# SWIFT HYDRA: SELF-REINFORCING GENERATIVE FRAMEWORK FOR ANOMALY DETECTION WITH MULTIPLE MAMBA MODELS

**Anonymous authors**Paper under double-blind review

#### **ABSTRACT**

Despite a plethora of anomaly detection models developed over the years, their ability to generalize to unseen anomalies remains an issue, particularly in critical systems. This paper aims to address this challenge by introducing Swift Hydra, a new framework for training an anomaly detection method based on generative AI and reinforcement learning (RL). Through featuring an RL policy that operates on the latent variables of a generative model, the framework synthesizes novel and diverse anomaly samples that are capable of bypassing a detection model. These generated synthetic samples are, in turn, used to augment the detection model, further improving its ability to handle challenging anomalies. Swift Hydra also incorporates Mamba models structured as a Mixture of Experts (MoE) to enable scalable adaptation of the number of Mamba experts based on data complexity, effectively capturing diverse feature distributions without increasing the model's inference time. Empirical evaluations on ADBench benchmark demonstrate that Swift Hydra outperforms other state-of-the-art anomaly detection models while maintaining a relatively short inference time. From these results, our research highlights a new and auspicious paradigm of integrating RL and generative AI for advancing anomaly detection.

# 1 Introduction

Anomaly detection remains one of the most pressing and challenging tasks in various applications ranging from cybersecurity in critical systems to big data analysis (Liao et al., 2013; Zhang et al., 2021b; Leibig et al., 2017; Yu et al., 2017; Sahu et al., 2024). In simple terms, an anomaly detection method often involves training a machine learning (ML) model that aims to identify unusual patterns in data that deviate from expected behaviors. One real-world challenge in realizing such an approach is the scarcity of available anomalies to train on and the lack of prior knowledge about unseen anomalies. For that reason, supervised methods, including techniques such as one-class metric learning (Görnitz et al., 2013; Pang et al., 2018a; Liu et al., 2019; Ruff et al., 2020) and one-sided anomaly-focused deviation loss (Pang et al., 2021; 2019c; Zhang et al., 2020), tend to overfit to known anomaly patterns and struggle to generalize to unseen anomalies.

Unsupervised methods (Venkataramanan et al., 2020; Zaheer et al., 2020; Zhou et al., 2020; Li et al., 2022; Livernoche et al., 2024), on the other hand, have gained traction for training anomaly detection models with synthetic anomalies, thereby demonstrating an auspicious approach to tackle the data scarcity and generalization issues. Common techniques (Schlegl et al., 2017; Nazari & Branco, 2021) using generative AI models such as Variational Auto Encoders (VAEs) (Kingma & Welling, 2013) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2016) to generate novel synthetic anomalies on which a detection model can be trained. In order to significantly augment the generalization ability of anomaly detection models, the generated samples should be realistic and challenging enough to bypass detection. However, current methods based on these techniques lack a strategic strategy to generate such samples. Moreover, they often struggle to synthesize diverse and high-quality anomalies due to the high complexity of training the generative models (e.g., vanishing gradients and model collapse issues) (Salimans et al., 2016; Arjovsky & Bottou, 2017). Other state-of-the-art models (Zhang et al., 2021a; An & Cho, 2015; Xu et al., 2022) encode the training data distribution and then determine the anomaly score of a newly observed data point using their recon-

struction loss. This is based on the assumption that, since normal instances significantly outnumber anomalies, these model should show higher reconstruction losses for anomalies. Nonetheless, neural networks can memorize and reconstruct anomalies well. As a result, the reconstruction losses for both normal and anomalous samples become indistinguishable, undermining the effectiveness of anomaly detection (Child, 2021).

In this work, we take a new approach to foster a more strategic mechanism for generating synthetic anomalies that can tackle the above-mentioned challenges. Specifically, we introduce a reinforcement learning (RL) agent to guide the training of a Conditional VAE (C-VAE) (Sohn et al., 2015) model capable of synthesizing anomalous samples that are both challenging and diverse, which can be used to substantially augment anomaly detection models. The RL agent operates on the latent space of the C-VAE model and its reward function is strategically designed to balance the entropy of the generated samples and their ability to evade detection, presenting a key advantage of our training framework in generating more effective anomalies. Furthermore, with this reward function, we theoretically show that the agent can explore deterministically in the latent space to yield feasible actions, thereby tackling one of the most crucial efficiency problems in RL.

Additionally, the complexity of data generated presents a challenge for training an efficient anomaly detection model. We establish a lower bound on the error rate for any single detection model, showing that even an over-parameterized model cannot fully capture the intricate features of increasingly complex generated data. Moreover, this over-parameterized model could lead to significantly prolonged inference times, which is not ideal for real-time applications. This necessitates a scalable anomaly detection model capable of capturing the increasingly diverse feature distributions. To achieve this, we train Mamba models (Gu & Dao, 2024) structured as a Mixture of Experts (MoE) (Shazeer et al., 2017; Chen et al., 2022; Nguyen et al., 2024) where each expert specializes in different feature regions. Together with a proposed MoE training scheme, this allows for a scalable inference with arbitrarily complex input data without increasing inference times, as only relevant experts are activated for specific input. Our contributions are summarized as follows:

- We introduce a new systematic framework, namely Swift Hydra, for training an anomaly
  detection model based on synthetic anomalies strategically generated by an RL-guided CVAE model. The efficiency of the detection model is enhanced via a Mixture of Mamba
  Experts, thereby enabling high detection accuracy while maintaining short inference time.
- We establish a theorem showing that the RL agent can perform gradient descent on the latent space to yield feasible actions in early training episodes. We also propose a new training scheme for MoE that tackles the "winner-take-all" issue (Fedus et al., 2022).
- Comprehensive experiments are conducted on ADBench, a benchmark including 57
  datasets from various domains, to demonstrate the outperforming detection accuracy and
  the efficiency of inference of our model. The result suggests that RL and generative AI
  together inspire a new and promising paradigm for advancing anomaly detection.

# 2 Preliminaries and Notation

Anomaly Detection. Given observations from a system, represented by  $\boldsymbol{x} = \{x_1, x_2, \dots, x_N\}$  where  $\boldsymbol{x} \in \mathbb{R}^{P \times N}$ , P is the feature space dimension and the objective is to determine whether each observation  $\boldsymbol{x}_i \in \mathbb{R}^P$ , for  $i \in [N]$ , is an anomaly. The approach to anomaly detection can vary depending on the availability of labeled data. In the unsupervised setting, the assumption is that no labeled data is available, and the dataset comprises a mix of unidentified normal and anomalous instances. In the supervised setting, a dataset  $\mathcal{D} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i), i = 1, 2, \dots, N\}$  is used where each  $\boldsymbol{x}_i$  is labeled as normal  $(\boldsymbol{y}_i = -1)$  or anomalous  $(\boldsymbol{y}_i = 1)$ . This dataset is fully labeled with a known proportion of anomalies and normal data, rendering the detection process similar to binary classification with unbalanced classes, where there are typically fewer anomalous than normal instances. The semi-supervised or one-class classification method acts as a hybrid approach, where the training involves only normal data  $(\mathcal{D}$  contains only  $\boldsymbol{y}_i = -1)$ , and anomalies, if present, are identified during inference. This method can also extend to partially labeled datasets, where some anomalies are labeled during training.

Class-Conditional Data Generation. In our work, we employ a Conditional Variational Autoencoder (C-VAE) (Sohn et al., 2015), denoted by  $\mathcal{F}_{\theta} = \mathcal{M}_{\phi} \circ \mathcal{G}_{\psi}$ , conditioned on anomalous data

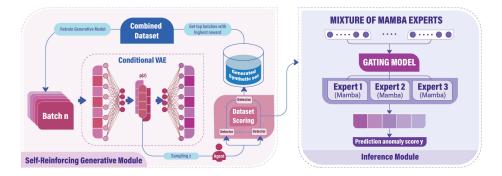



Figure 1: The Swift Hydra Framework consists of two main modules: the Self-Reinforcing Generative Module and the Inference Module. The first module includes a C-VAE, an RL agent, and a large Mamba-based Detector. Initially, the C-VAE is trained on the original dataset (referred to as the Combined Dataset in episode 0). In the early stages, the RL agent generates diverse anomalies by refining latent vectors z, then shifts to producing anomalies that more effectively deceive the detector. The top l anomalies are added back to the original dataset, creating a new combined dataset to further improve the Generative Model. The second module employs a Mixture of Mamba Experts (MoME), where lightweight models specialize in different parts of the dataset, providing the same performance as the large detector but with significantly faster inference.

(y=1). The parameters  $\psi$  and  $\phi$  represent the encoder and decoder, respectively, while  $\theta$  encapsulates both sets of C-VAE parameters. The C-VAE operates as follows:

$$\mathcal{F}_{\theta} = \mathcal{M}_{\phi} \circ \mathcal{G}_{\psi}, \quad \hat{\mathbf{x}}_{i} = \mathcal{F}_{\theta}(\mathbf{x}_{i}, y_{i}) = \mathcal{M}_{\phi}(\mathcal{G}_{\psi}(\mathbf{x}_{i}, y_{i})) = \mathcal{M}_{\phi}(\mathbf{z}_{i}, y_{i})$$
(1)

where  $\hat{x_i} \in \mathbb{R}^P$  represents the reconstructed observation. The generator is trained by optimizing the Evidence Lower Bound (ELBO):

$$\mathcal{L}_{\text{C-VAE}}^{\text{ELBO}} = \mathbb{E}_{q_{\psi}(\boldsymbol{z}_{i} \mid \boldsymbol{x}_{i}, y_{i})} \left[ \log p_{\phi}(\boldsymbol{x}_{i} \mid \boldsymbol{z}_{i}, y_{i}) \right] - \mathbb{E}_{q_{\psi}(\boldsymbol{z}_{i} \mid \boldsymbol{x}_{i}, y_{i})} \left[ \log \frac{q_{\psi}(\boldsymbol{z}_{i} \mid \boldsymbol{x}_{i}, y_{i})}{p_{\phi}(\boldsymbol{z}_{i} \mid y_{i})} \right]$$
(2)

In the above equation,  $\mathbb{E}_{q_{\psi}(\boldsymbol{z}_{i}|\boldsymbol{x}_{i},y_{i})}[\log]$  is called the reconstruction loss term, which aims to measure how well the model can reconstruct the input data from the latent representation.  $\mathbb{E}_{q_{\psi}(\boldsymbol{z}_{i}|\boldsymbol{x}_{i},y_{i})}[\log \frac{q_{\psi}(\boldsymbol{z}_{i}|\boldsymbol{x}_{i},y_{i})}{p_{\phi}(\boldsymbol{z}_{i}|y_{i})}]$  is called the KL divergence term, which serves to regularize the latent space by making the distribution of the latent variables close to a prior distribution, typically a standard Gaussian. Note that our C-VAE model is a combination of linear functions and 1-Lipschitz activation functions in which all layers are normalized. To generate a new anomalous sample  $\tilde{x}_{i} \in \mathbb{R}^{P}$ , we sample from  $z_{i} \in \mathbb{R}^{d} \sim \mathcal{N}(\mu, \sigma)$ , where d is the latent space dimension, and  $\mu$  and  $\sigma$  are optimized parameters at the bottleneck. The decoder then transforms  $z_{i}$  into  $\tilde{x}_{i} = \mathcal{M}_{\phi}(z_{i}, y_{i} = 1)$ .

#### 3 SWIFT HYDRA

This section introduces our Swift Hydra framework, as illustrated in Figure 1, which comprises two main modules: a Self-Reinforcing Generative Module and an Inference Module. First, the Self-Reinforcing Generative Module trains a generative model using RL to synthesize diverse and challenging anomalies. These generated samples are later appended to the original dataset  $\mathcal{D}$ . Second, from this new dataset, the Inference Module trains an efficient detector using the Mixture of Experts (MoE) technique, which includes a combination of multiple lightweight Mamba models specializing in different data clusters and a gating network directing each data point to the top k experts for collaborative prediction.

#### 3.1 Self-Reinforcing Generative Module

This module includes two main models: a C-VAE generator,  $\mathcal{F}_{\theta}$ , that synthesizes new anomalies, and a large Mamba-based detector  $\mathcal{W}_{\kappa}:\mathbb{R}^P\to [0,1]$  parameterized by  $\kappa$  that maps a sample  $x_i$  to a probabilistic score of it being an anomaly. Unlike conventional methods where the generator  $\mathcal{F}_{\theta}$  relies solely on feedback from the detector  $\mathcal{W}_{\kappa}$  to generate new samples which could lead to a model collapse (Salimans et al., 2016; Hassanaly et al., 2022) or vanishing gradient (Arjovsky & Bottou, 2017) problem, we instead leverage an RL agent to guide the training of  $\mathcal{F}_{\theta}$ . This RL agent, represented by a policy  $\pi_{\omega}$ , explores the latent distribution p(z) of  $\mathcal{F}_{\theta}$  and targets areas that would encourage the generator  $\mathcal{F}_{\theta}$  to synthesize diverse and challenging anomalies that can bypass the detector  $\mathcal{W}_{\kappa}$ . These synthetic samples are then used to augment the current training dataset and retrain  $\mathcal{F}_{\theta}$ , ultimately improving its ability to generate better anomalies in future episodes.

**Dataset definitions.** The dataset  $\mathcal{D}$  is split into a training set,  $\mathcal{D}^{train}$ , and a testing set,  $\mathcal{D}^{test}$ . In our approach, the goal is to attain high accuracy on the  $\mathcal{D}^{test}$  even with a small training dataset  $\mathcal{D}^{train}$ . Let  $\mathcal{D}^{balanced} = \{(x,y) \in \mathcal{D}^{train} \mid j = \min(|\{y=-1\}|, |\{y=1\}|), |\{y=-1\}| = j, |\{y=1\}|\}$  be a dataset balanced between normal and anomalous data points, with equal cardinalities determined by the smaller class. Note that, as episodes progress, the generator  $\mathcal{F}_{\theta}$  combined with the RL-agent  $\pi_{\omega}$  adds more anomalous samples to  $\mathcal{D}^{train}$ , expanding the anomalous data in  $\mathcal{D}^{balanced}$ . Since  $\mathcal{D}^{balanced}$  ensures equal numbers of anomalous and normal data, the increase in anomalous data leads to a corresponding expansion of normal data as well. In the RL context, for each episode, e, we denote  $\mathcal{D}^{train}_{e}$  and  $\mathcal{D}^{balanced}_{e}$  as the evolving training and balanced datasets, respectively.

Training process. For each episode e (comprising h steps), the C-VAE generator  $\mathcal{F}_{\theta}$  is trained with batches of  $\mathcal{D}_e^{train}$  dataset, while the detector  $\mathcal{W}_{\kappa}$  is trained with  $\mathcal{D}_e^{balanced}$ . Next, an anomalous data point (x,y=1) is sampled at random from  $\mathcal{D}_{e,anomalous}^{train}$ , and converted into a latent representation  $z=\mathcal{G}_{\psi}(x,y=1)$ . The RL policy is tasked with generating a modification vector  $\delta$  in the latent space, i.e.  $\pi_{\omega}:z\to\delta$ . This  $\delta$  results in a new sample in the latent space as  $\hat{z}=z+\delta$ . At the end of the episode, a new dataset is obtained  $\hat{\mathcal{X}}=\{\mathcal{M}_{\phi}(\hat{z}_0,y=1),\ldots,\mathcal{M}_{\phi}(\hat{z}_h,y=1)\}$ . From the newly generated set  $\hat{\mathcal{X}}$ , the top l samples that lead to the highest rewards are selected and denoted as  $\hat{\mathcal{X}}^{< l}$ . A formal definition of the reward is provided in the next section. At each episode, the selected samples are then merged with  $\mathcal{D}_{e-1}^{train}$ , forming the evolving dataset  $\mathcal{D}_e^{train}=\mathcal{D}_{e-1}^{train}\cup\hat{\mathcal{X}}^{< l}$ . Note that we set  $\mathcal{D}_0=\mathcal{D}^{train}$  to ensure that the model  $\mathcal{F}_{\theta}$  does not deviate from the acceptable range of the original data (Shumailov et al., 2024). The dataset  $\mathcal{D}_e^{train}$  is used to retrain the generator  $\mathcal{F}_{\theta}$ , enhancing its ability to generate high-quality data in future episodes. As e increases,  $\mathcal{D}_e^{train}$  is incorporated into  $\mathcal{D}^{balanced}$ . Thus,  $\mathcal{D}_e^{balanced}$  also grows across episodes. Due to page limit, we refer readers to Appendix A.1 for the pseudocode and further details about the training process.

### 3.1.1 GENERATING SAMPLES AS A MARKOV DECISION PROCESS

The process of policy modeling can be structured as a Markov Decision Process (MDP) (Bellman, 1957),  $\mathcal{M} \stackrel{\mathrm{def}}{=} (\mathcal{S}, \mathcal{A}, T, \mathcal{R})$ . This includes (i) a finite sets of states  $\mathcal{S}$ , (ii) a finite set of actions  $\mathcal{A}$ , (iii) a transition distribution  $T(s' \mid s, a)$  where  $s, s' \in \mathcal{S}, a \in \mathcal{A}$  and (iv) a reward function  $\mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ . We specific each component as follows:

States (s): A state is defined by latent space representations  $s_i = \{z_i, \mathcal{D}_e^{train} \mid z_i = \mathcal{G}_{\psi}(\mathbf{x}_i), \mathbf{x}_i \in \mathcal{D}_{e.anomalous}^{train} \}$ , where  $z_i$  is the latent vector produced by the encoder  $\mathcal{G}_{\psi}$  from the input data  $\mathbf{x}_i$ .

**Actions** (a): An action  $a_i = (\mu_i, \sigma_i)$  is a vector of two components:  $\mu_i \in \mathbb{R}^d$  (predicted mean) and  $\sigma_i \in \mathbb{R}^d$  (predicted scale). The modification vector  $\delta_i = \sigma_i \cdot \epsilon + \mu_i$ , where  $\epsilon \sim \mathcal{N}(0, I)$ , and the latent vector is updated as  $\hat{\boldsymbol{z}}_i = \boldsymbol{z}_i + \delta_i$ .

**Rewards** ( $\mathcal{R}$ ): The reward function is strategically designed to encourage the generation of a set of samples that are diverse and reduces the detector's confidence. The function is defined as follows:

$$\mathcal{R}(\mathcal{M}_{\phi}(\hat{z}_i, y_i = 1), e) = \gamma^e \cdot \mathcal{H}(\mathcal{D}_e^{train} \cup \mathcal{M}_{\phi}(\hat{z}_i, y_i = 1)) - \log \mathcal{W}_{\kappa}(\mathcal{M}_{\phi}(\hat{z}_i, y_i = 1)), \quad (3)$$

where  $\mathcal{H}(\mathcal{D}_e^{train} \cup \mathcal{M}_{\phi}(\hat{z}_i, y = 1))$  is the entropy of  $\mathcal{D}_e^{train}$  after incorporating  $\mathcal{M}_{\phi}(\hat{z}_i, y_i = 1)$  and is aimed at promoting the generation of diverse samples (additional details on the calculation of the

entropy of  $\mathcal{D}_e^{train}$  are provided in Appendix A.3). The function  $\mathcal{W}_{\kappa}(\mathcal{M}_{\phi}(\hat{z}_i, y_i = 1))$  assesses the detector's likelihood of classifying the generated sample as anomalous, with the goal of reducing this probability to decrease the detector's confidence.

The hyperparameter  $\gamma \in [0,1]$  dictates the desired rate of entropy reduction. This  $\gamma$  implies that the policy  $\pi_{\omega}$  focuses on exploring rare samples to increase the diversity of  $\mathcal{D}_{e,anomalous}^{train}$  in the early episodes. Once sufficient data has been explored, the reward function shifts to encourage the agent to exploit this data, generating new samples that are more effective at bypassing the detector.

**Transition Dynamics** (*T*): When an action  $a_i = (\mu_i, \sigma_i)$  is taken, a new anomalous data point  $\hat{x}_i = \mathcal{M}_{\phi}(\hat{z}_i, y_i = 1)$  is added to  $\hat{\mathcal{X}}$ . The new state  $s_{i+1}$  is then formed by randomly selecting  $x_{i+1} \in \mathcal{D}_{e, \text{anomalous}}^{\text{train}}$ , where  $s_{i+1} = \{z_{i+1}, \mathcal{D}_e^{\text{train}} \mid z_{i+1} = \mathcal{G}_{\psi}(\mathbf{x}_{i+1})\}$ .

#### 3.1.2 One-step to Feasible Actions

The RL agent  $\pi_{\omega}$ , which is tasked with generating a new sample  $\hat{x}_i$  from  $x_i$ , can be trained using conventional methods. However, during early training episodes, the agent would often struggle to find suitable actions that maximize the reward function because  $\pi_{\omega}$  has not yet learned effective strategies. In fact, an action  $a_i = (\mu_i, \sigma_i)$  may be invalid if the updated latent vector  $\hat{z}_i$  derived from  $a_i$  falls outside the supported range of the trained model  $\mathcal{F}_{\theta}$ . Even with advanced exploration techniques such as those in (Eysenbach & Levine, 2022; Pathak et al., 2017; Burda et al., 2019; Ecoffet et al., 2021), this issue remains challenging for  $\pi_{\omega}$  to overcome due to the high-dimensional and continuous nature of the action space.

A naive strategy to address this is to use the observed data distribution p(x) (i.e., adding Gaussian noise to  $x_i$ ) to generate new samples  $\hat{x}_i$ . The encoder then provides their latent representation  $\hat{z}_i = \mathcal{G}_{\psi}(\hat{x}_i, y = 1)$ , and the modification vector  $\hat{\delta}_i = \hat{z}_i - z_i$  is employed to guide exploration at that step. After that, a feasible action  $\tilde{a}_i = (\hat{\delta}_i, \sigma_i)$  is derived from  $\hat{\delta}_i$  to replace the invalid action  $a_i = (\mu_i, \sigma_i)$  of the RL agent in the current step. Once a feasible action is identified, the agent learns it in a supervised manner, facilitating more effective exploration in future steps. However, randomly modifying observations in the input space p(x) can be complex. Instead, we rely on the following theorem to find feasible actions:

**Theorem 1.** (Reward Estimation Consistency). If the reward function  $\mathcal{R}$  is differentiable,  $\mathcal{F}_{\theta}$  is well-converged, and  $\hat{z}_i := z_i - \epsilon \cdot \nabla_{z_i} (-\mathcal{R}(\mathcal{M}_{\phi}(z_i, y_i = 1), e))$  for some small  $\epsilon$ , then  $\mathcal{R}(\hat{x}_i, e) > \mathcal{R}(x_i, e)$ , where  $\hat{x}_i = \mathcal{M}_{\phi}(\hat{z}_i, y_i = 1)$ . (Proof in Appendix **B.1**)

In other words, if  $\mathcal{F}_{\theta}$  is well-converged and maintains both continuity (i.e., nearby points in the latent space yield similar content when decoded) and completeness (i.e., points sampled from the latent space produce meaningful content when decoded), the C-VAE described in Equation 2 can explore new states s (i.e., anomalous observations) by utilizing the latent feature space p(z) (which is learned from the original space p(x)). This allows us to search for feasible  $\hat{x}_i$  in the lower-dimensional and less noisy latent space p(z) as an alternative to creating feasible actions. Specifically, Theorem 1 implies that we can deterministically search for  $\hat{z}_i$  in a manner that maximizes the reward function specified in Equation 3 using gradient descent (Ruder, 2017). From that, a feasible action  $\tilde{a}_i = (\hat{\delta}_i, \sigma_i)$  is derived where  $\hat{\delta}_i = \hat{z}_i - z_i$ . With this approach, the policy, value, and reward models are trained simultaneously during these early episodes, allowing the RL agent to generalize effectively and reduce invalid actions in future episodes. Thus, the need for using one-step to feasible actions is eliminated in subsequent stages. Further details on this process can be found in Appendix A.2 with a preliminary analysis given in Appendix C.5.

#### 3.2 Inference Module

At the conclusion of the first module, the detector  $W_{\kappa}$  has been augmented by the newly generated dataset and can be used as the final anomaly detection model. Due to the increasingly diverse training data generated by  $\mathcal{F}_{\theta}$ , we had to initially overparameterize the detector  $W_{\kappa}$ . For that reason, deploying  $W_{\kappa}$  directly as the final detection model would not be scalable due to the high inference cost. Furthermore, the theorem below establishes a lower bound on the detection error, showing that any single detection model is subject to this lower bound regardless of the number of parameters.

**Theorem 2.** (Inefficiency of single detector in handling evolving balance data). Suppose a feature space  $\mathfrak{X}\subset\mathbb{R}^P$  contains  $U_n$  normal clusters and  $U_a$  anomalous clusters, where each cluster u-th  $\in [U_n+U_a]$  is modeled as a Gaussian distribution  $\mathcal{N}(\boldsymbol{\mu}_u,\sigma^2\mathbf{I}_P)$ . Let  $\mathcal{V}_{cluster}$  be the cluster's volume and  $\Lambda$  be the total overlapping volume between normal and anomalous clusters, where the number of anomalous data points is equal to the number of normal data points, the training loss  $\mathcal{L}_{train}$  ( $\mathcal{W}_\kappa$ ) is lower bounded by  $\frac{1}{4} \cdot \frac{\Lambda}{U_a \cdot \mathcal{V}_{cluster} - \frac{\Lambda}{2}}$  in a case of linear  $\mathcal{W}_\kappa$ . (Proof in Appendix **B.2**)

This theorem aligns with the findings in (Chen et al., 2022), emphasizing the inefficiency of using a single classifier. To address this issue, in this second module, we use the MoE approach to train an efficient detector on the dataset generated by the first module. Instead of relying on a single large-scale detector, this technique leverages multiple "expert" models with each one specializes in a subset of the input data. The balanced dataset  $\mathcal{D}_e^{balance}$  is first decomposed into clusters  $\{\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_U\}$ , where the number of clusters U is determined using the elbow method (Yuan & Yang, 2019). We train a set of Mamba models  $\{f_1,f_2,\ldots,f_M\}$ , each acting as an expert for a specific data cluster following the Sparsely-Gated Mixture-of-Experts approach (Shazeer et al., 2017), and where  $f_m(x;\mathbf{W})$  is the output of the m-th expert network with input x and parameter  $\mathbf{W}$ .

**Gating network.** In mixture-of-experts approach, the experts are complemented by a gating network that directs inputs to the most appropriate expert. Given an input  $x \in \mathbb{R}^{\mathbb{P}}$ , the gating network is defined as the following function:

$$\mathbf{h}(x, \aleph_g, \aleph_{\text{noise}}) = x \cdot \aleph_g + \text{StandardNormal}(.) \cdot \text{Softplus}(x \cdot \aleph_{\text{noise}})$$
(4)

where  $\aleph_g, \aleph_{\text{noise}} \in \mathbb{R}^{P \times M}$  are weight matrices that determine the linear transformation and noise contribution, respectively. From the output of  $\mathbf{h}(x,\aleph_g,\aleph_{\text{noise}})$ , a key step is to apply the top k expert selection mechanism, denoted by  $\operatorname{TopK}(\mathbf{h}(x,\aleph_g,\aleph_{\text{noise}}),k)$ , where it selects the top k largest values from the vector  $\mathbf{h}(x,\aleph_g,\aleph_{\text{noise}})$ , which represents the performance scores (e.g., accuracy) of different expert networks. The elements in  $\mathbf{h}(x,\aleph_g,\aleph_{\text{noise}})$  that are not within the top k are replaced by  $-\infty$ , effectively excluding them from further consideration. Finally, a softmax function is applied to these top k values to normalize them, i.e.,  $k(x,\aleph_g,\aleph_{\text{noise}}) = \operatorname{Softmax}(\operatorname{TopK}(\mathbf{h}(x,\aleph_g,\aleph_{\text{noise}}),k))$ . This setup forms a Mixture of Mamba Expert, and the output of the MoE layer is then expressed as:

$$\mathfrak{F}(x,\aleph_g,\aleph_{\text{noise}},\mathbf{W}) = \sum_{m \in \mathfrak{T}_x} \lambda_m(x,\aleph_g,\aleph_{\text{noise}}) f_m(x;\mathbf{W})$$
 (5)

where  $\mathfrak{T}_{\mathbf{x}} \subseteq [M]$  represents the indices of selected experts  $(|\mathfrak{T}_{\mathbf{x}}| = k)$ .

**Tackling "winner-take-all".** During early training of MoE, experts have arbitrary performance scores, hence the gating network could randomly allocate more samples to a particular expert. With more training data, this expert outperforms others, thus receiving even more samples. This is referred to as the "winner-take-all" phenomenon (Oster & Liu, 2005; Fedus et al., 2022), which reduces the MoE to a single lightweight expert, limiting its ability to generalize. While this expert may excel, it fails to capture the diverse features across U clusters, undermining the model's overall performance.

We tackle this "winner-take-all" issue by temporarily deactivating the gating network during this early training stage and, instead, proposing a probabilistic approach to ensure diversity in cluster assignments across experts, while also considering the complexity of each cluster. For each expert  $f_i$ , where  $i \in [M]$ , instead of assigning clusters based on fixed criteria, we dynamically adjust the probability of an expert  $f_i$  selecting a cluster  $u_i \in [U]$ , with the probability inversely proportional to how frequently the cluster has already been assigned to other experts. More importantly, we introduce a scaling factor that adjusts this probability based on the size of the cluster. For larger clusters, which are likely more complex, we reduce the penalty of being selected multiple times, as these clusters require more experts to fully capture their complexity. Specifically, the probability of expert  $f_i$  selecting cluster u is given by:

$$\mathcal{P}(u \mid \mathbf{x}, \{n_u\}, \{s_u\}) = \frac{\exp\left(c_0 - \frac{\alpha}{s_u} \cdot n_u\right)}{\sum_{u' \in [U]} \exp\left(c_0 - \frac{\alpha}{s_{u'}} \cdot n_{u'}\right)}$$
(6)

where  $s_u$  is the size of cluster u,  $n_u$  is the number of times cluster u has already been assigned,  $\alpha$  is the base penalty factor, and  $c_0$  is a constant initialization score for cluster selection. Then, the expert  $f_i$  will select  $u \sim \text{Categorical}\left(\mathcal{P}\left(u \mid \mathbf{x}, \{n_u\}, \{s_u\}\right), u \in [U]\right)$  as its cluster.

Note that, due to the probabilistic nature of the selection algorithm, there could be clusters that are not selected by any experts. Therefore, we overspecify the number of experts M. As demonstrated in a theorem from (Nguyen et al., 2024), doing so does not increase prediction time. This is because  $\mathfrak{F}(x,\aleph_g,\aleph_{\text{noise}},\mathbf{W})$  selects only the top k (typically 2 or 3) best experts for making predictions. After training each expert with its selected cluster, we train the gating network to minimize the overall classification loss (e.g., MSE or Cross Entropy Loss). With this setup, we also establish a theorem to demonstrate the effectiveness of our training mechanism as follows:

**Theorem 3.** (MoME efficiently handles evolving balance data). Let  $\mathcal{L}_{test}(\mathfrak{F})$  and  $\mathcal{L}_{test}(\mathcal{W}_{\kappa})$  represent the expected error on the test set for the Mixture of Mamba Experts (MoME) model and a single detector, respectively. For any value of  $\Lambda$ , employing MoME with  $\{f_1, f_2, \ldots, f_M\}$  guarantees that the minimum expected error on the training set is  $\mathcal{L}_{train}(\mathfrak{F}) = 0$  and the expected error on the test set satisfies  $\mathcal{L}_{test}(\mathfrak{F}) \leq \mathcal{L}_{test}(\mathcal{W}_{\kappa})$ . (Proof in Appendix **B.3**)

The above theorem demonstrates that a Mixture of Mamba Experts model can effectively fit all the data in the training set. Moreover, the expected error on the test set when using the Mixture of Mamba Experts will always be less than or equal to that of a single detector. Once the experts are well-trained, we activate the gating network and use it for routing samples.

#### 4 EXPERIMENTAL EVALUATION

**Settings.** We conduct experiments to evaluate the performance of our Swift Hydra framework using the ADBench benchmark (Han et al., 2022), which includes a comprehensive collection of 57 widely used anomaly detection datasets spanning various tasks, from image analysis to natural language processing, as detailed in Appendix C.6. We also evaluate a version of Swift Hydra without MoME, i.e., a single large detector is used in the Inference Module. The implementation specifics, such as the training algorithm, model architecture, hyperparameter, model size and training costs are provided in Appendix C.1. We will release the source code once the paper is published.

**Metrics.** In our evaluation, we focus on the performance of the Swift Hydra, particularly in terms of AUC-ROC and TIF (total inference time to predict all data in ADBench). Additionally, we analyze the distribution of generated data at each episode and compare it to the distribution of the test data.

**Baselines.** For the anomaly detection task, we compare Swift Hydra against several state-of-the-art (SOTA) semi-supervised and unsupervised learning methods included in ADBench. These methods are Rejex (Perini & Davis, 2023), ADGym (Jiang et al., 2023) and DTE (Livernoche et al., 2024). We also compare the distribution of our generated data against that of data generated by oversampling techniques such as SMOTE (Chawla et al., 2002), Borderline-SMOTE (Han et al., 2005), ADASYN (He et al., 2008), SVM-SMOTE (Nguyen et al., 2011), CBO (Xu et al., 2021), Oversampling GAN (Nazari & Branco, 2021) and VAE-Geometry (Chadebec et al., 2023). For each method, we use the best-performing hyperparameters as provided in its original paper.

| Methods                              | DTE          | Rejex        | ADGym        | Swift Hydra (Single) | Swift Hydra (MoME) |  |  |  |  |  |
|--------------------------------------|--------------|--------------|--------------|----------------------|--------------------|--|--|--|--|--|
|                                      | AUCROC   TIF | AUCROC   TIF | AUCROC   TIF | AUCROC   TIF         | AUCROC   TIF       |  |  |  |  |  |
| Train/Test Ratio (40/60%)            | 0.82   4.02  | 0.78   3.89  | 0.86   6.12  | 0.91   13.11         | 0.93   4.01        |  |  |  |  |  |
| Train/Test Ratio (30/70%)            | 0.80   4.13  | 0.77   4.09  | 0.82   7.03  | 0.90   14.38         | <b>0.91</b>   4.79 |  |  |  |  |  |
| Train/Test Ratio (20/80%)            | 0.79   4.31  | 0.76   4.22  | 0.79   8.17  | 0.87   16.13         | 0.90   5.22        |  |  |  |  |  |
| Train/Test Ratio (10/90%)            | 0.78   4.42  | 0.74   4.39  | 0.77   9.14  | 0.86   18.52         | <b>0.87</b>   5.84 |  |  |  |  |  |
| TIF = Total Inference Time (Seconds) |              |              |              |                      |                    |  |  |  |  |  |

Table 1: The performance of Swift Hydra and the baselines on the ADBench is evaluated based on two criteria: AUC-ROC and total inference time (TIF). Here, the AUC-ROC is the average calculated across all 57 datasets, while the TIF represents the total time the model takes to predict all data points across all datasets. We vary the train/test ratios to illustrate how the size of the training data impacts the performance. The best AUC-ROC values are highlighted.

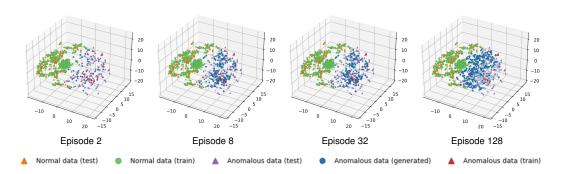



Figure 2: The distribution of the evolving training set  $\mathcal{D}_e^{train}$  and test set  $\mathcal{D}^{test}$  is visualized using the Cardiotocography dataset, one of the 57 datasets from ADBench, generated by Swift Hydra in each episode. The data points are dimensionally reduced using T-SNE (van der Maaten & Hinton, 2008). Note that the light blue points represent the generated datapoints from previous episodes, providing insight into the trend of generating anomalous data across episodes.

**AUC-ROC Evaluation.** As shown in Table 1, the average AUC-ROC scores show that both versions of Swift Hydra - single large detector and MoME - consistently outperform other state-of-theart (SOTA) methods with respect to various training sizes (i.e., 40%, 30%, 20%, and 10% of the whole dataset). Notably, with only 10% of the dataset, Swift Hydra outperforms DTE in the semi-supervised setting and Rejex in the unsupervised setting. This demonstrates that our RL algorithm can train a generative model to synthesize effective anomalies that can later be used to train a high-performing detection model. We refer readers to Appendix **C.2** for a comparative analysis with more SOTA detection methods and oversampling techniques, and Appendix **C.3** for a toy example to illustrate the generalization ability of Swift Hydra. Appendix **C.4** presents a series of ablation studies evaluating the impact of the Self-Reinforcing Module, the effectiveness of the probabilistic cluster assignments (as described in Equation 6), and the influence of the KL term and the reconstruction term in Equation 2 on the AUC-ROC of Swift Hydra.

**Inference Time Evaluation.** In terms of total inference time across 57 datasets, Table 1 shows that Rejex has the shortest time, which is expected as it relies on conventional lazy learning methods such as Isolation Forest. DTE, which is based on a diffusion model, requires only a few steps to reconstruct backward and determine whether a sample is anomalous, resulting in relatively short inference times. Although ADGym optimally selects which ML models to use for each dataset, the experiment shows that its overall prediction time is still relatively high compared to that of Swift Hydra (MoME). Swift Hydra (Single) achieves high AUC-ROC scores; nevertheless, its prediction time is significantly longer because a single large model is designed to capture the entire diverse dataset generated by the Self-Reinforcing Generative Module. In contrast, Swift Hydra (MoME) not only attains the best AUC-ROC scores but also has efficient prediction times that are comparable to DTE with respect to the training sizes of 40% and 30%. Overall, Swift Hydra (MoME) offers the best balance between AUC-ROC performance and inference time among the tested methods.

Generated Data Distribution. We visualize the distribution of data generated over time by our Self-Reinforcing Generative Module in Figure 2. Initially, the model explores a broad spectrum of widely dispersed anomalous data points. As the episodes progress, a discernible pattern emerges: the generated anamalous points increasingly cluster towards the boundary that separates normal from anomalous data. In fact, this transitional zone at the boundary highlights the anomalies that are not easily distinguishable from normal data points. Hence, this dynamic progression shows that our generative method significantly enriches the diversity of anomalous data points while simultaneously pushing for the most challenging anomalies, thus strengthening the detector's generalization ability.

Figure 3 shows a comparative analysis on the generated data distribution of our method and that of other oversampling methods. As can be seen, methods like SMOTE, Borderline-SMOTE, SVM-SMOTE, ADASYN, and CBO only generate data points within the boundary of the anomalous data in the training set, while our approach allows data points to be generated beyond these boundaries. This enables our method to potentially generate anomalous data points that can cover the distribution of the test set. Although VAE-Geometry and Oversampling GAN also explore beyond the

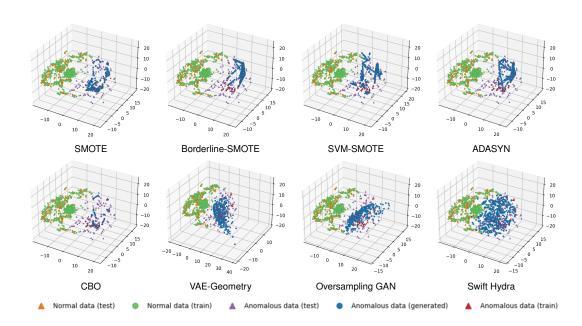



Figure 3: The distribution of the evolving training set  $\mathcal{D}_e^{train}$  and test set  $\mathcal{D}^{test}$  is visualized using the Cardiotocography dataset, one of the 57 datasets from ADBench, generated by the oversampling methods in our baselines. The data points are dimensionally reduced using T-SNE (van der Maaten & Hinton, 2008).

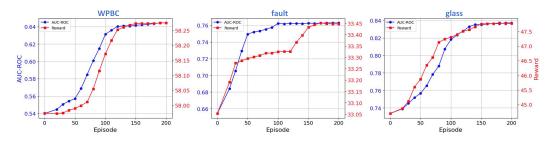



Figure 4: The performance of the RL-Agent is represented by the reward (right y-axis), while the performance of the Mamba-based Detector (single model) is measured by AUC-ROC (left y-axis). Both metrics are plotted against the number of episodes (x-axis) across three challenging datasets from ADBench. Note that both reward and AUC-ROC are averaged over multiple roll-outs.

boundary, they have limitations. Oversampling GAN suffers from model collapse (Salimans et al., 2016; Hassanaly et al., 2022): during the early training steps, if it finds one data point that is very good at fooling the detector, it will only focus on generating samples around that point in subsequent steps. VAE-Geometry performs better as it generates more diverse data points. However, it is highly sensitive to hyperparameters to learn the data manifold correctly, hence, it is less effective compared to our method. Both Figures 2 and 3 demonstrate that data generated by Swift Hydra provides comprehensive coverage over the range of anomalous data in the test set, even though no knowledge about the test data is provided during training.

**Soundness of the Reward Function.** Figure 4 shows that the reward trend (average of multiple roll-outs) closely follows the increase in AUC-ROC. This demonstrates the soundness of our reward function, as the RL agent optimizes the reward function, either by predicting actions itself or using feasible actions as discussed in Section **3.1.2**, leading to the maximization of AUC-ROC in the test set. Interestingly, even though the RL agent receives no feedback on how it performs on the test set (no knowledge about the test set is provided during training), it still manages increase the AUC-ROC over time. This suggests that our reward function helps improve the detector's generalization ability.

# 5 RELATED WORK

Anomaly Detection. Due to the high cost and difficulty of data annotation, most recent anomaly detection (AD) research has focused on unsupervised methods with various data distribution assumptions (Aggarwal, 2017; Liu et al., 2008; Zong et al., 2018; Li et al., 2020; 2022; Xu et al., 2022). Common approaches like GAN-based (Donahue et al., 2017; Schlegl et al., 2017), self-supervised (Hojjati et al., 2022; Sehwag et al., 2021; Georgescu et al., 2021; Li et al., 2021), and one-class classification (Shen et al., 2020; Hu et al., 2020) typically rely solely on normal data for training, making it difficult to identify anomalies due to the absence of true anomaly patterns. Reconstruction-based methods (An & Cho, 2015; Xu et al., 2022) use anomaly reconstruction loss to detect outliers but are often unreliable as neural networks can memorize and generalize even with a few samples of anomalies. More recent supervised or weakly-supervised methods (Pang et al., 2018b; 2019a;d; Ruff et al., 2020; Zhou et al., 2021) treat anomalies as negative samples to improve sensitivity, but they risk overfitting and heavily depend on the diversity and quality of the dataset.

Advanced methods like ADGym (Jiang et al., 2023) have improved anomaly detection through optimized data processing, augmentation, network design, and training, but they may fail if settings do not align with the target domain. Learning to Reject (Perini & Davis, 2023) uses uncertainty scores to reject rather than forcibly predict uncertain samples; however, it often rejects data near the normal-anomaly boundary, reducing detection performance. DTE (Livernoche et al., 2024) leverages diffusion models to estimate posterior densities, but the decoder can still memorize and reconstruct anomalies, complicating reliable scoring. AnomalyClip (Zhou et al., 2024) captures general anomalies in images using object-agnostic text prompts but is limited to image-based tasks.

Oversampling-based techniques. Traditional oversampling techniques tackle imbalanced data by generating synthetic samples. SMOTE (Chawla et al., 2002) interpolates between minority points to increase diversity but does not focus on challenging samples. Variations like CBO (Xu et al., 2021), Borderline-SMOTE (Han et al., 2005), and SVM-SMOTE (Nguyen et al., 2011) generate samples near boundaries to improve representation but risk introducing noise and overfitting in complex distributions. ADASYN (He et al., 2008) targets harder instances for sample generation, enhancing performance but potentially causing redundancy if not carefully managed.

Recent techniques like Oversampling GAN (Nazari & Branco, 2021) and VAE-Geometry (Chadebec et al., 2023) use deep learning to generate more generalized samples. Oversampling GAN may suffer from issues like vanishing gradients or model collapse, limiting sample diversity. VAE-Geometry employs a Variational Autoencoder that preserves the geometric structure of the data during augmentation, producing synthetic samples that more accurately reflect the true distribution. However, its accuracy depends on correctly learning the data manifold and is highly sensitive to hyperparameters; failure to capture complex structures can result in inaccurate sample generation.

**RL-Guided Generative AI.** Reinforcement Learning (RL) has been used to guide Generative AI (GenAI) in large language models (LLMs), as seen in "Learning from Human Feedback" (Dubois et al., 2023) and ReST (Gulcehre et al., 2023), enhancing generative capabilities through reward models. The direct use of RL to guide the sample generation process of generative models in anomaly detection remains underexplored, with this approach only recently gaining traction through the ReST framework for LLMs.

# 6 Conclusion

We propose Swift Hydra, a framework designed to reinforce a generative model's ability to synthesize anomalies in order to augment anomaly detection models. The framework features an RL agent to guide the training of a C-VAE model that generates diverse and challenging anomalies. We further propose a mechanism to help the RL agent choose an action more efficiently during training. Additionally, due to the diverse nature of the generated dataset, we introduce a Mixture of Mamba Experts to train an efficient anomaly detector, where each expert specializes in capturing specific data clusters. As a result, our model demonstrates strong generalization capabilities and fast inference, as evidenced by experiments conducted on the ADBench benchmark against state-of-the-art anomaly detection models. Our research highlights a promising paradigm of integrating RL and generative AI for advancing anomaly detection. It can be leveraged for generating and synthesizing data in other application contexts where collecting real data is expensive and scarce.

#### REFERENCES

- Charu C Aggarwal. An introduction to outlier analysis. In *Outlier analysis*, pp. 1–34. Springer, 2017.
- Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruction probability. 2015. URL https://api.semanticscholar.org/CorpusID: 36663713.
- Martin Arjovsky and Leon Bottou. Towards principled methods for training generative adversarial networks. In *International Conference on Learning Representations*, 2017. URL https://openreview.net/forum?id=Hk4\_qw5xe.
  - Richard Bellman. A markovian decision process. *Journal of mathematics and mechanics*, pp. 679–684, 1957.
  - Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=H11JJnR5Ym.
  - Clément Chadebec, Elina Thibeau-Sutre, Ninon Burgos, and Stéphanie Allassonnière. Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(3):2879–2896, 2023. doi: 10.1109/TPAMI.2022.3185773.
  - Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002.
  - Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the mixture-of-experts layer in deep learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 23049–23062. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper\_files/paper/2022/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.
  - Rewon Child. Very deep {vae}s generalize autoregressive models and can outperform them on images. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=RLRXCV6DbEJ.
  - Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning, 2017. URL https://arxiv.org/abs/1605.09782.
  - Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy Liang, and Tatsunori Hashimoto. Alpacafarm: A simulation framework for methods that learn from human feedback. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=4hturzLcKX.
  - Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return, then explore. *Nature*, 590(7847):580–586, Feb 2021. ISSN 1476-4687. doi: 10.1038/s41586-020-03157-9. URL https://doi.org/10.1038/s41586-020-03157-9.
  - Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust RL problems. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=PtSAD3caaA2.
  - William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. *J. Mach. Learn. Res.*, 23(1), jan 2022. ISSN 1532-4435.
- Mariana-Iuliana Georgescu, Antonio Barbalau, Radu Tudor Ionescu, Fahad Shahbaz Khan, Marius Popescu, and Mubarak Shah. Anomaly detection in video via self-supervised and multi-task learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12742–12752, 2021.

- Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
   MIT Press, 2016.
  - Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for tabular data, 2023. URL https://arxiv.org/abs/2106.11959.
    - Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward supervised anomaly detection. *Journal of Artificial Intelligence Research*, 46:235–262, 2013.
    - Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024. URL https://arxiv.org/abs/2312.00752.
    - Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling, 2023. URL https://arxiv.org/abs/2308.08998.
    - Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In *International conference on intelligent computing*, pp. 878–887. Springer, 2005.
    - Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. ADBench: Anomaly detection benchmark. *Advances in Neural Information Processing Systems (NeurIPS)*, 35:32142–32159, 2022.
    - Malik Hassanaly, Andrew Glaws, Karen Stengel, and Ryan N King. Adversarial sampling of unknown and high-dimensional conditional distributions. *Journal of Computational Physics*, 450: 110853, 2022.
    - Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328, 2008. doi: 10.1109/IJCNN.2008.4633969.
    - Hadi Hojjati, Thi Kieu Khanh Ho, and Narges Armanfard. Self-supervised anomaly detection: A survey and outlook. *arXiv preprint arXiv:2205.05173*, 2022.
    - Wenpeng Hu, Mengyu Wang, Qi Qin, Jinwen Ma, and Bing Liu. Hrn: A holistic approach to one class learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 19111–19124. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper\_files/paper/2020/file/dd1970fb03877a235d530476eb727dab-Paper.pdf.
    - Minqi Jiang, Chaochuan Hou, Ao Zheng, Songqiao Han, Hailiang Huang, Qingsong Wen, Xiyang Hu, and Yue Zhao. Adgym: Design choices for deep anomaly detection, 2023. URL https://arxiv.org/abs/2309.15376.
    - Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint* arXiv:1312.6114, 2013.
    - Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl. Leveraging uncertainty information from deep neural networks for disease detection. *Scientific reports*, 7(1):1–14, 2017.
    - Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning for anomaly detection and localization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9664–9674, 2021.
    - Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier detection. In 2020 IEEE international conference on data mining (ICDM), pp. 1118–1123. IEEE, 2020.

- Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen. Ecod: Unsupervised outlier detection using empirical cumulative distribution functions. *IEEE Transactions on Knowledge and Data Engineering*, 2022.
  - Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung. Intrusion detection system: A comprehensive review. *Journal of Network and Computer Applications*, 36(1):16–24, 2013.
  - Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international conference on data mining, pp. 413–422. IEEE, 2008.
  - Wen Liu, Weixin Luo, Zhengxin Li, Peilin Zhao, Shenghua Gao, et al. Margin learning embedded prediction for video anomaly detection with a few anomalies. In *IJCAI*, volume 3, pp. 023–3, 2019.
  - Victor Livernoche, Vineet Jain, Yashar Hezaveh, and Siamak Ravanbakhsh. On diffusion modeling for anomaly detection. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=lR3rk7ysXz.
  - Ehsan Nazari and Paula Branco. On oversampling via generative adversarial networks under different data difficulty factors. In Nuno Moniz, Paula Branco, Luis Torgo, Nathalie Japkowicz, Michał Woźniak, and Shuo Wang (eds.), *Proceedings of the Third International Workshop on Learning with Imbalanced Domains: Theory and Applications*, volume 154 of *Proceedings of Machine Learning Research*, pp. 76–89. PMLR, 17 Sep 2021. URL https://proceedings.mlr.press/v154/nazari21a.html.
  - Hien M. Nguyen, Eric W. Cooper, and Katsuari Kamei. Borderline over-sampling for imbalanced data classification. *Int. J. Knowl. Eng. Soft Data Paradigm.*, 3(1):4–21, April 2011. ISSN 1755-3210. doi: 10.1504/IJKESDP.2011.039875. URL https://doi.org/10.1504/IJKESDP.2011.039875.
  - Huy Nguyen, Pedram Akbarian, Fanqi Yan, and Nhat Ho. Statistical perspective of top-k sparse softmax gating mixture of experts. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=jvtmdK69KQ.
  - Matthias Oster and Shih-Chii Liu. Spiking inputs to a winner-take-all network. In Y. Weiss, B. Schölkopf, and J. Platt (eds.), *Advances in Neural Information Processing Systems*, volume 18. MIT Press, 2005. URL https://proceedings.neurips.cc/paper\_files/paper/2005/file/881c6efa917cff1c97a74e03e15f43e8-Paper.pdf.
  - Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, KDD '18, pp. 2041–2050, New York, NY, USA, 2018a. Association for Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3220042. URL https://doi.org/10.1145/3219819.3220042.
  - Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In *KDD*, pp. 2041–2050, 2018b.
  - Guansong Pang, Chunhua Shen, Huidong Jin, and Anton van den Hengel. Deep weakly-supervised anomaly detection. *ArXiv*, 1910.13601, 2019a. URL https://arxiv.org/abs/1910.13601.
  - Guansong Pang, Chunhua Shen, and Anton van den Hengel. Deep anomaly detection with deviation networks, 2019b. URL https://arxiv.org/abs/1911.08623.
  - Guansong Pang, Chunhua Shen, and Anton Van Den Hengel. Deep anomaly detection with deviation networks. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 353–362, 2019c.
  - Guansong Pang, Chunhua Shen, and Anton van den Hengel. Deep anomaly detection with deviation networks. In *KDD*, pp. 353–362, 2019d.

- Guansong Pang, Choubo Ding, Chunhua Shen, and Anton van den Hengel. Explainable deep fewshot anomaly detection with deviation networks. *arXiv preprint arXiv:2108.00462*, 2021.
  - Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 488–489, 2017. doi: 10.1109/CVPRW.2017.70.
  - Lorenzo Perini and Jesse Davis. Unsupervised anomaly detection with rejection, 2023. URL https://arxiv.org/abs/2305.13189.
  - Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017. URL https://arxiv.org/abs/1609.04747.
  - Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-Robert Müller, and Marius Kloft. Deep semi-supervised anomaly detection. In *ICLR*. OpenReview.net, 2020.
  - Abhijeet Sahu, Truc Nguyen, Kejun Chen, Xiangyu Zhang, and Malik Hassanaly. Detection of false data injection attacks (fdia) on power dynamical systems with a state prediction method. *arXiv* preprint arXiv:2409.04609, 2024.
  - Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training GANs. In *Advances in neural information processing systems*, pp. 2234–2242, 2016.
  - Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, 2017. URL https://arxiv.org/abs/1703.05921.
  - Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised outlier detection. *arXiv preprint arXiv:2103.12051*, 2021.
  - Noam Shazeer, \*Azalia Mirhoseini, \*Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In *International Conference on Learning Representations*, 2017. URL https://openreview.net/forum?id=BlckMDqlg.
  - Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierarchical one-class network. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 13016–13026. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper\_files/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf.
  - Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson. The curse of recursion: Training on generated data makes models forget, 2024. URL https://arxiv.org/abs/2305.17493.
  - Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper\_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.
  - Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/vandermaaten08a.html.
  - Shashanka Venkataramanan, Kuan-Chuan Peng, Rajat Vikram Singh, and Abhijit Mahalanobis. Attention guided anomaly localization in images. In *Computer Vision ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII*, pp. 485–503, Berlin, Heidelberg, 2020. Springer-Verlag. ISBN 978-3-030-58519-8. doi: 10.1007/978-3-030-58520-4\_29. URL https://doi.org/10.1007/978-3-030-58520-4\_29.

- Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series anomaly detection with association discrepancy, 2022. URL https://arxiv.org/abs/2110.02642.
  - Zhaozhao Xu, Derong Shen, Tiezheng Nie, Yue Kou, Nan Yin, and Xi Han. A cluster-based oversampling algorithm combining smote and k-means for imbalanced medical data. *Information Sciences*, 572:574–589, 2021. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins. 2021.02.056. URL https://www.sciencedirect.com/science/article/pii/S0020025521001985.
  - Weiren Yu, Jianxin Li, Md Zakirul Alam Bhuiyan, Richong Zhang, and Jinpeng Huai. Ring: Real-time emerging anomaly monitoring system over text streams. *IEEE Transactions on Big Data*, 5 (4):506–519, 2017.
  - Chunhui Yuan and Haitao Yang. Research on k-value selection method of k-means clustering algorithm. *J*, 2(2):226–235, 2019.
  - M. Zaheer, Jin ha Lee, M. Astrid, and Seung-Ik Lee. Old is gold: Redefining the adversarially learned one-class classifier training paradigm. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14171-14181, 2020. URL https://api.semanticscholar.org/CorpusID:215786155.
  - Jianpeng Zhang, Yutong Xie, Guansong Pang, Zhibin Liao, Johan Verjans, Wenxing Li, Zongji Sun, Jian He, Yi Li, Chunhua Shen, and Yong Xia. Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection. *IEEE Transactions on Medical Imaging*, PP:1–1, 11 2020. doi: 10.1109/TMI.2020.3040950.
  - Ying Zhang, Jianhui Wang, and Bo Chen. Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach. *IEEE Transactions on Smart Grid*, 12(1):623–634, 2021a. doi: 10.1109/TSG.2020.3010510.
  - Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu, Hengbo Liu, Qingsong Wen, Liang Sun, Junwei Jiang, Lunting Fan, and Min Ke. Cloudrca: A root cause analysis framework for cloud computing platforms. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, pp. 4373–4382, 2021b.
  - Kang Zhou, Yuting Xiao, Jianlong Yang, Jun Cheng, Wen Liu, Weixin Luo, Zaiwang Gu, Jiang Liu, and Shenghua Gao. *Encoding Structure-Texture Relation with P-Net for Anomaly Detection in Retinal Images*, pp. 360–377. 11 2020. ISBN 978-3-030-58564-8. doi: 10.1007/978-3-030-58565-5\_22.
  - Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jiming Chen. AnomalyCLIP: Object-agnostic prompt learning for zero-shot anomaly detection. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=buC4E91xZE.
  - Yingjie Zhou, Xucheng Song, Yanru Zhang, Fanxing Liu, Ce Zhu, and Lingqiao Liu. Feature encoding with autoencoders for weakly supervised anomaly detection. *TNNLS*, 2021.
  - Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In *ICLR*, 2018.

# DETAILS OF SWIFT HYDRA

810

811 812

813 814

856

858

859

861

862

863

#### A.1 Self-Reinforcing Generative Module

```
Algorithm 1: Self-Reinforcing Generative Module
```

```
815
           Input: E, T as number of episodes, number of steps per episode respectively
816
           evolving datasets \mathcal{D}_e^{train}, \mathcal{D}_e^{balance}, \mathcal{D}_{e,anomalous}^{train} for each episode e \in [1, E]
817
           C-VAE-based Generator \mathcal{F}_{\theta} = \mathcal{G}_{\psi} \circ \mathcal{M}_{\phi}
818
           Mamba detector \mathcal{W}_{\kappa}
819
           Output: Trained models \mathcal{F}_{\theta}, \mathcal{W}_{\kappa}, policy \pi_{\omega}, and datasets \mathcal{D}_{e}^{train}, \mathcal{D}_{e}^{balance}
820
           // Initialize models and policy
821
         1 Initialize Policy \pi_{\omega}, Generator \mathcal{F}_{\theta}, and Detector \mathcal{W}_{\kappa}
822
        {f 2} for e=1 to E do
823
                // Train VAE model on current training set
824
                TrainVAE(\mathcal{D}_{e}^{train}, \mathcal{F}_{\theta})
        3
825
                // Train detector model on balance training data
                TrainDetector(\mathcal{D}_{e}^{balance}, \mathcal{W}_{\kappa})
827
                Initialize trajectory \mathfrak{B} = \emptyset
828
                // Generate new samples to expand training dataset
829
                for t = 0 to T do
                     z = \mathcal{F}_{\theta}(x) \text{ for } x \in \mathcal{D}_{e,anomalous}^{train}
830
831
                     Sample action a = (\mu, \sigma) using policy \pi_{\omega} based on state s = (z, \mathcal{D}_{e}^{train})
832
                     \delta = \sigma \cdot \epsilon + \mu where \epsilon \sim \mathcal{N}(0, I)
833
                     Form new latent vector z' = z + \delta
        10
                     if z' within supported range then
834
        11
                      x' = \mathcal{M}_{\phi}(z', y = 1)
835
836
                     else
        13
837
                          // Adjust action if out of feasible range
838
                          z' = \text{OneStepToFeasibleAction}(z, \mathcal{D}_{c}^{train})
        14
                          x' = \mathcal{M}_{\phi}(z', y = 1)
839
        15
                          // Calculate feasible action
840
                          a = (\hat{\delta} = z' - z, \sigma)
841
842
                     Calculate reward \mathcal{R}(s, a, e)
        17
843
                     \mathfrak{B} = \mathfrak{B} \cup \{s, a, \mathcal{R}(s, a, e)\}
        18
844
                     \hat{\mathcal{X}} = \hat{\mathcal{X}} \cup \{(x', y = 1)\}
        19
845
                // Update policy using any Gradient Descent (i.e PPO) or
846
                      Behavior Cloner
847
                TrainPolicy(\pi_{\omega}, \mathfrak{B})
       20
848
                // Add l samples having highest reward to current training
849
850
                \mathcal{D}_{e}^{train} = \mathcal{D}_{e}^{train} \cup \hat{\mathcal{X}}^{< l}
       21
851
                // randomly trims elements from classes with more data points
852
                      to equalize the class sizes based on the smallest class
853
                \mathcal{D}_{*}^{balance} \leftarrow \text{Trim}(\mathcal{D}_{*}^{train})
854
       23 return \mathcal{F}_{\theta}, \mathcal{W}_{\kappa}, \pi_{\omega}, \mathcal{D}_{e}^{train}, \mathcal{D}_{e}^{balance}
855
```

The algorithm A.1 describes a self-reinforcing generative module for training a Conditional VAE (C-VAE) based generator, a Mamba detector, and a policy network within a reinforcement learning framework. The input includes the number of episodes E and steps per episode T, evolving datasets  $\mathcal{D}_e^{train}, \mathcal{D}_e^{balance}$ , and  $\mathcal{D}_{e, \mathrm{anomalous}}^{train}$  for each episode e, the generator  $\mathcal{F}_{\theta} = \mathcal{G}_{\psi} \circ \mathcal{M}_{\phi}$ , and the Mamba detector  $W_{\kappa}$ . The process begins by initializing the policy  $\pi_{\omega}$ , the generator  $\mathcal{F}_{\theta}$ , and the detector  $\mathcal{W}_{\kappa}$ . For each episode e, the generator is first trained on the current training dataset  $\mathcal{D}_{e}^{train}$ , and the detector is trained using the balanced dataset  $\mathcal{D}_e^{balance}$ . A trajectory buffer  $\mathfrak B$  is initialized to store states, actions, and rewards. During each step t in the episode, the generator produces a latent

865

866

867

868

870

871 872

873

874

875

876 877

878

879

880

882

883

884

885 886

887 888

909

910

911

912

913

914

915

916

917

vector z for an anomalous data point, and the policy network samples an action  $a = (\mu, \sigma)$  based on the state  $s=(z,\mathcal{D}_e^{train})$ . A perturbation  $\delta=\sigma\cdot\epsilon+\mu$  is applied to obtain a new latent vector z'. If z' is within the supported range, a new sample  $x' = \mathcal{M}_{\phi}(z', y = 1)$  is generated; otherwise, the One-Step to Feasible Action algorithm 2 is used to adjust the action, correcting z' and updating the action. The reward  $\mathcal{R}(s, a, e)$  is calculated and stored in  $\mathfrak{B}$  along with the state and action, and the generated sample x' is added to a temporary set  $\hat{\mathcal{X}}$ . After completing all steps, the policy  $\pi_{\omega}$  is updated using reinforcement learning techniques, such as Proximal Policy Optimization (PPO) or behavior cloning, based on the collected trajectory  $\mathfrak{B}$ . The top l samples with the highest rewards from  $\hat{\mathcal{X}}$  are then added to the training set  $\mathcal{D}_e^{train}$ . Subsequently,  $\mathcal{D}_e^{balance}$  will be refined from  $\mathcal{D}_e^{train}$  using the helper function Trim(.), ensuring an equal number of elements in both classes. The algorithm repeats this process for each episode and finally returns the trained generator  $\mathcal{F}_{\theta}$ , detector  $W_{\kappa}$ , policy  $\pi_{\omega}$ , and the updated datasets  $\mathcal{D}_{e}^{train}$  and  $\mathcal{D}_{e}^{balance}$ . This flow ensures that new samples are generated and integrated into the training set through a reinforcement learning process.

Note that if the total number of generated anomalous data combined with the training anomalous data exceeds the total number of normal data in the training set, the Trim(.) function could trim out the generated data. However, across our experiments on all 57 datasets, we observed that Swift Hydra consistently converges before the anomalous data surpasses the normal data in quantity. Note that in most cases, the number of available anomalies in the training data only accounts for 1%-15% of the entire dataset (Appendix C.6), representing the primary challenge in anomaly detection (i.e., limited availability of anomalous data for training models). However, if the total anomalous data were to exceed the normal data, one approach would be to start generating (or collecting) more synthetic (or real, respectively) normal data.

#### A.2 ONE-STEP TO FEASIBLE ACTIONS

#### **Algorithm 2:** One-Step To Feasible Action

```
889
890
          Input: Latent variable z, Current evolving dataset \mathcal{D}_e^{train}
891
          Output: New Optimized Latent Variable z'
892
        1 Initialize gradient step size \eta
893
        2 Initialize regularization parameter \gamma \in [0, 1]
        3 Initialize number of datapoints for KDE sampling \varsigma
894
        4 for i = 0 to \eta do
895
               // Construct Kernel Density Estimation on \mathcal{D}_e^{train}
896
               KDE \leftarrow KernelDensityEstimation(\mathcal{D}_{e}^{train})
897
               // Sampling \varsigma datapoints from KDE
               sampled_z \leftarrow KDE.sample(\varsigma)
899
               // Calculate Entropy \mathcal{H}(z) based on \varsigma datapoints and KDE
900
                    Probability function
901
               \mathcal{H}(z) \leftarrow \text{Entropy}(\text{sampled}_z, \text{KDE})
902
               // Compute prediction loss with entropy regularization
903
               \mathcal{L}_{\text{pred}} \leftarrow \log \mathcal{W}_{\kappa} \left( \mathcal{M}_{\phi}(\boldsymbol{z}_i, y_i = 1) \right) - \gamma^e \cdot \mathcal{H}(z_i)
904
               // Update z by gradient descent
905
               z_i \leftarrow z_i - \alpha \cdot \nabla \mathcal{L}_{\text{pred}}(\mathbf{x}, z_i)
906
          z' \leftarrow z_i
907
       11 return z'
908
```

The algorithm implements a one-step optimization process to adjust a latent variable z, aiming to increase the diversity in the evolving dataset  $\mathcal{D}_e^{train}$  using Kernel Density Estimation (KDE) and entropy maximization. The process begins with initializing key parameters: the gradient step size  $\eta$ , which controls the size of updates to z; the regularization parameter  $\gamma$ , which determines the importance of diversity in the optimization; and the number of sampled datapoints  $\varsigma$ , used to estimate the dataset's distribution.

In each iteration, a KDE model (detailed in Appendix A.3) is constructed using the dataset  $\mathcal{D}_e^{train}$ to capture its distribution. This model helps estimate the density of the data points within the current dataset. After building the KDE, we sample  $\varsigma$  data points from it to approximate the dataset's overall

 distribution. These sampled points are then used to calculate the entropy  $\mathcal{H}(z)$  (explained further in Appendix A.3), which quantifies the diversity or uncertainty present in the dataset.

Following this, the algorithm calculates the loss  $\mathcal{L}_{pred}$  based on a reward function (as defined in Equation 3). With the loss computed, the latent variable z is updated through gradient descent. This adjustment directs z towards minimizing the prediction loss, making it more representative of diverse data that can potentially deceive the detector  $\mathcal{W}_{\kappa}$ . Once the optimization is completed, the refined latent variable z' is returned, concluding the One-Step to Feasible Action algorithm.

#### A.3 ENTROPY ESTIMATION IN DYNAMIC TRAINING DATASETS

To effectively evaluate the diversity of our current evolving dataset  $\mathcal{D}_{e, \text{anomalous}}^{train}$ , we measure its entropy using Kernel Density Estimation (KDE) followed by sampling-based entropy estimation. KDE helps us estimate the probability density function p(x) from the empirical data  $\mathcal{D}_{e, \text{anomalous}}^{train}$ . The formula for KDE is:

$$\hat{p}(x) = \frac{1}{nh} \sum_{i=1}^{n} \mathcal{K}\left(\frac{x - x_i}{h}\right)$$

Here,  $\hat{p}(x)$  is the estimated probability density at point x, n is the total number of points in  $\mathcal{D}_{e,\text{anomalous}}^{train}$ , h is the bandwidth, and  $\mathcal{K}$  is the kernel function. This function, a probability density itself, weights the data points around x. For our analysis, we use the Gaussian kernel due to its smooth properties and infinite support:

$$\mathcal{K}(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}$$

The choice of bandwidth h significantly affects the estimator's bias and variance. A smaller h leads to a detailed but potentially noisy estimator (risk of overfitting), whereas a larger h may overly smooth the data (risk of underfitting). We can adopt Silverman's rule of thumb for selecting bandwidth with Gaussian kernels:

$$h = 1.06\sigma n^{-1/5}$$

where  $\sigma$  is the standard deviation of the dataset.

After estimating  $\hat{p}(x)$  with KDE, calculating the entropy directly from  $\mathcal{D}_{e,\text{anomalous}}^{train}$  would be cumbersome and computationally intensive:

$$\mathcal{H}(\mathcal{D}_{e, \text{anomalous}}^{train}) = -\int \hat{p}(x) \log \hat{p}(x) \, dx$$

Instead, we employ Monte Carlo Sampling to select  $\varsigma$  data points  $x_j$  from this estimated distribution and approximate the entropy using these samples:

$$\mathcal{H}(\mathcal{D}_{e, \text{anomalous}}^{train}) \approx -\frac{1}{\varsigma} \sum_{j=1}^{\varsigma} \log \hat{p}(x_j)$$

Here,  $x_j$  are the samples drawn from  $\hat{p}(x)$ , and  $\log \hat{p}(x_j)$  is the natural logarithm of the estimated density at each sampled point. We calculate the average of these logarithms across all  $\varsigma$  sampled points to approximate the entropy. This method provides a practical and computationally efficient approach to estimate the entropy, reflecting the diversity and uncertainty of the dataset  $\mathcal{D}_{e.anomalous}^{train}$ .

# B THEOREMS AND PROOFS

#### **B.1** REWARD ESTIMATION CONSISTENCY

**Theorem 1** If the reward function  $\mathcal{R}$  is differentiable,  $\mathcal{F}_{\theta}$  is well-converged, and  $\hat{z}_i := z_i - \epsilon \cdot \nabla_{z_i}(-\mathcal{R}(\mathcal{M}_{\phi}(\boldsymbol{z}_i, y_i = 1), e))$  for some small  $\epsilon$ , then  $\mathcal{R}(\hat{x}_i, e) > \mathcal{R}(x_i, e)$ , where  $\hat{x}_i = \mathcal{M}_{\phi}(\hat{z}_i, y_i = 1)$ .

**Proof.** To prove this theorem, we first prove that for a well-converged  $\mathcal{F}_{\theta}$ ,  $\mathcal{M}_{\phi}$  is Lipschitz-continuous.

Consider the decoder  $\mathcal{M}_{\phi}: \mathbb{R}^d \to \mathbb{R}^P$  composed of N layers. For j=1 to N-1, each layer computes:

$$h_i = q_i(h_{i-1}) = \text{ReLU}(W_i h_{i-1} + b_i),$$

where  $h_0 = z_i \in \mathbb{R}^d$ ,  $W_j \in \mathbb{R}^{d_j \times d_{j-1}}$ , and  $b_j \in \mathbb{R}^{d_j}$ . The output layer computes:

$$x_i = \mathcal{M}_{\phi}(z_i) = q_N(h_{N-1}) = W_N h_{N-1} + b_N,$$

with  $W_N \in \mathbb{R}^{P \times d_{N-1}}$  and  $b_N \in \mathbb{R}^P$ .

To prove that  $\mathcal{M}_{\phi}$  is Lipschitz continuous, consider two inputs  $z_i, \hat{z}_i \in \mathbb{R}^d$ . We aim to show:

$$\|\mathcal{M}_{\phi}(z_i) - \mathcal{M}_{\phi}(\hat{z}_i)\| \le K\|z_i - \hat{z}_i\|,$$

where K is a finite constant.

Starting from the output layer:

$$\begin{aligned} \|\mathcal{M}_{\phi}(z_{i}) - \mathcal{M}_{\phi}(\hat{z}_{i})\| &= \|q_{N}(h_{N-1}^{(z_{i})}) - q_{N}(h_{N-1}^{(\hat{z}_{i})})\| \\ &= \|W_{N}h_{N-1}^{(z_{i})} + b_{N} - W_{N}h_{N-1}^{(\hat{z}_{i})} - b_{N}\| \\ &= \|W_{N}(h_{N-1}^{(z_{i})} - h_{N-1}^{(\hat{z}_{i})})\| \\ &\leq \|W_{N}\|_{2} \|h_{N-1}^{(z_{i})} - h_{N-1}^{(\hat{z}_{i})}\|, \end{aligned}$$

where  $||W_N||_2$  denotes the spectral norm of  $W_N$ .

For each hidden layer j = N - 1 down to 1:

$$\begin{split} \|h_j^{(z_i)} - h_j^{(\hat{z}_i)}\| &= \|q_j(h_{j-1}^{(z_i)}) - q_j(h_{j-1}^{(\hat{z}_i)})\| \\ &= \|\text{ReLU}(W_j h_{j-1}^{(z_i)} + b_j) - \text{ReLU}(W_j h_{j-1}^{(\hat{z}_i)} + b_j)\| \\ &\leq \|W_j h_{j-1}^{(z_i)} - W_j h_{j-1}^{(\hat{z}_i)}\| \quad \text{(since ReLU is 1-Lipschitz)} \\ &\leq \|W_j\|_2 \|h_{j-1}^{(z_i)} - h_{j-1}^{(\hat{z}_i)}\|. \end{split}$$

By recursively applying these inequalities, we obtain:

$$||h_j^{(z_i)} - h_j^{(\hat{z}_i)}|| \le \left(\prod_{k=1}^j ||W_{N-k+1}||_2\right) ||h_0^{(z_i)} - h_0^{(\hat{z}_i)}|| = \left(\prod_{k=1}^j ||W_{N-k+1}||_2\right) ||z_i - \hat{z}_i||.$$

At the output layer:

$$\|\mathcal{M}_{\phi}(z_i) - \mathcal{M}_{\phi}(\hat{z}_i)\| \le \|W_N\|_2 \|h_N^{(z_i)} - h_N^{(\hat{z}_i)}\|.$$

Substituting the recursive bound:

$$\|\mathcal{M}_{\phi}(z_i) - \mathcal{M}_{\phi}(\hat{z}_i)\| \le \left(\prod_{j=1}^N \|W_j\|_2\right) \|z_i - \hat{z}_i\|.$$

Define  $K = \prod_{j=1}^{N} ||W_j||_2$ . To ensure K is finite, we enforce bounds (Layer Normalization) on the spectral norms:  $||W_j||_2 \le s_j$ , where  $s_j$  are finite constants. Then:

$$K \le \prod_{j=1}^{N} s_j.$$

If we choose  $s_j = s \le 1$  for all j, then  $K \le s^N$ , which is finite. Therefore,  $\mathcal{M}_{\phi}$  is Lipschitz continuous with Lipschitz constant K, satisfying:

$$\|\mathcal{M}_{\phi}(z_i) - \mathcal{M}_{\phi}(\hat{z}_i)\| \le K\|z_i - \hat{z}_i\|.$$

Thus, we finished proving that  $\mathcal{M}_{\phi}$  is Lipschitz-continuous. Given  $\mathcal{F}_{\theta}$  is well converged, With  $\mathcal{M}_{\phi}$  being Lipschitz continuous and differentiable, a small learning rate  $\epsilon$  induces a small change in latent vector  $z_i$  which results in a small change in the data point  $x_i$  reconstructed by C-VAE. We can use a first-order Taylor expansion for small  $\Delta z_i = \hat{z}_i - z_i$ :

$$\hat{x}_i = \mathcal{M}_{\phi}(\hat{z}_i) \approx \mathcal{M}_{\phi}(z_i) + J_{\mathcal{M}_{\phi}}(z_i) \cdot \Delta z_i$$

where  $J_{\mathcal{M}_{\phi}}(z_i)$  is the Jacobian matrix of  $\mathcal{M}_{\phi}$  at  $z_i$ .

From the update rule:

$$\Delta z_i = \hat{z}_i - z_i = \epsilon \cdot \nabla_{z_i} \mathcal{R} (x_i, e)$$

Thus, the change in  $x_i$  is:

$$\hat{x}_{i} - x_{i} \approx J_{\mathcal{M}_{\phi}}(z_{i}) \cdot \Delta z_{i} = \epsilon \cdot J_{\mathcal{M}_{\phi}}(z_{i}) \cdot \nabla_{z_{i}} \mathcal{R}(x_{i}, e)$$

Since  $x_i = \mathcal{M}_{\phi}(z_i)$ , by the chain rule, we have:

$$\nabla_{z_{i}} \mathcal{R}\left(x_{i}, e\right) = J_{\mathcal{M}_{\phi}}^{\top}\left(z_{i}\right) \cdot \nabla_{x_{i}} \mathcal{R}\left(x_{i}, e\right)$$

Therefore:

$$\hat{x}_{i} - x_{i} \approx \epsilon \cdot J_{\mathcal{M}_{\phi}}\left(z_{i}\right) \cdot J_{\mathcal{M}_{\phi}}^{\top}\left(z_{i}\right) \cdot \nabla_{x_{i}} \mathcal{R}\left(x_{i}, e\right)$$

Let  $F = J_{\mathcal{M}_{\phi}}(z_i) \cdot J_{\mathcal{M}_{\phi}}^{\top}(z_i)$ , which is a positive semi-definite matrix. Thus:

$$\hat{x}_i - x_i \approx \epsilon \cdot F \cdot \nabla_{x_i} \mathcal{R} (x_i, e)$$

Using a first-order Taylor expansion of  $\mathcal{R}$  around  $x_i$ :

$$\Delta \mathcal{R} = \mathcal{R}(\hat{x}_i, e) - \mathcal{R}(x_i, e) \approx \nabla_{x_i} \mathcal{R}(x_i, e)^{\top} (\hat{x}_i - x_i)$$

Substituting  $\hat{x}_i - x_i$ :

$$\Delta \mathcal{R} \approx \epsilon \cdot \nabla_{x_i} \mathcal{R} (x_i, e)^{\top} F \cdot \nabla_{x_i} \mathcal{R} (x_i, e)$$

Since F is positive semi-definite and  $\epsilon > 0$ :

$$\Delta \mathcal{R} > 0$$

More specifically,  $\Delta \mathcal{R} = 0$  if and only if  $\nabla_{x_i} \mathcal{R}(x_i, e) = 0$ . Otherwise,  $\Delta \mathcal{R} > 0$ . Therefore, under the given conditions and for a sufficiently small  $\epsilon$ :

$$\mathcal{R}\left(\hat{x}_{i},e\right) > \mathcal{R}\left(x_{i},e\right)$$

This completes the proof.

#### B.2 One detector ineffectively handles evolving balance data

**Theorem 2.** Suppose a feature space  $\mathfrak{X}\subset\mathbb{R}^P$  contains  $U_n$  normal clusters and  $U_a$  anomalous clusters, where each cluster u-th  $\in [U_n+U_a]$  is modeled as a Gaussian distribution  $\mathcal{N}(\boldsymbol{\mu}_u,\sigma^2\mathbf{I}_P)$ . Let  $\mathcal{V}_{\text{cluster}}$  be the cluster's volume and  $\Lambda$  be the total overlapping volume between normal and anomalous clusters, where the number of anomalous data points is equal to the number of normal data points, the training loss  $\mathcal{L}_{\text{train}}$  ( $\mathcal{W}_{\kappa}$ ) is lower bounded by  $\frac{1}{4} \cdot \frac{\Lambda}{U_a \cdot \mathcal{V}_{\text{cluster}} - \frac{\Lambda}{2}}$  in a case of linear  $\mathcal{W}_{\kappa}$ .

**Proof.** Consider the feature space  $\mathfrak{X} \subset \mathbb{R}^P$  with  $U_n$  normal Gaussian clusters and  $U_a$  anomalous Gaussian clusters, each modeled as  $\mathcal{N}(\boldsymbol{\mu}_u, \sigma^2 \mathbf{I}_P)$ . The volume of each cluster is:

$$\mathcal{V}_{
m cluster} = rac{\pi^{P/2} (3\sigma)^P}{\Gamma\left(rac{P}{2} + 1
ight)},$$

where  $3\sigma$  represents the radius covering 99.7% of the data points in a cluster. The total volume occupied by the normal clusters is:

$$\mathcal{V}_{\text{total\_normal}} = U_n \cdot \mathcal{V}_{\text{cluster}},$$

and the total volume occupied by the anomalous clusters is:

$$\mathcal{V}_{\text{total anomalous}} = U_a \cdot \mathcal{V}_{\text{cluster}}.$$

The clusters overlap in certain regions, resulting in a total overlapping volume  $\Lambda$  between normal and anomalous clusters. Under our assumption, this overlapping region contains 50% of  $\Lambda$ , i.e.,  $\frac{\Lambda}{2}$  normal data and 50% of  $\Lambda$ , i.e.,  $\frac{\Lambda}{2}$  anomalous data.

Note that since the datapoints are in the overlapping area, we assume that the unique features are negligible while noise features from negative class are dominant. The unique volumes of the normal and anomalous clusters, excluding the overlapping regions, are:

$$\mathcal{V}_{ ext{unique\_normal}} = \mathcal{V}_{ ext{total\_normal}} - rac{\Lambda}{2}$$

$$= U_n \cdot \mathcal{V}_{ ext{cluster}} - rac{\Lambda}{2}$$

$$egin{aligned} \mathcal{V}_{ ext{unique\_anomalous}} &= \mathcal{V}_{ ext{total\_anomalous}} &- rac{\Lambda}{2} \ &= U_a \cdot \mathcal{V}_{ ext{cluster}} &- rac{\Lambda}{2} \end{aligned}$$

For simplicity, we assume that the detector  $\mathcal{W}_{\kappa}$  constructs decision boundaries around the normal clusters. Specifically, the detector aims to enclose the normal clusters within its decision regions to classify them as normal, while any data points outside these regions are considered anomalous. As indicated in the work of Chen et al. (2022), a single detector focuses on both unique features and noise features, even though unique features are negligible. This means the detector  $\mathcal{W}_{\kappa}$  seeks to minimize False Negatives by primarily capturing the normal data based on noise features, while overlooking unique features. As the model size  $\chi$  increases, the decision boundaries of the detector can more precisely conform to the normal clusters, potentially leading to overfitting of the normal data. Let  $\mathfrak{q}(\chi)$  denote the proportion of the unique normal volume that the detector's decision boundary covers:

$$V_{\text{covered\_normal}} = \mathfrak{q}(\chi) \cdot \mathcal{V}_{\text{unique\_normal}}$$

The False Negative Rate (FNR), which represents the proportion of normal data not covered by the detector, is:

$$FNR = 1 - \mathfrak{q}(\chi).$$

Because the detector's decision boundary encloses the normal clusters, it inevitably includes parts of the overlapping regions  $\Lambda$ . Therefore, the detector inadvertently covers some anomalous data within the overlapping regions, leading to False Positives. The volume of anomalous data incorrectly classified as normal (False Positives) is:

$$V_{\rm FP} = \mathbf{q}(\chi) \cdot \frac{\Lambda}{2}$$

The False Positive Rate (FPR), representing the proportion of anomalous data misclassified as normal, is:

$$ext{FPR} = rac{V_{ ext{FP}}}{\mathcal{V}_{ ext{unique\_anomalous}}} \ = rac{\mathfrak{q}(\chi) \cdot rac{\Lambda}{2}}{U_a \cdot \mathcal{V}_{ ext{cluster}} - rac{\Lambda}{2}}$$

Assuming equal prior probabilities for normal and anomalous data, the expected error  $L(W_{\kappa})$  is:

$$L\left(\mathcal{W}_{\kappa}\right) = \frac{1}{2} \cdot \text{FNR} + \frac{1}{2} \cdot \text{FPR}$$

$$= \frac{1}{2} \left( 1 - \mathfrak{q}(\chi) + \frac{\mathfrak{q}(\chi) \cdot \frac{\Lambda}{2}}{U_a \cdot \mathcal{V}_{\text{cluster}} - \frac{\Lambda}{2}} \right)$$

$$= \frac{1}{2} \left( 1 - \mathfrak{q}(\chi) + \frac{\mathfrak{q}(\chi) \cdot \Lambda}{2 \left( U_a \cdot \mathcal{V}_{\text{cluster}} - \frac{\Lambda}{2} \right)} \right)$$

Our goal is to find the minimum expected error  $\mathcal{L}_{train}(\mathcal{W}_{\kappa})$ . To achieve this, we consider how  $L(\mathcal{W}_{\kappa})$  varies with  $\mathfrak{q}(\chi)$ . Since the detector aims to maximize coverage of the normal clusters (i.e., maximize  $\mathfrak{q}(\chi)$ ) to minimize False Negatives, we consider the case where  $\mathfrak{q}(\chi)=1$ , corresponding to the detector fully covering the unique normal volume.

Substituting  $q(\chi) = 1$  into  $L(W_{\kappa})$ , we get:

$$\mathcal{L}_{\text{train}} (\mathcal{W}_{\kappa}) \geq \frac{1}{2} \left( 1 - 1 + \frac{1 \cdot \frac{\Lambda}{2}}{U_{a} \cdot \mathcal{V}_{\text{cluster}} - \frac{\Lambda}{2}} \right)$$

$$= \frac{1}{2} \cdot \frac{\Lambda}{2 \left( U_{a} \cdot \mathcal{V}_{\text{cluster}} - \frac{\Lambda}{2} \right)}$$

$$= \frac{1}{2} \cdot \frac{\Lambda}{2U_{a} \cdot \mathcal{V}_{\text{cluster}} - \Lambda}$$

$$= \frac{1}{4} \cdot \frac{\Lambda}{U_{a} \cdot \mathcal{V}_{\text{cluster}} - \frac{\Lambda}{2}}$$

This expression represents the minimum expected error achievable by any detector that constructs decision boundaries around the normal clusters. Due to the overlapping volume  $\Lambda$  between the normal and anomalous clusters, there is an inherent lower bound on the expected error  $\mathcal{L}_{train}(\mathcal{W}_{\kappa})$  that any detector of this type can achieve. The detector cannot reduce the error below this bound because, in maximizing coverage of the normal data to minimize False Negatives, it inevitably includes portions of the overlapping anomalous data, resulting in unavoidable False Positives.

#### B.3 MOME EFFECTIVELY HANDLES EVOLVING BALANCE DATA

**Theorem 3.** Let  $\mathcal{L}_{test}(\mathfrak{F})$  and  $\mathcal{L}_{test}(\mathcal{W}_{\kappa})$  represent the expected error on the test set for the Mixture of Mamba Experts (MoME) model and a single detector, respectively. For any value of  $\Lambda$ , employing MoME with  $\{f_1, f_2, \ldots, f_M\}$  guarantees that the minimum expected error on the training set is  $\mathcal{L}_{train}(\mathfrak{F}) = 0$  and the expected error on the test set satisfies  $\mathcal{L}_{test}(\mathfrak{F}) \leq \mathcal{L}_{test}(\mathcal{W}_{\kappa})$ .

**Proof.** Similar to the setting in Theorem 2, we also consider the feature space  $\mathfrak{X} \subset \mathbb{R}^P$  with  $U_n$  normal clusters and  $U_a$  anomalous clusters, each modeled as Gaussian distributions  $\mathcal{N}(\boldsymbol{\mu}_u, \sigma^2 \mathbf{I}_P)$ . Each cluster occupies a volume  $\mathcal{V}_{\text{cluster}} = \frac{\pi^{P/2}(3\sigma)^P}{\Gamma(\frac{P}{2}+1)}$  and the total overlapping volume between normal and anomalous clusters is  $\Lambda$ . Again, since the data points are in the overlapping area, we assume that unique features are negligible while noise features from the negative class are dominant.

Recall that, we decompose the balanced dataset into clusters  $\{\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_U\}$ , where  $U=U_n+U_a$  is determined using the elbow method. After that, we train a set of experts  $\{f_1,f_2,\ldots,f_M\}$ , each acting as an expert for specific data clusters, following the top k gated Mixture-of-Experts approach. Let  $\mathcal{D}_e^{train}$  be the training dataset. Each data point  $x\in\mathcal{D}_e^{train}$  belongs to a cluster  $\mathcal{C}_u$  and has a true label y(x):

$$y(x) = \begin{cases} -1, & \text{if } x \in \text{a normal cluster,} \\ +1, & \text{if } x \in \text{an anomalous cluster.} \end{cases}$$

In the overlapping regions  $\Lambda$ , due to probabilistic assignment and expert overspecification, we assume each cluster  $\mathcal{C}_u$  has at least one specialized expert  $f_m$  predicting y(x) using both unique and noise features, similar to  $\mathcal{W}_k$ . The gating network  $\lambda(x,\aleph_g,\aleph_{\mathrm{noise}})$  minimizes classification loss but primarily focuses on unique features, assigning higher weights to the appropriate experts. These properties of feature capturing have been highlighted by Chen et al. (2022). For each  $x\in\mathcal{D}_e^{train}$ , the MoE  $\mathfrak{F}$ 's output is given by:

$$\mathfrak{F}(x,\aleph_g,\aleph_{\mathrm{noise}},\mathbf{W}) = \sum_{m\in\mathfrak{T}_x} \lambda_m(x,\aleph_g,\aleph_{\mathrm{noise}}) f_m(x;\mathbf{W}).$$

Primarily based on unique features, the gating network learns to assign significant weights to the expert(s) that correctly classify x, ensuring that the model output  $\mathfrak{F}(x)$  matches the true label y(x). Thus, the expected error on the training set is:

$$\mathcal{L}_{\text{train}}(\mathfrak{F}) = \frac{1}{|\mathcal{D}_e^{train}|} \sum_{x \in \mathcal{D}_e^{train}} \mathbf{1}_{\mathfrak{F}(x) \neq y(x)} = 0,$$

where  $\mathbf{1}_{\mathfrak{F}(x)\neq y(x)}$  is an indicator function that equals 1 if  $\mathfrak{F}(x)\neq y(x)$  and 0 otherwise. This completes the proof of the expected error of  $\mathfrak{F}$  on the training set.

For the test set, we aim to show that:  $\mathcal{L}_{test}(\mathfrak{F}) \leq \mathcal{L}_{test}(\mathcal{W}_{\kappa})$ 

Let's consider the test dataset  $\mathcal{D}^{\text{test}}$ , drawn from the same distribution as the training dataset  $\mathcal{D}_e^{\text{train}}$ . If the data points in the test set lie completely outside U clusters from the training set, both  $\mathfrak{F}$  and  $\mathcal{W}$  will fail to make correct predictions. This is because we are assuming that each classifier forms a decision boundary that tightly fits the cluster it captures. Any data point lying outside these decision boundaries is considered negative for the class corresponding to that cluster. Therefore, without loss of generality, we only need to compare the errors of the two models within the region of the U clusters

Each data point  $x \in \mathcal{D}^{\text{test}}$  belongs to one of the clusters  $\mathcal{C}_u$  and has a true label y(x) as defined earlier. Suppose input x lying in a non-overlapping region  $\mathcal{D}_{\tilde{\Lambda}}$ , the expert  $f_m$  specialized in cluster  $\mathcal{C}_u$  has learned to classify data points from  $\mathcal{C}_u$  correctly. The gating network  $\lambda\left(x,\aleph_g,\aleph_{\text{noise}}\right)$  effectively routes x to the correct expert  $f_m$ , resulting in the MoE model predicting y(x) accurately. Therefore, for these non-overlapping regions, the MoE output is:

$$\mathfrak{F}(x,\aleph_g,\aleph_{\mathrm{noise}},\mathbf{W}) = y(x), \quad \forall x \in \mathcal{C}_u \text{ and } x \in \mathcal{D}_{\tilde{\Lambda}}$$
  
 $\Longrightarrow \mathcal{L}_{\tilde{\lambda}}(\mathfrak{F}) = 0$ 

Similarly, the single detector  $W_{\kappa}$ , having been trained on the entire dataset, can also correctly predict y(x) in these non-overlapping regions since the classes are well-separated. Thus, the expected error in this region is negligible:

$$\mathcal{L}_{\tilde{\Lambda}}(\mathcal{W}_{\kappa}) = \frac{1}{|\mathcal{D}_{\tilde{\Lambda}}|} \sum_{x \in \mathcal{D}_{\tilde{\Lambda}}} \mathbf{1}_{\mathcal{W}_{\kappa}(x) \neq y(x)}$$
$$= \mathcal{L}_{\tilde{\Lambda}}(\mathfrak{F})$$
$$= 0$$

where  $\mathbf{1}_{\mathcal{W}_{\kappa}(x)\neq y(x)}$  is an indicator function that equals 1 if  $\mathcal{W}_{\kappa}(x)\neq y(x)$  and 0 otherwise.

Now, consider the overlapping region  $\Lambda$ . Assume an equal number of anomalous and normal data points within  $\Lambda$ , with their features being significantly similar. The experts, specialized in their respective clusters, capture cluster-specific patterns even in these overlapping areas. The gating network  $\lambda(x,\aleph_g,\aleph_{\text{noise}})$ , trained to minimize overall classification loss based mainly on unique features, assigns higher weights to the correct experts that are more likely to predict the true label y(x). Consequently,  $\mathfrak{F}$  correctly classifies x in  $\Lambda$  with high probability, quantified as  $1 - \varepsilon_{\Lambda}$ , where  $\varepsilon_{\Lambda}$  is the MoE's error rate in the overlapping region.

In contrast, the single detector  $W_{\kappa}$  encounters inherent ambiguity in  $\Lambda$  due to the negligible presence of unique features and the dominance of noise features from the negative class within the cluster it aims to capture. Furthermore, with an equal number of normal and anomalous data points assumed in this region, the misclassification probability becomes:

$$\mathcal{L}_{\text{overlap}}$$
  $(\mathcal{W}_{\kappa}) = \frac{1}{2}$ 

Let  $p_{\tilde{\Lambda}}$  be the probability that a test point lies in a non-overlapping region  $\tilde{\Lambda}$ , and  $p_{\Lambda}$  be the probability that it lies in overlapping region  $\Lambda$ . The expected error of the single detector on the test set is:

$$\mathcal{L}_{\mathrm{test}} \left( \mathcal{W}_{\kappa} \right) = p_{\tilde{\Lambda}} \times 0 + p_{\Lambda} \times \frac{1}{2} = \frac{p_{\Lambda}}{2}$$

For the MoE model, the expected error on the test set is:

$$\mathcal{L}_{\text{test}}\left(\mathfrak{F}\right) = p_{\tilde{\Lambda}} \times 0 + p_{\Lambda} \times \varepsilon_{\Lambda} = p_{\Lambda} \varepsilon_{\Lambda}$$

In the overlapping region  $\Lambda$ , the worst-case scenario for  $\mathfrak F$  occurs when it fails to route the input to the correct expert, resulting in a maximum error of  $\frac{1}{2}$ . However, if some test points are identical or very similar to the training points, the routing network is more likely to direct these inputs to the correct expert, as it primarily focuses on unique features. On the other hand, the single detector  $\mathcal W_\kappa$  considers both unique and noise features, with noise features dominating. Therefore, we have  $\varepsilon_\Lambda \leq \frac{1}{2}$ , leading to the conclusion:

$$\mathcal{L}_{\text{test}} \left( \mathfrak{F} \right) = p_{\Lambda} \varepsilon_{\Lambda}$$

$$\leq \frac{p_{\Lambda}}{2}$$

$$\leq \mathcal{L}_{\text{test}} \left( \mathcal{W}_{\kappa} \right).$$

This completes the proof.

# C MORE EXPERIMENTS

#### C.1 SWIFT HYDRA SETTINGS

#### C.1.1 HYPERPARAMETERS

| Hyperparameter                      | Value                        |
|-------------------------------------|------------------------------|
| Learning rate for C-VAE Model       | 0.003                        |
| Learning rate for Mamba Model       | 0.001                        |
| Learning rate for Generator         | 0.0001                       |
| Total epoch for Detector Model      | 600                          |
| Total epoch for Generator Model     | 500                          |
| Optimizer                           | Adam (Kingma & Ba, 2015)     |
| Number of steps per episode         | 500                          |
| Number of episodes                  | 200                          |
| Minibatch size                      | 256                          |
| Discount factor $\gamma$            | 0.95                         |
| Activation function for Mamba Model | LeakyReLU                    |
| Layer Depth for Mamba Model         | $\overline{2}$               |
| Activation function for C-VAE Model | ReLU                         |
| Bandwidth                           | 0.5                          |
| Weight KL                           | 0.55                         |
| Number of experts                   | 20                           |
| Top $k$ experts                     | 2                            |
| Detection threshold                 | 0.2                          |
| Sampling from a KDE                 | 300                          |
| Policy Training                     | Proximal Policy Optimization |

Table 2: Hyperparameters for Swift Hydra

In this section, we present the hyperparameters selected for Swift Hydra, as shown in Table 2, and explain the rationale behind each choice. These hyperparameters are carefully designed to balance model performance, training stability, and computational efficiency.

The learning rates for different models are chosen based on their complexity and training dynamics. The C-VAE model uses a relatively high learning rate of 0.003 to promote faster convergence during training. In contrast, the single Mamba-based detector is over-specified in terms of the number of parameters to effectively capture the data generated by the C-VAE, stored in  $\mathcal{D}_e^{balance}$ . To ensure stability during its optimization, a lower learning rate of 0.001 is set, considering its sensitivity to parameter updates. The Generator model, which is part of a more delicate generative process, has an even smaller learning rate of 0.0001 to prevent large updates that could destabilize training.

The number of steps per episode (500) and the total number of episodes (200) are chosen to allow the model to generate a total of 100,000 datapoints (200 \* 500) across all episodes. This quantity is sufficient to augment any imbalanced dataset within ADBench. The minibatch size of 256 is selected to strike a balance between training stability and computational efficiency, ensuring enough data is processed per update without causing excessive memory usage.

The discount factor  $\gamma=0.95$  is set to ensure that, in the initial phase, the RL agent not only focuses on generating datapoints to deceive  $\mathcal{W}_\kappa$  but also actively explores its surrounding environment. As training progresses, the entropy term in the reward function gradually diminishes due to  $\gamma$ , the model increasingly concentrates on generating points specifically aimed at deceiving the detector  $\mathcal{W}_\kappa$ .

For activation functions, LeakyReLU is used in the Mamba Model to address the "dying ReLU" problem, allowing the model to handle negative inputs more effectively, while ReLU is used in the VAE model to facilitate faster training.

Recall the fact that, we use Kernel Density Estimation (KDE) to learn the feature distribution of the dataset  $\mathcal{D}_e^{train}$  in our framework. An important hyperparameter in this process is the bandwidth h, which controls the smoothness of the probability density function, thereby balancing bias and variance. While h can be determined using Silverman's rule of thumb, as described in Appendix

**A.3**, for our experiments, we opted to use the well-known bandwidth parameter of 0.5 for KDE. Despite this simple choice, we still achieved the desired results.

The weight of the KL divergence in the VAE is set to 0.55. This is carefully selected to balance reconstruction accuracy and latent space regularization, preventing overfitting while maintaining meaningful latent representations. For a more detailed explanation of how the trade-off between reconstruction loss and KL loss affects the performance of Swift Hydra, we encourage readers to refer to Appendix C.4.

To ensure that the model can capture all potential clusters generated, we overspecified the number of experts to 20. This allows the model to avoid missing any clusters. Indeed, the number of clusters found using KMeans+Elbow on datasets in ADBench is usually no more than 10. For selecting the top k in the Mixture of Experts to ensure only k experts are used during inference (thus saving inference time), we set k=2.

Our policy training algorithm is Proximal Policy Optimization (PPO). In addition, the detection threshold of 0.2 is chosen so that if the model's confidence exceeds this threshold, the predicted datapoint is considered anomalous. Finally, sampling 300 times from KDE provides enough data to accurately model the underlying distributions without incurring excessive computational costs. Overall, these hyperparameters are carefully tuned to enhance model performance, ensure training stability, and optimize computational resources.

#### C.1.2 MODEL SIZE AND TRAINING COST

| AI Module Type                           |                                               | Number of Parameters | Training time per batch | Total training time |
|------------------------------------------|-----------------------------------------------|----------------------|-------------------------|---------------------|
| C-VAE Generator                          |                                               | 458,907              | 0.0011                  | 3.265               |
| Mamba-based Detector (Single)            |                                               | 274,542              | 0.0083                  | 8.723               |
|                                          | Gating Network                                | 6,164                | 0.0001                  | 0.286               |
| Mixture of Mamba Experts Detector (MoME) | Expert Network                                | 33,021               | 0.0026                  | 1.287               |
|                                          | Mixture of Mamba Experts (20 Experts, topK=2) | 666,584              | 0.0032                  | 489.003             |

Table 3: Number of parameters for each component in Swift Hydra, training time per batch, and total training time. The total training time for the C-VAE and the Mamba-based Detector (Single) is measured per episode. For MoME, the two components, Gating Network and Expert Network, are measured over the entire training data and generated data after completing the Self-Reinforcing Module, calculated across all batches in a single epoch. Additionally, we report the total training time of the Mixture of Mamba Experts (20 Experts, topK=2) across all epochs, as shown in the table.

Table 3 presents the number of parameters for each model, including the C-VAE Generator, Mambabased Detector (Single model), and Mixture of Mamba Experts Detector (MoME). On average, a single expert in MoME has approximately 33,021 parameters. However, with 20 experts and a gating network, the total parameter count for MoME reaches 666,584. In contrast, the Single Mamba-based Detector contains around 274,542 parameters, while the C-VAE Generator comprises approximately 458,907 parameters.

In addition to reporting the training time per batch alongside the number of parameters, we have also measured the total training time for each stage of our algorithm. These times were recorded on a workstation equipped with two Nvidia RTX 4090 GPUs. Since this is a reinforcement learning framework, the number of episodes required for training heavily depends on the specific problem being addressed. Therefore, we only measure the total training time of the C-VAE Generator and Single Mamba Detector per episode. On the other hand, the total training time for the Mixture of Mamba Experts Detector is measured after completing Phase 1, using all the data generated during that phase.

Our training methodology supports two approaches depending on the hardware configuration: sequential training or parallel training of the experts. In the sequential approach, each expert is trained one at a time, selecting and training on clusters sequentially. This approach is more memory-efficient and requires less GPU VRAM. In contrast, the parallel approach involves all experts selecting their clusters simultaneously and training concurrently. While faster, this method demands significantly more GPU VRAM. The total training time for the Mixture of Mamba Experts (20 Experts, topK=2) across all epochs, as shown in the table, was measured using the parallel training method.

# C.2 SWIFT HYDRA: MORE PERFORMANCE EVALUATION

#### C.2.1 BENCHMARKING AGAINST ADDITIONAL DETECTION METHODS ON ADBENCH

We conducted additional experiments to compare our proposed method, Swift Hydra, with several state-of-the-art tabular anomaly detection methods, including the supervised FTTransformer (Gorishniy et al., 2023), the unsupervised ECOD (Li et al., 2022), and the semi-supervised DevNet (Pang et al., 2019b), PreNet (Pang et al., 2019a), DeepSAD (Ruff et al., 2020), and FEAWAD (Zhou et al., 2021). The results is shown in Table 4.

| Method                    | ECO                                  | D     | DevN   | et    | PRe    | Net    | DeepS  | AD    | FEAW   | 'AD    | FTTransf | ormer | SwifHydra | (MoME) |
|---------------------------|--------------------------------------|-------|--------|-------|--------|--------|--------|-------|--------|--------|----------|-------|-----------|--------|
|                           | AUCROC                               | TIF   | AUCROC | TIF   | AUCROC | TIF    | AUCROC | TIF   | AUCROC | TIF    | AUCROC   | TIF   | AUCROC    | TIF    |
| Train/Test Ratio (40/60%) | 0.80                                 | 26.00 | 0.82   | 24.08 | 0.85   | 128.71 | 0.84   | 19.02 | 0.86   | 168.62 | 0.89     | 50.66 | 0.93      | 4.01   |
| Train/Test Ratio (30/70%) | 0.78                                 | 28.32 | 0.81   | 25.54 | 0.84   | 147.74 | 0.83   | 20.53 | 0.82   | 215.26 | 0.84     | 56.23 | 0.91      | 4.79   |
| Train/Test Ratio (20/80%) | 0.77                                 | 30.04 | 0.80   | 26.00 | 0.83   | 184.29 | 0.82   | 22.75 | 0.80   | 225.00 | 0.80     | 60.98 | 0.90      | 5.22   |
| Train/Test Ratio (10/90%) | 0.75                                 | 33.36 | 0.79   | 27.90 | 0.82   | 190.39 | 0.81   | 27.58 | 0.79   | 233.13 | 0.77     | 66.23 | 0.87      | 5.84   |
|                           | TIF = Total Inference Time (Seconds) |       |        |       |        |        |        |       |        |        |          |       |           |        |

Table 4: The performance of Swift Hydra and other baseline models, including ECOD, DevNet, PReNet, DeepSAD, FEAWAD, and FTTransformer, is evaluated on ADBench using two key criteria: AUC-ROC and Total Inference Time (TIF). The AUC-ROC is computed as the average across all 57 datasets, while the TIF measures the total time required by each model to predict all data points across these datasets. To analyze the impact of training data size on performance, we vary the train/test ratios. The highest AUC-ROC values are highlighted for clarity.

Semi-supervised methods typically require only a small amount of labeled data to achieve AUC-ROC scores comparable to modern unsupervised methods such as DTE, Rejex (as shown in Table 1), and ECOD. However, these methods often come with high computational costs, particularly when applied to large datasets. While PReNet and FEAWAD generally deliver fast prediction times, their performance can significantly slow down on certain datasets within ADBench (e.g., backdoor, celeba, census, donor, fraud), leading to higher overall inference times. This slowdown occurs because some components in these models rely on per-datapoint computations that do not support parallelization, resulting in substantial delays for datasets with a large number of records. The supervised FTTransformer, built on robust backbone architectures like ResNet and Transformer, achieves AUC-ROC scores that are among the highest across all SOTA methods in baselines, nearly matching those of Swift Hydra. However, its performance declines significantly when applied to sparse datasets.

On the other hand, Swift Hydra offers a distinct advantage by generating unseen data to enhance test set coverage. Through its integration with the Mixture of Mamba Experts (MoME), Swift Hydra consistently outperforms other methods in both AUC-ROC and inference time, establishing itself as the most effective and efficient solution for tabular anomaly detection.

#### C.2.2 BENCHMARKING AGAINST ADDITIONAL OVERSAMPLING METHODS ON ADBENCH

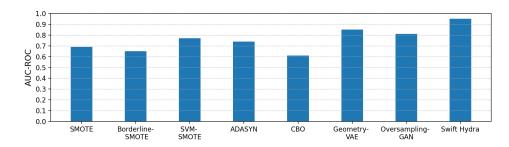



Figure 5: The average performance of various oversampling methods on the ADBench dataset. The evaluation metric is AUC-ROC

In addition to the previously discussed experiments, we also compare the performance of Swift Hydra against other oversampling methods using the AUC-ROC metric. As shown in Figure 3, our

method is capable of generating the most diverse set of anomalous data points. The goal of this experiment is to assess how accurately Swift Hydra (MoME) performs given these diverse generated data points. Figure 5 presents a comparison of our method's performance against various oversampling techniques included in the ADBench baselines. The results clearly demonstrate that Swift Hydra outperforms all other methods, achieving the highest AUC-ROC on the test set, with a 40/60% train/test ratio. This performance is primarily due to Swift Hydra's ability to generate data points that extend beyond the boundaries of the training set.

Specifically, in the dataset illustrated in Figure 3, it is evident that the anomalous data points in the test set lie outside the boundaries of those in the training set. Traditional oversampling methods fail to generate data beyond these boundaries, which naturally results in a lower AUC-ROC on the test set. Deep learning-based oversampling methods, such as VAE-Geometry and Oversampling GAN, can produce more diverse data than traditional techniques. However, Oversampling GAN often encounters a model collapse issue, where it focuses on generating data points that deceive the detector very effectively, leading to an over-concentration of samples. On the other hand, VAE-Geometry relies on the geometric structure of the data for generation, but if the structure is too complex, it struggles to produce sufficiently diverse data points. As a result, both methods ultimately fall short of Swift Hydra in terms of AUC-ROC performance.

#### C.3 TOY EXAMPLE: GENERALIZATION ABILITY AND DECISION BOUNDARY ON 2D DATA

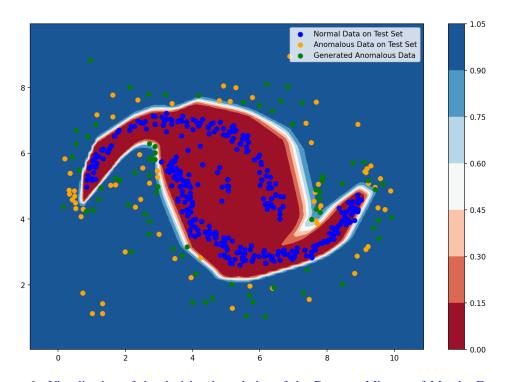



Figure 6: Visualization of the decision boundaries of the Detector Mixture of Mamba Experts (MoME) after training on generated anomalous data, original anomalous data, and normal data from the training set. The visualization highlights the resulting boundaries distinguishing anomalous and normal data in the test set.

We conduct a toy example with 2D data to illustrate the generalization ability and decision boundary of the MoME module. First, we generate a dataset where the normal data follows a sine curve, while the anomalies are randomly distributed around the sine curve. Then, we use the Self-Reinforcing Module to generate additional anomalous data and visualize the boundary of the MoME in Figure 6.

From the visualization, we can observe that the red regions (indicating areas predicted by MoME as containing normal data) fully encapsulate the dark blue points (normal data). The blue regions (indicating areas predicted by MoME as containing anomalous data) completely cover the generated

anomalous points (green) and the test set anomalies (orange). An interesting observation is that the green points (generated anomalies) cause the decision boundary to tightly enclose the dark blue points (normal data). This enhances MoME's ability to accurately identify anomalous data in the test set, as these anomalies are positioned farther from the decision boundary. As expected, the model generalized well to the anomalies in the test set.

#### C.4 ABLATION STUDY

#### C.4.1 IMPACT OF SELF-REINFORCING MODULE ON PERFORMANCE ACROSS DEEP MODELS

| Methods                   | Transformer  | Mamba        | Swift Hydra(Transformer) | Swift Hydra(Mamba) |
|---------------------------|--------------|--------------|--------------------------|--------------------|
|                           | AUCROC   TIF | AUCROC   TIF | AUCROC   TIF             | AUCROC   TIF       |
| Train/Test Ratio (40/60%) | 0.78   5.18  | 0.80   3.54  | 0.90   7.96              | 0.93   4.01        |
| Train/Test Ratio (30/70%) | 0.75   6.07  | 0.77   3.62  | 0.88   8.79              | <b>0.91</b>   4.79 |
| Train/Test Ratio (20/80%) | 0.72   7.10  | 0.73   4.11  | 0.86   9.91              | 0.90   5.22        |
| Train/Test Ratio (10/90%) | 0.69   8.22  | 0.71   4.63  | 0.82   10.36             | 0.87   5.84        |

Table 5: Comparison of Vanilla Transformer and Vanilla Mamba with Transformer and Mamba enhanced by the Self-Reinforcing Module in Swift Hydra, evaluated based on AUC-ROC and Total Inference Time (TIF).

TIF = Total Inference Time (Seconds)

| Methods                              | Transformer (VAE-Geometry) |      | Mamba (V | AE-Geometry) | Swift Hydr | a(Transformer) | Swift Hydra(Mamba) |      |  |
|--------------------------------------|----------------------------|------|----------|--------------|------------|----------------|--------------------|------|--|
|                                      | AUCROC                     | TIF  | AUCROC   | TIF          | AUCROC     | TIF            | AUCROC             | TIF  |  |
| Train/Test Ratio (40/60%)            | 0.83                       | 5.23 | 0.85     | 3.40         | 0.90       | 7.96           | 0.93               | 4.01 |  |
| Train/Test Ratio (30/70%)            | 0.80                       | 6.11 | 0.83     | 3.58         | 0.88       | 8.79           | 0.91               | 4.79 |  |
| Train/Test Ratio (20/80%)            | 0.78                       | 7.02 | 0.81     | 4.02         | 0.86       | 9.91           | 0.90               | 5.22 |  |
| Train/Test Ratio (10/90%)            | 0.75                       | 8.38 | 0.78     | 4.65         | 0.82       | 8.36           | 0.87               | 5.84 |  |
| TIF = Total Inference Time (Seconds) |                            |      |          |              |            |                |                    |      |  |

Table 6: AUC-ROC performance of various backbone models when applying oversampling techniques

We also compare the performance of Swift Hydra with various deep models (as backbone models) using two key metrics: AUC-ROC and Total Inference Time (for predicting the entire ADBench dataset) under two settings: with and without the use of an oversampling technique (i.e., VAE-Geometry). It is important to note that VAE-Geometry is chosen as the oversampling method for other backbone models due to its best performance among the oversampling baselines. As shown in Table 5 and Table 6, Swift Hydra outperforms other methods in terms of AUC-ROC while maintaining competitive total inference time.

AUC-ROC Evaluation. Regarding the accuracy in Table 5, standalone Mamba or Transformer models on ADBench exhibit significantly lower AUC-ROC compared to Swift Hydra (Mamba) and Swift Hydra (Transformer), which leverage the Self-Reinforcing Module. This is primarily because these models do not utilize any oversampling techniques (RL-guiled GenAI), which limits their data generalization capabilities. However, even when employing a powerful oversampling technique like VAE-Geometry (Table 6), the AUC-ROC of these models still falls short of that achieved by Swift Hydra. This is due to the fact that the datapoints generated by VAE-Geometry are not as diverse or of as high quality as those generated by Swift Hydra, as discussed in the previous experiment.

**Total Inference Time Evaluation.** In terms of total inference time, it is important to note that the Mamba model has a prediction complexity of O(1), while the Transformer has a prediction complexity of O(N). This makes Mamba substantially faster than both Transformer and Fully Connected networks. When Mamba is integrated into Swift Hydra with a Top k Mixture of Experts (k=2), one might expect the prediction time of Swift Hydra to be nearly double that of the regular Mamba model. However, the interesting outcome here is that we use only a two-layer depth for Mamba and overspecify the number of experts to 20. This allows us to capture the data complexity effectively, and since the model has just two layers, the additional time difference with k=2 is minimal compared to a larger Mamba model.

#### C.4.2 IMPACT OF PROBABILISTIC CLUSTER ASSIGNMENT ON MOME PERFORMANCE

| Method                    | Swift Hydra (MoME-Traditional Training Approach) | Swift Hydra (MoME-Our Training Approach) |        |       |  |  |
|---------------------------|--------------------------------------------------|------------------------------------------|--------|-------|--|--|
|                           | AUCROC                                           | TIF                                      | AUCROC | TIF   |  |  |
| Train/Test Ratio (40/60%) | 0.892                                            | 4.015                                    | 0.934  | 4.012 |  |  |
| Train/Test Ratio (30/70%) | 0.865                                            | 4.771                                    | 0.913  | 4.793 |  |  |
| Train/Test Ratio (20/80%) | 0.853                                            | 5.234                                    | 0.902  | 5.221 |  |  |
| Train/Test Ratio (10/90%) | 0.828                                            | 5.922                                    | 0.874  | 5.843 |  |  |

Table 7: Comparison of AUC-ROC and Total Inference Time (TIF) between Swift Hydra using the traditional MoME training approach and Swift Hydra with the proposed probabilistic training approach across different train/test ratios.

The results in Table 7 highlight a clear advantage of Swift Hydra with the proposed probabilistic training approach for MoME over the traditional MoME training approach. The primary reason for this improvement lies in addressing the "winner-take-all" problem that commonly affects the traditional training method.

In the traditional MoME approach, the gating network immediately starts assigning samples to experts based on their performance scores. During the early training steps, when the experts have not yet converged, their performance scores are arbitrary. This randomness can lead to one expert receiving disproportionately more samples than others, simply due to chance. As a result, this expert improves faster and continues to dominate sample assignments, creating a feedback loop where it becomes the sole contributor to predictions. This phenomenon, known as "winner-take-all," reduces the diversity of the expert ensemble and significantly hinders the generalization ability of the model.

In contrast, Swift Hydra with the probabilistic training approach temporarily deactivates the gating network during the early training phase. Instead, it uses a probabilistic assignment mechanism (as described in Equation 6) to ensure that all experts receive equal opportunities to learn. Once the experts have sufficiently converged, the gating network is reactivated to assign samples based on their performance. This method prevents any single expert from monopolizing the training process early on and ensures a more balanced and effective ensemble.

The results in the table demonstrate that this improved training strategy consistently achieves higher AUC-ROC scores across all train/test ratios compared to the traditional approach, without incurring additional Total Inference Time (TIF). This validates the effectiveness of addressing the "winner-take-all" problem to enhance both the generalization and overall performance of the model.

# C.4.3 KL DIVERGENCE AND RECONSTRUCTION LOSS TRADE-OFF IN CONDITIONAL VARIATIONAL AUTO ENCODER

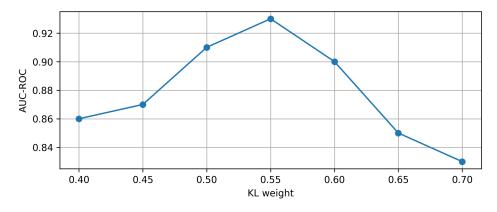



Figure 7: The average performance of various oversampling methods on the ADBench dataset. The evaluation metric is AUC-ROC

In this section, we provide insights into how the weight impacts the C-VAE during data generation. Specifically, when optimizing the ELBO loss of C-VAE, we need to consider two components: the

Reconstruction Loss and the KL Loss. If more weight is placed on the Reconstruction Loss, the C-VAE will generate data more cautiously, closely adhering to the target class. However, this caution results in less diverse samples. Conversely, if the weight is placed more on the KL Loss, the C-VAE generates more diverse data, but it may also produce samples that overlap with other classes.

To identify the optimal weight for the KL Loss, we experimented with various values of p ranging from 0.4 to 0.7. If the weight for the KL Loss is p, the weight for the Reconstruction Loss will be 1-p. As shown in Figure 7, the optimal weight for the KL Loss is found to be 0.55. In the range of 0.4 to 0.5, the C-VAE generates overly cautious samples, resulting in a lack of diversity. Consequently, the 200 episodes of RL training are insufficient to cover the entire set of anomalous data in the test set. On the other hand, in the range of 0.6 to 0.7, the model focuses too much on optimizing the KL Loss, leading to the generation of highly diverse anomalous samples. However, these samples tend to overlap significantly with normal samples, causing Swift Hydra's performance to decline after 200 episodes.

#### C.5 RL-AGENT ASSISTANCE FREQUENCY EXPERIMENT

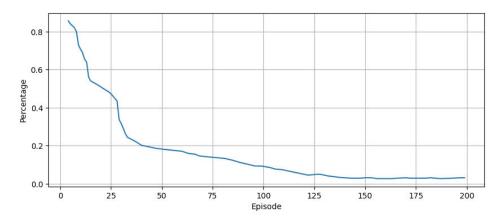



Figure 8: Percentage of invalid actions provided by the RL-Agent in each episode, with each episode consisting of 500 timesteps. The measurement is conducted over a total of 200 episodes. The X-axis represents the episodes, and the Y-axis shows the percentage of invalid actions provided by the RL-Agent.

In this section, we illustrate the average percentage of invalid actions taken by the agent in each episode (averaged over 57 datasets from ADBench). From Figure 8, it is evident that in the initial stages, the RL-Agent generates a high number of invalid actions, frequently requiring assistance from the One-Step to Feasible Action algorithm described in Section 3.1.2. However, since every time the RL-Agent takes an invalid action, it learns in a supervised manner using the feasible action provided by the One-Step to Feasible Action algorithm, a significant reduction in invalid actions is observed after about 25 to 50 episodes.

As a result, the training time becomes considerably faster since fewer Gradient Descent steps are needed (as Gradient Descent is primarily performed to optimize the reward function whenever an invalid action is taken). From episode 150 onward, the RL-Agent rarely makes invalid actions, and its actions become highly effective (as reflected in the AUC-ROC in previous experiment), indicating that the RL-Agent has successfully generalized.

#### C.6 DATASETS IN ADBENCH

ADBench features a comprehensive collection of 57 datasets designed for anomaly detection research, as detailed in the table. Among these, 47 datasets are well-established and widely used across various real-world domains, such as healthcare (e.g., disease diagnosis), audio and language processing (e.g., speech recognition), image analysis (e.g., object identification), and finance (e.g., fraud detection). Additionally, ADBench introduces 10 more complex datasets from computer vision (CV) and natural language processing (NLP) domains, enriched with larger sample sizes and

higher-dimensional features. These datasets utilize pretrained models to extract embeddings, enabling the representation of more complex patterns. All datasets are provided in a user-friendly format as compressed NumPy array files ('.npz'), with detailed instructions and processing codes available for seamless application

| Number | Data             | # Samples | # Features | # Anomaly | % Anomaly | Category   |
|--------|------------------|-----------|------------|-----------|-----------|------------|
| 1      | ALOI             | 49534     | 27         | 1508      | 3.04      | Image      |
| 2      | annthyroid       | 7200      | 6          | 534       | 7.42      | Healthcare |
| 3      | backdoor         | 95329     | 196        | 2329      | 2.44      | Network    |
| 4      | breastw          | 683       | 9          | 239       | 34.99     | Healthcare |
| 5      | campaign         | 41188     | 62         | 4640      | 11.27     | Finance    |
| 6      | cardio           | 1831      | 21         | 176       | 9.61      | Healthcare |
| 7      | Cardiotocography | 2114      | 21         | 466       | 22.04     | Healthcare |
| 8      | celeba           | 202599    | 39         | 4547      | 2.24      | Image      |
| 9      | census           | 299285    | 500        | 18568     | 6.20      | Sociology  |
| 10     | cover            | 286048    | 10         | 2747      | 0.96      | Botany     |
| 11     | donors           | 619326    | 10         | 36710     | 5.93      | Sociology  |
| 12     | fault            | 1941      | 27         | 673       | 34.67     | Physical   |
| 13     | fraud            | 284807    | 29         | 492       | 0.17      | Finance    |
| 14     | glass            | 214       | 7          | 9         | 4.21      | Forensic   |
| 15     | Hepatitis        | 80        | ,<br>19    | 13        | 16.25     | Healthcare |
| 16     | http             | 567498    | 3          | 2211      | 0.39      | Web        |
| 17     | InternetAds      | 1966      | 1555       | 368       | 18.72     | Image      |
| 18     | Ionosphere       | 351       | 32         | 126       | 35.90     | Oryctogno  |
| 19     | landsat          | 6435      | 36         | 1333      | 20.71     | Astronauti |
| 20     |                  | 1600      | 32         | 100       | 6.25      |            |
|        | letter           |           |            |           |           | Image      |
| 21     | Lymphography     | 148       | 18         | 6         | 4.05      | Healthcare |
| 22     | magic.gamma      | 19020     | 10         | 6688      | 35.16     | Physical   |
| 23     | mammography      | 11183     | 6          | 260       | 2.32      | Healthcare |
| 24     | mnist            | 7603      | 100        | 700       | 9.21      | Image      |
| 25     | musk             | 3062      | 166        | 97        | 3.17      | Chemistry  |
| 26     | optdigits        | 5216      | 64         | 150       | 2.88      | Image      |
| 27     | PageBlocks       | 5393      | 10         | 510       | 9.46      | Document   |
| 28     | pendigits        | 6870      | 16         | 156       | 2.27      | Image      |
| 29     | Pima             | 768       | 8          | 268       | 34.90     | Healthcare |
| 30     | satellite        | 6435      | 36         | 2036      | 31.64     | Astronauti |
| 31     | satimage-2       | 5803      | 36         | 71        | 1.22      | Astronauti |
| 32     | shuttle          | 49097     | 9          | 3511      | 7.15      | Astronauti |
| 33     | skin             | 245057    | 3          | 50859     | 20.75     | Image      |
| 34     | smtp             | 95156     | 3          | 30        | 0.03      | Web        |
| 35     | SpamBase         | 4207      | 57         | 1679      | 39.91     | Document   |
| 36     | speech           | 3686      | 400        | 61        | 1.65      | Linguistic |
| 37     | Stamps           | 340       | 9          | 31        | 9.12      | Document   |
| 38     | thyroid          | 3772      | 6          | 93        | 2.47      | Healthcare |
| 39     | vertebral        | 240       | 6          | 30        | 12.50     | Biology    |
| 40     | vowels           | 1456      | 12         | 50        | 3.43      | Linguistic |
| 41     | Waveform         | 3443      | 21         | 100       | 2.90      | Physics    |
| 42     | WBC              | 223       | 9          | 10        | 4.48      | Healthcare |
| 43     | WDBC             | 367       | 30         | 10        | 2.72      | Healthcare |
| 44     | Wilt             | 4819      | 5          | 257       | 5.33      | Botany     |
| 45     | wine             | 129       | 13         | 10        | 7.75      | Chemistry  |
| 46     | WPBC             | 198       | 33         | 47        | 23.74     | Healthcare |
| 47     | yeast            | 1484      | 8          | 507       | 34.16     | Biology    |
| 48     | CIFAR10          | 5263      | o<br>512   | 263       | 5.00      |            |
|        |                  |           |            |           |           | Image      |
| 49     | FashionMNIST     | 6315      | 512        | 315       | 5.00      | Image      |
| 50     | MNIST-C          | 10000     | 512        | 500       | 5.00      | Image      |
| 51     | MVTec-AD         | 5354      | 512        | 1258      | 23.50     | Image      |
| 52     | SVHN             | 5208      | 512        | 260       | 5.00      | Image      |
| 53     | Agnews           | 10000     | 768        | 500       | 5.00      | NLP        |

| 54 | Amazon       | 10000 | 768 | 500 | 5.00 | NLP |
|----|--------------|-------|-----|-----|------|-----|
| 55 | Imdb         | 10000 | 768 | 500 | 5.00 | NLP |
| 56 | Yelp         | 10000 | 768 | 500 | 5.00 | NLP |
| 57 | 20newsgroups | 11905 | 768 | 591 | 4.96 | NLP |

**Table 8:** Summary of Datasets used in ADBench Benchmark. The table outlines key characteristics of 57 anomaly detection datasets, including the number of samples, features, anomalies, and their respective categories, spanning diverse domains such as image analysis, healthcare, finance, and natural language processing.

# C.7 SWIFT HYDRA: CLASS-WISE PRECISION, RECALL, AND F1-SCORE ON ADBENCH

This final section provides a comprehensive comparison of various state-of-the-art anomaly detection methods, including DTE, Rejex, and ADGym, against Swift Hydra across 57 datasets from ADBench. The evaluation criteria include Precision, Recall, F1 score, support for each class, and AUC-ROC. It is important to note that we did not set a unique threshold for each individual dataset; instead, we applied a common threshold across all 57 datasets in ADBench. As a result, the Precision might not be very high. However, the focus should also be on the Recall and AUC-ROC, as these metrics more accurately reflect the model's ability to detect anomalous data if the correct threshold is chosen. This approach gives a clearer picture of how well Swift Hydra can identify anomalies in various datasets.

|              |      | DEE   |      |      |       |           |      | D.C. |      |      | 0. 11 |      | 1 1     |
|--------------|------|-------|------|------|-------|-----------|------|------|------|------|-------|------|---------|
|              |      | DTE   |      | J    | Rejex |           | A    | DGy  | m    | Swi  | ft Hy | dra  |         |
| ALOI         | P    | R     | F1   | P    | R     | F1        | P    | R    | F1   | P    | R     | F1   | support |
| -1           | 0.97 | 0.97  | 0.97 | 0.97 | 0.95  | 0.96      | 0.92 | 0.38 | 0.54 | 0.99 | 0.44  | 0.61 | 28821   |
| 1            | 0.03 | 0.03  | 0.03 | 0.04 | 0.07  | 0.05      | 0.00 | 0.75 | 0.05 | 0.04 | 0.81  | 0.08 | 900     |
| accuracy     | 0.94 | 0.94  | 0.94 | 0.92 | 0.92  | 0.92      | 0.39 | 0.39 | 0.39 | 0.45 | 0.45  | 0.45 | 0.45    |
| macro avg    | 0.50 | 0.50  | 0.50 | 0.50 | 0.51  | 0.50      | 0.46 | 0.57 | 0.30 | 0.52 | 0.63  | 0.35 | 29721   |
| weighted avg | 0.94 | 0.94  | 0.94 | 0.94 | 0.92  | 0.93      | 0.89 | 0.39 | 0.53 | 0.96 | 0.45  | 0.60 | 29721   |
| AUC-ROC      |      | 0.535 |      |      | 0.53  |           |      | 0.66 |      |      | 0.70  |      |         |
| annthyroid   | P    | R     | F1   | P    | R     | <b>F1</b> | P    | R    | F1   | P    | R     | F1   | support |
| -1           | 0.94 | 0.95  | 0.95 | 0.98 | 0.94  | 0.96      | 0.95 | 0.88 | 0.92 | 1.00 | 0.95  | 0.97 | 4001    |
| 1            | 0.32 | 0.29  | 0.31 | 0.52 | 0.77  | 0.62      | 0.56 | 0.92 | 0.71 | 0.60 | 0.98  | 0.75 | 319     |
| accuracy     | 0.90 | 0.90  | 0.90 | 0.93 | 0.93  | 0.93      | 0.89 | 0.89 | 0.89 | 0.95 | 0.95  | 0.95 | 0.95    |
| macro avg    | 0.63 | 0.62  | 0.63 | 0.75 | 0.86  | 0.79      | 0.75 | 0.90 | 0.82 | 0.80 | 0.97  | 0.86 | 4320    |
| weighted avg | 0.90 | 0.90  | 0.90 | 0.95 | 0.93  | 0.94      | 0.92 | 0.89 | 0.91 | 0.97 | 0.95  | 0.96 | 4320    |
| AUC-ROC      |      | 0.81  |      |      | 0.96  |           |      | 0.93 |      |      | 0.98  |      |         |
| backdoor     | P    | R     | F1   | P    | R     | F1        | P    | R    | F1   | P    | R     | F1   | support |
| -1           | 0.98 | 0.98  | 0.98 | 0.99 | 0.99  | 0.99      | 0.94 | 0.95 | 0.96 | 1.00 | 0.99  | 0.99 | 55790   |
| 1            | 0.01 | 0.01  | 0.01 | 0.68 | 0.47  | 0.56      | 0.55 | 0.89 | 0.67 | 0.61 | 0.92  | 0.74 | 1408    |
| accuracy     | 0.95 | 0.95  | 0.95 | 0.98 | 0.98  | 0.98      | 0.95 | 0.95 | 0.95 | 0.98 | 0.98  | 0.98 | 0.98    |
| macro avg    | 0.49 | 0.49  | 0.49 | 0.83 | 0.73  | 0.77      | 0.75 | 0.92 | 0.82 | 0.81 | 0.95  | 0.86 | 57198   |
| weighted avg | 0.95 | 0.95  | 0.95 | 0.98 | 0.98  | 0.98      | 0.93 | 0.95 | 0.95 | 0.99 | 0.98  | 0.99 | 57198   |
| AUC-ROC      |      | 0.76  |      |      | 0.90  |           |      | 0.94 |      |      | 0.98  |      |         |
| breastw      | P    | R     | F1   | P    | R     | F1        | P    | R    | F1   | P    | R     | F1   | support |
| -1           | 0.99 | 0.94  | 0.97 | 1.00 | 0.69  | 0.82      | 0.95 | 0.93 | 0.94 | 0.99 | 0.97  | 0.98 | 264     |
| 1            | 0.91 | 0.99  | 0.94 | 0.64 | 1.00  | 0.78      | 0.88 | 0.92 | 0.91 | 0.94 | 0.98  | 0.96 | 146     |
| accuracy     | 0.96 | 0.96  | 0.96 | 0.80 | 0.80  | 0.80      | 0.93 | 0.93 | 0.93 | 0.97 | 0.97  | 0.97 | 0.97    |

| 1 | 782 |  |  |
|---|-----|--|--|
|   | 783 |  |  |
|   | 784 |  |  |
|   | 785 |  |  |
|   | 786 |  |  |
|   |     |  |  |
|   | 787 |  |  |
|   | 788 |  |  |
|   | 789 |  |  |
|   | 790 |  |  |
|   | 791 |  |  |
| 1 | 792 |  |  |
| 1 | 793 |  |  |
| 1 | 794 |  |  |
| 1 | 795 |  |  |
| 1 | 796 |  |  |
|   | 797 |  |  |
|   | 798 |  |  |
|   | 799 |  |  |
|   | 800 |  |  |
|   | 801 |  |  |
|   | 802 |  |  |
|   |     |  |  |
|   | 803 |  |  |
|   | 804 |  |  |
|   | 805 |  |  |
|   | 806 |  |  |
|   | 807 |  |  |
| 1 | 808 |  |  |
| 1 | 809 |  |  |
| 1 | 810 |  |  |
| 1 | 811 |  |  |
| 1 | 812 |  |  |
| 1 | 813 |  |  |
| 1 | 814 |  |  |
| 1 | 815 |  |  |
|   | 816 |  |  |
|   | 817 |  |  |
|   | 818 |  |  |
|   | 819 |  |  |
|   | 820 |  |  |
|   | 821 |  |  |
|   |     |  |  |
|   | 822 |  |  |
|   | 823 |  |  |
|   | 824 |  |  |
|   | 825 |  |  |
|   | 826 |  |  |
| 1 | 827 |  |  |
| 1 | 828 |  |  |
| 1 | 829 |  |  |
| 1 | 830 |  |  |
| 1 | 831 |  |  |
| 1 | 832 |  |  |
|   | 833 |  |  |
|   | 834 |  |  |
|   | 835 |  |  |
| - |     |  |  |

| Table 0 | continued   | fuern |          |      |
|---------|-------------|-------|----------|------|
| Table 9 | , continuea | rrom  | previous | page |

| Table 9 continued from previous page |      |      |      |      |       |           |      |      |      |      |       |      |         |
|--------------------------------------|------|------|------|------|-------|-----------|------|------|------|------|-------|------|---------|
|                                      |      | DTE  |      | ]    | Rejex | ζ         | A    | DGy  | m    | Swi  | ft Hy | dra  |         |
| macro avg                            | 0.95 | 0.97 | 0.96 | 0.82 | 0.85  | 0.80      | 0.92 | 0.92 | 0.92 | 0.97 | 0.97  | 0.97 | 410     |
| weighted avg                         | 0.96 | 0.96 | 0.96 | 0.87 | 0.80  | 0.80      | 0.93 | 0.93 | 0.93 | 0.97 | 0.97  | 0.97 | 410     |
| AUC-ROC                              |      | 0.99 |      |      | 0.93  |           |      | 0.94 |      |      | 0.99  |      |         |
| campaign                             | P    | R    | F1   | P    | R     | F1        | P    | R    | F1   | P    | R     | F1   | support |
| -1                                   | 0.91 | 0.91 | 0.91 | 0.89 | 0.99  | 0.94      | 0.92 | 0.79 | 0.85 | 0.98 | 0.82  | 0.89 | 21920   |
| 1                                    | 0.32 | 0.32 | 0.32 | 0.27 | 0.04  | 0.08      | 0.33 | 0.79 | 0.47 | 0.38 | 0.83  | 0.52 | 2793    |
| accuracy                             | 0.84 | 0.84 | 0.84 | 0.88 | 0.88  | 0.88      | 0.79 | 0.79 | 0.79 | 0.83 | 0.83  | 0.83 | 0.83    |
| macro avg                            | 0.62 | 0.62 | 0.62 | 0.58 | 0.51  | 0.51      | 0.63 | 0.79 | 0.66 | 0.68 | 0.83  | 0.71 | 24713   |
| weighted avg                         | 0.85 | 0.84 | 0.85 | 0.82 | 0.88  | 0.84      | 0.86 | 0.79 | 0.81 | 0.91 | 0.83  | 0.85 | 24713   |
| AUC-ROC                              |      | 0.73 |      |      | 0.77  |           |      | 0.84 |      |      | 0.90  |      |         |
| cardio                               | P    | R    | F1   | P    | R     | F1        | P    | R    | F1   | P    | R     | F1   | support |
| -1                                   | 0.94 | 0.92 | 0.93 | 0.94 | 0.82  | 0.87      | 0.95 | 0.88 | 0.93 | 0.99 | 0.94  | 0.97 | 990     |
| 1                                    | 0.42 | 0.50 | 0.45 | 0.23 | 0.51  | 0.32      | 0.57 | 0.89 | 0.72 | 0.64 | 0.95  | 0.76 | 109     |
| accuracy                             | 0.88 | 0.88 | 0.88 | 0.79 | 0.79  | 0.79      | 0.88 | 0.88 | 0.88 | 0.94 | 0.94  | 0.94 | 0.94    |
| macro avg                            | 0.68 | 0.71 | 0.69 | 0.59 | 0.66  | 0.60      | 0.76 | 0.88 | 0.83 | 0.82 | 0.94  | 0.86 | 1099    |
| weighted avg                         | 0.89 | 0.88 | 0.89 | 0.87 | 0.79  | 0.82      | 0.91 | 0.88 | 0.91 | 0.96 | 0.94  | 0.95 | 1099    |
| AUC-ROC                              |      | 0.92 |      |      | 0.74  |           |      | 0.95 |      |      | 0.98  |      |         |
| Cardiotocography                     | P    | R    | F1   | P    | R     | F1        | P    | R    | F1   | P    | R     | F1   | support |
| -1                                   | 0.82 | 0.83 | 0.82 | 0.80 | 0.75  | 0.78      | 0.92 | 0.83 | 0.90 | 0.98 | 0.90  | 0.93 | 991     |
| 1                                    | 0.37 | 0.36 | 0.36 | 0.27 | 0.33  | 0.30      | 0.68 | 0.87 | 0.74 | 0.71 | 0.92  | 0.80 | 278     |
| accuracy                             | 0.72 | 0.72 | 0.72 | 0.66 | 0.66  | 0.66      | 0.84 | 0.84 | 0.84 | 0.90 | 0.90  | 0.90 | 0.90    |
| macro avg                            | 0.59 | 0.59 | 0.59 | 0.54 | 0.54  | 0.54      | 0.80 | 0.85 | 0.82 | 0.84 | 0.91  | 0.87 | 1269    |
| weighted avg                         | 0.72 | 0.72 | 0.72 | 0.68 | 0.66  | 0.67      | 0.87 | 0.84 | 0.87 | 0.92 | 0.90  | 0.91 | 1269    |
| AUC-ROC                              |      | 0.73 |      |      | 0.53  |           |      | 0.91 |      |      | 0.95  |      |         |
| celeba                               | P    | R    | F1   | P    | R     | F1        | P    | R    | F1   | P    | R     | F1   | support |
| -1                                   | 0.98 | 0.98 | 0.98 | 0.98 | 1.00  | 0.99      | 0.96 | 0.83 | 0.88 | 1.00 | 0.89  | 0.94 | 118850  |
| 1                                    | 0.09 | 0.09 | 0.09 | 0.03 | 0.00  | 0.00      | 0.11 | 0.85 | 0.21 | 0.15 | 0.91  | 0.26 | 2710    |
| accuracy                             | 0.96 | 0.96 | 0.96 | 0.98 | 0.98  | 0.98      | 0.83 | 0.83 | 0.83 | 0.89 | 0.89  | 0.89 | 0.89    |
| macro avg                            | 0.53 | 0.53 | 0.53 | 0.50 | 0.50  | 0.50      | 0.53 | 0.84 | 0.55 | 0.58 | 0.90  | 0.60 | 121560  |
| weighted avg                         | 0.96 | 0.96 | 0.96 | 0.96 | 0.98  | 0.97      | 0.94 | 0.83 | 0.86 | 0.98 | 0.89  | 0.92 | 121560  |
| AUC-ROC                              |      | 0.72 |      |      | 0.79  |           |      | 0.88 |      |      | 0.95  |      |         |
| census                               | P    | R    | F1   | P    | R     | <b>F1</b> | P    | R    | F1   | P    | R     | F1   | support |
| -1                                   | 0.94 | 0.94 | 0.94 | 0.94 | 0.88  | 0.91      | 0.92 | 0.72 | 0.84 | 0.99 | 0.79  | 0.88 | 168432  |
| 1                                    | 0.04 | 0.04 | 0.04 | 0.06 | 0.12  | 0.08      | 0.15 | 0.77 | 0.31 | 0.21 | 0.84  | 0.34 | 11139   |
| accuracy                             | 0.88 | 0.88 | 0.88 | 0.84 | 0.84  | 0.84      | 0.73 | 0.73 | 0.73 | 0.79 | 0.79  | 0.79 | 0.79    |
| macro avg                            | 0.49 | 0.49 | 0.49 | 0.50 | 0.50  | 0.50      | 0.54 | 0.75 | 0.58 | 0.60 | 0.82  | 0.61 | 179571  |
| weighted avg                         | 0.88 | 0.88 | 0.88 | 0.88 | 0.84  | 0.86      | 0.87 | 0.73 | 0.81 | 0.94 | 0.79  | 0.84 | 179571  |
| AUC-ROC                              |      | 0.59 |      |      | 0.65  |           |      | 0.79 |      |      | 0.85  |      |         |
| cover                                | P    | R    | F1   | P    | R     | F1        | P    | R    | F1   | P    | R     | F1   | support |
| -1                                   | 0.99 | 0.99 | 0.99 | 0.99 | 0.99  | 0.99      | 0.95 | 0.96 | 0.94 | 1.00 | 0.99  | 1.00 | 169976  |
| 1                                    | 0.09 | 0.09 | 0.09 | 0.06 | 0.05  | 0.06      | 0.50 | 0.95 | 0.65 | 0.54 | 1.00  | 0.70 | 1653    |

Swift Hydra

1.00

1.00

0.74

0.96

0.84

0.80

P R

P R

R

P

P

0.99

22113

1.00

F1 |support

751

414

0.68

1165

1165

292

0.92

F1 | support

123

6

0.79

129

129

42

6

0.69

48

48

R | F1 | support

F1 | support

R | F1 | support

1836 Table 9 continued from previous page 1837 DTE Rejex **ADGym** 1838  $|0.98| \, 0.98 \, |0.98| \, 0.98 \, |0.98| \, 0.98 \, |0.98| \, 0.96 \, |0.96| \, 0.96 \, |0.99| \, 0.99| \, 0.99|$ accuracy 1839 |0.54|0.54|0.54|0.53|0.52|0.52|0.73|0.96|0.80|0.77|0.99|0.85|1716291840 macro avg 1841 weighted avg |0.98| 0.98 |0.98 |0.98 |0.98 |0.98 |0.98 |0.95 |0.96 |0.94 |1.00 |0.99 |0.99 | 171629 1842 AUC-ROC 0.90 0.740.97 1843 donors P R F1 P R F1 P  $\mathbf{R} \mid \mathbf{F1}$ 1844 -1 |0.94||0.94||0.94||0.94||0.99||0.96||0.93||0.95||0.94||1.00||1.00||1.00||349483 1846 |0.10| |0.10| |0.10| |0.14| |0.03| |0.05| |0.95| |0.95| |0.95| |1.00| |1.00| |1.00|1 1847 accuracy |0.89| |0.89| |0.89| |0.93| |0.93| |0.95| |0.95| |0.95| |1.00| |1.00|1848 |0.52|0.52|0.52|0.54|0.51|0.51|0.94|0.95|0.94|1.00|1.00|1.00|371596macro avg 1850 |0.89| |0.89| |0.89| |0.93| |0.91| |0.93| |0.95| |0.94| |1.00| |1.00| |1.00| |371596|weighted avg 1851 **AUC-ROC** 0.76 0.74 0.95 1852 fault P R F1 P R F1 P  $\mathbf{R} \mid \mathbf{F1}$ 1853  $|0.69|\,0.66\,|0.68|\,0.68|\,0.89|\,0.77|\,0.78|\,0.62|\,0.69|\,0.81|\,0.65|\,0.72$ -1 1854 1855 1 |0.43| |0.45| |0.44| |0.53| |0.23| |0.32| |0.49| |0.68| |0.57| |0.54| |0.73| |0.62|1856 |0.59| 0.59 |0.59| 0.65 |0.65| 0.65 |0.64| 0.64 |0.64| 0.68 |0.68| 0.68accuracy 1857 |0.56| 0.56 |0.56| 0.60 |0.56| 0.54 |0.63| 0.65 |0.63| 0.67 |0.69| 0.67macro avg 1858 weighted avg |0.60| |0.59| |0.59| |0.62| |0.65| |0.61| |0.67| |0.64| |0.65| |0.71| |0.68| |0.69|1859 **AUC-ROC** 0.54 0.58 0.68 R | F1 | P | P R | F1 | P | R | F1 | P | R | F1 | support fraud |1.00|1.00|1.00|1.00|0.99|1.00|0.96|0.86|0.91|1.00|0.92|0.96|170593-1 1863 1 |0.30| |0.28| |0.29| |0.13| |0.81| |0.22| |0.00| |0.85| |0.00| |0.02| |0.92| |0.04|1865 |1.00| |1.00| |1.00| |0.99| |0.99| |0.99| |0.86| |0.86| |0.86| |0.92| |0.92|accuracy |0.65| |0.64| |0.65| |0.56| |0.90| |0.61| |0.48| |0.85| |0.45| |0.51| |0.92| |0.50| |170885|macro avg 1867 weighted avg |1.00| 1.00 |1.00|1.00|0.99|0.99|0.96|0.86|0.91|1.00|0.92|0.96| 170885 1868 0.95 AUC-ROC 0.95 0.92 1869 1870 glass P R F1 P R F1 | P R F1 | 1871 -1 |0.95| |0.98| |0.96| |0.00| |0.00| |0.00| |0.93| |0.75| |0.83| |0.96| |0.81| |0.88|1  $|0.00| \ 0.00 \ |0.00| \ 0.05 \ |1.00| \ 0.09 \ |0.04| \ 0.27 \ |0.09| \ 0.08 \ |0.33| \ 0.13$ 1873  $|0.93| \, 0.93 \, |0.93| \, 0.05 \, |0.05| \, 0.05 \, |0.73| \, 0.73 \, |0.73| \, 0.79 \, |0.79| \, 0.79$ accuracy 1874 1875 |0.48| |0.49| |0.48| |0.02| |0.50| |0.04| |0.48| |0.51| |0.46| |0.52| |0.57| |0.51|macro avg 1876 |0.91|0.93|0.92|0.00|0.05|0.00|0.89|0.73|0.80|0.92|0.79|0.85weighted avg 1877 **AUC-ROC** 0.75 0.76 0.78 1878 **Hepatitis** P R  $\mathbf{F1}$ P R F1 P R  $\mathbf{F1}$ 1879 1880 -1 |0.85| |0.83| |0.84| |0.00| |0.00| |0.00| |0.90| |0.62| |0.75| |0.97| |0.67| |0.79|1 |0.00| |0.00| |0.00| |0.13| |1.00| |0.22| |0.22| |0.79| |0.33| |0.26| |0.83| |0.40|1882 accuracy |0.73| 0.73 |0.73|0.13|0.13|0.13|0.64|0.64|0.64|0.69|0.69|0.69 |0.43| |0.42| |0.42| |0.06| |0.50| |0.11| |0.56| |0.71| |0.54| |0.61| |0.75| |0.59|macro avg 1884 1885  $|0.75| \ 0.73 \ |0.74| \ 0.02| \ 0.13| \ 0.03| \ 0.81| \ 0.64| \ 0.70| \ 0.88| \ 0.69| \ 0.74|$ weighted avg 1886 **AUC-ROC** 0.72 0.42 0.74 1887 P R F1 | P R | F1 | P R | F1 | P http 1888 -1 |1.00| 1.00 |1.00 |1.00 |0.94 |0.97 |0.95 |0.96 |0.94 |1.00 |1.00 |1.00 |339161 1889

| 1890                                                                                                                                                                 |                                                                                                                         |                                                                                                     | Tabl                                                                                                                         | le 9 co                                                                                                                  | ontin                                                                                           | ued fi                                                                                                                                                    | rom j                                                                                            | previ                                                                                                      | ous p                                                                                                                                | age                                                                                                                      |                                                                                                                 |                                                                                                                                            |                                                                                                                          |                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1891                                                                                                                                                                 |                                                                                                                         |                                                                                                     | DTE                                                                                                                          |                                                                                                                          |                                                                                                 | Rejex                                                                                                                                                     | :                                                                                                | A                                                                                                          | DGy                                                                                                                                  | m                                                                                                                        | Swi                                                                                                             | ft Hy                                                                                                                                      | dra                                                                                                                      |                                                                 |
| 1892                                                                                                                                                                 | 1                                                                                                                       | 0.23                                                                                                | 0.02                                                                                                                         | 0 03                                                                                                                     | n 06                                                                                            | 1.00                                                                                                                                                      | 0.12                                                                                             | 0.72                                                                                                       | 0 95                                                                                                                                 | n 79                                                                                                                     | 0.76                                                                                                            | 1 00                                                                                                                                       | 0.86                                                                                                                     | 1338                                                            |
| 1893 <u> </u>                                                                                                                                                        |                                                                                                                         | 1                                                                                                   | 1.00                                                                                                                         | '                                                                                                                        |                                                                                                 |                                                                                                                                                           |                                                                                                  |                                                                                                            |                                                                                                                                      |                                                                                                                          |                                                                                                                 | '                                                                                                                                          | '                                                                                                                        |                                                                 |
| 1895                                                                                                                                                                 | accuracy                                                                                                                | '                                                                                                   |                                                                                                                              |                                                                                                                          |                                                                                                 |                                                                                                                                                           |                                                                                                  |                                                                                                            |                                                                                                                                      |                                                                                                                          |                                                                                                                 |                                                                                                                                            | '                                                                                                                        |                                                                 |
| 1896                                                                                                                                                                 | macro avg                                                                                                               | '                                                                                                   |                                                                                                                              | 1                                                                                                                        |                                                                                                 |                                                                                                                                                           |                                                                                                  |                                                                                                            |                                                                                                                                      |                                                                                                                          |                                                                                                                 |                                                                                                                                            | <u>'</u>                                                                                                                 | 340499                                                          |
| 1897                                                                                                                                                                 | weighted avg                                                                                                            | 0.99                                                                                                | 1.00                                                                                                                         | 0.99                                                                                                                     | 1.00                                                                                            | 0.94                                                                                                                                                      | 0.97                                                                                             | 0.95                                                                                                       | 0.96                                                                                                                                 | 0.94                                                                                                                     | 1.00                                                                                                            | 1.00                                                                                                                                       | 1.00                                                                                                                     | 340499                                                          |
| 1898                                                                                                                                                                 | AUC-ROC                                                                                                                 |                                                                                                     | 1.00                                                                                                                         |                                                                                                                          |                                                                                                 | 1.00                                                                                                                                                      |                                                                                                  |                                                                                                            | 0.94                                                                                                                                 |                                                                                                                          |                                                                                                                 | 1.00                                                                                                                                       |                                                                                                                          |                                                                 |
| 1899                                                                                                                                                                 | InternetAds                                                                                                             | P                                                                                                   | R                                                                                                                            | F1                                                                                                                       | P                                                                                               | R                                                                                                                                                         | <b>F</b> 1                                                                                       | P                                                                                                          | R                                                                                                                                    | <b>F1</b>                                                                                                                | P                                                                                                               | R                                                                                                                                          | F1                                                                                                                       | support                                                         |
| 1900                                                                                                                                                                 | -1                                                                                                                      | 0.88                                                                                                | 0.88                                                                                                                         | 0.88                                                                                                                     | 0.89                                                                                            | 0.44                                                                                                                                                      | 0.59                                                                                             | 0.93                                                                                                       | 0.63                                                                                                                                 | 0.74                                                                                                                     | 0.98                                                                                                            | 0.68                                                                                                                                       | 0.81                                                                                                                     | 965                                                             |
| 1901                                                                                                                                                                 | 1                                                                                                                       | 0.45                                                                                                | 0.46                                                                                                                         | 0.46                                                                                                                     | 0.23                                                                                            | 0.75                                                                                                                                                      | 0.35                                                                                             | 0.37                                                                                                       | 0.88                                                                                                                                 | 0.53                                                                                                                     | 0.40                                                                                                            | 0.94                                                                                                                                       | 0.56                                                                                                                     | 215                                                             |
| 1903                                                                                                                                                                 | accuracy                                                                                                                | 0.80                                                                                                | 0.80                                                                                                                         | 0.80                                                                                                                     | 0.50                                                                                            | 0.50                                                                                                                                                      | 0.50                                                                                             | 0.67                                                                                                       | 0.67                                                                                                                                 | 0.67                                                                                                                     | 0.73                                                                                                            | 0.73                                                                                                                                       | 0.73                                                                                                                     | 0.73                                                            |
| 1904                                                                                                                                                                 | macro avg                                                                                                               | '                                                                                                   | 0.67                                                                                                                         |                                                                                                                          |                                                                                                 | '                                                                                                                                                         |                                                                                                  |                                                                                                            |                                                                                                                                      | <u>'</u>                                                                                                                 | '                                                                                                               | '                                                                                                                                          | '                                                                                                                        | 1180                                                            |
| 1905                                                                                                                                                                 | weighted avg                                                                                                            | '                                                                                                   | 0.80                                                                                                                         |                                                                                                                          |                                                                                                 | '                                                                                                                                                         |                                                                                                  |                                                                                                            |                                                                                                                                      |                                                                                                                          | '                                                                                                               |                                                                                                                                            | '                                                                                                                        |                                                                 |
| 1906                                                                                                                                                                 | AUC-ROC                                                                                                                 | 1                                                                                                   | 0.68                                                                                                                         | 10.00                                                                                                                    |                                                                                                 | 0.67                                                                                                                                                      |                                                                                                  |                                                                                                            | 0.88                                                                                                                                 | 1                                                                                                                        | 1                                                                                                               | 0.92                                                                                                                                       | 1 - 1 - 1                                                                                                                |                                                                 |
| 1907                                                                                                                                                                 | Ionosphere                                                                                                              | <br>  P                                                                                             | R                                                                                                                            | F1                                                                                                                       | <br>  P                                                                                         | R                                                                                                                                                         | F1                                                                                               | <br>  <b>P</b>                                                                                             | R                                                                                                                                    | F1                                                                                                                       | <br>  <b>P</b>                                                                                                  | R                                                                                                                                          | F1                                                                                                                       | cunnont                                                         |
| 1908                                                                                                                                                                 | <del></del>                                                                                                             | 1                                                                                                   |                                                                                                                              | I                                                                                                                        |                                                                                                 | 1                                                                                                                                                         |                                                                                                  | ı                                                                                                          | ı                                                                                                                                    | ı                                                                                                                        | I                                                                                                               | I                                                                                                                                          | '                                                                                                                        | support                                                         |
| 1909                                                                                                                                                                 | -1                                                                                                                      | '                                                                                                   | 0.76                                                                                                                         | '                                                                                                                        |                                                                                                 |                                                                                                                                                           |                                                                                                  |                                                                                                            |                                                                                                                                      |                                                                                                                          |                                                                                                                 | '                                                                                                                                          |                                                                                                                          |                                                                 |
| 1911                                                                                                                                                                 | 1                                                                                                                       | <u>'</u>                                                                                            | 0.70                                                                                                                         |                                                                                                                          |                                                                                                 | '                                                                                                                                                         |                                                                                                  |                                                                                                            |                                                                                                                                      |                                                                                                                          |                                                                                                                 |                                                                                                                                            | <u>'</u>                                                                                                                 |                                                                 |
| 1912                                                                                                                                                                 | accuracy                                                                                                                | 0.74                                                                                                | 0.74                                                                                                                         | 0.74                                                                                                                     | 0.36                                                                                            | 0.36                                                                                                                                                      | 0.36                                                                                             | 0.82                                                                                                       | 0.82                                                                                                                                 | 0.82                                                                                                                     | 0.87                                                                                                            | 0.87                                                                                                                                       | 0.87                                                                                                                     | 0.87                                                            |
| 1913                                                                                                                                                                 | macro avg                                                                                                               | 0.72                                                                                                | 0.73                                                                                                                         | 0.72                                                                                                                     | 0.18                                                                                            | 0.50                                                                                                                                                      | 0.27                                                                                             | 0.81                                                                                                       | 0.81                                                                                                                                 | 0.80                                                                                                                     | 0.86                                                                                                            | 0.86                                                                                                                                       | 0.86                                                                                                                     | 211                                                             |
| 1914                                                                                                                                                                 | weighted avg                                                                                                            | 0.74                                                                                                | 0.74                                                                                                                         | 0.74                                                                                                                     | 0.13                                                                                            | 0.36                                                                                                                                                      | 0.19                                                                                             | 0.82                                                                                                       | 0.82                                                                                                                                 | 0.81                                                                                                                     | 0.87                                                                                                            | 0.87                                                                                                                                       | 0.87                                                                                                                     | 211                                                             |
| 1915                                                                                                                                                                 | AUC-ROC                                                                                                                 |                                                                                                     | 0.86                                                                                                                         |                                                                                                                          |                                                                                                 | 0.96                                                                                                                                                      |                                                                                                  |                                                                                                            | 0.85                                                                                                                                 |                                                                                                                          |                                                                                                                 | 0.91                                                                                                                                       |                                                                                                                          |                                                                 |
| 1916<br>1917                                                                                                                                                         | landsat                                                                                                                 | P                                                                                                   | R                                                                                                                            | F1                                                                                                                       | P                                                                                               | R                                                                                                                                                         | F1                                                                                               | P                                                                                                          | R                                                                                                                                    | F1                                                                                                                       | P                                                                                                               | R                                                                                                                                          | F1                                                                                                                       | support                                                         |
| 1918                                                                                                                                                                 | -1                                                                                                                      | 0.81                                                                                                | 0.79                                                                                                                         | 0.80                                                                                                                     | 0.80                                                                                            | 0.94                                                                                                                                                      | 0.86                                                                                             | 0.92                                                                                                       | 0.80                                                                                                                                 | 0.86                                                                                                                     | 0.97                                                                                                            | 0.86                                                                                                                                       | 0.91                                                                                                                     | 3068                                                            |
| 1919                                                                                                                                                                 | 1                                                                                                                       | 0.24                                                                                                | 0.26                                                                                                                         | 0.25                                                                                                                     | 0.23                                                                                            | 0.06                                                                                                                                                      | 0.10                                                                                             | 0.56                                                                                                       | 0.83                                                                                                                                 | 0.68                                                                                                                     | 0.62                                                                                                            | 0.89                                                                                                                                       | 0.73                                                                                                                     | 793                                                             |
| 1000                                                                                                                                                                 |                                                                                                                         | 1                                                                                                   |                                                                                                                              | 1                                                                                                                        |                                                                                                 |                                                                                                                                                           |                                                                                                  | 1                                                                                                          | l                                                                                                                                    | ı                                                                                                                        |                                                                                                                 |                                                                                                                                            | 1                                                                                                                        |                                                                 |
| 1920                                                                                                                                                                 | accuracy                                                                                                                | 0.68                                                                                                | 0.68                                                                                                                         | 0.68                                                                                                                     |                                                                                                 | 0.76                                                                                                                                                      | 0.76                                                                                             | 0.80                                                                                                       | 0.80                                                                                                                                 | 0.80                                                                                                                     | 0.87                                                                                                            | 0.87                                                                                                                                       | 0.87                                                                                                                     | 0.87                                                            |
| 1920<br>1921                                                                                                                                                         | accuracy<br>macro avg                                                                                                   | '                                                                                                   | 0.68                                                                                                                         |                                                                                                                          | 0.76                                                                                            |                                                                                                                                                           |                                                                                                  |                                                                                                            |                                                                                                                                      |                                                                                                                          |                                                                                                                 |                                                                                                                                            | '                                                                                                                        | 0.87                                                            |
| 1921<br>1922                                                                                                                                                         | macro avg                                                                                                               | 0.52                                                                                                | 0.52                                                                                                                         | 0.52                                                                                                                     | 0.76                                                                                            | 0.50                                                                                                                                                      | 0.48                                                                                             | 0.74                                                                                                       | 0.81                                                                                                                                 | 0.77                                                                                                                     | 0.79                                                                                                            | 0.87                                                                                                                                       | 0.82                                                                                                                     | 3861                                                            |
| 1921<br>1922<br>1923                                                                                                                                                 | macro avg                                                                                                               | 0.52                                                                                                | 0.52                                                                                                                         | 0.52                                                                                                                     | 0.76                                                                                            | 0.50                                                                                                                                                      | 0.48                                                                                             | 0.74                                                                                                       | 0.81                                                                                                                                 | 0.77                                                                                                                     | 0.79                                                                                                            | 0.87                                                                                                                                       | 0.82                                                                                                                     |                                                                 |
| 1921<br>1922<br>1923<br>1924                                                                                                                                         | macro avg weighted avg AUC-ROC                                                                                          | 0.52                                                                                                | 0.52<br>0.68<br>0.50                                                                                                         | 0.52                                                                                                                     | 0.76                                                                                            | 0.50<br> 0.76<br> 0.53                                                                                                                                    | 0.48                                                                                             | 0.74                                                                                                       | 0.81                                                                                                                                 | 0.77                                                                                                                     | 0.79                                                                                                            | 0.87                                                                                                                                       | 0.82                                                                                                                     | 3861<br>3861                                                    |
| 1921<br>1922<br>1923                                                                                                                                                 | macro avg weighted avg AUC-ROC letter                                                                                   | 0.52<br> 0.69<br> <br>  <b>P</b>                                                                    | 0.52<br>0.68<br>0.50<br><b>R</b>                                                                                             | 0.52<br> 0.68<br>  <b>F1</b>                                                                                             | 0.76<br>  0.51<br>  0.68<br>  P                                                                 | 0.50<br> 0.76<br> 0.53<br>  <b>R</b>                                                                                                                      | 0.48<br>0.71<br><b>F1</b>                                                                        | 0.74<br> 0.85<br> <br>  <b>P</b>                                                                           | 0.81<br> 0.80<br> 0.91<br>  <b>R</b>                                                                                                 | 0.77<br> 0.82<br>  <b>F1</b>                                                                                             | 0.79<br> 0.90<br> <br>  <b>P</b>                                                                                | 0.87<br> 0.87<br> 0.94<br>  <b>R</b>                                                                                                       | 0.82<br> 0.87<br>  <b>F1</b>                                                                                             | 3861<br>3861<br>support                                         |
| 1921<br>1922<br>1923<br>1924<br>1925                                                                                                                                 | macro avg weighted avg AUC-ROC letter -1                                                                                | 0.52<br> 0.69<br> <br>  <b>P</b><br> 0.94                                                           | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94                                                                                     | 0.52<br> 0.68<br>  <b>F1</b><br> 0.94                                                                                    | 0.76<br> 0.51<br> 0.68<br> <br>  <b>P</b><br> 0.98                                              | 0.50<br> 0.76<br> 0.53<br>  <b>R</b><br> 0.65                                                                                                             | 0.48<br>0.71<br><b>F1</b><br>0.78                                                                | 0.74<br> 0.85<br> <br>  <b>P</b><br> 0.94                                                                  | 0.81<br> 0.80<br> 0.91<br>  <b>R</b><br> 0.76                                                                                        | 0.77<br> 0.82<br>  <b>F1</b><br> 0.83                                                                                    | 0.79<br> 0.90<br> <br>  <b>P</b><br> 0.98                                                                       | 0.87<br> 0.87<br> 0.94<br>  <b>R</b><br> 0.82                                                                                              | 0.82<br> 0.87<br>  <b>F1</b><br> 0.89                                                                                    | 3861<br>3861<br>support                                         |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928                                                                                                         | macro avg weighted avg AUC-ROC letter                                                                                   | 0.52<br> 0.69<br> <br>  <b>P</b><br> 0.94<br> 0.09                                                  | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10                                                                             | 0.52<br> 0.68<br>  <b>F1</b><br> 0.94<br> 0.10                                                                           | 0.76<br>  0.51<br>  0.68<br>  <b>P</b><br>  0.98<br>  0.14                                      | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83                                                                                                | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24                                                        | 0.74<br> 0.85<br> <br>  <b>P</b><br> 0.94                                                                  | 0.81<br> 0.80<br> 0.91<br>  <b>R</b><br> 0.76                                                                                        | 0.77<br> 0.82<br>  <b>F1</b><br> 0.83                                                                                    | 0.79<br> 0.90<br> <br>  <b>P</b><br> 0.98                                                                       | 0.87<br> 0.87<br> 0.94<br>  <b>R</b><br> 0.82                                                                                              | 0.82<br> 0.87<br>  <b>F1</b><br> 0.89<br> 0.31                                                                           | 3861<br>3861<br>support                                         |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929                                                                                                 | macro avg weighted avg AUC-ROC letter -1                                                                                | 0.52<br> 0.69<br> <br>  <b>P</b><br> 0.94<br> 0.09                                                  | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94                                                                                     | 0.52<br> 0.68<br>  <b>F1</b><br> 0.94<br> 0.10                                                                           | 0.76<br>  0.51<br>  0.68<br>  <b>P</b><br>  0.98<br>  0.14                                      | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83                                                                                                | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24                                                        | 0.74<br> 0.85<br> <br>  <b>P</b><br> 0.94                                                                  | 0.81<br> 0.80<br> 0.91<br>  <b>R</b><br> 0.76                                                                                        | 0.77<br> 0.82<br>  <b>F1</b><br> 0.83                                                                                    | 0.79<br> 0.90<br> <br>  <b>P</b><br> 0.98                                                                       | 0.87<br> 0.87<br> 0.94<br>  <b>R</b><br> 0.82                                                                                              | 0.82<br> 0.87<br>  <b>F1</b><br> 0.89<br> 0.31                                                                           | 3861<br>3861<br>support                                         |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929                                                                                                 | macro avg weighted avg AUC-ROC letter -1                                                                                | 0.52<br> 0.69<br> <br>  <b>P</b><br> 0.94<br> 0.09                                                  | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10                                                                             | 0.52<br> 0.68<br>  <b>F1</b><br> 0.94<br> 0.10<br> 0.88                                                                  | 0.76<br> 0.51<br> 0.68<br>  <b>P</b><br> 0.98<br> 0.14                                          | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83<br>  0.66                                                                                      | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24<br>0.66                                                | 0.74<br>  0.85<br>  P<br>  0.94<br>  0.16<br>  0.75                                                        | 0.81<br> 0.80<br> 0.91<br>  <b>R</b><br> 0.76<br> 0.63                                                                               | 0.77<br>  0.82<br>  <b>F1</b><br>  0.83<br>  0.27<br>  0.75                                                              | 0.79<br> 0.90<br> <br>  <b>P</b><br> 0.98<br> 0.20                                                              | 0.87<br> 0.87<br> 0.94<br>  <b>R</b><br> 0.82<br> 0.68                                                                                     | 0.82<br> 0.87<br>  <b>F1</b><br> 0.89<br> 0.31<br> 0.81                                                                  | 3861<br>3861<br>support<br>900<br>60                            |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930                                                                                         | macro avg weighted avg AUC-ROC letter -1 1 accuracy                                                                     | 0.52<br> 0.69<br> <br>  <b>P</b><br> 0.94<br> 0.09<br> 0.88                                         | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88                                                                     | 0.52<br> 0.68<br>  <b>F1</b><br> 0.94<br> 0.10<br> 0.88<br> 0.52                                                         | 0.76<br>  0.51<br>  0.68<br>  <b>P</b><br>  0.98<br>  0.14<br>  0.66<br>  0.56                  | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83<br>  0.66<br>  0.74                                                                            | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24<br>0.66<br>0.51                                        | 0.74<br> 0.85<br> <br>  <b>P</b><br> 0.94<br> 0.16<br> 0.75                                                | 0.81<br> 0.80<br> 0.91<br>  <b>R</b><br> 0.76<br> 0.63<br> 0.75                                                                      | 0.77<br> 0.82<br>  <b>F1</b><br> 0.83<br> 0.27<br> 0.75                                                                  | 0.79<br> 0.90<br>  <b>P</b><br> 0.98<br> 0.20<br> 0.81                                                          | 0.87<br> 0.87<br> 0.94<br>  <b>R</b><br> 0.82<br> 0.68<br> 0.81                                                                            | 0.82<br>  0.87<br>  <b>F1</b><br>  0.89<br>  0.31<br>  0.81                                                              | 3861<br>3861<br>support<br>900<br>60<br>0.81                    |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929                                                                                                 | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg                                                           | 0.52<br> 0.69<br> <br>  <b>P</b><br> 0.94<br> 0.09<br> 0.88                                         | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52                                                             | 0.52<br> 0.68<br>  <b>F1</b><br> 0.94<br> 0.10<br> 0.88<br> 0.52                                                         | 0.76<br>  0.51<br>  0.68<br>  <b>P</b><br>  0.98<br>  0.14<br>  0.66<br>  0.56                  | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83<br>  0.66<br>  0.74                                                                            | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24<br>0.66<br>0.51                                        | 0.74<br> 0.85<br> <br>  <b>P</b><br> 0.94<br> 0.16<br> 0.75                                                | 0.81<br> 0.80<br> 0.91<br>  <b>R</b><br> 0.76<br> 0.63<br> 0.75                                                                      | 0.77<br> 0.82<br>  <b>F1</b><br> 0.83<br> 0.27<br> 0.75                                                                  | 0.79<br> 0.90<br>  <b>P</b><br> 0.98<br> 0.20<br> 0.81                                                          | 0.87<br> 0.87<br> 0.94<br>  <b>R</b><br> 0.82<br> 0.68<br> 0.81                                                                            | 0.82<br>  0.87<br>  <b>F1</b><br>  0.89<br>  0.31<br>  0.60<br>  0.85                                                    | 3861<br>3861<br>support<br>900<br>60<br>0.81<br>960             |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931                                                                                 | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg weighted avg AUC-ROC                                      | 0.52<br> 0.69<br> <br>  <b>P</b><br> 0.94<br> 0.09<br> 0.88                                         | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52<br>0.88                                                     | 0.52<br> 0.68<br>  <b>F1</b><br> 0.94<br> 0.10<br> 0.88<br> 0.52                                                         | 0.76<br>  0.51<br>  0.68<br>  <b>P</b><br>  0.98<br>  0.14<br>  0.66<br>  0.56                  | 0.50<br> 0.76<br> 0.53<br>  <b>R</b><br> 0.65<br> 0.83<br> 0.66<br> 0.74                                                                                  | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24<br>0.66<br>0.51                                        | 0.74<br> 0.85<br> <br>  <b>P</b><br> 0.94<br> 0.16<br> 0.75                                                | 0.81<br> 0.80<br> 0.91<br>  <b>R</b><br> 0.76<br> 0.63<br> 0.75<br> 0.69                                                             | 0.77<br> 0.82<br>  <b>F1</b><br> 0.83<br> 0.27<br> 0.75                                                                  | 0.79<br> 0.90<br>  <b>P</b><br> 0.98<br> 0.20<br> 0.81                                                          | 0.87<br> 0.87<br> 0.94<br>  <b>R</b><br> 0.82<br> 0.68<br> 0.81<br> 0.75                                                                   | <b>F1</b>   0.89   0.81   0.60   0.85                                                                                    | 3861<br>3861<br>support<br>900<br>60<br>0.81<br>960<br>960      |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931<br>1932<br>1933                                                                 | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg weighted avg                                              | 0.52<br> 0.69<br>  P<br> 0.94<br> 0.09<br> 0.88<br> 0.52<br> 0.89                                   | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52<br>0.88<br>0.57<br><b>R</b>                                 | 0.52<br> 0.68<br>  <b>F1</b><br> 0.94<br> 0.10<br> 0.88<br> 0.52<br> 0.89                                                | 0.76<br>0.51<br>0.68<br>P<br>0.98<br>0.14<br>0.66<br>0.56<br>0.93                               | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83<br>  0.66<br>  0.74<br>  0.66<br>  0.85<br>  <b>R</b>                                          | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24<br>0.66<br>0.51<br>0.75                                | 0.74<br>  0.85<br>    P<br>  0.94<br>  0.16<br>  0.75<br>  0.89<br>  P                                     | 0.81<br> 0.80<br> 0.91<br>  <b>R</b><br> 0.76<br> 0.63<br> 0.75<br> 0.69<br> 0.75<br> 0.77                                           | 0.77<br> 0.82<br>  <b>F1</b><br> 0.83<br> 0.27<br> 0.75<br> 0.55<br> 0.80                                                | 0.79<br> 0.90<br>  P<br> 0.98<br> 0.20<br> 0.81<br> 0.59<br> 0.93                                               | 0.87<br> 0.87<br> 0.94<br>  <b>R</b><br> 0.82<br> 0.68<br> 0.81<br> 0.75<br> 0.81                                                          | 0.82<br> 0.87<br>  F1<br> 0.89<br> 0.31<br> 0.81<br> 0.60<br> 0.85                                                       | 3861<br>3861<br>support<br>900<br>60<br>0.81<br>960<br>960      |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931<br>1932<br>1933<br>1933<br>1934<br>1935<br>1936                                 | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg weighted avg AUC-ROC Lymphography -1                      | 0.52<br> 0.69<br> <br>  <b>P</b><br> 0.94<br> 0.88<br> 0.52<br> 0.89<br> <br>  <b>P</b>             | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52<br>0.88<br>0.57<br><b>R</b>                                 | 0.52<br>  0.68<br>  F1<br>  0.94<br>  0.10<br>  0.88<br>  0.52<br>  0.89<br>  F1                                         | 0.76<br>0.51<br>0.68<br>P<br>0.98<br>0.14<br>0.66<br>0.56<br>0.93                               | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83<br>  0.66<br>  0.74<br>  0.66<br>  0.85<br>  <b>R</b>                                          | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24<br>0.66<br>0.51<br>0.75<br><b>F1</b>                   | 0.74<br>  0.85<br>    P   0.94<br>  0.16<br>  0.75<br>  0.55<br>  0.89<br>    P   0.90                     |                                                                                                                                      | 0.77<br>  0.82<br>  F1<br>  0.83<br>  0.27<br>  0.55<br>  0.80<br>  F1                                                   | 0.79<br> 0.90<br>  P   P  0.98<br> 0.20<br> 0.81<br> 0.59<br>  0.93                                             | 0.87<br>  0.87<br>  0.94<br>  R<br>  0.82<br>  0.68<br>  0.81<br>  0.75<br>  0.80<br>  R                                                   | 0.82<br>  0.87<br>  F1<br>  0.89<br>  0.31<br>  0.60<br>  0.85<br>  F1<br>  0.97                                         | 3861 3861  support 900 60 0.81 960 960  support 84              |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931<br>1932<br>1933<br>1934<br>1935<br>1936<br>1937                                 | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg weighted avg AUC-ROC Lymphography -1 1                    | 0.52<br> 0.69<br>  P<br> 0.94<br> 0.09<br> 0.88<br> 0.52<br> 0.89<br>  P<br> 1.00<br> 0.56          | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52<br>0.88<br>0.57<br><b>R</b>                                 | 0.52<br>  0.68<br>  <b>F1</b><br>  0.94<br>  0.10<br>  0.88<br>  0.52<br>  0.89<br>  <b>F1</b>                           | 0.76<br>0.51<br>0.68<br>P<br>0.98<br>0.14<br>0.66<br>0.56<br>0.93<br>P<br>0.00<br>0.06          | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83<br>  0.66<br>  0.74<br>  0.66<br>  0.85<br>  <b>R</b>                                          | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24<br>0.66<br>0.51<br>0.75<br><b>F1</b><br>0.00           | 0.74<br>  0.85<br>    P   P   0.94<br>  0.16<br>  0.75<br>  0.89<br>    P   0.90<br>  0.47                 | 0.81<br>  0.80<br>  0.91<br>  <b>R</b><br>  0.76<br>  0.63<br>  0.75<br>  0.77<br>  <b>R</b><br>  0.94                               | 0.77<br>  0.82<br>  <b>F1</b><br>  0.83<br>  0.27<br>  0.75<br>  0.80<br>  <b>F1</b><br>  0.92                           | 0.79<br>  0.90<br>    P<br>  0.98<br>  0.20<br>  0.81<br>  0.59<br>  0.93<br>    P<br>  0.95<br>  0.50          | 0.87<br>  0.87<br>  0.94<br>  R<br>  0.82<br>  0.68<br>  0.81<br>  0.75<br>  0.80<br>  R<br>  0.99<br>  0.20                               | 0.82<br>  0.87<br>  F1<br>  0.89<br>  0.31<br>  0.60<br>  0.85<br>  F1<br>  0.97<br>  0.29                               | 3861 3861  support 900 60 0.81 960 960  support 84 5            |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931<br>1932<br>1933<br>1934<br>1935<br>1936<br>1937<br>1938                         | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg weighted avg AUC-ROC Lymphography -1 1 accuracy           | 0.52<br> 0.69<br> <br>  P<br> 0.94<br> 0.88<br> 0.52<br> 0.89<br> <br>  P<br> 1.00<br> 0.56         | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52<br>0.88<br>0.57<br><b>R</b><br>0.95<br>1.00                 | 0.52<br> 0.68<br>  F1<br> 0.94<br> 0.10<br> 0.88<br> 0.52<br> 0.89<br>  F1<br> 0.98<br> 0.71                             | 0.76 0.51 0.68  P 0.98 0.14 0.66 0.56 0.93  P 0.00 0.00                                         | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.66<br>  0.66<br>  0.85<br>  <b>R</b><br>  0.00<br>  1.00                                          | 0.48<br>0.71<br><b>F1</b><br>0.78<br>0.24<br>0.66<br>0.51<br>0.75<br><b>F1</b><br>0.00<br>0.11   | 0.74<br>  0.85<br>    P   P   0.94<br>  0.16<br>  0.75<br>  0.89<br>    P   P   0.90<br>  0.47             | 0.81<br>  0.80<br>  0.91<br>  <b>R</b><br>  0.76<br>  0.63<br>  0.75<br>  0.77<br>  <b>R</b><br>  0.94<br>  0.17                     | 0.77<br> 0.82<br>  <b>F1</b><br> 0.83<br> 0.27<br> 0.75<br> 0.55<br> 0.80<br>  <b>F1</b><br> 0.92<br> 0.24               | 0.79<br>  0.90<br>  P   P   0.98<br>  0.20<br>  0.81<br>  0.59<br>  0.93<br>  P   P   0.95<br>  0.50<br>  0.94  | 0.87<br>  0.87<br>  0.94<br>  <b>R</b><br>  0.82<br>  0.68<br>  0.81<br>  0.75<br>  0.81<br>  0.80<br>  <b>R</b><br>  0.99<br>  0.20       | 0.82<br>  0.87<br>  F1<br>  0.89<br>  0.31<br>  0.60<br>  0.85<br>  F1<br>  0.97<br>  0.29                               | 3861 3861  support 900 60 0.81 960 960  support 84 5 0.94       |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931<br>1932<br>1933<br>1934<br>1935<br>1936<br>1937<br>1938<br>1939                 | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg weighted avg AUC-ROC Lymphography -1 1 accuracy           | 0.52<br> 0.69<br>  P<br> 0.94<br> 0.09<br> 0.88<br> 0.52<br> 0.89<br>  P<br> 1.00<br> 0.56<br> 0.96 | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52<br>0.88<br>0.57<br><b>R</b><br>0.95<br>1.00<br>0.96         | 0.52<br>  0.68<br>  F1<br>  0.94<br>  0.10<br>  0.88<br>  0.52<br>  0.89<br>  F1<br>  0.98<br>  0.71<br>  0.96<br>  0.85 | 0.76<br>0.51<br>0.68<br>P<br>0.98<br>0.14<br>0.66<br>0.56<br>0.93<br>P<br>0.00<br>0.06<br>0.006 | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83<br>  0.66<br>  0.74<br>  0.66<br>  0.85<br>  <b>R</b><br>  0.00<br>  1.00<br>  0.066<br>  0.50 | 0.48<br>0.71<br>F1<br>0.78<br>0.24<br>0.66<br>0.51<br>0.75<br>F1<br>0.00<br>0.11<br>0.06<br>0.05 | 0.74<br>  0.85<br>  P   P   0.94<br>  0.16<br>  0.55<br>  0.89<br>  P   0.90<br>  0.47<br>  0.90<br>  0.68 | 0.81<br>  0.80<br>  0.91<br>  <b>R</b><br>  0.76<br>  0.63<br>  0.75<br>  0.77<br>  <b>R</b><br>  0.94<br>  0.17<br>  0.90<br>  0.56 | 0.77<br>  0.82<br>  F1<br>  0.83<br>  0.27<br>  0.75<br>  0.55<br>  0.80<br>  F1<br>  0.92<br>  0.24<br>  0.90<br>  0.58 | 0.79<br>  0.90<br>  P<br>  0.98<br>  0.20<br>  0.81<br>  0.59<br>  0.93<br>  0.95<br>  0.95<br>  0.90<br>  0.94 | 0.87<br>  0.87<br>  0.94<br>  R<br>  0.82<br>  0.68<br>  0.81<br>  0.75<br>  0.80<br>  R<br>  0.20<br>  0.20<br>  0.59                     | 0.82<br>  0.87<br>  F1<br>  0.89<br>  0.31<br>  0.60<br>  0.85<br>  F1<br>  0.97<br>  0.29<br>  0.94                     | 3861 3861 3861 support 900 60 0.81 960 960 support 84 5 0.94 89 |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931<br>1932<br>1933<br>1934<br>1935<br>1936<br>1937<br>1938                         | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg weighted avg AUC-ROC Lymphography -1 1 accuracy macro avg | 0.52<br> 0.69<br>  P<br> 0.94<br> 0.09<br> 0.88<br> 0.52<br> 0.89<br>  P<br> 1.00<br> 0.56<br> 0.96 | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52<br>0.88<br>0.57<br><b>R</b><br>0.95<br>1.00<br>0.96<br>0.98 | 0.52<br>  0.68<br>  F1<br>  0.94<br>  0.10<br>  0.88<br>  0.52<br>  0.89<br>  F1<br>  0.98<br>  0.71<br>  0.96<br>  0.85 | 0.76<br>0.51<br>0.68<br>P<br>0.98<br>0.14<br>0.66<br>0.56<br>0.93<br>P<br>0.00<br>0.06<br>0.006 | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.66<br>  0.66<br>  0.85<br>  <b>R</b><br>  0.00<br>  1.00<br>  0.06<br>  0.50                      | 0.48<br>0.71<br>F1<br>0.78<br>0.24<br>0.66<br>0.51<br>0.75<br>F1<br>0.00<br>0.11<br>0.06<br>0.05 | 0.74<br>  0.85<br>  P   P   0.94<br>  0.16<br>  0.55<br>  0.89<br>  P   0.90<br>  0.47<br>  0.90<br>  0.68 | 0.81<br>  0.80<br>  0.91<br>  <b>R</b><br>  0.76<br>  0.63<br>  0.75<br>  0.77<br>  <b>R</b><br>  0.94<br>  0.17<br>  0.90<br>  0.56 | 0.77<br>  0.82<br>  F1<br>  0.83<br>  0.27<br>  0.75<br>  0.55<br>  0.80<br>  F1<br>  0.92<br>  0.24<br>  0.90<br>  0.58 | 0.79<br>  0.90<br>  P<br>  0.98<br>  0.20<br>  0.81<br>  0.59<br>  0.93<br>  0.95<br>  0.95<br>  0.90<br>  0.94 | 0.87<br>  0.87<br>  0.94<br>  R<br>  0.82<br>  0.68<br>  0.81<br>  0.75<br>  0.81<br>  0.80<br>  R<br>  0.99<br>  0.20<br>  0.94<br>  0.59 | 0.82<br>  0.87<br>  F1<br>  0.89<br>  0.31<br>  0.60<br>  0.85<br>  F1<br>  0.97<br>  0.29<br>  0.94                     | 3861 3861 3861 support 900 60 0.81 960 960 support 84 5 0.94 89 |
| 1921<br>1922<br>1923<br>1924<br>1925<br>1926<br>1927<br>1928<br>1929<br>1930<br>1931<br>1932<br>1933<br>1934<br>1935<br>1935<br>1936<br>1937<br>1938<br>1939<br>1940 | macro avg weighted avg AUC-ROC letter -1 1 accuracy macro avg weighted avg AUC-ROC Lymphography -1 1 accuracy           | 0.52<br> 0.69<br>  P<br> 0.94<br> 0.09<br> 0.88<br> 0.52<br> 0.89<br>  P<br> 1.00<br> 0.56<br> 0.96 | 0.52<br>0.68<br>0.50<br><b>R</b><br>0.94<br>0.10<br>0.88<br>0.52<br>0.88<br>0.57<br><b>R</b><br>0.95<br>1.00<br>0.96         | 0.52<br>  0.68<br>  F1<br>  0.94<br>  0.10<br>  0.88<br>  0.52<br>  0.89<br>  F1<br>  0.98<br>  0.71<br>  0.96<br>  0.85 | 0.76<br>0.51<br>0.68<br>P<br>0.98<br>0.14<br>0.66<br>0.56<br>0.93<br>P<br>0.00<br>0.06<br>0.006 | 0.50<br>  0.76<br>  0.53<br>  <b>R</b><br>  0.65<br>  0.83<br>  0.66<br>  0.74<br>  0.66<br>  0.85<br>  <b>R</b><br>  0.00<br>  1.00<br>  0.066<br>  0.50 | 0.48<br>0.71<br>F1<br>0.78<br>0.24<br>0.66<br>0.51<br>0.75<br>F1<br>0.00<br>0.11<br>0.06<br>0.05 | 0.74<br>  0.85<br>  P   P   0.94<br>  0.16<br>  0.55<br>  0.89<br>  P   0.90<br>  0.47<br>  0.90<br>  0.68 | 0.81<br>  0.80<br>  0.91<br>  <b>R</b><br>  0.76<br>  0.63<br>  0.75<br>  0.77<br>  <b>R</b><br>  0.94<br>  0.17<br>  0.90<br>  0.56 | 0.77<br>  0.82<br>  F1<br>  0.83<br>  0.27<br>  0.75<br>  0.55<br>  0.80<br>  F1<br>  0.92<br>  0.24<br>  0.90<br>  0.58 | 0.79<br>  0.90<br>  P<br>  0.98<br>  0.20<br>  0.81<br>  0.59<br>  0.93<br>  0.95<br>  0.95<br>  0.90<br>  0.94 | 0.87<br>  0.87<br>  0.94<br>  R<br>  0.82<br>  0.68<br>  0.81<br>  0.75<br>  0.80<br>  R<br>  0.20<br>  0.20<br>  0.59                     | 0.82<br>  0.87<br>  F1<br>  0.89<br>  0.31<br>  0.60<br>  0.85<br>  F1<br>  0.97<br>  0.29<br>  0.94<br>  0.63<br>  0.93 | 3861 3861 3861 support 900 60 0.81 960 960 support 84 5 0.94 89 |

| 1944         |              | Table 9                  |
|--------------|--------------|--------------------------|
| 1945         |              | DTE                      |
| 1946         | 1            |                          |
| 1947         | -1           | 0.75   0.75   0.75       |
| 1948         | 1            | 0.54  0.55  0.54         |
| 1949<br>1950 | accuracy     | 0.68 0.68 0.68           |
| 1951         | macro avg    | 0.65  0.65  0.65         |
| 1952         | weighted avg | 0.68 0.68 0.68           |
| 1953         | AUC-ROC      | 0.73                     |
| 1954         | mammography  | <u> </u><br>  P   R   F1 |
| 1955         | -1           | 1                        |
| 1956         | <u> </u>     |                          |
| 1957         | 1            | 0.25 0.26 0.23           |
| 1958         | accuracy     | 0.97   0.97   0.97       |
| 1959         | macro avg    | 0.62  0.62  0.62         |
| 1960<br>1961 | weighted avg | 0.97  0.97  0.97         |
| 1962         | AUC-ROC      | 0.86                     |
| 1963         | mnist        | <u> </u>                 |
| 1964         | -1           | 1 1 1                    |
| 1965         | <u> </u>     | 0.93   0.93   0.93       |
| 1966         | 1            | 0.29  0.30  0.29         |
| 1967         | accuracy     | 0.88  0.88  0.88         |
| 1968         | macro avg    | 0.61   0.61   0.6        |
| 1969         | weighted avg | 0.88 0.88 0.88           |
| 1970         | AUC-ROC      | 0.77                     |
| 1971<br>1972 | musk         | <br>  P   R   F1         |
| 1973         | -1           | 1.00   1.00   1.00       |
| 1974         | 1            | 0.95  1.00  0.98         |
| 1975         | <u> </u>     |                          |
| 1976         | accuracy     | 1.00   1.00   1.00       |
| 1977         | macro avg    | 0.98   1.00   0.99       |
| 1978         | weighted avg | 1.00  1.00  1.00         |
| 1979         | AUC-ROC      | 1.00                     |
| 1980<br>1981 | optdigits    | P   R   F1               |
| 1982         | -1           | 0.97  0.96  0.9          |
| 1983         | 1            | 0.01 0.01 0.0            |
| 1984         | <u> </u>     | 0.94 0.94 0.94           |
| 1985         | accuracy     | 1 1 1                    |
| 1986         | macro avg    | 0.49 0.49 0.49           |
| 1987         | weighted avg | 0.95 0.94 0.94           |
| 1988         | AUC-ROC      | 0.71                     |
| 1989         | PageBlocks   | P   R   F1               |
| 1990<br>1991 | -1           | 0.94 0.94 0.94           |
| 1991         | 1            | 0.43   0.45   0.44       |
| 1993         | accuracy     | 0.89 0.89 0.89           |
| 1994         |              |                          |
| 1995         | macro avg    | 0.69 0.69 0.69           |
| 1996         | weighted avg | 0.89 0.89 0.89           |
| 1997         | AUC-ROC      | 0.92                     |
|              |              |                          |

|                                                                                                                                                                 |                                                                                                                       | Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le 9 co                                                                                                             | ontin                                                                                                                                 | ued f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rom j                                                                                                          | previ                                                                                                                                        | ous p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | age                                                                                                                            |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                 |                                                                                                                       | DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     | ]                                                                                                                                     | Rejex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (                                                                                                              | A                                                                                                                                            | DGy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                                                                                                                              | Swi                                                                                                                                    | ft Hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dra                                                                                                                                          |                                                                                                                                |
| -1                                                                                                                                                              | 0.75                                                                                                                  | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75                                                                                                                | 0.72                                                                                                                                  | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.82                                                                                                           | 0.87                                                                                                                                         | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.76                                                                                                                           | 0.93                                                                                                                                   | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.82                                                                                                                                         | 7422                                                                                                                           |
| 1                                                                                                                                                               | 0.54                                                                                                                  | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54                                                                                                                | 0.75                                                                                                                                  | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.44                                                                                                           | 0.60                                                                                                                                         | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.71                                                                                                                           | 0.65                                                                                                                                   | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75                                                                                                                                         | 3990                                                                                                                           |
| accuracy                                                                                                                                                        | 0.68                                                                                                                  | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.68                                                                                                                | 0.72                                                                                                                                  | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.72                                                                                                           | 0.75                                                                                                                                         | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.75                                                                                                                           | 0.79                                                                                                                                   | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.79                                                                                                                                         | 0.79                                                                                                                           |
| macro avg                                                                                                                                                       | 0.65                                                                                                                  | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.65                                                                                                                | 0.74                                                                                                                                  | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.63                                                                                                           | 0.73                                                                                                                                         | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.74                                                                                                                           | 0.79                                                                                                                                   | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.79                                                                                                                                         | 11412                                                                                                                          |
| weighted avg                                                                                                                                                    | 0.68                                                                                                                  | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.68                                                                                                                | 0.73                                                                                                                                  | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.69                                                                                                           | 0.77                                                                                                                                         | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.75                                                                                                                           | 0.83                                                                                                                                   | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.80                                                                                                                                         | 11412                                                                                                                          |
| AUC-ROC                                                                                                                                                         | Ì                                                                                                                     | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                     |                                                                                                                                       | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                                              | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                |                                                                                                                                        | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              | <u> </u>                                                                                                                       |
| mammography                                                                                                                                                     | P                                                                                                                     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1                                                                                                                  | P                                                                                                                                     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1                                                                                                             | P                                                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F1                                                                                                                             | P                                                                                                                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1                                                                                                                                           | support                                                                                                                        |
| -1                                                                                                                                                              | 0.98                                                                                                                  | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.98                                                                                                                | 0.99                                                                                                                                  | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90                                                                                                           | 0.93                                                                                                                                         | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.90                                                                                                                           | 1.00                                                                                                                                   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.93                                                                                                                                         | 6558                                                                                                                           |
| 1                                                                                                                                                               | 0.25                                                                                                                  | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                | 0.08                                                                                                                                  | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14                                                                                                           | 0.06                                                                                                                                         | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17                                                                                                                           | 0.13                                                                                                                                   | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23                                                                                                                                         | 152                                                                                                                            |
| accuracy                                                                                                                                                        | 0.97                                                                                                                  | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97                                                                                                                | 0.82                                                                                                                                  | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.82                                                                                                           | 0.80                                                                                                                                         | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.80                                                                                                                           | 0.87                                                                                                                                   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                                                                         | 0.87                                                                                                                           |
| macro avg                                                                                                                                                       | 0.62                                                                                                                  | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.62                                                                                                                | 0.53                                                                                                                                  | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.52                                                                                                           | 0.50                                                                                                                                         | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.53                                                                                                                           | 0.56                                                                                                                                   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.58                                                                                                                                         | 6710                                                                                                                           |
| weighted avg                                                                                                                                                    | 0.97                                                                                                                  | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97                                                                                                                | 0.97                                                                                                                                  | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.88                                                                                                           | 0.91                                                                                                                                         | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.88                                                                                                                           | 0.98                                                                                                                                   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.91                                                                                                                                         | 6710                                                                                                                           |
| AUC-ROC                                                                                                                                                         |                                                                                                                       | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                     |                                                                                                                                       | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                                              | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                |                                                                                                                                        | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                |
| mnist                                                                                                                                                           | P                                                                                                                     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1                                                                                                                  | P                                                                                                                                     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1                                                                                                             | P                                                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F1                                                                                                                             | P                                                                                                                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1                                                                                                                                           | support                                                                                                                        |
| -1                                                                                                                                                              | 0.93                                                                                                                  | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.93                                                                                                                | 0.94                                                                                                                                  | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                           | 0.94                                                                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.91                                                                                                                           | 1.00                                                                                                                                   | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97                                                                                                                                         | 4172                                                                                                                           |
| 1                                                                                                                                                               | 0.29                                                                                                                  | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29                                                                                                                | 0.46                                                                                                                                  | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.35                                                                                                           | 0.57                                                                                                                                         | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70                                                                                                                           | 0.60                                                                                                                                   | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.74                                                                                                                                         | 390                                                                                                                            |
| accuracy                                                                                                                                                        | 0.88                                                                                                                  | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.88                                                                                                                | 0.91                                                                                                                                  | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.91                                                                                                           | 0.90                                                                                                                                         | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.90                                                                                                                           | 0.94                                                                                                                                   | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.94                                                                                                                                         | 0.94                                                                                                                           |
| macro avg                                                                                                                                                       | 0.61                                                                                                                  | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.61                                                                                                                | 0.70                                                                                                                                  | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.65                                                                                                           | 0.76                                                                                                                                         | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.80                                                                                                                           | 0.80                                                                                                                                   | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85                                                                                                                                         | 4562                                                                                                                           |
| weighted avg                                                                                                                                                    | 0.88                                                                                                                  | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.88                                                                                                                | 0.89                                                                                                                                  | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90                                                                                                           | 0.91                                                                                                                                         | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.89                                                                                                                           | 0.96                                                                                                                                   | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                                                         | 4562                                                                                                                           |
| AUC-ROC                                                                                                                                                         | 1                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                |
| / NOC-ROC                                                                                                                                                       |                                                                                                                       | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                     |                                                                                                                                       | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                                              | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                |                                                                                                                                        | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                |
| musk                                                                                                                                                            | <br>  P                                                                                                               | 0.77<br>  <b>R</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F1                                                                                                                  | <br>  P                                                                                                                               | 0.79<br><b>R</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>F</b> 1                                                                                                     | <br>  P                                                                                                                                      | 0.92<br>  <b>R</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F1                                                                                                                             | <br>  <b>P</b>                                                                                                                         | 0.98<br>  <b>R</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F1                                                                                                                                           | support                                                                                                                        |
|                                                                                                                                                                 | ı                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                                                                                                                   | l .                                                                                                                                   | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | !                                                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                                                                                                                              | ı                                                                                                                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                                                                                                                                            |                                                                                                                                |
| musk                                                                                                                                                            | ı                                                                                                                     | <b>R</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                | 0.98                                                                                                                                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.99                                                                                                           | 0.96                                                                                                                                         | <b>R</b><br> 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                                           | 1.00                                                                                                                                   | <b>R</b><br> 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                         | 1777                                                                                                                           |
| musk<br>-1                                                                                                                                                      | 1.00                                                                                                                  | <b>R</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                | 0.98                                                                                                                                  | <b>R</b><br> 1.00<br> 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99<br>0.47                                                                                                   | 0.96                                                                                                                                         | <b>R</b><br> 0.93<br> 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.95                                                                                                                           | 1.00                                                                                                                                   | <b>R</b><br> 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                         | 1777                                                                                                                           |
| musk -1                                                                                                                                                         | 1.00<br> 0.95<br> 1.00                                                                                                | R<br>  1.00<br>  1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00<br> 0.98<br> 1.00                                                                                              | 0.98                                                                                                                                  | <b>R</b><br> 1.00<br> 0.34<br> 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99<br>0.47<br>0.97                                                                                           | 0.96                                                                                                                                         | <b>R</b><br> 0.93<br> 0.94<br> 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.95<br>0.96<br>0.93                                                                                                           | 1.00                                                                                                                                   | <b>R</b><br> 1.00<br> 1.00<br> 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                         | 1777                                                                                                                           |
| musk -1 1 accuracy                                                                                                                                              | 1.00<br> 0.95<br> 1.00<br> 0.98                                                                                       | <b>R</b><br>  1.00<br>  1.00<br>  1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00<br> 0.98<br> 1.00<br> 0.99                                                                                     | 0.98<br> 0.72<br> 0.97<br> 0.85                                                                                                       | <b>R</b><br> 1.00<br> 0.34<br> 0.97<br> 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99<br> 0.47<br> 0.97<br> 0.73                                                                                | 0.96<br> 0.95<br> 0.93<br> 0.95                                                                                                              | <b>R</b><br> 0.93<br> 0.94<br> 0.93<br> 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.95<br>0.96<br>0.93<br>0.95                                                                                                   | 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                                        | <b>R</b><br> 1.00<br> 1.00<br> 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                                              | 1777  <br>  61  <br>  1.00                                                                                                     |
| musk -1 1 accuracy macro avg                                                                                                                                    | 1.00<br> 0.95<br> 1.00<br> 0.98                                                                                       | R<br>  1.00<br>  1.00<br>  1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00<br> 0.98<br> 1.00<br> 0.99                                                                                     | 0.98<br> 0.72<br> 0.97<br> 0.85                                                                                                       | <b>R</b><br> 1.00<br> 0.34<br> 0.97<br> 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99<br> 0.47<br> 0.97<br> 0.73                                                                                | 0.96<br> 0.95<br> 0.93<br> 0.95                                                                                                              | <b>R</b><br> 0.93<br> 0.94<br> 0.93<br> 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.95<br> 0.96<br> 0.93<br> 0.95                                                                                                | 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                                        | <b>R</b><br> 1.00<br> 1.00<br> 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                                              | 1777  <br>  61  <br>  1.00                                                                                                     |
| musk -1 1 accuracy macro avg weighted avg                                                                                                                       | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00                                                                              | R<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00                                                                            | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97                                                                                              | <b>R</b><br> 1.00<br> 0.34<br> 0.97<br> 0.67<br> 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99<br>0.47<br>0.97<br>0.73<br>0.97                                                                           | 0.96<br> 0.95<br> 0.93<br> 0.95<br> 0.96                                                                                                     | <b>R</b><br> 0.93<br> 0.94<br> 0.93<br> 0.94<br> 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.95<br> 0.96<br> 0.93<br> 0.95<br> 0.95                                                                                       | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                               | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                                     | 1777  <br>  61  <br>  1.00                                                                                                     |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC                                                                                                            | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br>                                                                          | R<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00                                                                            | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97                                                                                              | R<br> 1.00<br> 0.34<br> 0.97<br> 0.67<br> 0.97<br> 0.96<br>  R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99<br>0.47<br>0.97<br>0.73<br>0.97                                                                           | 0.96<br> 0.95<br> 0.93<br> 0.95<br> 0.96                                                                                                     | R<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br>  R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.95<br> 0.96<br> 0.93<br> 0.95<br> 0.95                                                                                       | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                               | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00                                                                                                     | 1777   61   1.00   1838   1838   support                                                                                       |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC optdigits                                                                                                  | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br> <br>  <b>P</b>                                                           | R<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  <b>F1</b><br> 0.97                                                    | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br> <br>  <b>P</b>                                                                           | R<br> 1.00<br> 0.34<br> 0.97<br> 0.67<br> 0.97<br> 0.96<br>  R<br> 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.92                                                      | 0.96<br> 0.95<br> 0.95<br> 0.95<br> 0.96<br> <br>  <b>P</b>                                                                                  | <b>R</b>     0.93     0.94     0.93   0.94     <b>R</b>     0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.95<br> 0.96<br> 0.93<br> 0.95<br> 0.95<br>  <b>F1</b><br> 0.92                                                               | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> <br>  <b>P</b>                                                                            | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  R<br> 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  <b>F1</b><br> 0.98                                                                             | 1777   61   1.00   1838   1838   support                                                                                       |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC optdigits  -1                                                                                              | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br> <br>  <b>P</b><br> 0.97                                                  | R<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  R<br>  0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  <b>F1</b><br> 0.97                                                    | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br> <br>  <b>P</b><br> 0.97                                                                  | R<br> 1.00<br> 0.34<br> 0.97<br> 0.67<br> 0.96<br>  R<br> 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.92<br>0.00                                              | 0.96<br> 0.95<br> 0.95<br> 0.95<br> 0.96<br> <br>  <b>P</b><br> 0.94                                                                         | R<br> 0.93<br> 0.94<br> 0.94<br> 0.93<br> 0.94<br>  R<br> 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.95<br> 0.96<br> 0.93<br> 0.95<br> 0.95<br>  <b>F1</b><br> 0.92<br> 0.59                                                      | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>    <b>P</b><br> 1.00<br> 0.45                                                             | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  R<br> 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  <b>F1</b><br> 0.98                                                                             | 1777   61   1.00   1838   1838                                                                                                 |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC optdigits  -1  1                                                                                           | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br> <br>  <b>P</b><br> 0.97<br> 0.01<br> 0.94                                | R<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  R<br>  0.96<br>  0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  <b>F1</b><br> 0.97<br> 0.01                                           | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br> <br>  <b>P</b><br> 0.97<br> 0.00                                                         | R<br> 1.00<br> 0.34<br> 0.97<br> 0.67<br> 0.96<br>  R<br> 0.88<br> 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.99<br>  0.47<br>  0.97<br>  0.73<br>  0.97<br>  <b>F1</b><br>  0.92<br>  0.00<br>  0.86                      | 0.96<br> 0.95<br> 0.95<br> 0.96<br> 0.96<br>  <b>P</b><br> 0.94<br> 0.38                                                                     | R<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br> 0.93<br>  R<br> 0.91<br> 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.95<br> 0.96<br> 0.93<br> 0.95<br> 0.95<br>  <b>F1</b><br> 0.92<br> 0.59                                                      | 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>    <b>P</b><br> 1.00<br> 0.45                                                             | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  R<br> 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  <b>F1</b><br>  0.98<br>  0.62                                                              | 1777   61   1.00   1838   1838                                                                                                 |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC optdigits  -1  1 accuracy                                                                                  | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br> <br>  <b>P</b><br> 0.97<br> 0.01<br> 0.94<br> 0.49                       | R<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  R<br>  0.96<br>  0.01<br>  0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  <b>F1</b><br> 0.97<br> 0.01<br> 0.94                                  | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br> <br>  <b>P</b><br> 0.97<br> 0.00<br> 0.86                                                | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.0 | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.92<br>0.00<br>0.86                                      | 0.96<br> 0.95<br> 0.95<br> 0.96<br> 0.96<br> <br>  P<br> 0.94<br> 0.38<br> 0.91                                                              | R     0.93     0.94     0.93     0.94     R     0.91     0.97     0.91     0.91     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94 | 0.95<br>  0.96<br>  0.95<br>  0.95<br>  F1<br>  0.92<br>  0.59<br>  0.75                                                       | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  0.45<br>  0.97                                                   | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  F1<br>  0.98<br>  0.62<br>  0.80                                                           | 1777<br>  61<br>  1.00<br>  1838<br>  1838<br>  support<br>  3044<br>  86<br>  0.97                                            |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC optdigits  -1  1 accuracy macro avg                                                                        | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br> <br>  <b>P</b><br> 0.97<br> 0.01<br> 0.94<br> 0.49                       | R<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  R<br>  0.96<br>  0.01<br>  0.94<br>  0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  <b>F1</b><br> 0.97<br> 0.01<br> 0.94                                  | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br> <br>  <b>P</b><br> 0.97<br> 0.00<br> 0.86                                                | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.0 | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.92<br>0.00<br>0.86                                      | 0.96<br> 0.95<br> 0.95<br> 0.96<br> 0.96<br> <br>  P<br> 0.94<br> 0.38<br> 0.91                                                              | R     0.93     0.94     0.93     0.94     R     0.91     0.97     0.91     0.91     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.94 | 0.95<br>  0.96<br>  0.95<br>  0.95<br>  F1<br>  0.92<br>  0.59<br>  0.75                                                       | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  0.45<br>  0.97                                                   | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  F1<br>  0.98<br>  0.62<br>  0.80                                                           | 1777   61   1.00   1838   1838                                                                                                 |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC optdigits  -1  1  accuracy macro avg                                                                       | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br> <br>  <b>P</b><br> 0.97<br> 0.01<br> 0.94<br> 0.49                       | R<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  R<br>  0.96<br>  0.01<br>  0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  <b>F1</b><br> 0.97<br> 0.01<br> 0.94                                  | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br> <br>  <b>P</b><br> 0.97<br> 0.00<br> 0.86                                                | R     1.00     0.34     0.97     0.67     0.96     R     0.88     0.01     0.86     0.86     0.86     0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.92<br>0.00<br>0.86                                      | 0.96<br> 0.95<br> 0.95<br> 0.96<br> 0.96<br> <br>  P<br> 0.94<br> 0.38<br> 0.91                                                              | R<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br>  R<br> 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.95<br>  0.96<br>  0.95<br>  0.95<br>  F1<br>  0.92<br>  0.59<br>  0.75                                                       | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  0.45<br>  0.97                                                   | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  R<br> 0.97<br> 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  F1<br>  0.98<br>  0.62<br>  0.97<br>  0.80                                                 | 1777   61   1.00   1838   1838                                                                                                 |
| musk  -1  1  accuracy  macro avg  weighted avg  AUC-ROC  optdigits  -1  1  accuracy  macro avg  weighted avg                                                    | 1.00   0.95   1.00   0.98   1.00    P                                                                                 | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00   1.00     1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  F1<br> 0.97<br> 0.01<br> 0.94<br> 0.49<br> 0.94                       | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br>  P<br> 0.00<br> 0.86<br> 0.49<br> 0.94<br>                                               | R     1.00     0.34     0.97     0.67     0.96     R     0.01     0.86     0.45     0.86   0.36     R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.92<br>0.00<br>0.86<br>0.46<br>0.90                      | 0.96<br>  0.95<br>  0.93<br>  0.95<br>  0.96<br>  P<br>  0.38<br>  0.91<br>  0.66<br>  0.93<br>  P                                           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95<br> 0.96<br> 0.93<br> 0.95<br> 0.95<br>  F1<br> 0.92<br> 0.59<br> 0.91<br> 0.75<br> 0.91                                  | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>    P<br>  0.45<br>  0.97<br>  0.72<br>  0.99<br>                            | R     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00 | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  F1<br>  0.98<br>  0.62<br>  0.97<br>  0.80<br>  0.97                             | 1777   61   1.00   1838   1838                                                                                                 |
| musk  -1  1 accuracy macro avg weighted avg AUC-ROC optdigits  -1  1 accuracy macro avg weighted avg AUC-ROC PageBlocks                                         | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br>  P<br> 0.97<br> 0.01<br> 0.94<br> 0.49<br> 0.95<br>                      | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.0 | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  F1<br> 0.97<br> 0.01<br> 0.94<br> 0.94                                | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br>  P<br> 0.00<br> 0.86<br> 0.49<br> 0.94<br>  P                                            | R     1.00     0.34     0.97     0.67     0.96     R     0.88     0.01     0.86     0.36     R     0.95     0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.92<br>0.00<br>0.86<br>0.46<br>0.90<br><b>F1</b>         | 0.96<br>  0.95<br>  0.93<br>  0.95<br>  0.96<br>    P<br>  0.38<br>  0.91<br>  0.66<br>  0.93<br>  P                                         | R<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br>  R<br> 0.91<br> 0.97<br> 0.91<br> 0.94<br> 0.91<br> 0.97<br>  R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  0.45<br>  0.97<br>  0.72<br>  0.99<br>    P            | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  R<br> 0.97<br> 0.97<br> 0.98<br> 0.97<br> 1.00<br>  R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  F1<br>  0.62<br>  0.62<br>  0.97<br>  0.80<br>  0.97                                       | 1777   61   1.00   1838   1838                                                                                                 |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC optdigits  -1  1  accuracy macro avg weighted avg AUC-ROC Optdigits  -1  -1  -1  -1  -1  -1  -1  -1  -1  - | 1.00   0.95   1.00   0.98   1.00                                                                                      | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.0 | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  F1<br> 0.97<br> 0.01<br> 0.49<br> 0.94<br>  F1<br> 0.94               | 0.98<br>  0.72<br>  0.97<br>  0.85<br>  0.97<br>  P<br>  0.00<br>  0.86<br>  0.49<br>  0.94<br>  P<br>  0.97                          | R     1.00     0.34       0.97     0.67     0.96     R         0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.96<br>0.46<br>0.90<br><b>F1</b><br>0.96                 | 0.96<br>  0.95<br>  0.93<br>  0.95<br>  0.96<br>  P<br>  0.38<br>  0.91<br>  0.66<br>  0.93<br>  P                                           | R<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br>  R<br> 0.91<br> 0.94<br> 0.97<br> 0.97<br> 0.97<br> 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  0.45<br>  0.97<br>  0.72<br>  0.99<br>    P                      | R     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00 | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  0.62<br>  0.62<br>  0.80<br>  0.80<br>  0.97                 | 1777<br>  61<br>  1.00<br>  1838<br>  1838<br>  support<br>  3044<br>  86<br>  0.97<br>  3130<br>  3130<br>  support<br>  2916 |
| musk  -1  1  accuracy macro avg weighted avg AUC-ROC optdigits  -1  1  accuracy macro avg weighted avg AUC-ROC PageBlocks  -1  1                                | 1.00<br> 0.95<br> 1.00<br> 0.98<br> 1.00<br>  P<br> 0.97<br> 0.01<br> 0.49<br> 0.49<br> 0.95<br>  P<br> 0.94<br> 0.43 | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.0 | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  F1<br> 0.97<br> 0.01<br> 0.94<br> 0.49<br> 0.94<br> 0.94              | 0.98<br> 0.72<br> 0.97<br> 0.85<br> 0.97<br>  <b>P</b><br> 0.97<br> 0.00<br> 0.86<br> 0.49<br>    <b>P</b><br> 0.94<br>      <b>P</b> | R     1.00     0.34     0.97     0.67     0.96     R     0.88     0.01     0.86     0.36     R     0.95     0.69     0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.96<br>0.96<br>0.64<br>0.92                              | 0.96<br>  0.95<br>  0.93<br>  0.95<br>  0.96<br>  P<br>  0.94<br>  0.38<br>  0.91<br>  0.66<br>  0.93<br>  P<br>  0.94<br>  0.94             | R<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br>  R<br> 0.91<br> 0.91<br> 0.91<br> 0.91<br> 0.91<br> 0.96<br> 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  0.45<br>  0.97<br>  0.72<br>  0.79<br>  1.00<br>  0.56<br>  0.92 | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  R<br> 0.97<br> 0.98<br> 0.97<br> 1.00<br>  R<br> 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  F1<br>  0.98<br>  0.62<br>  0.97<br>  F1<br>  0.95<br>  0.71<br>  0.92           | 1777   61   1.00   1838   1838                                                                                                 |
| musk  -1  1  accuracy  macro avg  weighted avg  AUC-ROC  optdigits  -1  1  accuracy  macro avg  weighted avg  AUC-ROC  PageBlocks  -1  1  accuracy              | 1.00   0.95   1.00   0.98   1.00                                                                                      | R   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.0 | 1.00<br> 0.98<br> 1.00<br> 0.99<br> 1.00<br>  <b>F1</b><br> 0.01<br> 0.49<br> 0.94<br>  <b>F1</b><br> 0.94<br> 0.94 | 0.98<br>  0.72<br>  0.97<br>  0.85<br>  0.97<br>  P<br>  0.00<br>  0.86<br>  0.49<br>  0.94<br>  P<br>  0.59<br>  0.59                | R     1.00     0.34     0.97     0.67     0.96     R     0.88     0.45     0.36     R     0.95     0.96     0.95     0.92     0.92     0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99<br>0.47<br>0.97<br>0.73<br>0.97<br><b>F1</b><br>0.96<br>0.46<br>0.90<br><b>F1</b><br>0.96<br>0.64<br>0.92 | 0.96<br>  0.95<br>  0.93<br>  0.95<br>  0.96<br>  P<br>  0.38<br>  0.91<br>  0.66<br>  0.93<br>    P<br>  0.94<br>  0.49<br>  0.86<br>  0.72 | R<br> 0.93<br> 0.94<br> 0.93<br> 0.94<br>  R<br> 0.91<br> 0.97<br> 0.91<br> 0.97<br>  R<br> 0.86<br> 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95<br>  0.96<br>  0.93<br>  0.95<br>  0.95<br>  10.95<br>  0.91<br>  0.75<br>  0.91<br>  10.89<br>  0.66<br>  0.86<br>  0.78 | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  0.45<br>  0.97<br>  0.72<br>  0.99<br>  1.00<br>  0.56<br>  0.56 | R<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br> 1.00<br>  R<br> 0.97<br> 1.00<br>  R<br> 0.92<br> 0.92<br> 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  1.00<br>  F1<br>  0.62<br>  0.62<br>  0.80<br>  0.97<br>  F1<br>  0.95<br>  0.71<br>  0.98 | 1777   61   1.00   1838   1838                                                                                                 |

Table 9 continued from previous page

| Pendigits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| accuracy           0.97   0.97   0.97   0.81   0.81   0.81   0.93   0.93   0.93   0.98   0.98   0.98   0.98   0.98   0.62   0.62   0.62   0.53   0.70   0.51   0.72   0.93   0.81   0.78   0.99   0.85   4122   0.97   0.97   0.97   0.97   0.97   0.97   0.81   0.88   0.94   0.93   0.94   0.99   0.98   0.99   4122   0.73   0.66   0.69   0.00   0.00   0.00   0.74   0.59   0.66   0.78   0.64   0.70   294   0.93   0.84   0.60   0.54   0.52   0.67   0.58   167   0.64   0.62   0.62   0.62   0.36   0.00   0.00   0.74   0.59   0.66   0.78   0.64   0.70   294   0.62   0.62   0.62   0.62   0.36   0.36   0.36   0.60   0.60   0.60   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.66   0.69   0.60   0.61   0.60   0.61   0.60   0.60   0.60   0.60   0.65   0.66   0.64   461   0.60   0.64   0.62   0.63   0.13   0.36   0.19   0.65   0.60   0.62   0.68   0.65   0.66   461   0.40   0.60   0.60   0.65   0.66   0.70   0.50   0.60   0.65   0.66   0.70   0.50   0.60   0.65   0.66   0.70   0.50   0.60   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65   0.65           |
| macro avg           0.62   0.62   0.62   0.53   0.70   0.51   0.72   0.93   0.81   0.78   0.99   0.85   4122           weighted avg           0.97   0.97   0.97   0.97   0.81   0.88   0.94   0.93   0.94   0.99   0.98   0.99   4122           AUC-ROC           0.93   0.83   0.95   1.00             Pima           P   R   F1   support           -1           0.73   0.66   0.69   0.00   0.00   0.00   0.74   0.59   0.66   0.78   0.64   0.70   294           1           0.48   0.56   0.52   0.36   1.00   0.53   0.48   0.60   0.54   0.52   0.67   0.58   167           accuracy           0.62   0.62   0.62   0.63   0.36   0.36   0.60   0.60   0.60   0.65   0.65   0.65   0.65   0.65           macro avg           0.60   0.61   0.60   0.18   0.50   0.27   0.61   0.60   0.60   0.65   0.65   0.66   0.64   461   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0                                                                                                                                                                                                                                                               |
| weighted avg           0.97   0.97   0.97   0.97   0.981   0.88   0.94   0.93   0.94   0.99   0.98   0.99   4122             AUC-ROC           0.93   0.83   0.95   1.00             Pima           P   R   F1   support           -1           0.73   0.66   0.69   0.00   0.00   0.00   0.74   0.59   0.66   0.78   0.64   0.70   294             1           0.48   0.56   0.52   0.36   1.00   0.53   0.48   0.60   0.54   0.52   0.67   0.58   167             accuracy           0.62   0.62   0.62   0.36   0.36   0.36   0.36   0.60   0.60   0.65   0.65   0.65   0.65   0.65             macro avg           0.60   0.61   0.60   0.18   0.50   0.27   0.61   0.60   0.60   0.65   0.66   0.64   461             weighted avg           0.64   0.62   0.63   0.13   0.36   0.19   0.65   0.60   0.62   0.68   0.55   0.66   461             AUC-ROC           0.66   0.57   0.66   0.70             satellite           P   R   F1   P   R   F1   P   R   F1   P   R   F1   support           -1           0.81   0.79   0.80   0.70   0.98   0.82   0.91   0.84   0.86   0.96   0.88   0.92   2626             1           0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235             accuracy           0.74   0.74   0.74   0.70   0.70   0.70   0.86   0.86   0.86   0.89   0.89   0.89             macro avg           0.70   0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861             weighted avg           0.74   0.74   0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AUC-ROC         0.93         0.83         0.95         1.00           Pima         P         R         F1         support           -1           0.73<   0.66   0.69   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.59   0.66   0.52   0.65   0.65   0.58   167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pima         P   R   F1   Support           -1           0.73   0.66   0.69   0.00   0.00   0.00   0.74   0.59   0.66   0.78   0.64   0.70   294             1           0.48   0.56   0.52   0.36   1.00   0.53   0.48   0.60   0.54   0.52   0.67   0.58   167             accuracy           0.62   0.62   0.62   0.36   0.36   0.36   0.60   0.60   0.60   0.65   0.65   0.65   0.65   0.65             macro avg           0.60   0.61   0.60   0.18   0.50   0.27   0.61   0.60   0.60   0.65   0.66   0.64   461             weighted avg           0.64   0.62   0.63   0.13   0.36   0.19   0.65   0.60   0.62   0.68   0.65   0.66   461             AUC-ROC           0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1   0.73   0.66   0.69   0.00   0.00   0.74   0.59   0.66   0.78   0.64   0.70   294   1   0.48   0.56   0.52   0.36   1.00   0.53   0.48   0.60   0.54   0.52   0.67   0.58   167   accuracy   0.62   0.62   0.62   0.36   0.36   0.36   0.60   0.60   0.65   0.65   0.65   0.65   macro avg   0.60   0.61   0.60   0.18   0.50   0.27   0.61   0.60   0.60   0.65   0.66   0.64   461   weighted avg   0.64   0.62   0.63   0.13   0.36   0.19   0.65   0.60   0.62   0.68   0.65   0.66   461   AUC-ROC   0.66   0.57   0.66   0.70   satellite   P   R   F1   P   R   F1   P   R   F1   P   R   F1   support   -1   0.81   0.79   0.80   0.70   0.98   0.82   0.91   0.84   0.86   0.96   0.88   0.92   2626   1   0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235   accuracy   0.74   0.74   0.74   0.70   0.70   0.70   0.86   0.86   0.89   0.89   0.89   macro avg   0.70   0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861   weighted avg   0.74   0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90   AUC-ROC   0.70   0.73   0.89   0.96    Satimage-2   P   R   F1   P   R   F1   P   R   F1   P   R   F1   support   -1   1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440   1   0.80   0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42   accuracy   0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| accuracy           0.62   0.62   0.62   0.36   0.36   0.36   0.36   0.60   0.60   0.65   0.65   0.65   0.65   0.65           0.65             macro avg           0.60   0.61   0.60   0.18   0.50   0.27   0.61   0.60   0.60   0.65   0.66   0.64   461             weighted avg           0.64   0.62   0.63   0.13   0.36   0.19   0.65   0.60   0.62   0.68   0.65   0.66   461             AUC-ROC           0.66     0.57     0.66     0.70               satellite           P   R   F1   P   R   F1   P   R   F1   P   R   F1   support           -1           0.81   0.79   0.80   0.70   0.98   0.82   0.91   0.84   0.86   0.96   0.88   0.92   2626             1           0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235             accuracy           0.74   0.74   0.74   0.70   0.70   0.70   0.86   0.86   0.86   0.89   0.89   0.89             macro avg           0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861             weighted avg           0.74   0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90             AUC-ROC           0.70   0.73   0.89   0.96             satimage-2           P   R   F1   P   R   F1   P   R   F1   P   R   F1   support           -1           1.00   1.00   1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98             macro avg           0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| macro avg           0.60   0.61   0.60   0.18   0.50   0.27   0.61   0.60   0.65   0.66   0.64   461             weighted avg           0.64   0.62   0.63   0.13   0.36   0.19   0.65   0.60   0.62   0.68   0.65   0.66   461             AUC-ROC           0.66   0.57   0.66   0.70             satellite           P   R   F1   P   R   F1   P   R   F1   P   R   F1   support           -1           0.81   0.79   0.80   0.70   0.98   0.82   0.91   0.84   0.86   0.96   0.88   0.92   2626             1           0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235             accuracy           0.74   0.74   0.74   0.70   0.70   0.70   0.86   0.86   0.86   0.86   0.89   0.89   0.89           0.89             macro avg           0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861           weighted avg           0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90   3861             AUC-ROC           0.70   0.73   0.89   0.96             0.96             1.00   1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440             1           0.80   0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42           42             accuracy           1.00   1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98           0.98             macro avg           0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| weighted avg           0.64   0.62   0.63   0.13   0.36   0.19   0.65   0.60   0.62   0.68   0.65   0.66           461           AUC-ROC           0.66   0.57   0.66   0.70             0.66   0.70             satellite           P   R   F1   support           -1           0.81   0.79   0.80   0.70   0.98   0.82   0.91   0.84   0.86   0.96   0.88   0.92   2626             1           0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235             accuracy           0.74   0.74   0.74   0.70   0.70   0.70   0.86   0.86   0.86   0.89   0.89   0.89             macro avg           0.70   0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861             weighted avg           0.74   0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90   3861             AUC-ROC           0.70   0.73   0.89   0.96             0.96             satimage-2           P   R   F1   P   R   F1   P   R   F1   P   R   F1   support           -1           1.00   1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440             1           0.80   0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42             accuracy           1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98             macro avg           0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AUC-ROC         0.66         0.57         0.66         0.70           satellite         P R   F1   P   R   F1   P   R   F1   P   R   F1   P   R   F1   P   R   F1   Support           -1          0.81   0.79   0.80   0.70   0.98   0.82   0.91   0.84   0.86   0.96   0.88   0.92   2626           1          0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235             accuracy          0.74   0.74   0.74   0.70   0.70   0.70   0.86   0.86   0.86   0.89   0.89   0.89   0.89             macro avg          0.70   0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861             weighted avg          0.74   0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90             AUC-ROC          0.70    0.73    0.89    0.96             satimage-2          P   R   F1   P   R   F1   P   R   F1   P   R   F1   support           -1          1.00   1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440             1          0.80   0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42             accuracy          1.00   1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98             macro avg          0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| satellite         P   R   F1   support           -1           0.81   0.79   0.80   0.70   0.98   0.82   0.91   0.84   0.86   0.96   0.88   0.92   2626             1           0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235             accuracy           0.74   0.74   0.74   0.70   0.70   0.70   0.86   0.86   0.86   0.89   0.89   0.89           0.89             macro avg           0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861           weighted avg           0.74   0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90   3861             AUC-ROC           0.70     0.73     0.89     0.96             0.96             satimage-2           P   R   F1   P   R   F1   P   R   F1   P   R   F1   support           -1           1.00   1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440             1           0.80   0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42             accuracy           1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98             macro avg           0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -1    0.81   0.79   0.80   0.70   0.98   0.82   0.91   0.84   0.86   0.96   0.88   0.92   2626    1    0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235    accuracy    0.74    0.74    0.74    0.70    0.70    0.86    0.86    0.86    0.89    0.89    0.89    macro avg    0.70    0.70    0.72    0.55    0.51    0.82    0.87    0.83    0.87    0.90    0.88    3861    weighted avg    0.74    0.74    0.74    0.72    0.70    0.62    0.85    0.86    0.84    0.90    0.89    0.90    3861    AUC-ROC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1    0.58   0.62   0.60   0.75   0.11   0.20   0.74   0.89   0.80   0.79   0.92   0.85   1235   accuracy    0.74    0.74    0.74    0.70    0.70    0.86    0.86    0.86    0.89    0.89    0.89   macro avg    0.70    0.70    0.70    0.55    0.51    0.82    0.87    0.83    0.87    0.90    0.88    3861   weighted avg    0.74    0.74    0.74    0.72    0.70    0.62    0.85    0.86    0.84    0.90    0.89    0.90    3861   AUC-ROC    0.70    0.73    0.89    0.96     satimage-2   P   R   F1   P   R   F1   P   R   F1   P   R   F1   support   -1    1.00   1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440   1    0.80    0.83    0.81    0.13    0.86    0.22    0.30    0.86    0.46    0.36    0.91    0.52    42   accuracy    1.00   1.00    1.00    0.93    0.93    0.93    0.93    0.98    0.98    0.98   macro avg    0.90    0.92    0.91    0.56    0.89    0.59    0.63    0.89    0.71    0.68    0.94    0.75    3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| accuracy           0.74   0.74   0.74   0.70   0.70   0.70   0.86   0.86   0.86   0.89   0.89   0.89   0.89             0.89             macro avg           0.70   0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861             0.74   0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90   3861             AUC-ROC           0.70   0.73   0.89   0.96             0.96             satimage-2           P   R   F1   support           -1           1.00   1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440             1           0.80   0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42             accuracy           1.00   1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98             macro avg           0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| macro avg           0.70   0.70   0.70   0.72   0.55   0.51   0.82   0.87   0.83   0.87   0.90   0.88   3861             weighted avg           0.74   0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90   3861             AUC-ROC           0.70   0.73   0.89   0.96             satimage-2           P   R   F1   support           -1           1.00   1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440             1           0.80   0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42             accuracy           1.00   1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98   0.98             macro avg           0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| weighted avg        0.74  0.74   0.74   0.72   0.70   0.62   0.85   0.86   0.84   0.90   0.89   0.90   3861           AUC-ROC        0.70   0.73   0.89   0.96             satimage-2        P   R   F1    P   R   P   R   P   P   P   P   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AUC-ROC   0.70   0.73   0.89   0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| satimage-2         P   R   F1   Support           -1          1.00  1.00  1.00  1.00  0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440             1          0.80  0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42             accuracy          1.00  1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98   0.98             macro avg          0.90  0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -1     1.00   1.00   1.00   0.93   0.96   0.97   0.93   0.96   1.00   0.98   0.99   3440     1     0.80   0.83   0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52   42       accuracy   1.00   1.00   0.93   0.93   0.93   0.93   0.93   0.93   0.98   0.98   0.98       macro avg     0.90   0.92   0.91   0.56   0.89   0.59   0.63   0.89   0.71   0.68   0.94   0.75   3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1    0.80   0.83    0.81   0.13   0.86   0.22   0.30   0.86   0.46   0.36   0.91   0.52     42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| accuracy  1.00 1.00 0.93 0.93 0.93 0.93 0.93 0.93 0.98 0.98 0.98  0.98   0.98   macro avg  0.90 0.92 0.91 0.56 0.89 0.59 0.63 0.89 0.71 0.68 0.94 0.75  3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| macro avg  0.90  0.92  0.91  0.56  0.89  0.59  0.63  0.89  0.71  0.68  0.94  0.75  3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| weighted avg $ 1.00 1.00 1.00 0.99 0.93 0.95 0.96 0.93 0.95 0.99 0.98 0.98 $ 3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AUC-ROC   0.99   0.97   0.94   0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| shuttle   P   R   F1   P   R   F1   P   R   F1   P   R   F1   Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -1  0.99 1.00 1.00 0.94 1.00 0.96 0.97 0.96 0.94 1.00 1.00 1.00  27388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1  0.95  0.92  0.93  0.55  0.09  0.15  0.91  0.93  0.92  0.95  1.00  0.98  2071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| accuracy $  0.99   0.99   0.99   0.99   0.93   0.93   0.93   0.96   0.96   0.96   1.00   1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00    $                                                                                                                                                                                                                                                                                                                                                      |
| $ \text{macro avg} \qquad  0.97  \ 0.96 \  0.96  \ 0.74 \  0.54  \ 0.56 \  0.94  \ 0.94 \  0.93  \  0.98  \  1.00  \ 0.99  \ \ 29459 \ \  1.00  \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \  0.99  \ \ \  0.99  \ \ \  0.99  \ \ \  0.99  \ \ \ \  0.99  \ \ \ \  0.99  \ \ \ \  0.99  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |
| weighted avg   0.99   0.99   0.99   0.91   0.93    0.91    0.96    0.96    0.94    1.00    1.00    1.00    29459    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.                                                                                                                                                                                                                  |
| AUC-ROC   1.00   0.99   0.95   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| skin   P   R   F1   P   R   F1   P   R   F1   P   R   F1   support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $-1 \qquad  0.76  \ 0.76  \ 0.76  \ 0.79  \ 0.79  \ 0.79  \ 0.94  \ 0.94  \ 0.94  \ 1.00  \ 1.00  \ 1.00  \ 116448 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -1    0.76  0.76  0.76  0.79  0.79  0.79  0.94  0.94  0.94  1.00  1.00  1.00  116448    1    0.09  0.09  0.09  0.19  0.18  0.18  0.95  0.94  0.96  1.00  1.00  1.00  30587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1  0.09 0.09 0.09 0.19 0.18 0.18 0.95 0.94 0.96 1.00 1.00 1.00  30587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 2052 |
|------|
| 2053 |
| 2054 |
| 2055 |
| 2056 |
| 2057 |
| 2058 |
| 2059 |
| 2060 |
|      |
| 2061 |
| 2062 |
| 2063 |
| 2064 |
| 2065 |
| 2066 |
| 2067 |
| 2068 |
| 2069 |
| 2070 |
| 2071 |
| 2072 |
| 2073 |
| 2074 |
| 2075 |
| 2076 |
| 2077 |
| 2078 |
| 2079 |
|      |
| 2080 |
| 2081 |
| 2082 |
| 2083 |
| 2084 |
| 2085 |
| 2086 |
| 2087 |
| 2088 |
| 2089 |
| 2090 |
| 2091 |
| 2092 |
| 2093 |
| 2094 |
| 2095 |
|      |
| 2096 |
| 2097 |
| 2098 |
| 2099 |
| 2100 |
| 2101 |
| 2102 |
| 2103 |
| 2104 |
|      |
| 2105 |

|              |      | Tabl | le 9 c | ontin | ued f | rom j | previ | ous p | age  |      |       |      |         |
|--------------|------|------|--------|-------|-------|-------|-------|-------|------|------|-------|------|---------|
|              |      | DTE  |        |       | Rejex | (     | A     | DGy   | m    | Swi  | ft Hy | dra  |         |
| AUC-ROC      |      | 0.68 |        |       | 0.74  |       |       | 0.94  |      |      | 1.00  |      |         |
| smtp         | P    | R    | F1     | P     | R     | F1    | P     | R     | F1   | P    | R     | F1   | support |
| -1           | 1.00 | 1.00 | 1.00   | 1.00  | 0.68  | 0.81  | 0.95  | 0.85  | 0.91 | 1.00 | 0.90  | 0.95 | 57075   |
| 1            | 0.00 | 0.00 | 0.00   | 0.00  | 1.00  | 0.00  | 0.00  | 0.81  | 0.00 | 0.00 | 0.84  | 0.01 | 19      |
| accuracy     | 1.00 | 1.00 | 1.00   | 0.68  | 0.68  | 0.68  | 0.85  | 0.85  | 0.85 | 0.90 | 0.90  | 0.90 | 0.90    |
| macro avg    | 0.50 | 0.50 | 0.50   | 0.50  | 0.84  | 0.41  | 0.48  | 0.83  | 0.45 | 0.50 | 0.87  | 0.48 | 57094   |
| weighted avg | 1.00 | 1.00 | 1.00   | 1.00  | 0.68  | 0.81  | 0.95  | 0.85  | 0.91 | 1.00 | 0.90  | 0.95 | 57094   |
| AUC-ROC      |      | 0.92 |        |       | 0.95  |       |       | 0.81  |      |      | 0.85  |      |         |
| SpamBase     | P    | R    | F1     | P     | R     | F1    | P     | R     | F1   | P    | R     | F1   | support |
| -1           | 0.65 | 0.67 | 0.66   | 0.58  | 0.64  | 0.61  | 0.92  | 0.81  | 0.86 | 0.96 | 0.86  | 0.91 | 1513    |
| 1            | 0.49 | 0.47 | 0.48   | 0.37  | 0.32  | 0.34  | 0.77  | 0.89  | 0.84 | 0.82 | 0.95  | 0.88 | 1012    |
| accuracy     | 0.59 | 0.59 | 0.59   | 0.51  | 0.51  | 0.51  | 0.84  | 0.84  | 0.84 | 0.89 | 0.89  | 0.89 | 0.89    |
| macro avg    | 0.57 | 0.57 | 0.57   | 0.48  | 0.48  | 0.48  | 0.84  | 0.85  | 0.85 | 0.89 | 0.90  | 0.89 | 2525    |
| weighted avg | 0.59 | 0.59 | 0.59   | 0.50  | 0.51  | 0.50  | 0.86  | 0.84  | 0.85 | 0.90 | 0.89  | 0.89 | 2525    |
| AUC-ROC      |      | 0.61 |        |       | 0.51  |       |       | 0.92  |      |      | 0.95  |      |         |
| speech       | P    | R    | F1     | P     | R     | F1    | P     | R     | F1   | P    | R     | F1   | support |
| -1           | 0.98 | 0.99 | 0.99   | 0.99  | 0.13  | 0.23  | 0.93  | 0.49  | 0.67 | 1.00 | 0.53  | 0.70 | 2177    |
| 1            | 0.00 | 0.00 | 0.00   | 0.02  | 0.91  | 0.03  | 0.00  | 0.83  | 0.01 | 0.03 | 0.89  | 0.06 | 35      |
| accuracy     | 0.97 | 0.97 | 0.97   | 0.15  | 0.15  | 0.15  | 0.49  | 0.49  | 0.49 | 0.54 | 0.54  | 0.54 | 0.54    |
| macro avg    | 0.49 | 0.49 | 0.49   | 0.50  | 0.52  | 0.13  | 0.47  | 0.66  | 0.34 | 0.51 | 0.71  | 0.38 | 2212    |
| weighted avg | 0.97 | 0.97 | 0.97   | 0.97  | 0.15  | 0.23  | 0.92  | 0.49  | 0.65 | 0.98 | 0.54  | 0.69 | 2212    |
| AUC-ROC      |      | 0.47 |        |       | 0.47  |       |       | 0.67  |      |      | 0.73  |      |         |
| Stamps       | P    | R    | F1     | P     | R     | F1    | P     | R     | F1   | P    | R     | F1   | support |
| -1           | 0.97 | 0.90 | 0.93   | 0.00  | 0.00  | 0.00  | 0.96  | 0.79  | 0.87 | 1.00 | 0.86  | 0.92 | 185     |
| 1            | 0.41 | 0.68 | 0.51   | 0.09  | 1.00  | 0.17  | 0.39  | 0.94  | 0.54 | 0.42 | 1.00  | 0.59 | 19      |
| accuracy     | 0.88 | 0.88 | 0.88   | 0.09  | 0.09  | 0.09  | 0.81  | 0.81  | 0.81 | 0.87 | 0.87  | 0.87 | 0.87    |
| macro avg    | 0.69 | 0.79 | 0.72   | 0.05  | 0.50  | 0.09  | 0.67  | 0.87  | 0.70 | 0.71 | 0.93  | 0.76 | 204     |
| weighted avg | 0.91 | 0.88 | 0.89   | 0.01  | 0.09  | 0.02  | 0.91  | 0.81  | 0.84 | 0.95 | 0.87  | 0.89 | 204     |
| AUC-ROC      |      | 0.89 |        |       | 0.74  |       |       | 0.93  |      |      | 0.96  |      |         |
| thyroid      | P    | R    | F1     | P     | R     | F1    | P     | R     | F1   | P    | R     | F1   | support |
| -1           | 0.99 | 0.99 | 0.99   | 1.00  | 0.88  | 0.94  | 0.96  | 0.93  | 0.92 | 1.00 | 0.97  | 0.99 | 2207    |
| 1            | 0.63 | 0.65 | 0.64   | 0.18  | 0.98  | 0.30  | 0.43  | 0.97  | 0.60 | 0.49 | 1.00  | 0.66 | 57      |
| accuracy     | 0.98 | 0.98 | 0.98   | 0.88  | 0.88  | 0.88  | 0.93  | 0.93  | 0.93 | 0.97 | 0.97  | 0.97 | 0.97    |
| macro avg    | 0.81 | 0.82 | 0.81   | 0.59  | 0.93  | 0.62  | 0.69  | 0.95  | 0.76 | 0.75 | 0.99  | 0.82 | 2264    |
| weighted avg | 0.98 | 0.98 | 0.98   | 0.98  | 0.88  | 0.92  | 0.94  | 0.93  | 0.91 | 0.99 | 0.97  | 0.98 | 2264    |
| AUC-ROC      |      | 0.98 |        |       | 0.99  |       |       | 0.94  |      |      | 1.00  |      |         |
| vertebral    | P    | R    | F1     | P     | R     | F1    | P     | R     | F1   | P    | R     | F1   | support |
| -1           | 0.85 | 0.86 | 0.86   | 0.00  | 0.00  | 0.00  | 0.90  | 0.73  | 0.81 | 0.93 | 0.77  | 0.84 | 123     |
| 1            | 0.11 | 0.10 | 0.10   | 0.15  | 1.00  | 0.26  | 0.29  | 0.63  | 0.40 | 0.33 | 0.67  | 0.44 | 21      |
| accuracy     | 0.75 | 0.75 | 0.75   | 0.15  | 0.15  | 0.15  | 0.72  | 0.72  | 0.72 | 0.76 | 0.76  | 0.76 | 0.76    |
| macro avg    | 0.48 | 0.48 | 0.48   | 0.07  | 0.50  | 0.13  | 0.59  | 0.68  | 0.60 | 0.63 | 0.72  | 0.64 | 144     |

Table 9 continued from previous page

| DEE D. L. L. L. C. 101 TX 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| DTE   Rejex   ADGym   Swift Hydron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a  |         |
| $ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79 | 144     |
| AUC-ROC   0.42   0.37   0.72   0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |
| vowels   P   R   F1   P   R   F1   P   R   F1   P   R   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71 | support |
| $  \hspace{.06cm}  \hspace{.06cm} 0.97 \hspace{.05cm} \hspace{.06cm} 0.98 \hspace{.05cm} \hspace{.06cm} 0.98 \hspace{.05cm} \hspace{.06cm} 1.00 \hspace{.05cm} \hspace{.06cm} 0.69 \hspace{.05cm} \hspace{.06cm} 0.82 \hspace{.05cm} \hspace{.06cm} 0.95 \hspace{.05cm} \hspace{.06cm} 0.80 \hspace{.05cm} \hspace{.06cm} 0.89 \hspace{.05cm} \hspace{.06cm} 1.00 \hspace{.05cm} \hspace{.06cm} 0.86 \hspace{.05cm} \hspace{.06cm}$ | 92 | 844     |
| 1  0.26  0.17  0.20 0.10 0.93  0.18 0.15 0.89 0.27 0.19 0.93 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 | 30      |
| accuracy $ 0.96   0.96   0.96   0.70   0.70   0.70   0.80   0.80   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.86   0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86 | 0.86    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62 | 874     |
| weighted avg $ 0.95  0.96  0.95  0.97  0.70  0.79  0.92  0.80  0.87  0.97  0.86  0.95  0.96  0.95  0.96  0.95  0.96  0.96  0.95  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.96  0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90 | 874     |
| AUC-ROC   0.76   0.91   0.92   0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |
| Waveform   P   R   F1   P   R   F1   P   R   F1   P   R   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71 | support |
| -1    0.97   0.97   0.97   0.97   0.53   0.69   0.96   0.75   0.83   1.00   0.82   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 | 2008    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 | 58      |
| accuracy  0.95  0.95  0.95 0.53 0.53 0.53 0.75 0.75 0.75 0.82 0.82 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82 | 0.82    |
| macro avg   0.50   0.50   0.50   0.51   0.37   0.52   0.78   0.49   0.56   0.85   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55 | 2066    |
| weighted avg     0.95   0.95   0.95   0.95   0.53   0.67   0.93   0.75   0.81   0.97   0.82   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88 | 2066    |
| AUC-ROC   0.78   0.54   0.83   0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |
| WBC   P   R   F1   P   R   F1   P   R   F1   P   R   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71 | support |
| -1  0.99  0.99  0.99 0.00 0.00 0.00 0.94 0.93 0.94 1.00 0.98 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99 | 128     |
| 1    0.83   0.83   0.83   0.05   1.00   0.09   0.70   0.95   0.79   0.75   1.00   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86 | 6       |
| accuracy  0.99 0.99 0.05 0.05 0.05 0.93 0.93 0.93 0.99 0.99 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99 | 0.99    |
| macro avg   0.91   0.91   0.91   0.02   0.50   0.04   0.82   0.94   0.87   0.88   0.99   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93 | 134     |
| weighted avg     0.99   0.99   0.99   0.00   0.05   0.00   0.92   0.93   0.93   0.99   0.99   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99 | 134     |
| AUC-ROC   0.99   0.90   0.94   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |
| WDBC   P   R   F1   P   R   F1   P   R   F1   P   R   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71 | support |
| -1    0.99  0.99  0.99  0.98  0.19  0.32  0.96  0.89  0.91  1.00  0.93  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96 | 217     |
| 1    0.25   0.25   0.25   0.02   0.75   0.03   0.18   0.95   0.29   0.21   1.00   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35 | 4       |
| accuracy  0.97 0.97 0.97 0.20 0.20 0.20 0.90 0.90 0.90 0.93 0.93 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93 | 0.93    |
| macro avg   0.62   0.62   0.62   0.50   0.47   0.18   0.57   0.92   0.60   0.61   0.97   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66 | 221     |
| weighted avg     0.97   0.97   0.97   0.96   0.20   0.32   0.95   0.90   0.99   0.93   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95 | 221     |
| AUC-ROC   0.98   0.51   0.93   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |
| Wilt   P   R   F1   P   R   F1   P   R   F1   P   R   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71 | support |
| -1    0.95  0.95  0.95  0.98  0.77  0.86  0.93  0.87  0.91  1.00  0.92  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96 | 2746    |
| 1    0.01  0.01  0.01  0.14   0.68   0.23   0.35   0.93   0.50   0.38   0.96   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55 | 146     |
| accuracy  0.90  0.90  0.90 0.77 0.77 0.77 0.88 0.88 0.88 0.92 0.92 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92 | 0.92    |
| macro avg   0.48   0.48   0.48   0.56   0.72   0.54   0.64   0.90   0.70   0.69   0.94   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75 | 2892    |
| weighted avg     0.90   0.90   0.90   0.94   0.77   0.83   0.90   0.88   0.89   0.97   0.92   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94 | 2892    |
| AUC-ROC   0.42   0.79   0.94   0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |
| wine   P   R   F1   P   R   F1   P   R   F1   P   R   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71 | support |
| -1    0.96  0.95  0.95 0.00 0.00 0.00 0.95 0.91 0.92 1.00 0.95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97 | 73      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71 | 5       |
| accuracy  0.91 0.91 0.91 0.06 0.06 0.06 0.91 0.91 0.91 0.95 0.95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05 | 0.95    |

Table 9 continued from previous page

|              | DTE              | Rejex              | ADGym              | Swift Hydra        |         |
|--------------|------------------|--------------------|--------------------|--------------------|---------|
| macro avg    | 0.65  0.67  0.66 | 0.03   0.50   0.06 | 0.74   0.94   0.79 | 0.78   0.97   0.84 | 78      |
| weighted avg | 0.92  0.91  0.91 | 0.00   0.06   0.01 | 0.92   0.91   0.90 | 0.97   0.95   0.96 | 78      |
| AUC-ROC      | 0.84             | 0.35               | 0.95               | 0.99               |         |
| WPBC         | P   R   F1       | P   R   F1         | P   R   F1         | P   R   F1         | support |
| -1           | 0.78  0.86  0.82 | 0.00   0.00   0.00 | 0.76   0.43   0.55 | 0.83   0.47   0.60 | 93      |
| 1            | 0.24  0.15  0.19 | 0.22   1.00   0.36 | 0.20   0.62   0.33 | 0.26   0.65   0.37 | 26      |
| accuracy     | 0.71  0.71  0.71 | 0.22   0.22   0.22 | 0.47   0.47   0.47 | 0.51   0.51   0.51 | 0.51    |
| macro avg    | 0.51  0.51  0.50 | 0.11   0.50   0.18 | 0.48   0.52   0.44 | 0.54   0.56   0.49 | 119     |
| weighted avg | 0.66 0.71 0.68   | 0.05   0.22   0.08 | 0.64   0.47   0.50 | 0.71   0.51   0.55 | 119     |
| AUC-ROC      | 0.54             | 0.53               | 0.54               | 0.59               |         |
| yeast        | P   R   F1       | P   R   F1         | P   R   F1         | P   R   F1         | support |
| -1           | 0.60  0.61  0.60 | 0.64   0.87   0.74 | 0.77   0.49   0.62 | 0.80   0.54   0.65 | 587     |
| 1            | 0.22  0.21  0.22 | 0.19   0.06   0.09 | 0.40   0.68   0.53 | 0.46   0.74   0.57 | 304     |
| accuracy     | 0.47  0.47  0.47 | 0.60   0.60   0.60 | 0.56   0.56   0.56 | 0.61   0.61   0.61 | 0.61    |
| macro avg    | 0.41  0.41  0.41 | 0.42   0.47   0.42 | 0.59   0.59   0.57 | 0.63   0.64   0.61 | 891     |
| weighted avg | 0.47  0.47  0.47 | 0.49   0.60   0.52 | 0.64   0.56   0.59 | 0.69 0.61 0.62     | 891     |
| AUC-ROC      | 0.37             | 0.41               | 0.65               | 0.70               |         |
|              | P = Precisi      | on, R = Recall,    | F1 = F1-Score      |                    |         |