18 B = B ∪ {s, a,R(s, a, e)}
19 X̂ = X̂ ∪ {(x′, y = 1)}

// Update policy using any Gradient Descent (i.e PPO) or
Behavior Cloner

20 TrainPolicy(πω,B)
// Add l samples having highest reward to current training

set

21 Dtraine = Dtraine ∪ X̂<l
// randomly trims elements from classes with more data points

to equalize the class sizes based on the smallest class
22 Dbalancee ← Trim(Dtraine)

23 return Fθ,Wκ, πω , Dtraine , Dbalancee

The algorithm A.1 describes a self-reinforcing generative module for training a Conditional VAE
(C-VAE) based generator, a Mamba detector, and a policy network within a reinforcement learning
framework. The input includes the number of episodes E and steps per episode T , evolving datasets
Dtraine , Dbalancee , and Dtraine,anomalous for each episode e, the generator Fθ = Gψ ◦Mϕ, and the Mamba
detector Wκ. The process begins by initializing the policy πω , the generator Fθ, and the detector
Wκ. For each episode e, the generator is first trained on the current training dataset Dtraine , and
the detector is trained using the balanced dataset Dbalancee . A trajectory buffer B is initialized to
store states, actions, and rewards. During each step t in the episode, the generator produces a latent

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

vector z for an anomalous data point, and the policy network samples an action a = (µ, σ) based
on the state s = (z,Dtraine). A perturbation δ = σ · ϵ + µ is applied to obtain a new latent vector
z′. If z′ is within the supported range, a new sample x′ =Mϕ(z

′, y = 1) is generated; otherwise,
the One-Step to Feasible Action algorithm 2 is used to adjust the action, correcting z′ and updating
the action. The reward R(s, a, e) is calculated and stored in B along with the state and action, and
the generated sample x′ is added to a temporary set X̂ . After completing all steps, the policy πω is
updated using reinforcement learning techniques, such as Proximal Policy Optimization (PPO) or
behavior cloning, based on the collected trajectory B. The top l samples with the highest rewards
from X̂ are then added to the training set Dtraine . Subsequently, Dbalancee will be refined from
Dtraine using the helper function Trim(.), ensuring an equal number of elements in both classes.
The algorithm repeats this process for each episode and finally returns the trained generator Fθ,
detectorWκ, policy πω , and the updated datasets Dtraine and Dbalancee . This flow ensures that new
samples are generated and integrated into the training set through a reinforcement learning process.

Note that if the total number of generated anomalous data combined with the training anomalous
data exceeds the total number of normal data in the training set, the Trim(.) function could trim
out the generated data. However, across our experiments on all 57 datasets, we observed that Swift
Hydra consistently converges before the anomalous data surpasses the normal data in quantity. Note
that in most cases, the number of available anomalies in the training data only accounts for 1%-15%
of the entire dataset (Appendix C.6), representing the primary challenge in anomaly detection (i.e.,
limited availability of anomalous data for training models). However, if the total anomalous data
were to exceed the normal data, one approach would be to start generating (or collecting) more
synthetic (or real, respectively) normal data.

A.2 ONE-STEP TO FEASIBLE ACTIONS

Algorithm 2: One-Step To Feasible Action

Input: Latent variable z, Current evolving dataset Dtraine
Output: New Optimized Latent Variable z′

1 Initialize gradient step size η
2 Initialize regularization parameter γ ∈ [0, 1]
3 Initialize number of datapoints for KDE sampling ς
4 for i = 0 to η do

// Construct Kernel Density Estimation on Dtraine

5 KDE← KernelDensityEstimation(Dtraine)
// Sampling ς datapoints from KDE

6 sampled z← KDE.sample(ς)
// Calculate Entropy H(z) based on ς datapoints and KDE

Probability function
7 H(z)← Entropy(sampled z,KDE)

// Compute prediction loss with entropy regularization
8 Lpred ← logWκ (Mϕ(zi, yi = 1))− γe · H(zi)

// Update z by gradient descent
9 zi ← zi − α · ∇Lpred(x, zi)

10 z′ ← zi
11 return z′

The algorithm implements a one-step optimization process to adjust a latent variable z, aiming
to increase the diversity in the evolving dataset Dtraine using Kernel Density Estimation (KDE)
and entropy maximization. The process begins with initializing key parameters: the gradient step
size η, which controls the size of updates to z; the regularization parameter γ, which determines
the importance of diversity in the optimization; and the number of sampled datapoints ς , used to
estimate the dataset’s distribution.

In each iteration, a KDE model (detailed in Appendix A.3) is constructed using the dataset Dtraine
to capture its distribution. This model helps estimate the density of the data points within the current
dataset. After building the KDE, we sample ς data points from it to approximate the dataset’s overall

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

distribution. These sampled points are then used to calculate the entropyH(z) (explained further in
Appendix A.3), which quantifies the diversity or uncertainty present in the dataset.

Following this, the algorithm calculates the loss Lpred based on a reward function (as defined in
Equation 3). With the loss computed, the latent variable z is updated through gradient descent.
This adjustment directs z towards minimizing the prediction loss, making it more representative of
diverse data that can potentially deceive the detectorWκ. Once the optimization is completed, the
refined latent variable z′ is returned, concluding the One-Step to Feasible Action algorithm.

A.3 ENTROPY ESTIMATION IN DYNAMIC TRAINING DATASETS

To effectively evaluate the diversity of our current evolving dataset Dtraine,anomalous, we measure its
entropy using Kernel Density Estimation (KDE) followed by sampling-based entropy estimation.
KDE helps us estimate the probability density function p(x) from the empirical data Dtraine,anomalous.
The formula for KDE is:

p̂(x) =
1

nh

n∑
i=1

K
(
x− xi
h

)

Here, p̂(x) is the estimated probability density at point x, n is the total number of points in
Dtraine,anomalous, h is the bandwidth, and K is the kernel function. This function, a probability den-
sity itself, weights the data points around x. For our analysis, we use the Gaussian kernel due to its
smooth properties and infinite support:

K(u) = 1√
2π
e−

u2

2

The choice of bandwidth h significantly affects the estimator’s bias and variance. A smaller h leads
to a detailed but potentially noisy estimator (risk of overfitting), whereas a larger h may overly
smooth the data (risk of underfitting). We can adopt Silverman’s rule of thumb for selecting band-
width with Gaussian kernels:

h = 1.06σn−1/5

where σ is the standard deviation of the dataset.

After estimating p̂(x) with KDE, calculating the entropy directly from Dtraine,anomalous would be cum-
bersome and computationally intensive:

H(Dtraine,anomalous) = −
∫
p̂(x) log p̂(x) dx

Instead, we employ Monte Carlo Sampling to select ς data points xj from this estimated distribution
and approximate the entropy using these samples:

H(Dtraine,anomalous) ≈ −
1

ς

ς∑
j=1

log p̂(xj)

Here, xj are the samples drawn from p̂(x), and log p̂(xj) is the natural logarithm of the estimated
density at each sampled point. We calculate the average of these logarithms across all ς sampled
points to approximate the entropy. This method provides a practical and computationally efficient
approach to estimate the entropy, reflecting the diversity and uncertainty of the dataset Dtraine,anomalous.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B THEOREMS AND PROOFS

B.1 REWARD ESTIMATION CONSISTENCY

Theorem 1 If the reward function R is differentiable, Fθ is well-converged, and ẑi := zi −
ϵ · ∇zi(−R(Mϕ(zi, yi = 1), e)) for some small ϵ, then R (x̂i, e) > R (xi, e), where x̂i =
Mϕ(ẑi, yi = 1).

Proof. To prove this theorem, we first prove that for a well-converged Fθ, Mϕ is Lipschitz-
continuous.

Consider the decoder Mϕ : Rd → RP composed of N layers. For j = 1 to N − 1, each layer
computes:

hj = qj(hj−1) = ReLU(Wjhj−1 + bj),

where h0 = zi ∈ Rd, Wj ∈ Rdj×dj−1 , and bj ∈ Rdj . The output layer computes:

xi =Mϕ(zi) = qN (hN−1) =WNhN−1 + bN ,

with WN ∈ RP×dN−1 and bN ∈ RP .

To prove thatMϕ is Lipschitz continuous, consider two inputs zi, ẑi ∈ Rd. We aim to show:

∥Mϕ(zi)−Mϕ(ẑi)∥ ≤ K∥zi − ẑi∥,

where K is a finite constant.

Starting from the output layer:

∥Mϕ(zi)−Mϕ(ẑi)∥ = ∥qN (h
(zi)
N−1)− qN (h

(ẑi)
N−1)∥

= ∥WNh
(zi)
N−1 + bN −WNh

(ẑi)
N−1 − bN∥

= ∥WN (h
(zi)
N−1 − h

(ẑi)
N−1)∥

≤ ∥WN∥2∥h(zi)N−1 − h
(ẑi)
N−1∥,

where ∥WN∥2 denotes the spectral norm of WN .

For each hidden layer j = N − 1 down to 1:

∥h(zi)j − h(ẑi)j ∥ = ∥qj(h
(zi)
j−1)− qj(h

(ẑi)
j−1)∥

= ∥ReLU(Wjh
(zi)
j−1 + bj)− ReLU(Wjh

(ẑi)
j−1 + bj)∥

≤ ∥Wjh
(zi)
j−1 −Wjh

(ẑi)
j−1∥ (since ReLU is 1-Lipschitz)

≤ ∥Wj∥2∥h(zi)j−1 − h
(ẑi)
j−1∥.

By recursively applying these inequalities, we obtain:

∥h(zi)j − h(ẑi)j ∥ ≤

(
j∏

k=1

∥WN−k+1∥2

)
∥h(zi)0 − h(ẑi)0 ∥ =

(
j∏

k=1

∥WN−k+1∥2

)
∥zi − ẑi∥.

At the output layer:

∥Mϕ(zi)−Mϕ(ẑi)∥ ≤ ∥WN∥2∥h(zi)N−1 − h
(ẑi)
N−1∥.

Substituting the recursive bound:

∥Mϕ(zi)−Mϕ(ẑi)∥ ≤

 N∏
j=1

∥Wj∥2

 ∥zi − ẑi∥.
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Define K =
∏N
j=1 ∥Wj∥2. To ensure K is finite, we enforce bounds (Layer Normalization) on the

spectral norms: ∥Wj∥2 ≤ sj , where sj are finite constants. Then:

K ≤
N∏
j=1

sj .

If we choose sj = s ≤ 1 for all j, then K ≤ sN , which is finite. Therefore, Mϕ is Lipschitz
continuous with Lipschitz constant K, satisfying:

∥Mϕ(zi)−Mϕ(ẑi)∥ ≤ K∥zi − ẑi∥.

Thus, we finished proving thatMϕ is Lipschitz-continuous. Given Fθ is well converged, WithMϕ

being Lipschitz continuous and differentiable, a small learning rate ϵ induces a small change in latent
vector zi which results in a small change in the data point xi reconstructed by C-VAE. We can use a
first-order Taylor expansion for small ∆zi = ẑi − zi :

x̂i =Mϕ (ẑi) ≈Mϕ (zi) + JMϕ
(zi) ·∆zi

where JMϕ
(zi) is the Jacobian matrix ofMϕ at zi.

From the update rule:

∆zi = ẑi − zi = ϵ · ∇ziR (xi, e)

Thus, the change in xi is:

x̂i − xi ≈ JMϕ
(zi) ·∆zi = ϵ · JMϕ

(zi) · ∇ziR (xi, e)

Since xi =Mϕ (zi), by the chain rule, we have:

∇ziR (xi, e) = J⊤
Mϕ

(zi) · ∇xiR (xi, e)

Therefore:

x̂i − xi ≈ ϵ · JMϕ
(zi) · J⊤

Mϕ
(zi) · ∇xiR (xi, e)

Let 𭟋 = JMϕ
(zi) · J⊤

Mϕ
(zi), which is a positive semi-definite matrix. Thus:

x̂i − xi ≈ ϵ ·𭟋 · ∇xiR (xi, e)

Using a first-order Taylor expansion ofR around xi :

∆R = R (x̂i, e)−R (xi, e) ≈ ∇xiR (xi, e)
⊤
(x̂i − xi)

Substituting x̂i − xi :

∆R ≈ ϵ · ∇xiR (xi, e)
⊤
F · ∇xiR (xi, e)

Since 𭟋 is positive semi-definite and ϵ > 0 :

∆R ≥ 0

More specifically, ∆R = 0 if and only if ∇xiR (xi, e) = 0. Otherwise, ∆R > 0. Therefore, under
the given conditions and for a sufficiently small ϵ :

R (x̂i, e) > R (xi, e)

This completes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.2 ONE DETECTOR INEFFECTIVELY HANDLES EVOLVING BALANCE DATA

Theorem 2. Suppose a feature space X ⊂ RP contains Un normal clusters and Ua anomalous
clusters, where each cluster u-th ∈ [Un + Ua] is modeled as a Gaussian distribution N (µu, σ

2IP).
Let Vcluster be the cluster’s volume and Λ be the total overlapping volume between normal and
anomalous clusters, where the number of anomalous data points is equal to the number of normal
data points, the training loss Ltrain (Wκ) is lower bounded by 1

4 ·
Λ

Ua·Vcluster −Λ
2

in a case of linearWκ.

Proof. Consider the feature space X ⊂ RP with Un normal Gaussian clusters and Ua anomalous
Gaussian clusters, each modeled as N (µu, σ

2IP). The volume of each cluster is:

Vcluster =
πP/2(3σ)P

Γ
(
P
2 + 1

) ,
where 3σ represents the radius covering 99.7% of the data points in a cluster. The total volume
occupied by the normal clusters is:

Vtotal normal = Un · Vcluster,

and the total volume occupied by the anomalous clusters is:

Vtotal anomalous = Ua · Vcluster.

The clusters overlap in certain regions, resulting in a total overlapping volume Λ between normal
and anomalous clusters. Under our assumption, this overlapping region contains 50% of Λ, i.e., Λ

2

normal data and 50% of Λ, i.e., Λ
2 anomalous data.

Note that since the datapoints are in the overlapping area, we assume that the unique features are
negligible while noise features from negative class are dominant. The unique volumes of the normal
and anomalous clusters, excluding the overlapping regions, are:

Vunique normal = Vtotal normal −
Λ

2

= Un · Vcluster −
Λ

2

Vunique anomalous = Vtotal anomalous −
Λ

2

= Ua · Vcluster −
Λ

2

For simplicity, we assume that the detector Wκ constructs decision boundaries around the normal
clusters. Specifically, the detector aims to enclose the normal clusters within its decision regions
to classify them as normal, while any data points outside these regions are considered anomalous.
As indicated in the work of Chen et al. (2022), a single detector focuses on both unique features
and noise features, even though unique features are negligible. This means the detector Wκ seeks
to minimize False Negatives by primarily capturing the normal data based on noise features, while
overlooking unique features. As the model size χ increases, the decision boundaries of the detector
can more precisely conform to the normal clusters, potentially leading to overfitting of the normal
data. Let q(χ) denote the proportion of the unique normal volume that the detector’s decision
boundary covers:

Vcovered normal = q(χ) · Vunique normal.

The False Negative Rate (FNR), which represents the proportion of normal data not covered by the
detector, is:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

FNR = 1− q(χ).

Because the detector’s decision boundary encloses the normal clusters, it inevitably includes parts
of the overlapping regions Λ. Therefore, the detector inadvertently covers some anomalous data
within the overlapping regions, leading to False Positives. The volume of anomalous data incorrectly
classified as normal (False Positives) is:

VFP = q(χ) · Λ
2

The False Positive Rate (FPR), representing the proportion of anomalous data misclassified as nor-
mal, is:

FPR =
VFP

Vunique anomalous

=
q(χ) · Λ2

Ua · Vcluster − Λ
2

Assuming equal prior probabilities for normal and anomalous data, the expected error L(Wκ) is:

L (Wκ) =
1

2
· FNR+

1

2
· FPR

=
1

2

(
1− q(χ) +

q(χ) · Λ2
Ua · Vcluster − Λ

2

)

=
1

2

(
1− q(χ) +

q(χ) · Λ
2
(
Ua · Vcluster − Λ

2

))

Our goal is to find the minimum expected error Ltrain(Wκ). To achieve this, we consider how
L(Wκ) varies with q(χ). Since the detector aims to maximize coverage of the normal clusters (i.e.,
maximize q(χ)) to minimize False Negatives, we consider the case where q(χ) = 1, corresponding
to the detector fully covering the unique normal volume.

Substituting q(χ) = 1 into L(Wκ), we get:

Ltrain (Wκ) ≥
1

2

(
1− 1 +

1 · Λ2
Ua · Vcluster − Λ

2

)

=
1

2
· Λ

2
(
Ua · Vcluster − Λ

2

)
=

1

2
· Λ

2Ua · Vcluster − Λ

=
1

4
· Λ

Ua · Vcluster − Λ
2

This expression represents the minimum expected error achievable by any detector that constructs
decision boundaries around the normal clusters. Due to the overlapping volume Λ between the
normal and anomalous clusters, there is an inherent lower bound on the expected error Ltrain(Wκ)
that any detector of this type can achieve. The detector cannot reduce the error below this bound
because, in maximizing coverage of the normal data to minimize False Negatives, it inevitably
includes portions of the overlapping anomalous data, resulting in unavoidable False Positives.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.3 MOME EFFECTIVELY HANDLES EVOLVING BALANCE DATA

Theorem 3. Let Ltest(F) and Ltest(Wκ) represent the expected error on the test set for the Mixture
of Mamba Experts (MoME) model and a single detector, respectively. For any value of Λ, employing
MoME with {f1, f2, . . . , fM} guarantees that the minimum expected error on the training set is
Ltrain(F) = 0 and the expected error on the test set satisfies Ltest(F) ≤ Ltest(Wκ).

Proof. Similar to the setting in Theorem 2, we also consider the feature space X ⊂ RP with Un
normal clusters and Ua anomalous clusters, each modeled as Gaussian distributions N (µu, σ

2IP).

Each cluster occupies a volume Vcluster = πP/2(3σ)P

Γ(P2 +1)
and the total overlapping volume between

normal and anomalous clusters is Λ. Again, since the data points are in the overlapping area, we
assume that unique features are negligible while noise features from the negative class are dominant.

Recall that, we decompose the balanced dataset into clusters {C1, C2, . . . , CU}, where U = Un+Ua
is determined using the elbow method. After that, we train a set of experts {f1, f2, . . . , fM}, each
acting as an expert for specific data clusters, following the top k gated Mixture-of-Experts approach.
Let Dtraine be the training dataset. Each data point x ∈ Dtraine belongs to a cluster Cu and has a true
label y(x):

y(x) =

{
−1, if x ∈ a normal cluster,
+1, if x ∈ an anomalous cluster.

In the overlapping regions Λ, due to probabilistic assignment and expert overspecification, we as-
sume each cluster Cu has at least one specialized expert fm predicting y(x) using both unique and
noise features, similar toWk. The gating network λ(x,ℵg,ℵnoise) minimizes classification loss but
primarily focuses on unique features, assigning higher weights to the appropriate experts. These
properties of feature capturing have been highlighted by Chen et al. (2022). For each x ∈ Dtraine ,
the MoE F’s output is given by:

F(x,ℵg,ℵnoise,W) =
∑
m∈Tx

λm(x,ℵg,ℵnoise)fm(x;W).

Primarily based on unique features, the gating network learns to assign significant weights to the
expert(s) that correctly classify x, ensuring that the model output F(x) matches the true label y(x).
Thus, the expected error on the training set is:

Ltrain(F) =
1

|Dtraine |
∑

x∈Dtraine

1F(x) ̸=y(x) = 0,

where 1F(x)̸=y(x) is an indicator function that equals 1 if F(x) ̸= y(x) and 0 otherwise. This
completes the proof of the expected error of F on the training set.

For the test set, we aim to show that: Ltest(F) ≤ Ltest(Wκ)

Let’s consider the test dataset Dtest, drawn from the same distribution as the training dataset Dtrain
e .

If the data points in the test set lie completely outside U clusters from the training set, both F and
W will fail to make correct predictions. This is because we are assuming that each classifier forms a
decision boundary that tightly fits the cluster it captures. Any data point lying outside these decision
boundaries is considered negative for the class corresponding to that cluster. Therefore, without
loss of generality, we only need to compare the errors of the two models within the region of the U
clusters.

Each data point x ∈ Dtest belongs to one of the clusters Cu and has a true label y(x) as defined earlier.
Suppose input x lying in a non-overlapping region DΛ̃, the expert fm specialized in cluster Cu has
learned to classify data points from Cu correctly. The gating network λ (x,ℵg,ℵnoise) effectively
routes x to the correct expert fm, resulting in the MoE model predicting y(x) accurately. Therefore,
for these non-overlapping regions, the MoE output is:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F (x,ℵg,ℵnoise ,W) = y(x), ∀x ∈ Cu and x ∈ DΛ̃

=⇒ LΛ̃(F) = 0

Similarly, the single detectorWκ, having been trained on the entire dataset, can also correctly predict
y(x) in these non-overlapping regions since the classes are well-separated. Thus, the expected error
in this region is negligible:

LΛ̃(Wκ) =
1

|DΛ̃|
∑
x∈DΛ̃

1Wκ(x)̸=y(x)

= LΛ̃(F)

= 0

where 1Wκ(x) ̸=y(x) is an indicator function that equals 1 ifWκ(x) ̸= y(x) and 0 otherwise.

Now, consider the overlapping region Λ. Assume an equal number of anomalous and normal data
points within Λ, with their features being significantly similar. The experts, specialized in their
respective clusters, capture cluster-specific patterns even in these overlapping areas. The gating
network λ (x,ℵg,ℵnoise), trained to minimize overall classification loss based mainly on unique
features, assigns higher weights to the correct experts that are more likely to predict the true label
y(x). Consequently, F correctly classifies x in Λ with high probability, quantified as 1− εΛ, where
εΛ is the MoE’s error rate in the overlapping region.

In contrast, the single detectorWκ encounters inherent ambiguity in Λ due to the negligible presence
of unique features and the dominance of noise features from the negative class within the cluster it
aims to capture. Furthermore, with an equal number of normal and anomalous data points assumed
in this region, the misclassification probability becomes:

Loverlap (Wκ) =
1

2

Let pΛ̃ be the probability that a test point lies in a non-overlapping region Λ̃, and pΛ be the prob-
ability that it lies in overlapping region Λ. The expected error of the single detector on the test set
is:

Ltest (Wκ) = pΛ̃ × 0 + pΛ ×
1

2
=
pΛ
2

For the MoE model, the expected error on the test set is:

Ltest (F) = pΛ̃ × 0 + pΛ × εΛ = pΛεΛ

In the overlapping region Λ, the worst-case scenario for F occurs when it fails to route the input to
the correct expert, resulting in a maximum error of 1

2 . However, if some test points are identical or
very similar to the training points, the routing network is more likely to direct these inputs to the
correct expert, as it primarily focuses on unique features. On the other hand, the single detector
Wκ considers both unique and noise features, with noise features dominating. Therefore, we have
εΛ ≤ 1

2 , leading to the conclusion:

Ltest (F) = pΛεΛ

≤ pΛ
2

≤ Ltest (Wκ) .

This completes the proof.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C MORE EXPERIMENTS

C.1 SWIFT HYDRA SETTINGS

C.1.1 HYPERPARAMETERS

Hyperparameter Value
Learning rate for C-VAE Model 0.003
Learning rate for Mamba Model 0.001
Learning rate for Generator 0.0001
Total epoch for Detector Model 600
Total epoch for Generator Model 500
Optimizer Adam (Kingma & Ba, 2015)
Number of steps per episode 500
Number of episodes 200
Minibatch size 256
Discount factor γ 0.95
Activation function for Mamba Model LeakyReLU
Layer Depth for Mamba Model 2
Activation function for C-VAE Model ReLU
Bandwidth 0.5
Weight KL 0.55
Number of experts 20
Top k experts 2
Detection threshold 0.2
Sampling from a KDE 300
Policy Training Proximal Policy Optimization

Table 2: Hyperparameters for Swift Hydra

In this section, we present the hyperparameters selected for Swift Hydra, as shown in Table 2, and
explain the rationale behind each choice. These hyperparameters are carefully designed to balance
model performance, training stability, and computational efficiency.

The learning rates for different models are chosen based on their complexity and training dynamics.
The C-VAE model uses a relatively high learning rate of 0.003 to promote faster convergence during
training. In contrast, the single Mamba-based detector is over-specified in terms of the number of
parameters to effectively capture the data generated by the C-VAE, stored in Dbalancee . To ensure
stability during its optimization, a lower learning rate of 0.001 is set, considering its sensitivity to
parameter updates. The Generator model, which is part of a more delicate generative process, has
an even smaller learning rate of 0.0001 to prevent large updates that could destabilize training.

The number of steps per episode (500) and the total number of episodes (200) are chosen to allow
the model to generate a total of 100,000 datapoints (200 * 500) across all episodes. This quantity
is sufficient to augment any imbalanced dataset within ADBench. The minibatch size of 256 is
selected to strike a balance between training stability and computational efficiency, ensuring enough
data is processed per update without causing excessive memory usage.

The discount factor γ = 0.95 is set to ensure that, in the initial phase, the RL agent not only focuses
on generating datapoints to deceiveWκ but also actively explores its surrounding environment. As
training progresses, the entropy term in the reward function gradually diminishes due to γ, the model
increasingly concentrates on generating points specifically aimed at deceiving the detectorWκ.

For activation functions, LeakyReLU is used in the Mamba Model to address the “dying ReLU”
problem, allowing the model to handle negative inputs more effectively, while ReLU is used in the
VAE model to facilitate faster training.

Recall the fact that, we use Kernel Density Estimation (KDE) to learn the feature distribution of
the dataset Dtraine in our framework. An important hyperparameter in this process is the bandwidth
h, which controls the smoothness of the probability density function, thereby balancing bias and
variance. While h can be determined using Silverman’s rule of thumb, as described in Appendix

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.3, for our experiments, we opted to use the well-known bandwidth parameter of 0.5 for KDE.
Despite this simple choice, we still achieved the desired results.

The weight of the KL divergence in the VAE is set to 0.55. This is carefully selected to balance
reconstruction accuracy and latent space regularization, preventing overfitting while maintaining
meaningful latent representations. For a more detailed explanation of how the trade-off between
reconstruction loss and KL loss affects the performance of Swift Hydra, we encourage readers to
refer to Appendix C.4.

To ensure that the model can capture all potential clusters generated, we overspecified the number
of experts to 20. This allows the model to avoid missing any clusters. Indeed, the number of clusters
found using KMeans+Elbow on datasets in ADBench is usually no more than 10. For selecting
the top k in the Mixture of Experts to ensure only k experts are used during inference (thus saving
inference time), we set k = 2.

Our policy training algorithm is Proximal Policy Optimization (PPO). In addition, the detection
threshold of 0.2 is chosen so that if the model’s confidence exceeds this threshold, the predicted
datapoint is considered anomalous. Finally, sampling 300 times from KDE provides enough data
to accurately model the underlying distributions without incurring excessive computational costs.
Overall, these hyperparameters are carefully tuned to enhance model performance, ensure training
stability, and optimize computational resources.

C.1.2 MODEL SIZE AND TRAINING COST

AI Module Type Number of Parameters Training time per batch Total training time

C-VAE Generator 458,907 0.0011 3.265

Mamba-based Detector (Single) 274,542 0.0083 8.723

Mixture of Mamba Experts Detector (MoME)
Gating Network 6,164 0.0001 0.286

Expert Network 33,021 0.0026 1.287

Mixture of Mamba Experts
(20 Experts, topK=2) 666,584 0.0032 489.003

Table 3: Number of parameters for each component in Swift Hydra, training time per batch, and
total training time. The total training time for the C-VAE and the Mamba-based Detector (Single)
is measured per episode. For MoME, the two components, Gating Network and Expert Network,
are measured over the entire training data and generated data after completing the Self-Reinforcing
Module, calculated across all batches in a single epoch. Additionally, we report the total training
time of the Mixture of Mamba Experts (20 Experts, topK=2) across all epochs, as shown in the table.

Table 3 presents the number of parameters for each model, including the C-VAE Generator, Mamba-
based Detector (Single model), and Mixture of Mamba Experts Detector (MoME). On average, a
single expert in MoME has approximately 33,021 parameters. However, with 20 experts and a gating
network, the total parameter count for MoME reaches 666,584. In contrast, the Single Mamba-based
Detector contains around 274,542 parameters, while the C-VAE Generator comprises approximately
458,907 parameters.

In addition to reporting the training time per batch alongside the number of parameters, we have
also measured the total training time for each stage of our algorithm. These times were recorded on
a workstation equipped with two Nvidia RTX 4090 GPUs. Since this is a reinforcement learning
framework, the number of episodes required for training heavily depends on the specific problem
being addressed. Therefore, we only measure the total training time of the C-VAE Generator and
Single Mamba Detector per episode. On the other hand, the total training time for the Mixture of
Mamba Experts Detector is measured after completing Phase 1, using all the data generated during
that phase.

Our training methodology supports two approaches depending on the hardware configuration: se-
quential training or parallel training of the experts. In the sequential approach, each expert is trained
one at a time, selecting and training on clusters sequentially. This approach is more memory-efficient
and requires less GPU VRAM. In contrast, the parallel approach involves all experts selecting their
clusters simultaneously and training concurrently. While faster, this method demands significantly
more GPU VRAM. The total training time for the Mixture of Mamba Experts (20 Experts, topK=2)
across all epochs, as shown in the table, was measured using the parallel training method.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C.2 SWIFT HYDRA: MORE PERFORMANCE EVALUATION

C.2.1 BENCHMARKING AGAINST ADDITIONAL DETECTION METHODS ON ADBENCH

We conducted additional experiments to compare our proposed method, Swift Hydra, with several
state-of-the-art tabular anomaly detection methods, including the supervised FTTransformer (Gor-
ishniy et al., 2023), the unsupervised ECOD (Li et al., 2022), and the semi-supervised DevNet (Pang
et al., 2019b), PreNet (Pang et al., 2019a), DeepSAD (Ruff et al., 2020), and FEAWAD (Zhou et al.,
2021). The results is shown in Table 4.

Method ECOD DevNet PReNet DeepSAD FEAWAD FTTransformer SwifHydra (MoME)

AUCROC TIF AUCROC TIF AUCROC TIF AUCROC TIF AUCROC TIF AUCROC TIF AUCROC TIF

Train/Test Ratio (40/60%) 0.80 26.00 0.82 24.08 0.85 128.71 0.84 19.02 0.86 168.62 0.89 50.66 0.93 4.01
Train/Test Ratio (30/70%) 0.78 28.32 0.81 25.54 0.84 147.74 0.83 20.53 0.82 215.26 0.84 56.23 0.91 4.79
Train/Test Ratio (20/80%) 0.77 30.04 0.80 26.00 0.83 184.29 0.82 22.75 0.80 225.00 0.80 60.98 0.90 5.22
Train/Test Ratio (10/90%) 0.75 33.36 0.79 27.90 0.82 190.39 0.81 27.58 0.79 233.13 0.77 66.23 0.87 5.84

TIF = Total Inference Time (Seconds)

Table 4: The performance of Swift Hydra and other baseline models, including ECOD, DevNet,
PReNet, DeepSAD, FEAWAD, and FTTransformer, is evaluated on ADBench using two key crite-
ria: AUC-ROC and Total Inference Time (TIF). The AUC-ROC is computed as the average across
all 57 datasets, while the TIF measures the total time required by each model to predict all data
points across these datasets. To analyze the impact of training data size on performance, we vary the
train/test ratios. The highest AUC-ROC values are highlighted for clarity.

Semi-supervised methods typically require only a small amount of labeled data to achieve AUC-
ROC scores comparable to modern unsupervised methods such as DTE, Rejex (as shown in Table
1), and ECOD. However, these methods often come with high computational costs, particularly
when applied to large datasets. While PReNet and FEAWAD generally deliver fast prediction times,
their performance can significantly slow down on certain datasets within ADBench (e.g., backdoor,
celeba, census, donor, fraud), leading to higher overall inference times. This slowdown occurs
because some components in these models rely on per-datapoint computations that do not support
parallelization, resulting in substantial delays for datasets with a large number of records. The
supervised FTTransformer, built on robust backbone architectures like ResNet and Transformer,
achieves AUC-ROC scores that are among the highest across all SOTA methods in baselines, nearly
matching those of Swift Hydra. However, its performance declines significantly when applied to
sparse datasets.

On the other hand, Swift Hydra offers a distinct advantage by generating unseen data to enhance test
set coverage. Through its integration with the Mixture of Mamba Experts (MoME), Swift Hydra
consistently outperforms other methods in both AUC-ROC and inference time, establishing itself as
the most effective and efficient solution for tabular anomaly detection.

C.2.2 BENCHMARKING AGAINST ADDITIONAL OVERSAMPLING METHODS ON ADBENCH

Figure 5: The average performance of various oversampling methods on the ADBench dataset. The
evaluation metric is AUC-ROC

In addition to the previously discussed experiments, we also compare the performance of Swift Hy-
dra against other oversampling methods using the AUC-ROC metric. As shown in Figure 3, our

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

method is capable of generating the most diverse set of anomalous data points. The goal of this
experiment is to assess how accurately Swift Hydra (MoME) performs given these diverse gen-
erated data points. Figure 5 presents a comparison of our method’s performance against various
oversampling techniques included in the ADBench baselines. The results clearly demonstrate that
Swift Hydra outperforms all other methods, achieving the highest AUC-ROC on the test set, with a
40/60% train/test ratio. This performance is primarily due to Swift Hydra’s ability to generate data
points that extend beyond the boundaries of the training set.

Specifically, in the dataset illustrated in Figure 3, it is evident that the anomalous data points in the
test set lie outside the boundaries of those in the training set. Traditional oversampling methods
fail to generate data beyond these boundaries, which naturally results in a lower AUC-ROC on the
test set. Deep learning-based oversampling methods, such as VAE-Geometry and Oversampling
GAN, can produce more diverse data than traditional techniques. However, Oversampling GAN
often encounters a model collapse issue, where it focuses on generating data points that deceive the
detector very effectively, leading to an over-concentration of samples. On the other hand, VAE-
Geometry relies on the geometric structure of the data for generation, but if the structure is too
complex, it struggles to produce sufficiently diverse data points. As a result, both methods ultimately
fall short of Swift Hydra in terms of AUC-ROC performance.

C.3 TOY EXAMPLE: GENERALIZATION ABILITY AND DECISION BOUNDARY ON 2D DATA

Figure 6: Visualization of the decision boundaries of the Detector Mixture of Mamba Experts
(MoME) after training on generated anomalous data, original anomalous data, and normal data from
the training set. The visualization highlights the resulting boundaries distinguishing anomalous and
normal data in the test set.

We conduct a toy example with 2D data to illustrate the generalization ability and decision boundary
of the MoME module. First, we generate a dataset where the normal data follows a sine curve, while
the anomalies are randomly distributed around the sine curve. Then, we use the Self-Reinforcing
Module to generate additional anomalous data and visualize the boundary of the MoME in Figure 6.

From the visualization, we can observe that the red regions (indicating areas predicted by MoME
as containing normal data) fully encapsulate the dark blue points (normal data). The blue regions
(indicating areas predicted by MoME as containing anomalous data) completely cover the generated

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

anomalous points (green) and the test set anomalies (orange). An interesting observation is that the
green points (generated anomalies) cause the decision boundary to tightly enclose the dark blue
points (normal data). This enhances MoME’s ability to accurately identify anomalous data in the
test set, as these anomalies are positioned farther from the decision boundary. As expected, the
model generalized well to the anomalies in the test set.

C.4 ABLATION STUDY

C.4.1 IMPACT OF SELF-REINFORCING MODULE ON PERFORMANCE ACROSS DEEP MODELS

Methods Transformer Mamba Swift Hydra(Transformer) Swift Hydra(Mamba)
AUCROC TIF AUCROC TIF AUCROC TIF AUCROC TIF

Train/Test Ratio (40/60%) 0.78 5.18 0.80 3.54 0.90 7.96 0.93 4.01

Train/Test Ratio (30/70%) 0.75 6.07 0.77 3.62 0.88 8.79 0.91 4.79

Train/Test Ratio (20/80%) 0.72 7.10 0.73 4.11 0.86 9.91 0.90 5.22

Train/Test Ratio (10/90%) 0.69 8.22 0.71 4.63 0.82 10.36 0.87 5.84

TIF = Total Inference Time (Seconds)

Table 5: Comparison of Vanilla Transformer and Vanilla Mamba with Transformer and Mamba
enhanced by the Self-Reinforcing Module in Swift Hydra, evaluated based on AUC-ROC and Total
Inference Time (TIF).

Methods Transformer (VAE-Geometry) Mamba (VAE-Geometry) Swift Hydra(Transformer) Swift Hydra(Mamba)
AUCROC TIF AUCROC TIF AUCROC TIF AUCROC TIF

Train/Test Ratio (40/60%) 0.83 5.23 0.85 3.40 0.90 7.96 0.93 4.01

Train/Test Ratio (30/70%) 0.80 6.11 0.83 3.58 0.88 8.79 0.91 4.79

Train/Test Ratio (20/80%) 0.78 7.02 0.81 4.02 0.86 9.91 0.90 5.22

Train/Test Ratio (10/90%) 0.75 8.38 0.78 4.65 0.82 8.36 0.87 5.84

TIF = Total Inference Time (Seconds)

Table 6: AUC-ROC performance of various backbone models when applying oversampling tech-
niques

We also compare the performance of Swift Hydra with various deep models (as backbone models)
using two key metrics: AUC-ROC and Total Inference Time (for predicting the entire ADBench
dataset) under two settings: with and without the use of an oversampling technique (i.e., VAE-
Geometry). It is important to note that VAE-Geometry is chosen as the oversampling method for
other backbone models due to its best performance among the oversampling baselines. As shown
in Table 5 and Table 6, Swift Hydra outperforms other methods in terms of AUC-ROC while main-
taining competitive total inference time.

AUC-ROC Evaluation. Regarding the accuracy in Table 5, standalone Mamba or Transformer
models on ADBench exhibit significantly lower AUC-ROC compared to Swift Hydra (Mamba) and
Swift Hydra (Transformer), which leverage the Self-Reinforcing Module. This is primarily because
these models do not utilize any oversampling techniques (RL-guiled GenAI), which limits their data
generalization capabilities. However, even when employing a powerful oversampling technique like
VAE-Geometry (Table 6), the AUC-ROC of these models still falls short of that achieved by Swift
Hydra. This is due to the fact that the datapoints generated by VAE-Geometry are not as diverse or
of as high quality as those generated by Swift Hydra, as discussed in the previous experiment.

Total Inference Time Evaluation. In terms of total inference time, it is important to note that
the Mamba model has a prediction complexity of O(1), while the Transformer has a prediction com-
plexity of O(N). This makes Mamba substantially faster than both Transformer and Fully Connected
networks. When Mamba is integrated into Swift Hydra with a Top k Mixture of Experts (k = 2),
one might expect the prediction time of Swift Hydra to be nearly double that of the regular Mamba
model. However, the interesting outcome here is that we use only a two-layer depth for Mamba
and overspecify the number of experts to 20. This allows us to capture the data complexity effec-
tively, and since the model has just two layers, the additional time difference with k = 2 is minimal
compared to a larger Mamba model.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

C.4.2 IMPACT OF PROBABILISTIC CLUSTER ASSIGNMENT ON MOME PERFORMANCE

Method Swift Hydra (MoME-Traditional Training Approach) Swift Hydra (MoME-Our Training Approach)
AUCROC TIF AUCROC TIF

Train/Test Ratio (40/60%) 0.892 4.015 0.934 4.012

Train/Test Ratio (30/70%) 0.865 4.771 0.913 4.793

Train/Test Ratio (20/80%) 0.853 5.234 0.902 5.221

Train/Test Ratio (10/90%) 0.828 5.922 0.874 5.843

Table 7: Comparison of AUC-ROC and Total Inference Time (TIF) between Swift Hydra using
the traditional MoME training approach and Swift Hydra with the proposed probabilistic training
approach across different train/test ratios.

The results in Table 7 highlight a clear advantage of Swift Hydra with the proposed probabilistic
training approach for MoME over the traditional MoME training approach. The primary reason
for this improvement lies in addressing the “winner-take-all” problem that commonly affects the
traditional training method.

In the traditional MoME approach, the gating network immediately starts assigning samples to ex-
perts based on their performance scores. During the early training steps, when the experts have not
yet converged, their performance scores are arbitrary. This randomness can lead to one expert re-
ceiving disproportionately more samples than others, simply due to chance. As a result, this expert
improves faster and continues to dominate sample assignments, creating a feedback loop where it
becomes the sole contributor to predictions. This phenomenon, known as “winner-take-all,” reduces
the diversity of the expert ensemble and significantly hinders the generalization ability of the model.

In contrast, Swift Hydra with the probabilistic training approach temporarily deactivates the gating
network during the early training phase. Instead, it uses a probabilistic assignment mechanism (as
described in Equation 6) to ensure that all experts receive equal opportunities to learn. Once the
experts have sufficiently converged, the gating network is reactivated to assign samples based on
their performance. This method prevents any single expert from monopolizing the training process
early on and ensures a more balanced and effective ensemble.

The results in the table demonstrate that this improved training strategy consistently achieves higher
AUC-ROC scores across all train/test ratios compared to the traditional approach, without incurring
additional Total Inference Time (TIF). This validates the effectiveness of addressing the ”winner-
take-all” problem to enhance both the generalization and overall performance of the model.

C.4.3 KL DIVERGENCE AND RECONSTRUCTION LOSS TRADE-OFF IN CONDITIONAL
VARIATIONAL AUTO ENCODER

Figure 7: The average performance of various oversampling methods on the ADBench dataset. The
evaluation metric is AUC-ROC

In this section, we provide insights into how the weight impacts the C-VAE during data generation.
Specifically, when optimizing the ELBO loss of C-VAE, we need to consider two components: the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Reconstruction Loss and the KL Loss. If more weight is placed on the Reconstruction Loss, the C-
VAE will generate data more cautiously, closely adhering to the target class. However, this caution
results in less diverse samples. Conversely, if the weight is placed more on the KL Loss, the C-VAE
generates more diverse data, but it may also produce samples that overlap with other classes.

To identify the optimal weight for the KL Loss, we experimented with various values of p ranging
from 0.4 to 0.7. If the weight for the KL Loss is p, the weight for the Reconstruction Loss will
be 1 − p. As shown in Figure 7, the optimal weight for the KL Loss is found to be 0.55. In the
range of 0.4 to 0.5, the C-VAE generates overly cautious samples, resulting in a lack of diversity.
Consequently, the 200 episodes of RL training are insufficient to cover the entire set of anomalous
data in the test set. On the other hand, in the range of 0.6 to 0.7, the model focuses too much on
optimizing the KL Loss, leading to the generation of highly diverse anomalous samples. However,
these samples tend to overlap significantly with normal samples, causing Swift Hydra’s performance
to decline after 200 episodes.

C.5 RL-AGENT ASSISTANCE FREQUENCY EXPERIMENT

Figure 8: Percentage of invalid actions provided by the RL-Agent in each episode, with each episode
consisting of 500 timesteps. The measurement is conducted over a total of 200 episodes. The X-
axis represents the episodes, and the Y-axis shows the percentage of invalid actions provided by the
RL-Agent.

In this section, we illustrate the average percentage of invalid actions taken by the agent in each
episode (averaged over 57 datasets from ADBench). From Figure 8, it is evident that in the initial
stages, the RL-Agent generates a high number of invalid actions, frequently requiring assistance
from the One-Step to Feasible Action algorithm described in Section 3.1.2. However, since every
time the RL-Agent takes an invalid action, it learns in a supervised manner using the feasible action
provided by the One-Step to Feasible Action algorithm, a significant reduction in invalid actions is
observed after about 25 to 50 episodes.

As a result, the training time becomes considerably faster since fewer Gradient Descent steps are
needed (as Gradient Descent is primarily performed to optimize the reward function whenever an
invalid action is taken). From episode 150 onward, the RL-Agent rarely makes invalid actions, and
its actions become highly effective (as reflected in the AUC-ROC in previous experiment), indicating
that the RL-Agent has successfully generalized.

C.6 DATASETS IN ADBENCH

ADBench features a comprehensive collection of 57 datasets designed for anomaly detection re-
search, as detailed in the table. Among these, 47 datasets are well-established and widely used
across various real-world domains, such as healthcare (e.g., disease diagnosis), audio and language
processing (e.g., speech recognition), image analysis (e.g., object identification), and finance (e.g.,
fraud detection). Additionally, ADBench introduces 10 more complex datasets from computer vi-
sion (CV) and natural language processing (NLP) domains, enriched with larger sample sizes and

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

higher-dimensional features. These datasets utilize pretrained models to extract embeddings, en-
abling the representation of more complex patterns. All datasets are provided in a user-friendly
format as compressed NumPy array files (‘.npz‘), with detailed instructions and processing codes
available for seamless application

Number Data # Samples # Features # Anomaly % Anomaly Category
1 ALOI 49534 27 1508 3.04 Image
2 annthyroid 7200 6 534 7.42 Healthcare
3 backdoor 95329 196 2329 2.44 Network
4 breastw 683 9 239 34.99 Healthcare
5 campaign 41188 62 4640 11.27 Finance
6 cardio 1831 21 176 9.61 Healthcare
7 Cardiotocography 2114 21 466 22.04 Healthcare
8 celeba 202599 39 4547 2.24 Image
9 census 299285 500 18568 6.20 Sociology
10 cover 286048 10 2747 0.96 Botany
11 donors 619326 10 36710 5.93 Sociology
12 fault 1941 27 673 34.67 Physical
13 fraud 284807 29 492 0.17 Finance
14 glass 214 7 9 4.21 Forensic
15 Hepatitis 80 19 13 16.25 Healthcare
16 http 567498 3 2211 0.39 Web
17 InternetAds 1966 1555 368 18.72 Image
18 Ionosphere 351 32 126 35.90 Oryctognosy
19 landsat 6435 36 1333 20.71 Astronautics
20 letter 1600 32 100 6.25 Image
21 Lymphography 148 18 6 4.05 Healthcare
22 magic.gamma 19020 10 6688 35.16 Physical
23 mammography 11183 6 260 2.32 Healthcare
24 mnist 7603 100 700 9.21 Image
25 musk 3062 166 97 3.17 Chemistry
26 optdigits 5216 64 150 2.88 Image
27 PageBlocks 5393 10 510 9.46 Document
28 pendigits 6870 16 156 2.27 Image
29 Pima 768 8 268 34.90 Healthcare
30 satellite 6435 36 2036 31.64 Astronautics
31 satimage-2 5803 36 71 1.22 Astronautics
32 shuttle 49097 9 3511 7.15 Astronautics
33 skin 245057 3 50859 20.75 Image
34 smtp 95156 3 30 0.03 Web
35 SpamBase 4207 57 1679 39.91 Document
36 speech 3686 400 61 1.65 Linguistics
37 Stamps 340 9 31 9.12 Document
38 thyroid 3772 6 93 2.47 Healthcare
39 vertebral 240 6 30 12.50 Biology
40 vowels 1456 12 50 3.43 Linguistics
41 Waveform 3443 21 100 2.90 Physics
42 WBC 223 9 10 4.48 Healthcare
43 WDBC 367 30 10 2.72 Healthcare
44 Wilt 4819 5 257 5.33 Botany
45 wine 129 13 10 7.75 Chemistry
46 WPBC 198 33 47 23.74 Healthcare
47 yeast 1484 8 507 34.16 Biology
48 CIFAR10 5263 512 263 5.00 Image
49 FashionMNIST 6315 512 315 5.00 Image
50 MNIST-C 10000 512 500 5.00 Image
51 MVTec-AD 5354 512 1258 23.50 Image
52 SVHN 5208 512 260 5.00 Image
53 Agnews 10000 768 500 5.00 NLP

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

54 Amazon 10000 768 500 5.00 NLP
55 Imdb 10000 768 500 5.00 NLP
56 Yelp 10000 768 500 5.00 NLP
57 20newsgroups 11905 768 591 4.96 NLP

Table 8: Summary of Datasets used in ADBench Benchmark. The table outlines key characteristics
of 57 anomaly detection datasets, including the number of samples, features, anomalies, and their
respective categories, spanning diverse domains such as image analysis, healthcare, finance, and
natural language processing.

C.7 SWIFT HYDRA: CLASS-WISE PRECISION, RECALL, AND F1-SCORE ON ADBENCH

This final section provides a comprehensive comparison of various state-of-the-art anomaly detec-
tion methods, including DTE, Rejex, and ADGym, against Swift Hydra across 57 datasets from
ADBench. The evaluation criteria include Precision, Recall, F1 score, support for each class, and
AUC-ROC. It is important to note that we did not set a unique threshold for each individual dataset;
instead, we applied a common threshold across all 57 datasets in ADBench. As a result, the Pre-
cision might not be very high. However, the focus should also be on the Recall and AUC-ROC,
as these metrics more accurately reflect the model’s ability to detect anomalous data if the correct
threshold is chosen. This approach gives a clearer picture of how well Swift Hydra can identify
anomalies in various datasets.

DTE Rejex ADGym Swift Hydra

ALOI P R F1 P R F1 P R F1 P R F1 support

-1 0.97 0.97 0.97 0.97 0.95 0.96 0.92 0.38 0.54 0.99 0.44 0.61 28821

1 0.03 0.03 0.03 0.04 0.07 0.05 0.00 0.75 0.05 0.04 0.81 0.08 900

accuracy 0.94 0.94 0.94 0.92 0.92 0.92 0.39 0.39 0.39 0.45 0.45 0.45 0.45

macro avg 0.50 0.50 0.50 0.50 0.51 0.50 0.46 0.57 0.30 0.52 0.63 0.35 29721

weighted avg 0.94 0.94 0.94 0.94 0.92 0.93 0.89 0.39 0.53 0.96 0.45 0.60 29721

AUC-ROC 0.535 0.53 0.66 0.70

annthyroid P R F1 P R F1 P R F1 P R F1 support

-1 0.94 0.95 0.95 0.98 0.94 0.96 0.95 0.88 0.92 1.00 0.95 0.97 4001

1 0.32 0.29 0.31 0.52 0.77 0.62 0.56 0.92 0.71 0.60 0.98 0.75 319

accuracy 0.90 0.90 0.90 0.93 0.93 0.93 0.89 0.89 0.89 0.95 0.95 0.95 0.95

macro avg 0.63 0.62 0.63 0.75 0.86 0.79 0.75 0.90 0.82 0.80 0.97 0.86 4320

weighted avg 0.90 0.90 0.90 0.95 0.93 0.94 0.92 0.89 0.91 0.97 0.95 0.96 4320

AUC-ROC 0.81 0.96 0.93 0.98

backdoor P R F1 P R F1 P R F1 P R F1 support

-1 0.98 0.98 0.98 0.99 0.99 0.99 0.94 0.95 0.96 1.00 0.99 0.99 55790

1 0.01 0.01 0.01 0.68 0.47 0.56 0.55 0.89 0.67 0.61 0.92 0.74 1408

accuracy 0.95 0.95 0.95 0.98 0.98 0.98 0.95 0.95 0.95 0.98 0.98 0.98 0.98

macro avg 0.49 0.49 0.49 0.83 0.73 0.77 0.75 0.92 0.82 0.81 0.95 0.86 57198

weighted avg 0.95 0.95 0.95 0.98 0.98 0.98 0.93 0.95 0.95 0.99 0.98 0.99 57198

AUC-ROC 0.76 0.90 0.94 0.98

breastw P R F1 P R F1 P R F1 P R F1 support

-1 0.99 0.94 0.97 1.00 0.69 0.82 0.95 0.93 0.94 0.99 0.97 0.98 264

1 0.91 0.99 0.94 0.64 1.00 0.78 0.88 0.92 0.91 0.94 0.98 0.96 146

accuracy 0.96 0.96 0.96 0.80 0.80 0.80 0.93 0.93 0.93 0.97 0.97 0.97 0.97

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 9 continued from previous page
DTE Rejex ADGym Swift Hydra

macro avg 0.95 0.97 0.96 0.82 0.85 0.80 0.92 0.92 0.92 0.97 0.97 0.97 410

weighted avg 0.96 0.96 0.96 0.87 0.80 0.80 0.93 0.93 0.93 0.97 0.97 0.97 410

AUC-ROC 0.99 0.93 0.94 0.99

campaign P R F1 P R F1 P R F1 P R F1 support

-1 0.91 0.91 0.91 0.89 0.99 0.94 0.92 0.79 0.85 0.98 0.82 0.89 21920

1 0.32 0.32 0.32 0.27 0.04 0.08 0.33 0.79 0.47 0.38 0.83 0.52 2793

accuracy 0.84 0.84 0.84 0.88 0.88 0.88 0.79 0.79 0.79 0.83 0.83 0.83 0.83

macro avg 0.62 0.62 0.62 0.58 0.51 0.51 0.63 0.79 0.66 0.68 0.83 0.71 24713

weighted avg 0.85 0.84 0.85 0.82 0.88 0.84 0.86 0.79 0.81 0.91 0.83 0.85 24713

AUC-ROC 0.73 0.77 0.84 0.90

cardio P R F1 P R F1 P R F1 P R F1 support

-1 0.94 0.92 0.93 0.94 0.82 0.87 0.95 0.88 0.93 0.99 0.94 0.97 990

1 0.42 0.50 0.45 0.23 0.51 0.32 0.57 0.89 0.72 0.64 0.95 0.76 109

accuracy 0.88 0.88 0.88 0.79 0.79 0.79 0.88 0.88 0.88 0.94 0.94 0.94 0.94

macro avg 0.68 0.71 0.69 0.59 0.66 0.60 0.76 0.88 0.83 0.82 0.94 0.86 1099

weighted avg 0.89 0.88 0.89 0.87 0.79 0.82 0.91 0.88 0.91 0.96 0.94 0.95 1099

AUC-ROC 0.92 0.74 0.95 0.98

Cardiotocography P R F1 P R F1 P R F1 P R F1 support

-1 0.82 0.83 0.82 0.80 0.75 0.78 0.92 0.83 0.90 0.98 0.90 0.93 991

1 0.37 0.36 0.36 0.27 0.33 0.30 0.68 0.87 0.74 0.71 0.92 0.80 278

accuracy 0.72 0.72 0.72 0.66 0.66 0.66 0.84 0.84 0.84 0.90 0.90 0.90 0.90

macro avg 0.59 0.59 0.59 0.54 0.54 0.54 0.80 0.85 0.82 0.84 0.91 0.87 1269

weighted avg 0.72 0.72 0.72 0.68 0.66 0.67 0.87 0.84 0.87 0.92 0.90 0.91 1269

AUC-ROC 0.73 0.53 0.91 0.95

celeba P R F1 P R F1 P R F1 P R F1 support

-1 0.98 0.98 0.98 0.98 1.00 0.99 0.96 0.83 0.88 1.00 0.89 0.94 118850

1 0.09 0.09 0.09 0.03 0.00 0.00 0.11 0.85 0.21 0.15 0.91 0.26 2710

accuracy 0.96 0.96 0.96 0.98 0.98 0.98 0.83 0.83 0.83 0.89 0.89 0.89 0.89

macro avg 0.53 0.53 0.53 0.50 0.50 0.50 0.53 0.84 0.55 0.58 0.90 0.60 121560

weighted avg 0.96 0.96 0.96 0.96 0.98 0.97 0.94 0.83 0.86 0.98 0.89 0.92 121560

AUC-ROC 0.72 0.79 0.88 0.95

census P R F1 P R F1 P R F1 P R F1 support

-1 0.94 0.94 0.94 0.94 0.88 0.91 0.92 0.72 0.84 0.99 0.79 0.88 168432

1 0.04 0.04 0.04 0.06 0.12 0.08 0.15 0.77 0.31 0.21 0.84 0.34 11139

accuracy 0.88 0.88 0.88 0.84 0.84 0.84 0.73 0.73 0.73 0.79 0.79 0.79 0.79

macro avg 0.49 0.49 0.49 0.50 0.50 0.50 0.54 0.75 0.58 0.60 0.82 0.61 179571

weighted avg 0.88 0.88 0.88 0.88 0.84 0.86 0.87 0.73 0.81 0.94 0.79 0.84 179571

AUC-ROC 0.59 0.65 0.79 0.85

cover P R F1 P R F1 P R F1 P R F1 support

-1 0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.96 0.94 1.00 0.99 1.00 169976

1 0.09 0.09 0.09 0.06 0.05 0.06 0.50 0.95 0.65 0.54 1.00 0.70 1653

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 9 continued from previous page
DTE Rejex ADGym Swift Hydra

accuracy 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.96 0.96 0.99 0.99 0.99 0.99

macro avg 0.54 0.54 0.54 0.53 0.52 0.52 0.73 0.96 0.80 0.77 0.99 0.85 171629

weighted avg 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.96 0.94 1.00 0.99 0.99 171629

AUC-ROC 0.90 0.74 0.97 1.00

donors P R F1 P R F1 P R F1 P R F1 support

-1 0.94 0.94 0.94 0.94 0.99 0.96 0.93 0.95 0.94 1.00 1.00 1.00 349483

1 0.10 0.10 0.10 0.14 0.03 0.05 0.95 0.95 0.95 1.00 1.00 1.00 22113

accuracy 0.89 0.89 0.89 0.93 0.93 0.93 0.95 0.95 0.95 1.00 1.00 1.00 1.00

macro avg 0.52 0.52 0.52 0.54 0.51 0.51 0.94 0.95 0.94 1.00 1.00 1.00 371596

weighted avg 0.89 0.89 0.89 0.89 0.93 0.91 0.93 0.95 0.94 1.00 1.00 1.00 371596

AUC-ROC 0.76 0.74 0.95 1.00

fault P R F1 P R F1 P R F1 P R F1 support

-1 0.69 0.66 0.68 0.68 0.89 0.77 0.78 0.62 0.69 0.81 0.65 0.72 751

1 0.43 0.45 0.44 0.53 0.23 0.32 0.49 0.68 0.57 0.54 0.73 0.62 414

accuracy 0.59 0.59 0.59 0.65 0.65 0.65 0.64 0.64 0.64 0.68 0.68 0.68 0.68

macro avg 0.56 0.56 0.56 0.60 0.56 0.54 0.63 0.65 0.63 0.67 0.69 0.67 1165

weighted avg 0.60 0.59 0.59 0.62 0.65 0.61 0.67 0.64 0.65 0.71 0.68 0.69 1165

AUC-ROC 0.54 0.58 0.68 0.74

fraud P R F1 P R F1 P R F1 P R F1 support

-1 1.00 1.00 1.00 1.00 0.99 1.00 0.96 0.86 0.91 1.00 0.92 0.96 170593

1 0.30 0.28 0.29 0.13 0.81 0.22 0.00 0.85 0.00 0.02 0.92 0.04 292

accuracy 1.00 1.00 1.00 0.99 0.99 0.99 0.86 0.86 0.86 0.92 0.92 0.92 0.92

macro avg 0.65 0.64 0.65 0.56 0.90 0.61 0.48 0.85 0.45 0.51 0.92 0.50 170885

weighted avg 1.00 1.00 1.00 1.00 0.99 0.99 0.96 0.86 0.91 1.00 0.92 0.96 170885

AUC-ROC 0.95 0.95 0.92 0.96

glass P R F1 P R F1 P R F1 P R F1 support

-1 0.95 0.98 0.96 0.00 0.00 0.00 0.93 0.75 0.83 0.96 0.81 0.88 123

1 0.00 0.00 0.00 0.05 1.00 0.09 0.04 0.27 0.09 0.08 0.33 0.13 6

accuracy 0.93 0.93 0.93 0.05 0.05 0.05 0.73 0.73 0.73 0.79 0.79 0.79 0.79

macro avg 0.48 0.49 0.48 0.02 0.50 0.04 0.48 0.51 0.46 0.52 0.57 0.51 129

weighted avg 0.91 0.93 0.92 0.00 0.05 0.00 0.89 0.73 0.80 0.92 0.79 0.85 129

AUC-ROC 0.76 0.75 0.78 0.84

Hepatitis P R F1 P R F1 P R F1 P R F1 support

-1 0.85 0.83 0.84 0.00 0.00 0.00 0.90 0.62 0.75 0.97 0.67 0.79 42

1 0.00 0.00 0.00 0.13 1.00 0.22 0.22 0.79 0.33 0.26 0.83 0.40 6

accuracy 0.73 0.73 0.73 0.13 0.13 0.13 0.64 0.64 0.64 0.69 0.69 0.69 0.69

macro avg 0.43 0.42 0.42 0.06 0.50 0.11 0.56 0.71 0.54 0.61 0.75 0.59 48

weighted avg 0.75 0.73 0.74 0.02 0.13 0.03 0.81 0.64 0.70 0.88 0.69 0.74 48

AUC-ROC 0.72 0.42 0.74 0.80

http P R F1 P R F1 P R F1 P R F1 support

-1 1.00 1.00 1.00 1.00 0.94 0.97 0.95 0.96 0.94 1.00 1.00 1.00 339161

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 9 continued from previous page
DTE Rejex ADGym Swift Hydra

1 0.23 0.02 0.03 0.06 1.00 0.12 0.72 0.95 0.79 0.76 1.00 0.86 1338

accuracy 1.00 1.00 1.00 0.94 0.94 0.94 0.96 0.96 0.96 1.00 1.00 1.00 1.00

macro avg 0.61 0.51 0.51 0.53 0.97 0.54 0.84 0.96 0.87 0.88 1.00 0.93 340499

weighted avg 0.99 1.00 0.99 1.00 0.94 0.97 0.95 0.96 0.94 1.00 1.00 1.00 340499

AUC-ROC 1.00 1.00 0.94 1.00

InternetAds P R F1 P R F1 P R F1 P R F1 support

-1 0.88 0.88 0.88 0.89 0.44 0.59 0.93 0.63 0.74 0.98 0.68 0.81 965

1 0.45 0.46 0.46 0.23 0.75 0.35 0.37 0.88 0.53 0.40 0.94 0.56 215

accuracy 0.80 0.80 0.80 0.50 0.50 0.50 0.67 0.67 0.67 0.73 0.73 0.73 0.73

macro avg 0.67 0.67 0.67 0.56 0.60 0.47 0.65 0.75 0.63 0.69 0.81 0.68 1180

weighted avg 0.80 0.80 0.80 0.77 0.50 0.55 0.83 0.67 0.70 0.88 0.73 0.76 1180

AUC-ROC 0.68 0.67 0.88 0.92

Ionosphere P R F1 P R F1 P R F1 P R F1 support

-1 0.82 0.76 0.79 0.00 0.00 0.00 0.86 0.85 0.84 0.90 0.90 0.90 135

1 0.62 0.70 0.65 0.36 1.00 0.53 0.76 0.78 0.76 0.83 0.82 0.82 76

accuracy 0.74 0.74 0.74 0.36 0.36 0.36 0.82 0.82 0.82 0.87 0.87 0.87 0.87

macro avg 0.72 0.73 0.72 0.18 0.50 0.27 0.81 0.81 0.80 0.86 0.86 0.86 211

weighted avg 0.74 0.74 0.74 0.13 0.36 0.19 0.82 0.82 0.81 0.87 0.87 0.87 211

AUC-ROC 0.86 0.96 0.85 0.91

landsat P R F1 P R F1 P R F1 P R F1 support

-1 0.81 0.79 0.80 0.80 0.94 0.86 0.92 0.80 0.86 0.97 0.86 0.91 3068

1 0.24 0.26 0.25 0.23 0.06 0.10 0.56 0.83 0.68 0.62 0.89 0.73 793

accuracy 0.68 0.68 0.68 0.76 0.76 0.76 0.80 0.80 0.80 0.87 0.87 0.87 0.87

macro avg 0.52 0.52 0.52 0.51 0.50 0.48 0.74 0.81 0.77 0.79 0.87 0.82 3861

weighted avg 0.69 0.68 0.68 0.68 0.76 0.71 0.85 0.80 0.82 0.90 0.87 0.87 3861

AUC-ROC 0.50 0.53 0.91 0.94

letter P R F1 P R F1 P R F1 P R F1 support

-1 0.94 0.94 0.94 0.98 0.65 0.78 0.94 0.76 0.83 0.98 0.82 0.89 900

1 0.09 0.10 0.10 0.14 0.83 0.24 0.16 0.63 0.27 0.20 0.68 0.31 60

accuracy 0.88 0.88 0.88 0.66 0.66 0.66 0.75 0.75 0.75 0.81 0.81 0.81 0.81

macro avg 0.52 0.52 0.52 0.56 0.74 0.51 0.55 0.69 0.55 0.59 0.75 0.60 960

weighted avg 0.89 0.88 0.89 0.93 0.66 0.75 0.89 0.75 0.80 0.93 0.81 0.85 960

AUC-ROC 0.57 0.85 0.77 0.80

Lymphography P R F1 P R F1 P R F1 P R F1 support

-1 1.00 0.95 0.98 0.00 0.00 0.00 0.90 0.94 0.92 0.95 0.99 0.97 84

1 0.56 1.00 0.71 0.06 1.00 0.11 0.47 0.17 0.24 0.50 0.20 0.29 5

accuracy 0.96 0.96 0.96 0.06 0.06 0.06 0.90 0.90 0.90 0.94 0.94 0.94 0.94

macro avg 0.78 0.98 0.85 0.03 0.50 0.05 0.68 0.56 0.58 0.73 0.59 0.63 89

weighted avg 0.98 0.96 0.96 0.00 0.06 0.01 0.88 0.90 0.89 0.93 0.94 0.93 89

AUC-ROC 0.99 0.99 0.64 0.69

magic.gamma P R F1 P R F1 P R F1 P R F1 support

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 9 continued from previous page
DTE Rejex ADGym Swift Hydra

-1 0.75 0.75 0.75 0.72 0.95 0.82 0.87 0.69 0.76 0.93 0.74 0.82 7422

1 0.54 0.55 0.54 0.75 0.31 0.44 0.60 0.86 0.71 0.65 0.90 0.75 3990

accuracy 0.68 0.68 0.68 0.72 0.72 0.72 0.75 0.75 0.75 0.79 0.79 0.79 0.79

macro avg 0.65 0.65 0.65 0.74 0.63 0.63 0.73 0.77 0.74 0.79 0.82 0.79 11412

weighted avg 0.68 0.68 0.68 0.73 0.72 0.69 0.77 0.75 0.75 0.83 0.79 0.80 11412

AUC-ROC 0.73 0.76 0.88 0.92

mammography P R F1 P R F1 P R F1 P R F1 support

-1 0.98 0.98 0.98 0.99 0.83 0.90 0.93 0.80 0.90 1.00 0.87 0.93 6558

1 0.25 0.26 0.25 0.08 0.62 0.14 0.06 0.83 0.17 0.13 0.88 0.23 152

accuracy 0.97 0.97 0.97 0.82 0.82 0.82 0.80 0.80 0.80 0.87 0.87 0.87 0.87

macro avg 0.62 0.62 0.62 0.53 0.72 0.52 0.50 0.82 0.53 0.56 0.87 0.58 6710

weighted avg 0.97 0.97 0.97 0.97 0.82 0.88 0.91 0.80 0.88 0.98 0.87 0.91 6710

AUC-ROC 0.86 0.84 0.86 0.91

mnist P R F1 P R F1 P R F1 P R F1 support

-1 0.93 0.93 0.93 0.94 0.97 0.95 0.94 0.89 0.91 1.00 0.94 0.97 4172

1 0.29 0.30 0.29 0.46 0.28 0.35 0.57 0.91 0.70 0.60 0.97 0.74 390

accuracy 0.88 0.88 0.88 0.91 0.91 0.91 0.90 0.90 0.90 0.94 0.94 0.94 0.94

macro avg 0.61 0.61 0.61 0.70 0.62 0.65 0.76 0.90 0.80 0.80 0.95 0.85 4562

weighted avg 0.88 0.88 0.88 0.89 0.91 0.90 0.91 0.90 0.89 0.96 0.94 0.95 4562

AUC-ROC 0.77 0.79 0.92 0.98

musk P R F1 P R F1 P R F1 P R F1 support

-1 1.00 1.00 1.00 0.98 1.00 0.99 0.96 0.93 0.95 1.00 1.00 1.00 1777

1 0.95 1.00 0.98 0.72 0.34 0.47 0.95 0.94 0.96 1.00 1.00 1.00 61

accuracy 1.00 1.00 1.00 0.97 0.97 0.97 0.93 0.93 0.93 1.00 1.00 1.00 1.00

macro avg 0.98 1.00 0.99 0.85 0.67 0.73 0.95 0.94 0.95 1.00 1.00 1.00 1838

weighted avg 1.00 1.00 1.00 0.97 0.97 0.97 0.96 0.93 0.95 1.00 1.00 1.00 1838

AUC-ROC 1.00 0.96 0.94 1.00

optdigits P R F1 P R F1 P R F1 P R F1 support

-1 0.97 0.96 0.97 0.97 0.88 0.92 0.94 0.91 0.92 1.00 0.97 0.98 3044

1 0.01 0.01 0.01 0.00 0.01 0.00 0.38 0.97 0.59 0.45 1.00 0.62 86

accuracy 0.94 0.94 0.94 0.86 0.86 0.86 0.91 0.91 0.91 0.97 0.97 0.97 0.97

macro avg 0.49 0.49 0.49 0.49 0.45 0.46 0.66 0.94 0.75 0.72 0.98 0.80 3130

weighted avg 0.95 0.94 0.94 0.94 0.86 0.90 0.93 0.91 0.91 0.99 0.97 0.97 3130

AUC-ROC 0.71 0.36 0.97 1.00

PageBlocks P R F1 P R F1 P R F1 P R F1 support

-1 0.94 0.94 0.94 0.97 0.95 0.96 0.94 0.86 0.89 1.00 0.92 0.95 2916

1 0.43 0.45 0.44 0.59 0.69 0.64 0.49 0.90 0.66 0.56 0.96 0.71 320

accuracy 0.89 0.89 0.89 0.92 0.92 0.92 0.86 0.86 0.86 0.92 0.92 0.92 0.92

macro avg 0.69 0.69 0.69 0.78 0.82 0.80 0.72 0.88 0.78 0.78 0.94 0.83 3236

weighted avg 0.89 0.89 0.89 0.93 0.92 0.93 0.90 0.86 0.87 0.95 0.92 0.93 3236

AUC-ROC 0.92 0.95 0.92 0.98

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 9 continued from previous page
DTE Rejex ADGym Swift Hydra

pendigits P R F1 P R F1 P R F1 P R F1 support

-1 0.98 0.98 0.98 0.99 0.82 0.89 0.95 0.93 0.94 1.00 0.98 0.99 4032

1 0.26 0.26 0.26 0.07 0.59 0.12 0.50 0.94 0.68 0.56 0.99 0.72 90

accuracy 0.97 0.97 0.97 0.81 0.81 0.81 0.93 0.93 0.93 0.98 0.98 0.98 0.98

macro avg 0.62 0.62 0.62 0.53 0.70 0.51 0.72 0.93 0.81 0.78 0.99 0.85 4122

weighted avg 0.97 0.97 0.97 0.97 0.81 0.88 0.94 0.93 0.94 0.99 0.98 0.99 4122

AUC-ROC 0.93 0.83 0.95 1.00

Pima P R F1 P R F1 P R F1 P R F1 support

-1 0.73 0.66 0.69 0.00 0.00 0.00 0.74 0.59 0.66 0.78 0.64 0.70 294

1 0.48 0.56 0.52 0.36 1.00 0.53 0.48 0.60 0.54 0.52 0.67 0.58 167

accuracy 0.62 0.62 0.62 0.36 0.36 0.36 0.60 0.60 0.60 0.65 0.65 0.65 0.65

macro avg 0.60 0.61 0.60 0.18 0.50 0.27 0.61 0.60 0.60 0.65 0.66 0.64 461

weighted avg 0.64 0.62 0.63 0.13 0.36 0.19 0.65 0.60 0.62 0.68 0.65 0.66 461

AUC-ROC 0.66 0.57 0.66 0.70

satellite P R F1 P R F1 P R F1 P R F1 support

-1 0.81 0.79 0.80 0.70 0.98 0.82 0.91 0.84 0.86 0.96 0.88 0.92 2626

1 0.58 0.62 0.60 0.75 0.11 0.20 0.74 0.89 0.80 0.79 0.92 0.85 1235

accuracy 0.74 0.74 0.74 0.70 0.70 0.70 0.86 0.86 0.86 0.89 0.89 0.89 0.89

macro avg 0.70 0.70 0.70 0.72 0.55 0.51 0.82 0.87 0.83 0.87 0.90 0.88 3861

weighted avg 0.74 0.74 0.74 0.72 0.70 0.62 0.85 0.86 0.84 0.90 0.89 0.90 3861

AUC-ROC 0.70 0.73 0.89 0.96

satimage-2 P R F1 P R F1 P R F1 P R F1 support

-1 1.00 1.00 1.00 1.00 0.93 0.96 0.97 0.93 0.96 1.00 0.98 0.99 3440

1 0.80 0.83 0.81 0.13 0.86 0.22 0.30 0.86 0.46 0.36 0.91 0.52 42

accuracy 1.00 1.00 1.00 0.93 0.93 0.93 0.93 0.93 0.93 0.98 0.98 0.98 0.98

macro avg 0.90 0.92 0.91 0.56 0.89 0.59 0.63 0.89 0.71 0.68 0.94 0.75 3482

weighted avg 1.00 1.00 1.00 0.99 0.93 0.95 0.96 0.93 0.95 0.99 0.98 0.98 3482

AUC-ROC 0.99 0.97 0.94 0.99

shuttle P R F1 P R F1 P R F1 P R F1 support

-1 0.99 1.00 1.00 0.94 1.00 0.96 0.97 0.96 0.94 1.00 1.00 1.00 27388

1 0.95 0.92 0.93 0.55 0.09 0.15 0.91 0.93 0.92 0.95 1.00 0.98 2071

accuracy 0.99 0.99 0.99 0.93 0.93 0.93 0.96 0.96 0.96 1.00 1.00 1.00 1.00

macro avg 0.97 0.96 0.96 0.74 0.54 0.56 0.94 0.94 0.93 0.98 1.00 0.99 29459

weighted avg 0.99 0.99 0.99 0.91 0.93 0.91 0.96 0.96 0.94 1.00 1.00 1.00 29459

AUC-ROC 1.00 0.99 0.95 1.00

skin P R F1 P R F1 P R F1 P R F1 support

-1 0.76 0.76 0.76 0.79 0.79 0.79 0.94 0.94 0.94 1.00 1.00 1.00 116448

1 0.09 0.09 0.09 0.19 0.18 0.18 0.95 0.94 0.96 1.00 1.00 1.00 30587

accuracy 0.62 0.62 0.62 0.66 0.66 0.66 0.94 0.94 0.94 1.00 1.00 1.00 1.00

macro avg 0.42 0.43 0.42 0.49 0.49 0.49 0.95 0.94 0.95 1.00 1.00 1.00 147035

weighted avg 0.62 0.62 0.62 0.66 0.66 0.66 0.94 0.94 0.94 1.00 1.00 1.00 147035

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 9 continued from previous page
DTE Rejex ADGym Swift Hydra

AUC-ROC 0.68 0.74 0.94 1.00

smtp P R F1 P R F1 P R F1 P R F1 support

-1 1.00 1.00 1.00 1.00 0.68 0.81 0.95 0.85 0.91 1.00 0.90 0.95 57075

1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.81 0.00 0.00 0.84 0.01 19

accuracy 1.00 1.00 1.00 0.68 0.68 0.68 0.85 0.85 0.85 0.90 0.90 0.90 0.90

macro avg 0.50 0.50 0.50 0.50 0.84 0.41 0.48 0.83 0.45 0.50 0.87 0.48 57094

weighted avg 1.00 1.00 1.00 1.00 0.68 0.81 0.95 0.85 0.91 1.00 0.90 0.95 57094

AUC-ROC 0.92 0.95 0.81 0.85

SpamBase P R F1 P R F1 P R F1 P R F1 support

-1 0.65 0.67 0.66 0.58 0.64 0.61 0.92 0.81 0.86 0.96 0.86 0.91 1513

1 0.49 0.47 0.48 0.37 0.32 0.34 0.77 0.89 0.84 0.82 0.95 0.88 1012

accuracy 0.59 0.59 0.59 0.51 0.51 0.51 0.84 0.84 0.84 0.89 0.89 0.89 0.89

macro avg 0.57 0.57 0.57 0.48 0.48 0.48 0.84 0.85 0.85 0.89 0.90 0.89 2525

weighted avg 0.59 0.59 0.59 0.50 0.51 0.50 0.86 0.84 0.85 0.90 0.89 0.89 2525

AUC-ROC 0.61 0.51 0.92 0.95

speech P R F1 P R F1 P R F1 P R F1 support

-1 0.98 0.99 0.99 0.99 0.13 0.23 0.93 0.49 0.67 1.00 0.53 0.70 2177

1 0.00 0.00 0.00 0.02 0.91 0.03 0.00 0.83 0.01 0.03 0.89 0.06 35

accuracy 0.97 0.97 0.97 0.15 0.15 0.15 0.49 0.49 0.49 0.54 0.54 0.54 0.54

macro avg 0.49 0.49 0.49 0.50 0.52 0.13 0.47 0.66 0.34 0.51 0.71 0.38 2212

weighted avg 0.97 0.97 0.97 0.97 0.15 0.23 0.92 0.49 0.65 0.98 0.54 0.69 2212

AUC-ROC 0.47 0.47 0.67 0.73

Stamps P R F1 P R F1 P R F1 P R F1 support

-1 0.97 0.90 0.93 0.00 0.00 0.00 0.96 0.79 0.87 1.00 0.86 0.92 185

1 0.41 0.68 0.51 0.09 1.00 0.17 0.39 0.94 0.54 0.42 1.00 0.59 19

accuracy 0.88 0.88 0.88 0.09 0.09 0.09 0.81 0.81 0.81 0.87 0.87 0.87 0.87

macro avg 0.69 0.79 0.72 0.05 0.50 0.09 0.67 0.87 0.70 0.71 0.93 0.76 204

weighted avg 0.91 0.88 0.89 0.01 0.09 0.02 0.91 0.81 0.84 0.95 0.87 0.89 204

AUC-ROC 0.89 0.74 0.93 0.96

thyroid P R F1 P R F1 P R F1 P R F1 support

-1 0.99 0.99 0.99 1.00 0.88 0.94 0.96 0.93 0.92 1.00 0.97 0.99 2207

1 0.63 0.65 0.64 0.18 0.98 0.30 0.43 0.97 0.60 0.49 1.00 0.66 57

accuracy 0.98 0.98 0.98 0.88 0.88 0.88 0.93 0.93 0.93 0.97 0.97 0.97 0.97

macro avg 0.81 0.82 0.81 0.59 0.93 0.62 0.69 0.95 0.76 0.75 0.99 0.82 2264

weighted avg 0.98 0.98 0.98 0.98 0.88 0.92 0.94 0.93 0.91 0.99 0.97 0.98 2264

AUC-ROC 0.98 0.99 0.94 1.00

vertebral P R F1 P R F1 P R F1 P R F1 support

-1 0.85 0.86 0.86 0.00 0.00 0.00 0.90 0.73 0.81 0.93 0.77 0.84 123

1 0.11 0.10 0.10 0.15 1.00 0.26 0.29 0.63 0.40 0.33 0.67 0.44 21

accuracy 0.75 0.75 0.75 0.15 0.15 0.15 0.72 0.72 0.72 0.76 0.76 0.76 0.76

macro avg 0.48 0.48 0.48 0.07 0.50 0.13 0.59 0.68 0.60 0.63 0.72 0.64 144

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 9 continued from previous page
DTE Rejex ADGym Swift Hydra

weighted avg 0.74 0.75 0.75 0.02 0.15 0.04 0.81 0.72 0.75 0.84 0.76 0.79 144

AUC-ROC 0.42 0.37 0.72 0.79

vowels P R F1 P R F1 P R F1 P R F1 support

-1 0.97 0.98 0.98 1.00 0.69 0.82 0.95 0.80 0.89 1.00 0.86 0.92 844

1 0.26 0.17 0.20 0.10 0.93 0.18 0.15 0.89 0.27 0.19 0.93 0.32 30

accuracy 0.96 0.96 0.96 0.70 0.70 0.70 0.80 0.80 0.80 0.86 0.86 0.86 0.86

macro avg 0.62 0.58 0.59 0.55 0.81 0.50 0.55 0.84 0.58 0.59 0.90 0.62 874

weighted avg 0.95 0.96 0.95 0.97 0.70 0.79 0.92 0.80 0.87 0.97 0.86 0.90 874

AUC-ROC 0.76 0.91 0.92 0.97

Waveform P R F1 P R F1 P R F1 P R F1 support

-1 0.97 0.97 0.97 0.97 0.53 0.69 0.96 0.75 0.83 1.00 0.82 0.90 2008

1 0.04 0.03 0.04 0.03 0.48 0.05 0.09 0.81 0.16 0.12 0.88 0.21 58

accuracy 0.95 0.95 0.95 0.53 0.53 0.53 0.75 0.75 0.75 0.82 0.82 0.82 0.82

macro avg 0.50 0.50 0.50 0.50 0.51 0.37 0.52 0.78 0.49 0.56 0.85 0.55 2066

weighted avg 0.95 0.95 0.95 0.95 0.53 0.67 0.93 0.75 0.81 0.97 0.82 0.88 2066

AUC-ROC 0.78 0.54 0.83 0.90

WBC P R F1 P R F1 P R F1 P R F1 support

-1 0.99 0.99 0.99 0.00 0.00 0.00 0.94 0.93 0.94 1.00 0.98 0.99 128

1 0.83 0.83 0.83 0.05 1.00 0.09 0.70 0.95 0.79 0.75 1.00 0.86 6

accuracy 0.99 0.99 0.99 0.05 0.05 0.05 0.93 0.93 0.93 0.99 0.99 0.99 0.99

macro avg 0.91 0.91 0.91 0.02 0.50 0.04 0.82 0.94 0.87 0.88 0.99 0.93 134

weighted avg 0.99 0.99 0.99 0.00 0.05 0.00 0.92 0.93 0.93 0.99 0.99 0.99 134

AUC-ROC 0.99 0.90 0.94 1.00

WDBC P R F1 P R F1 P R F1 P R F1 support

-1 0.99 0.99 0.99 0.98 0.19 0.32 0.96 0.89 0.91 1.00 0.93 0.96 217

1 0.25 0.25 0.25 0.02 0.75 0.03 0.18 0.95 0.29 0.21 1.00 0.35 4

accuracy 0.97 0.97 0.97 0.20 0.20 0.20 0.90 0.90 0.90 0.93 0.93 0.93 0.93

macro avg 0.62 0.62 0.62 0.50 0.47 0.18 0.57 0.92 0.60 0.61 0.97 0.66 221

weighted avg 0.97 0.97 0.97 0.96 0.20 0.32 0.95 0.90 0.90 0.99 0.93 0.95 221

AUC-ROC 0.98 0.51 0.93 1.00

Wilt P R F1 P R F1 P R F1 P R F1 support

-1 0.95 0.95 0.95 0.98 0.77 0.86 0.93 0.87 0.91 1.00 0.92 0.96 2746

1 0.01 0.01 0.01 0.14 0.68 0.23 0.35 0.93 0.50 0.38 0.96 0.55 146

accuracy 0.90 0.90 0.90 0.77 0.77 0.77 0.88 0.88 0.88 0.92 0.92 0.92 0.92

macro avg 0.48 0.48 0.48 0.56 0.72 0.54 0.64 0.90 0.70 0.69 0.94 0.75 2892

weighted avg 0.90 0.90 0.90 0.94 0.77 0.83 0.90 0.88 0.89 0.97 0.92 0.94 2892

AUC-ROC 0.42 0.79 0.94 0.98

wine P R F1 P R F1 P R F1 P R F1 support

-1 0.96 0.95 0.95 0.00 0.00 0.00 0.95 0.91 0.92 1.00 0.95 0.97 73

1 0.33 0.40 0.36 0.06 1.00 0.12 0.52 0.97 0.67 0.56 1.00 0.71 5

accuracy 0.91 0.91 0.91 0.06 0.06 0.06 0.91 0.91 0.91 0.95 0.95 0.95 0.95

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 9 continued from previous page
DTE Rejex ADGym Swift Hydra

macro avg 0.65 0.67 0.66 0.03 0.50 0.06 0.74 0.94 0.79 0.78 0.97 0.84 78

weighted avg 0.92 0.91 0.91 0.00 0.06 0.01 0.92 0.91 0.90 0.97 0.95 0.96 78

AUC-ROC 0.84 0.35 0.95 0.99

WPBC P R F1 P R F1 P R F1 P R F1 support

-1 0.78 0.86 0.82 0.00 0.00 0.00 0.76 0.43 0.55 0.83 0.47 0.60 93

1 0.24 0.15 0.19 0.22 1.00 0.36 0.20 0.62 0.33 0.26 0.65 0.37 26

accuracy 0.71 0.71 0.71 0.22 0.22 0.22 0.47 0.47 0.47 0.51 0.51 0.51 0.51

macro avg 0.51 0.51 0.50 0.11 0.50 0.18 0.48 0.52 0.44 0.54 0.56 0.49 119

weighted avg 0.66 0.71 0.68 0.05 0.22 0.08 0.64 0.47 0.50 0.71 0.51 0.55 119

AUC-ROC 0.54 0.53 0.54 0.59

yeast P R F1 P R F1 P R F1 P R F1 support

-1 0.60 0.61 0.60 0.64 0.87 0.74 0.77 0.49 0.62 0.80 0.54 0.65 587

1 0.22 0.21 0.22 0.19 0.06 0.09 0.40 0.68 0.53 0.46 0.74 0.57 304

accuracy 0.47 0.47 0.47 0.60 0.60 0.60 0.56 0.56 0.56 0.61 0.61 0.61 0.61

macro avg 0.41 0.41 0.41 0.42 0.47 0.42 0.59 0.59 0.57 0.63 0.64 0.61 891

weighted avg 0.47 0.47 0.47 0.49 0.60 0.52 0.64 0.56 0.59 0.69 0.61 0.62 891

AUC-ROC 0.37 0.41 0.65 0.70

P = Precision, R = Recall, F1 = F1-Score

41

	Introduction
	Preliminaries and Notation
	Swift Hydra
	Self-Reinforcing Generative Module
	Generating Samples as a Markov Decision Process
	One-step to Feasible Actions

	Inference Module

	Experimental Evaluation
	Related Work
	Conclusion
	Details Of Swift Hydra
	Self-Reinforcing Generative Module
	One-Step to Feasible Actions
	Entropy Estimation in Dynamic Training Datasets

	Theorems And Proofs
	Reward Estimation Consistency
	One detector ineffectively handles evolving balance data
	MoME effectively handles evolving balance data

	More Experiments
	Swift Hydra Settings
	Hyperparameters
	Model Size And Training Cost

	Swift Hydra: More Performance Evaluation
	Benchmarking Against Additional Detection Methods On ADBench
	Benchmarking Against Additional Oversampling Methods On ADBENCH

	Toy Example: Generalization Ability and Decision Boundary on 2D Data
	Ablation Study
	Impact of Self-Reinforcing Module on Performance Across Deep Models
	Impact of Probabilistic Cluster Assignment on MoME Performance
	KL Divergence and Reconstruction Loss Trade-off in Conditional Variational Auto Encoder

	RL-Agent Assistance Frequency Experiment
	Datasets In ADBench
	Swift Hydra: Class-Wise Precision, Recall, and F1-Score on ADBENCH

