
Graph Automorphism Group Equivariant Neural Networks

Edward Pearce–Crump 1 William J. Knottenbelt 1

Abstract
Permutation equivariant neural networks are typi-
cally used to learn from data that lives on a graph.
However, for any graph G that has n vertices, us-
ing the symmetric group Sn as its group of sym-
metries does not take into account the relations
that exist between the vertices. Given that the
actual group of symmetries is the automorphism
group Aut(G), we show how to construct neu-
ral networks that are equivariant to Aut(G) by
obtaining a full characterisation of the learnable,
linear, Aut(G)-equivariant functions between lay-
ers that are some tensor power of Rn. In particu-
lar, we find a spanning set of matrices for these
layer functions in the standard basis of Rn. This
result has important consequences for learning
from data whose group of symmetries is a finite
group because a theorem by Frucht (1938) showed
that any finite group is isomorphic to the automor-
phism group of a graph.

1. Introduction
In many cases, the relationships that exist between certain
entities can be structured in the form of a graph. These
include the interactions between people in a social network
(Leskovec et al., 2010), the bonds that connect atoms in
a molecule (Gilmer et al., 2017), and the relationships be-
tween users and items in a recommendation system (Konstas
et al., 2009). As a result, there is a high level of motivation
to design neural network architectures that can offer new
insights into data with this structure. A number of methods
for learning from graphs exist in the machine learning lit-
erature. These include Graph Attention Networks (GATs)
(Velicković et al., 2018), Graph Convolutional Networks
(GCNs) (Kipf & Welling, 2017), and Graph Neural Net-
works (GNNs) (Gori et al., 2005; Scarselli et al., 2009),
among others. In particular, many of these approaches use

1Department of Computing, Imperial College London,
United Kingdom. Correspondence to: Edward Pearce–Crump
<ep1011@ic.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

some form of equivariance to the symmetric group, which
has since been characterised fully by a number of authors
(Maron et al., 2019; Ravanbakhsh, 2020; Pearce-Crump,
2022). However, using neural networks that are equivariant
to the symmetric group does not take into account the rela-
tions that exist between the vertices in a graph. Given that
the actual group of symmetries of a graph is its automor-
phism group, we would like to construct neural networks
that satisfy the stronger condition of being equivariant to
this group instead.

In this paper, writing the automorphism group of a graph G
having some n vertices as Aut(G), we give a full charac-
terisation of all of the possible Aut(G)-equivariant neural
networks whose layers are some tensor power of Rn by
finding a spanning set of matrices for the learnable, linear,
Aut(G)-equivariant layer functions between such tensor
power spaces in the standard basis of Rn. Our approach is
similar to the one seen in Pearce-Crump (2022; 2023a;b),
where they used the combinatorics of set partitions to charac-
terise the learnable, linear, group equivariant layer functions
between any two tensor power spaces of Rn for a number
of important groups. However, instead of calculating the
spanning set by studying set partitions, we obtain it by relat-
ing each spanning set element with the isomorphism class
of a so-called bilabelled graph. In short, a (k, l)–bilabelled
graph is a graph that comes with two tuples, one of length
k and the other of length l, whose entries are taken from
the vertex set of the graph (with repetitions amongst entries
allowed). Consequently, by looking at the combinatorics
of bilabelled graphs, we can determine the learnable, linear,
Aut(G)-equivariant layer functions between any two tensor
power spaces of Rn.

We leverage the work of Mančinska & Roberson (2020),
who studied the problem of determining under what circum-
stances two graphs are quantum isomorphic. They built
upon the work of Chassaniol (2019), who showed that a
vertex-transitive graph has no quantum symmetries. We
show how their results and methods can be applied instead
for the purpose of learning from data that has an underlying
symmetry to the automorphism group of a graph.

There are important consequences for performing such a
characterisation. A famous theorem in algebraic graph the-
ory known as Frucht’s Theorem (Frucht, 1938) states that

1

Graph Automorphism Group Equivariant Neural Networks

every finite group is isomorphic to the automorphism group
of a finite undirected graph. As a result, for any finite group
of our choosing, if we know the graph (having some n
vertices) whose automorphism group is isomorphic to the
group in question, then we will be able to characterise all
of the learnable, linear, group equivariant layer functions
between any two tensor power spaces of Rn for that group.
In particular, we show that we can recover the diagram basis
that appears in Godfrey et al. (2023) for the learnable, linear,
Sn-equivariant layer functions between tensor power spaces
of Rn in the standard basis of Rn. We also show that we
can determine characterisations for other groups, such as
for D4, considered as a subgroup of S4, which, to the best
of our knowledge, have been missing from the literature.

Furthermore, even if, for a given finite undirected graph, we
are unable to determine the finite group that is isomorphic
to the automorphism group of the graph, we know that we
can calculate the learnable, linear, automorphism group
equivariant linear layers using this method, which will be
sufficient for performing learning in situations where we do
not need to know what the actual automorphism group is
explicitly.

The main contributions of this paper, which appear in Sec-
tion 4 onwards, are as follows:

1. We are the first to show how the combinatorics under-
lying bilabelled graphs provides the theoretical founda-
tion for constructing neural networks that are equivari-
ant to the automorphism group of a graph G having n
vertices where the layers are some tensor power of Rn.

2. In particular, we find a spanning set for the learnable,
linear, Aut(G)-equivariant layer functions between
such tensor power spaces in the standard basis of Rn.

3. We show how our approach can be used to recover
the diagram basis that appears in Godfrey et al. (2023)
for the learnable, linear, Sn-equivariant layer functions
between tensor power spaces of Rn.

Notation: We let [n] represent the set {1, . . . , n} throughout
this paper.

2. Graph Theory Essentials
We begin by recalling some of the fundamentals of graph
theory. For more details, see any standard book on graph
theory, such as Bollobas (1998).
Definition 2.1. A graph G is a tuple (V (G), E(G)) of sets,
where V (G) is a set of vertices for G and E(G) is a subset
of unordered pairs of elements from V (G)×V (G) denoting
the undirected edges between the vertices of G.

We include the possibility that the graph has loops; however,
we only allow at most one loop per vertex.

Definition 2.2. Let G be a graph having n vertices. The
adjacency matrix of G, denoted by AG, is the n×n matrix
whose (i, j)–entry is 1 if vertex i is adjacent to vertex j in
G, and is 0 otherwise. Note that AG is a symmetric matrix
because G has undirected edges, and the (i, i)-entry is 1 in
AG if and only if G has a loop at vertex i.

Definition 2.3. Let G be a graph. The complement of G,
denoted by G, is the graph having the same vertex set as
G and the same loops as G, but now distinct vertices are
adjacent in G if and only if they are not adjacent in G.

Example 2.4. The complete graph on n vertices, Kn, is the
loopless graph where every vertex is adjacent to every other
vertex.
Example 2.5. The cycle graph on n vertices, Cn, is the
loopless graph where every vertex i ∈ [n] is adjacent to
j = i± 1 mod n, where j ∈ [n].

Definition 2.6. Let H and G be graphs. A graph homo-
morphism from H to G is a function ϕ : V (H) → V (G)
such that if i is adjacent to j in H , then ϕ(i) is adjacent to
ϕ(j) in G.

Definition 2.7. Let H and G be graphs. A graph isomor-
phism from H to G is a graph homomorphism that is also a
bijection.

Consequently, we get that

Definition 2.8. Let G be a graph. An automorphism of
G is an isomorphism from G to G. The set of all automor-
phisms of G, written Aut(G), can be shown to be a group
under composition of functions.

Remark 2.9. If G is a graph having n vertices, then Aut(G)
is, in fact, a subgroup of Sn. Specifically, if σ ∈ Sn, then it
is easy to show, viewing Sn as a subgroup of GL(n), that

σ ∈ Aut(G) ⇐⇒ σAG = AGσ (1)

It is also clear to see that Aut(G) ∼= Aut(G).
Example 2.10. The automorphism group of the complete
graph on n vertices, Aut(Kn), is the symmetric group
Sn. Consequently, the automorphism group of the edgeless
graph having n vertices, Aut(Kn), is also the symmetric
group Sn.
Example 2.11. The automorphism group of the cycle graph
on n vertices, Aut(Cn), is isomorphic to the dihedral group
Dn of order 2n.
Example 2.12. The automorphism group of two copies of
the complete graph on two vertices, Aut(2K2), is isomor-
phic to the dihedral group D4 of order 8.

3. Graph Automorphism Group Equivariant
Linear Layer Functions

Neural networks that are equivariant to the the automor-
phism group of a graph G having n vertices, Aut(G), can

2

Graph Automorphism Group Equivariant Neural Networks

be constructed by alternately composing linear and non-
linear equivariant functions between layer spaces that are
a tensor power of Rn (Lim & Nelson, 2022). These layer
spaces are representations of Aut(G) in the following sense.

Recall first that any k-tensor power of Rn, (Rn)⊗k, is a rep-
resentation of the symmetric group Sn, since the elements

eI := ei1 ⊗ ei2 ⊗ · · · ⊗ eik (2)

for all I := (i1, i2, . . . , ik) ∈ [n]k form a basis of (Rn)⊗k,
and the action of Sn that maps a basis element of (Rn)⊗k

of the form (2) to

eσ(I) := eσ(i1) ⊗ eσ(i2) ⊗ · · · ⊗ eσ(ik) (3)

can be extended linearly on the basis.

For any graph G having n vertices, as Aut(G) is a sub-
group of Sn, we have that (Rn)⊗k is also a representation
of Aut(G) that is given by the restriction of the representa-
tion of Sn to Aut(G).

We denote the representation of Sn by ρk. We will use the
same notation for the restriction of this representation to
Aut(G), with the context making clear that it is the restric-
tion of the Sn representation.

Moreover, we have that
Definition 3.1. A map ϕ : (Rn)⊗k → (Rn)⊗l is said
to be equivariant to Aut(G) if, for all σ ∈ Aut(G) and
v ∈ (Rn)⊗k,

ϕ(ρk(σ)[v]) = ρl(σ)[ϕ(v)] (4)

We denote the set of all linear Aut(G)-equivariant maps
between (Rn)⊗k and (Rn)⊗l by

HomAut(G)((Rn)⊗k, (Rn)⊗l) (5)

It can be shown that (5) is a vector space over R. See
Segal (2014) for more details. Note that (5) is a subspace of
Hom((Rn)⊗k, (Rn)⊗l), the vector space of all linear maps
from (Rn)⊗k to (Rn)⊗l.

Our goal is to calculate all of the weight matrices that
can appear between any two layers of the graph auto-
morphism group equivariant neural networks in question.
It is enough to construct a spanning set of matrices for
HomAut(G)((Rn)⊗k, (Rn)⊗l), by viewing it as a subspace
of Hom((Rn)⊗k, (Rn)⊗l) and choosing the standard basis
of Rn, since any weight matrix will be a weighted linear
combination of these spanning set matrices.

4. Characterisation Result using Bilabelled
Graphs

In this section, we construct a spanning set of matrices for
HomAut(G)((Rn)⊗k, (Rn)⊗l) by relating each spanning set

matrix with the isomorphism class of a so-called (k, l)–
bilabelled graph. We leverage the work of Mančinska &
Roberson (2020) throughout, but begin by stating a result
found by Chassaniol (2019) which describes, in terms of a
generating set of matrices, the category whose morphisms
are the linear layer functions that we wish to characterise.

4.1. Chassaniol’s Result

For each group G that is a subgroup of Sn, we can define
the following category.
Definition 4.1. The category C(G) consists of objects that
are the k-order tensor power spaces of Rn, as representa-
tions of G, and morphism spaces between any two objects
that are the vector spaces HomG((Rn)⊗k, (Rn)⊗l).

The vertical composition of morphisms is given by the usual
composition of linear maps, the tensor product is given by
the usual tensor product of linear maps, and the unit object
is the one-dimensional trivial representation of G.
Remark 4.2. We will sometimes write C(G)(k, l) for
HomG((Rn)⊗k, (Rn)⊗l), and reuse the notation C(G) for
the set ∪∞

k,l=0 C(G)(k, l).
Proposition 4.3. The category C(G) is a strict R-linear
monoidal category.

Proof. See the Technical Appendix.

It will be useful to define a number of spider maps Mk,l

together with the swap map S.
Definition 4.4. For all non-negative integers k, l, the spider
map Mk,l ∈ Hom((Rn)⊗k, (Rn)⊗l) is defined as follows:

• if k, l > 0, then Mk,l maps e⊗k
i to e⊗l

i for all i ∈ [n]
and maps all other vectors to the zero vector.

• if k = 0 and l > 0, then M0,l maps 1 to
∑

i e
⊗l
i .

• if k > 0 and l = 0, then Mk,0 maps e⊗k
i to 1 for all

i ∈ [n] and maps all other vectors to 0.

• if k = 0 and l = 0, then M0,0 := (n).

The swap map S ∈ Hom((Rn)⊗2, (Rn)⊗2) maps ei ⊗ ej
to ej ⊗ ei for all i, j ∈ [n].

For any graph G having n vertices, Chassaniol (2019) found
the following generating set for the category C(Aut(G)):
Theorem 4.5 (Chassaniol (2019), Proposition 3.5). Let AG

denote the adjacency matrix of the graph G. Then

C(Aut(G)) = ⟨M0,1,M2,1, AG, S⟩+,◦,⊗,∗ (6)

where the right hand side denotes all matrices that can be
generated from the four matrices using the operations of
R-linear combinations, matrix product, Kronecker product,
and transposition.

3

Graph Automorphism Group Equivariant Neural Networks

1 2 3

4 5

1

32

Figure 1. The (2, 3)–bilabelled graph diagram that is associated
with the isomorphism class of K := (K3, (3, 2), (3, 3, 1)).

4.2. The Category of All Bilabelled Graphs

Mančinska & Roberson (2020) showed how Chassaniol’s
generating set for C(Aut(G)) can be improved by relating
it to the combinatorics of bilabelled graphs.

Definition 4.6 (Bilabelled Graph). A (k, l)–bilabelled
graph H is a triple (H,k, l), where H is a graph hav-
ing some m vertices with labels in [m], k := (k1, . . . , kk)
is a tuple in [m]k, and l := (l1, . . . , ll) is a tuple in [m]l.

We call k and l the input and output tuples to H respec-
tively, and we call H the underlying graph of H . A vertex
in the underlying graph H of H is said to be free if it does
not appear in either of the input or output tuples.

In order to provide a diagrammatic representation of bil-
abelled graphs, we need the following definition.

Definition 4.7. Let H1 = (H1,k, l) be a (k, l)–bilabelled
graph and let H2 = (H2,k

′, l′) be another (k, l)–bilabelled
graph. Then H1 and H2 are isomorphic as (k, l)–
bilabelled graphs, written H1

∼= H2, if and only if there
is a graph isomorphism from H1 to H2 such that ki 7→ k′i
for all i ∈ [k] and lj 7→ l′j for all j ∈ [l]. We denote H1’s
isomorphism class by [H1].

Remark 4.8. An isomorphism between two (k, l)–bilabelled
graphs can effectively be thought of as a relabelling of the
vertices of the same underlying graph, resulting in an appro-
priate relabelling of the elements of the tuples themselves.
Consequently, the isomorphism can be thought of as a rela-
belling of the same bilabelled graph.

With this in mind, we can represent the isomorphism class
[H] for a (k, l)–bilabelled graph H = (H,k, l) in diagram-
matic form. We choose H as a class representative of [H],
and proceed as follows: we draw

• l black vertices on the top row, labelled left to right by
1, . . . , l,

• k black vertices on the bottom row, labelled left to right
by l + 1, . . . , l + k,

• the underlying graph H in red, with labelled red ver-
tices and red edges, in between the two rows of black
vertices, and

• a black line connecting vertex i in the top row to li,
and a black line connecting vertex l + j in the bottom
row to kj .

Note that if we drew a diagram for another representative
of the same isomorphism class [H], by the definition of an
isomorphism for (k, l)–bilabelled graphs, we would obtain
exactly the same diagram as for the first class representative,
except the labels of the underlying graph’s vertices (and
consequently the elements of the tuples) would be different.
As a result, the diagram for the isomorphism class [H]
is independent of the choice of class representative, and
so we choose the class’ label, H , to draw the diagram
throughout, unless otherwise stated. With the technicalities
being understood, we often refer to the construction defined
above as a (k, l)–bilabelled graph diagram for H itself, and
use the same notation H . We give an example of a (2, 3)–
bilabelled graph diagram in Figure 1.

We can define a number of operations on isomorphism
classes of bilabelled graphs, namely, composition, tensor
product, and involution, as follows.
Definition 4.9 (Composition of Bilabelled Graphs). Let
[H1] be the isomorphism class of the (k, l)–bilabelled graph
H1 = (H1,k, l), and let [H2] be the isomorphism class of
the (l,m)–bilabelled graph H2 = (H2, l

′,m).

Then we define the composition [H2] ◦ [H1] to be the
isomorphism class [H] of the (k,m)–bilabelled graph
H = (H,k,m) that is obtained as follows: drawing each
isomorphism class as a diagram, we first relabel the red ver-
tices in H2 (and consequently the elements of l′,m) under
the map i 7→ i′, for all i ∈ [V (H2)]. Then, we connect
the top row of black vertices of H1 with the bottom row
of black vertices of H2, and delete the vertices themselves.
We are now left with l black lines that are edges between
red vertices of the underlying graphs H1 and H2. Next,
we contract these, forming set unions of the vertex labels
where appropriate, and remove any red multiedges between
red vertices that appear in the contraction to obtain the new
underlying graph H . Note that we keep any loops that ap-
pear in the new underlying graph H . Finally, we relabel the
vertex set of the new underlying graph H so that each vertex
is labelled by an integer only, and consequently relabel the
entries of the tuples k and m accordingly.

Since this operation has been defined on diagrams, it means
that the operation is well defined on the isomorphism classes
themselves. We give an example of this composition in
Figure 2.
Remark 4.10. In order to compose two isomorphism classes
of bilabelled graphs, note that only the number of bottom

4

Graph Automorphism Group Equivariant Neural Networks

1
32

1′
3′

2′

◦ =

4

1, 2′

3

2, 1′, 3′

4

Figure 2. The composition [H2] ◦ [H1] of the (2, 3)–bilabelled
graph diagram for H1 = (H1, (3

′, 2′), (1′, 2′, 3′)) with the (3, 3)–
bilabelled graph diagram for H2 = (H2, (2, 1, 2), (1, 4, 2)),
where H1 is the graph having (relabelled) vertex set [3′] and edge
set {(1′, 2′)} and H2 is the graph having vertex set [4] and edge set
{(1, 4)}. The vertices of the resulting bilabelled graph diagram on
the RHS would be relabelled. For example, {1, 2′} could be rela-
belled as 1 and {2, 1′, 3′} could be relabelled as 2 to give the (2, 3)–
bilabelled graph diagram for H = (H, (2, 1), (1, 4, 2)), where H
is the graph having vertex set [4] and edge set {(1, 4), (1, 2)}.

row vertices in the diagram for H2 needs to be equal to
the number of top row vertices in the diagram for H1. In
particular, the number of vertices in the underlying graphs
of H1 and H2 do not need to be the same.

Definition 4.11 (Tensor Product of Bilabelled Graphs). Let
[H1] be the isomorphism class of the (k, l)–bilabelled graph
H1 = (H1,k, l) and let [H2] be the isomorphism class of
the (q,m)–bilabelled graph H2 = (H2, q,m).

Then we define the tensor product [H1]⊗ [H2] to be the
isomorphism class of the (k + q, l +m)–bilabelled graph
(H1 ∪ H2,kq, lm) where kq is the (k + q)–length tuple
obtained by concatenating k and q, and likewise for lm.

Definition 4.12 (Involution of Bilabelled Graphs). Let [H]
be the isomorphism class of the (k, l)–bilabelled graph H =
(H,k, l). Then we define the involution [H∗] to be the
isomorphism class of the (l, k)–bilabelled graph (H, l,k).

We can form a category for the bilabelled graphs, as follows:

Definition 4.13 (Category of Bilabelled Graphs). The cat-
egory of all bilabelled graphs G is the category whose
objects are the non-negative integers, and, for any pair of ob-
jects k and l, the morphism space G(k, l) := HomG(k, l) is
defined to be the R-linear span of the set of all isomorphism
classes of (k, l)–bilabelled graphs.

The vertical composition of morphisms is the composition
of isomorphism classes of bilabelled graphs given in Defini-

tion 4.9 that is extended to be R-bilinear, the tensor product
of morphisms is the tensor product of isomorphism classes
of bilabelled graphs given in Definition 4.11 that is also
extended to be R-bilinear, and the unit object is 0.

Proposition 4.14. The category of all bilabelled graphs, G,
is a strict R–linear monoidal category.

Proof. See the Technical Appendix.

4.3. G-Homomorphism Matrices

Mančinska & Roberson (2020) established a relationship
between the abstract and the concrete: namely, between iso-
morphism classes of (k, l)–bilabelled graphs and, for a fixed
graph G having n vertices, matrices that are linear maps
(Rn)⊗k → (Rn)⊗l, which they termed G-homomorphism
matrices. We express this relationship more formally in
terms of functors and categories at the end of this section.

Definition 4.15 (G-Homomorphism Matrix). Suppose that
G is a graph having n vertices, and let [H] be the isomor-
phism class of the (k, l)–bilabelled graph H := (H,k, l).

The G-homomorphism matrix of [H] is the nl×nk matrix
where each (I, J)-entry is given by the number of graph
homomorphisms from H to G such that l is mapped to I
and k is mapped to J . We denote this matrix by XG

H .

Remark 4.16. Note that a G-homomorphism matrix XG
H is

independent of the choice of class representative for [H],
and so we can refer to a G-homomorphism matrix of H
itself, with the technicalities being understood. Also, any
such matrix must have only real entries, by definition.

In Figure 3, we present an example that shows how to
calculate the G-homomorphism matrix of [H] for the
graph G having vertex set V (G) = {1, 2, 3} and edge
set E(G) = {(1, 2)} and for the (1, 1)–bilabelled graph
H = (H, (3), (1)), where H is the graph having vertex set
V (H) = {1, 2, 3, 4} and edge set E(H) = {(1, 2), (3, 4)}.
To determine the (I, J)-entry of XG

H , we superimpose the
values of I onto the top row of black vertices in H , and the
values of J onto the bottom row of black vertices in H . For
each red vertex that is connected with a set of black vertices,
we look to update its label. If all of the black vertices in
the set have the same label, then we update the red vertex
with that label, otherwise we stop and immediately deter-
mine that the (I, J)-entry of XG

H is 0. Assuming that these
red vertices can and have been updated, we determine the
number of possible mappings to G for the red vertices that
have not been updated in H such that the overall mapping
is a graph homomorphism. The total number of possibilities
is the (I, J)-entry of XG

H .

We now describe some important examples of G-
homomorphism matrices where G is a graph having n ver-
tices throughout.

5

Graph Automorphism Group Equivariant Neural Networks

Example 4.17. If A is the (1, 1)–bilabelled graph
(K2, (1), (2)), where K2 is the complete graph on two ver-
tices, then XG

A is the adjacency matrix AG of G.
Example 4.18. If Mk,l is the (k, l)–bilabelled graph
(K1,k = (1, . . . , 1), l = (1, . . . , 1)), where K1 is the com-
plete graph on one vertex, then XG

Mk,l is the spider matrix
Mk,l that is given in Definition 4.4.
Example 4.19. If S is the (2, 2)–bilabelled graph
(K2, (2, 1), (1, 2)), where K2 is the edgeless graph on two
vertices, then XG

S is the swap map S that is also given in
Definition 4.4.

For a fixed graph G having n vertices, we can form a cate-
gory for the G-homomorphism matrices, as follows:

Definition 4.20 (Category of G-Homomorphism Matri-
ces). For a given graph G having n vertices, the category
of all G-homomorphism matrices, CG, is the category
whose objects are the vector spaces (Rn)⊗k, and, for any
pair of objects (Rn)⊗k and (Rn)⊗l, the morphism space
HomCG((Rn)⊗k, (Rn)⊗l) is defined to be the R-linear span
of the set of all G-homomorphism matrices obtained from
all isomorphism classes of (k, l)–bilabelled graphs.

The vertical composition of morphisms is given by the usual
multiplication of matrices, the tensor product of morphisms
is given by the usual Kronecker product of matrices, and the
unit object is R.

Proposition 4.21. The category of all G-homomorphism
matrices for a given graph G having n vertices, CG, is a
strict R–linear monoidal category.

Proof. See the Technical Appendix.

Mančinska & Roberson (2020) showed that the opera-
tions given on isomorphism classes of bilabelled graphs
H correspond bijectively with the matrix operations on G-
homomorphism matrices XG

H . This is stated more formally
in the following three lemmas:

Lemma 4.22 (Mančinska & Roberson (2020), Lemma 3.21).
Suppose that G is a graph having n vertices. Let [H1] be
the isomorphism class of the (k, l)–bilabelled graph H1 =
(H1,k, l), and let [H2] be the isomorphism class of the
(l,m)–bilabelled graph H2 = (H2, l

′,m). Then

XG
H2

XG
H1

= XG
H2◦H1

(7)

Lemma 4.23 (Mančinska & Roberson (2020), Lemma 3.23).
Suppose that G is a graph having n vertices. Let [H1] be
the isomorphism class of the (k, l)–bilabelled graph H1 =
(H1,k, l), and let [H2] be the isomorphism class of the
(q,m)–bilabelled graph H2 = (H2, q,m). Then

XG
H1

⊗XG
H2

= XG
H1⊗H2

(8)

Lemma 4.24 (Mančinska & Roberson (2020), Lemma 3.24).
Suppose that G is a graph having n vertices, and let [H] be
the isomorphism class of the (k, l)–bilabelled graph H =
(H,k, l). Then

(XG
H)∗ = XG

H∗ (9)

where (XG
H)∗ is the transpose of the matrix XG

H .

Consequently, we obtain the following theorem, expressed
in terms of functors and categories.

Theorem 4.25. Suppose that G is a graph having n vertices.
Then there exists a full, strict R–linear monoidal functor

FG : G → CG (10)

that is defined on the objects of G by FG(k) := (Rn)⊗k

and, for any objects k, l of G, the map

HomG(k, l) → HomCG(FG(k),FG(l)) (11)

is given by
[H] 7→ XG

H (12)

for all isomorphism classes of (k, l)–bilabelled graphs.

Proof. See the Technical Appendix.

4.4. A Spanning Set of Matrices for the Learnable,
Linear, Aut(G)-Equivariant Layer Functions

Compare the following proposition with Chassaniol’s result,
given in Theorem 4.5.

Proposition 4.26 (Mančinska & Roberson (2020), Theorem
8.4). We have that

G = ⟨[M0,1], [M2,1], [A], [S]⟩◦,⊗,∗ (13)

where M0,1,M2,1,A,S are the bilabelled graphs defined
in Examples 4.17, 4.18, and 4.19, and the operations ◦,⊗, ∗
on bilabelled graphs are those that are given in Definitions
4.9, 4.11 and 4.12, respectively.

We have come to the main results of this paper, namely the
following theorem and its corollary.

Theorem 4.27. Suppose that G is a graph having n
vertices. The vector space of all Aut(G)-equivariant,
linear maps between tensor power spaces of Rn,
HomAut(G)((Rn)⊗k, (Rn)⊗l), when the standard basis of
Rn is chosen, is spanned by all of the G-homomorphism
matrices XG

H that are obtained from all of the isomorphism
classes of (k, l)–bilabelled graphs.

Proof. The proof of this theorem is inspired by Mančinska
& Roberson (2020), Theorem 8.5.

We know, by Chassaniol, that

C(Aut(G)) = ⟨M0,1,M2,1, AG, S⟩+,◦,⊗,∗ (14)

6

Graph Automorphism Group Equivariant Neural Networks


1 2 3

1 1 1 0

2 1 1 0

3 0 0 0

1 32
1 1

1

1

2

2

3

2

?

1 32
3

2 1

Figure 3. For the graph G having vertex set V (G) = {1, 2, 3} and edge set E(G) = {(1, 2)}, we show how to calculate the (I, J)-entries
of the G-homomorphism matrix XG

H corresponding to the isomorphism class [H] of the (1, 1)–bilabelled graph H = (H, (3), (1))
where H is the graph having vertex set V (H) = {1, 2, 3, 4} and edge set E(H) = {(1, 2), (3, 4)}. On the left hand side, we calculate
the (1, 1)-entry of XG

H . Since both of the black labelled vertices are being mapped to vertex 1 in G, we can superimpose 1 onto these
vertices, and hence also onto the red labelled vertices that are connected with them, to determine where the other red vertices can be
mapped to under a graph homomorphism. In this case, the only possible vertex in G that the other red vertices can be mapped to is 2.
Hence there is only one possible graph homomorphism from H to G such that 1 7→ 1 and 3 7→ 1, and so the (1, 1)-entry of XG

H is 1. On
the right hand side, we calculate the (3, 2)-entry of XG

H . We follow the same approach by superimposing 3 in G onto the black vertex
labelled 1 in H , and 2 in G onto the black vertex labelled 3 in H . We relabel the red vertices that the black vertices are connected with
and see where the other red vertices can be mapped to under a graph homomorphism. Whilst one of these red vertices can only be mapped
to 1 in G, the other red vertex cannot be mapped to any vertex in G, since the vertex 3 in G is not connected with any other vertex in G.
Hence the number of graph homomorphisms from H to G such that 1 7→ 3 and 3 7→ 2 is 0, and so the (3, 2)-entry of XG

H is 0.

By Examples 4.17, 4.18, and 4.19, we get that C(Aut(G))
is equal to

{XG
H | [H] ∈ ⟨[M0,1], [M2,1], [A], [S]⟩+,◦,⊗,∗} (15)

and so, by Proposition 4.26, we have that

C(Aut(G)) = R–span{XG
H | [H] ∈ G} (16)

Consequently, for any k, l, we get that

C(Aut(G))(k, l) = R–span{XG
H | [H] ∈ G(k, l)} (17)

As the LHS of (17) is equivalent notation for
HomAut(G)((Rn)⊗k, (Rn)⊗l), we obtain our result.

Corollary 4.28. For all non-negative integers l and k, if G
is a graph having n vertices, then the weight matrix W that
appears in an Aut(G)-equivariant linear layer function
from (Rn)⊗k to (Rn)⊗l must be of the form

W =
∑

[H]∈G(k,l)

λHXG
H (18)

for weights λH ∈ R.

Remark 4.29. In particular, Theorem 4.27 shows that CG is
isomorphic to C(Aut(G)) as categories, and that the objects
of the category CG come from representations of Aut(G).

Theorem 4.27 is especially powerful when it is combined
with Frucht’s Theorem (Frucht, 1938). Frucht’s Theorem
states that every finite group is isomorphic to the automor-
phism group of a finite undirected graph. Hence, for any
finite group, by determining a graph (having n vertices)

whose automorphism group is isomorphic to the group in
question, we can determine the weight matrix that appears
between any two layers that are some tensor power of Rn

in a neural network that is equivariant to the group.

Remark 4.30. It is very important to note the following. If
H is a group that is isomorphic to the automorphism group
of a graph G having n vertices, then the spanning set that
we obtain for HomH((Rn)⊗k, (Rn)⊗l) using Theorem 4.27
depends on how the automorphism group is embedded in
the symmetric group Sn, itself thought of as a subgroup
of matrices in GL(n) having chosen the standard basis of
Rn. The spanning set is determined not only by how the
vertices of the underlying graph G are labelled (up to all
automorphisms), but also by what the edges are in G.

For example, in the Technical Appendix, we show not only
that D4 has three embeddings in S4, but also that each
embedding can be obtained separately from two graphs
that are the complement of each other, where both graphs
have the same labelling of the vertices. All six instances
(an embedding of D4 coming from a graph with a certain
labelling of its vertices) give rise to different, albeit related,
spanning sets (in fact, bases) of HomD4

(R4,R4). Hence,
we obtain a basis for each specific embedding and labelled
graph that is chosen.

We have seen that we can find a spanning set for
HomAut(G)((Rn)⊗k, (Rn)⊗l) by considering all isomor-
phism classes of (k, l)–bilabelled graphs. However, with
the following result, we can reduce the number of elements
that appear in the spanning set by reducing the number of
isomorphism classes that we need to consider.

7

Graph Automorphism Group Equivariant Neural Networks

Proposition 4.31. Let H be a (k, l)–bilabelled graph
whose underlying graph H contains a subset of free ver-
tices that, whilst they may have edges amongst themselves,
are entirely disconnected from any vertices that are in a
connected component containing a non-free vertex.

Then XG
H is a scalar multiple of XG

H′ , where H ′ is the
(k, l)–bilabelled graph that is obtained from H by removing
the subset.

Proof. See the Technical Appendix.

We also have the following result that is useful for generat-
ing the isomorphism classes of (k, l)–bilabelled graphs.

Proposition 4.32 (Frobenius Duality). Suppose that
we use Theorem 4.27 to obtain a spanning set for
HomAut(G)((Rn)⊗k, (Rn)⊗l). Then we can immediately
obtain a spanning set for HomAut(G)((Rn)⊗q, (Rn)⊗m),
for any q,m ≥ 0 such that q +m = k + l.

Proof. See the Technical Appendix.

Remark 4.33. In the Technical Appendix, we show that we
can recover the diagram basis for HomSn

((Rn)⊗k, (Rn)⊗l)
by looking at the homomorphism matrices for the comple-
ment of the complete graph on n vertices, Kn.

This implies that, for a graph G having n vertices, the span-
ning set of HomAut(G)((Rn)⊗k, (Rn)⊗l) automatically in-
cludes the image, under the functor FG, of all set partitions
of [l + k] expressed as (k, l)–bilabelled graph diagrams,
since Aut(G) is a subgroup of Sn.

We use all of the results given above to obtain a proce-
dure for constructing the weight matrix for an Aut(G)-
equivariant linear layer function from (Rn)⊗k to (Rn)⊗l

from isomorphism classes of (k, l)–bilabelled graphs. In the
procedure, we create all (q, 0)–bilabelled graph diagrams
that are appropriate for the graph G, where q = k + l, and
then use Frobenius duality and the functor FG to obtain a
spanning set of matrices for HomAut(G)((Rn)⊗k, (Rn)⊗l).
To capture all of the (q, 0)–bilabelled graph diagrams that
are appropriate for G, we first need to calculate the length
of the longest path m between any two (not necessarily dis-
tinct) vertices in G where each edge in G is traversed at most
once. This is the longest path that needs to be mapped onto
by a graph homomorphism from the underlying graph of a
(q, 0)–bilabelled graph diagram to G. We use m to generate
the all of the (q, 0)–bilabelled graph diagrams as follows.
We focus on the non-free red vertices since they play a
key role in how the entries of a spanning set matrix XG

H are
determined. We use the following ideas to generate all of
the (q, 0)–bilabelled graph diagrams from the set partitions
of [l + k] expressed as (q, 0)–bilabelled graph diagrams.

• Between any pair of non-free red vertices, we must
consider all paths of lengths 0 to 2m between them
consisting solely of free red vertices, since such a path
of length 2m is a double cover of the longest path in
G.

• Starting with a single non-free red vertex that is not
connected with any other red vertex, we must consider
all paths of lengths 0 to m consisting solely of free red
vertices from this non-free red vertex, since such a path
of length m is a single cover of the longest path in G.

We also need to consider the impact of loops on (q, 0)–
bilabelled graph diagrams if G has loops (see Step 5 of
the procedure). These points show that the set of (q, 0)–
bilabelled graph diagrams that we need to consider depends
on the graph G.
Remark 4.34. In the Technical Appendix, we have provided
a number of examples for how to calculate a spanning set
of HomAut(G)((Rn)⊗k, (Rn)⊗l) using the procedure, for
different graphs G and for low order tensor powers of Rn.

5. Limitations and Feasibility
Given the current limitations of hardware, we recognize
that there will be difficulties when implementing the neural
networks that are discussed in this paper. Considerable
engineering efforts will be needed to achieve the required
scale due to the non-trivial task of storing high-order tensors
and the weight matrices in memory. Kondor et al. (2018)
demonstrated this by developing custom CUDA kernels
to implement their tensor product-based neural networks.
However, we anticipate that as computing power continues
to improve, higher-order group equivariant neural networks
will become more prominent in practical applications.

6. Conclusion
We are the first to show how the combinatorics underlying
bilabelled graphs provides the theoretical background for
constructing neural networks that are equivariant to the au-
tomorphism group of a graph having n vertices where the
layers are some tensor power of Rn. We found the form
of the learnable, linear, Aut(G)-equivariant layer functions
between such tensor power spaces in the standard basis of
Rn by finding a spanning set for the HomAut(G)–spaces in
which these layer functions live. However, given that the
number of isomorphism classes of (k, l)–bilabelled graphs
increases exponentially, both as the number of vertices in
the graph G increases and as k and l increase, resulting in
the number of spanning set elements increasing exponen-
tially, it would be useful to find further ways of reducing the
number of isomorphism classes of (k, l)–bilabelled graphs
that we need to consider. We leave this to future work.

8

Graph Automorphism Group Equivariant Neural Networks

Procedure: Weight Matrix for an Aut(G)-Equivariant Linear Layer Function from (Rn)⊗k to (Rn)⊗l.

Calculate all (q, 0)–bilabelled graph diagrams that are appropriate for G where q = l + k, as follows. Let m be the
maximum length of a path between any two vertices in G such that each edge in G is traversed at most once. Then

1. Calculate all set partitions of {1, . . . , q = l + k}, and express them as (q, 0)–bilabelled graph diagrams. For
uniformity, we choose to order the blocks in a set partition by their size, in descending order. Each block Bi of
size bi corresponds to a spider diagram having a single red vertex and bi black vertices connected to it with
black edges. The vertices in the spider diagram for Bi are labelled with the elements of Bi in ascending order,
from left to right. If m = 0, go to Step 6. Otherwise:

2. From all of the diagrams found in Step 1, create all possible (q, 0)–bilabelled graph diagrams that have only
internal red edges between red vertices, as follows. For each diagram H found in Step 1:

• Let c be the number of red vertices in H . Let e := c(c−1)
2 : this is the number of edges in the complete

graph Kc having c vertices. Create all possible e length strings having values in 0 → 2m. Each position
in the string represents a different pair of distinct red vertices in H . Remove the all 0 string.

• For each string, create a new (q, 0)–bilabelled graph diagram as follows: for each position in the string,
if t is its value, then, assuming that the position represents the pair of red vertices v and w, insert t new
edges between v and w into H , adding in t− 1 new red vertices to make these t new edges possible.

3. Also, from all of the diagrams found in Step 1, create all possible (q, 0)–bilabelled graph diagrams that have
only external red edges, as follows. For each diagram H found in Step 1:

• Let c be the number of red vertices in H . Create all possible c length strings having values in 0 → m,
where each position in the string represents a red vertex in H . Remove the all 0 string.

• For each string, create a new (q, 0)–bilabelled graph diagram as follows: for each position in the string, if
t is its value, then, assuming that the position represents the red vertex v, add t new edges outwards from
v, adding in t− 1 new red vertices to make these t new edges possible.

4. From all of the diagrams found in Step 2, create all possible (q, 0)–bilabelled graph diagrams having both
internal and external red edges, as follows. For each diagram HI found in Step 2:

• Let H be the (q, 0)–bilabelled graph diagram from Step 1 that HI came from. Let c be the number of red
vertices in H , and label these vertices in HI as 1, . . . , c. Create an empty set named originals, and add
only the vertices 1, . . . , c in HI that are not connected to any other red vertex in HI .

• If originals is empty, then no new diagrams come from HI . Otherwise, create all possible c length strings,
indexed by the vertices 1, . . . , c, allowing only the values in the positions in originals to range from
0 → m, with the rest being 0. Remove the all 0 string. Now follow the instructions given in Step 3.2.

5. Finally, if G has loops, then, for each (q, 0)–bilabelled graph diagram found in Steps 1–4:

• If c is the number of red vertices in H , label these vertices as 1, . . . , c, and create all binary strings of
length c. For each string, create a new (q, 0)–bilabelled graph diagram as follows: for each position i in
the string, if the value is 1, then attach a loop to the red vertex labelled as i.

The weight matrix is obtained from the set of all (q, 0)–bilabelled graph diagrams found in Steps 1–5, as follows:

6. Apply Frobenius duality to each (q, 0)–bilabelled graph diagram H to obtain its form as a (k, l)–bilabelled
graph diagram. This is the same as dragging the labelled black vertices in H into two rows of vertices such that
the vertices in the top row are ordered 1, . . . , l and the vertices in the bottom row are ordered l + 1, . . . , l + k.

7. Apply the strict R–linear monoidal functor FG to each (k, l)–bilabelled graph diagram to obtain the spanning
set matrices in HomAut(G)((Rn)⊗k, (Rn)⊗l). Remove all duplicate matrices as well as the all zero matrices
from this set. Weight each matrix that remains in the set by a parameter, and then add them all together to give
the overall Aut(G)-equivariant weight matrix.

9

Graph Automorphism Group Equivariant Neural Networks

Acknowledgements
This work was funded by the Doctoral Scholarship for Ap-
plied Research which was awarded to the first author under
Imperial College London’s Department of Computing Ap-
plied Research scheme. This work will form part of the first
author’s PhD thesis at Imperial College London.

Impact Statement
This paper presents work that is primarily a theoretical con-
tribution; hence we do not expect profound societal impact
in the short term. However, in the medium term, a number
of applications may well emerge from the theory having
high levels of impact.

References
Banica, T. and Speicher, R. Liberation of orthogonal Lie

groups. Advances in Mathematics, 222(4):1461–1501,
2009. ISSN 0001-8708. URL https://doi.org/
10.1016/j.aim.2009.06.009.

Bollobas, B. Modern Graph Theory. Springer, 1998.

Ceccherini-Silberstein, T., Scarabotti, F., and Tolli, F. Rep-
resentation Theory of the Symmetric Groups. Cambridge
University Press, 2010.

Chassaniol, A. Study of quantum symmetries for
vertex-transitive graphs using intertwiner spaces.
arXiv:1904.00455, 2019.

Cohen, T. and Welling, M. Group Equivariant Convolutional
Networks. In Balcan, M. F. and Weinberger, K. Q. (eds.),
Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 2990–2999, New York, New York,
USA, 20–22 Jun 2016. PMLR. URL https://proc
eedings.mlr.press/v48/cohenc16.html.

Finzi, M., Welling, M., and Wilson, A. G. G. A Practical
Method for Constructing Equivariant Multilayer Percep-
trons for Arbitrary Matrix Groups. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 3318–3328.
PMLR, 18–24 Jul 2021. URL https://proceedi
ngs.mlr.press/v139/finzi21a.html.

Frucht, R. Herstellung von Graphen mit vorgegebener ab-
strakter Gruppe. Compos. Math., 6:239–250, 1938. ISSN
0010-437X.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Precup, D. and Teh, Y. W. (eds.), Proceedings

of the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning Re-
search, pp. 1263–1272. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/gi
lmer17a.html.

Godfrey, C., Rawson, M. G., Brown, D., and Kvinge, H.
Fast computation of permutation equivariant layers with
the partition algebra. In ICLR 2023 Workshop on Physics
for Machine Learning, 2023. URL https://openre
view.net/forum?id=VXwts-IZFi.

Goodman, R. and Wallach, N. R. Symmetry, Representations
and Invariants. Springer, 2009.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., volume 2, pp. 729–734 vol. 2, 2005. doi: 10.1109/
IJCNN.2005.1555942.

Gromada, D. Group-theoretical graph categories. J Algebr
Comb, 55:591–627, 2022. URL https://doi.org/
10.1007/s10801-021-01063-5.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In International Con-
ference on Learning Representations, 2017. URL http
s://openreview.net/forum?id=SJU4ayYgl.

Kondor, R., Lin, Z., and Trivedi, S. Clebsch–Gordan
Nets: a Fully Fourier Space Spherical Convolutional Neu-
ral Network. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc., 2018. URL
https://proceedings.neurips.cc/paper
/2018/file/a3fc981af450752046be17918
5ebc8b5-Paper.pdf.

Konstas, I., Stathopoulos, V., and Jose, J. M. On Social Net-
works and Collaborative Recommendation. In Proceed-
ings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval,
New York, NY, USA, 2009. Association for Comput-
ing Machinery. ISBN 9781605584836. URL https:
//doi.org/10.1145/1571941.1571977.

Leskovec, J., Huttenlocher, D., and Kleinberg, J. Predict-
ing Positive and Negative Links in Online Social Net-
works. In Proceedings of the 19th International Con-
ference on World Wide Web, pp. 641–650, New York,
NY, USA, 2010. Association for Computing Machinery.
ISBN 9781605587998. URL https://doi.org/10
.1145/1772690.1772756.

Lim, L.-H. and Nelson, B. J. What is an equivariant neural
network?, 2022. arXiv:2205.07362.

10

https://doi.org/10.1016/j.aim.2009.06.009
https://doi.org/10.1016/j.aim.2009.06.009
https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.mlr.press/v139/finzi21a.html
https://proceedings.mlr.press/v139/finzi21a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://openreview.net/forum?id=VXwts-IZFi
https://openreview.net/forum?id=VXwts-IZFi
https://doi.org/10.1007/s10801-021-01063-5
https://doi.org/10.1007/s10801-021-01063-5
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2018/file/a3fc981af450752046be179185ebc8b5-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a3fc981af450752046be179185ebc8b5-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a3fc981af450752046be179185ebc8b5-Paper.pdf
https://doi.org/10.1145/1571941.1571977
https://doi.org/10.1145/1571941.1571977
https://doi.org/10.1145/1772690.1772756
https://doi.org/10.1145/1772690.1772756

Graph Automorphism Group Equivariant Neural Networks

Lovász, L. Operations with structures. Acta Mathematica
Academiae Scientiarum Hungarica, 18:321–328, 1967.
URL https://doi.org/10.1007/BF022802
91.

Mac Lane, S. Categories for the Working Mathematician.
Springer New York, NY, 1998. URL https://doi.
org/10.1007/978-1-4757-4721-8.

Mančinska, L. and Roberson, D. E. Quantum isomorphism
is equivalent to equality of homomorphism counts from
planar graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 661–672,
2020. URL https://doi.org/10.1109/FOCS
46700.2020.00067.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. In-
variant and Equivariant Graph Networks. In International
Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=Syx7
2jC9tm.

Pearce-Crump, E. Connecting Permutation Equiv-
ariant Neural Networks and Partition Diagrams.
arXiv:2212.08648, 2022.

Pearce-Crump, E. Brauer’s Group Equivariant Neural Net-
works. In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), Proceedings of
the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Re-
search, pp. 27461–27482. PMLR, 23–29 Jul 2023a. URL
https://proceedings.mlr.press/v202/p
earce-crump23a/pearce-crump23a.pdf.

Pearce-Crump, E. How Jellyfish Characterise Alternating
Group Equivariant Neural Networks. In Krause, A., Brun-
skill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett,
J. (eds.), Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 27483–27495. PMLR,
23–29 Jul 2023b. URL https://proceedings.ml
r.press/v202/pearce-crump23b/pearce-c
rump23b.pdf.

Ravanbakhsh, S. Universal Equivariant Multilayer Percep-
trons. In Proceedings of the 37th International Confer-
ence on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 7996–8006. PMLR, 2020. URL
http://proceedings.mlr.press/v119/rav
anbakhsh20a.html.

Sagan, B. E. The Symmetric Group: Representations,
Combinatorial Algorithms, and Symmetric Functions.
Springer, 2000.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.
doi: 10.1109/TNN.2008.2005605.

Segal, E. Group Representation Theory. Course Notes for
Imperial College London, 2014.

Velicković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph Attention Networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum
?id=rJXMpikCZ.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep Sets. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https:
//proceedings.neurips.cc/paper/2017/
file/f22e4747da1aa27e363d86d40ff442f
e-Paper.pdf.

11

https://doi.org/10.1007/BF02280291
https://doi.org/10.1007/BF02280291
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1109/FOCS46700.2020.00067
https://openreview.net/forum?id=Syx72jC9tm
https://openreview.net/forum?id=Syx72jC9tm
https://proceedings.mlr.press/v202/pearce-crump23a/pearce-crump23a.pdf
https://proceedings.mlr.press/v202/pearce-crump23a/pearce-crump23a.pdf
https://proceedings.mlr.press/v202/pearce-crump23b/pearce-crump23b.pdf
https://proceedings.mlr.press/v202/pearce-crump23b/pearce-crump23b.pdf
https://proceedings.mlr.press/v202/pearce-crump23b/pearce-crump23b.pdf
http://proceedings.mlr.press/v119/ravanbakhsh20a.html
http://proceedings.mlr.press/v119/ravanbakhsh20a.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

Graph Automorphism Group Equivariant Neural Networks

A. Proofs
To prove Propositions 4.3, 4.14, and 4.21, we first need to define a strict R–linear monoidal category. We assume throughout
that all categories are locally small, which means that the collection of morphisms between any two objects is a set. In fact,
all of the categories that we consider throughout have morphism sets that are vector spaces. Hence, the morphisms between
objects become linear maps.

Definition A.1. A category C is said to be strict monoidal if it comes with a bifunctor ⊗ : C × C → C, called the tensor
product, and a unit object 1, such that, for all objects X,Y, Z in C, we have that

(X ⊗ Y)⊗ Z = X ⊗ (Y ⊗ Z) (19)

(1⊗X) = X = (X ⊗ 1) (20)

and, for all morphisms f, g, h in C, we have that

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h) (21)

(11 ⊗ f) = f = (f ⊗ 11) (22)

where 11 is the identity morphism 1 → 1. We often use the tuple (C,⊗C ,1C) to refer to the strict monoidal category C.

We can assume that all monoidal categories are strict (nonstrict monoidal categories would have isomorphisms where there
are equalities in Definition A.1) owing to a technical result known as Mac Lane’s Coherence Theorem. See Mac Lane (1998)
for more details.

Definition A.2. A category C is said to be R–linear if, for any two objects X,Y in C, the morphism space HomC(X,Y) is
a vector space over R, and the composition of morphisms is R–bilinear.

Combining Definitions A.1 and A.2, we get

Definition A.3. A category C is said to be strict R–linear monoidal if it is a category that is both strict monoidal and
R–linear, such that the bifunctor ⊗ is R–bilinear.

Proof of Proposition 4.3. C(G) can immediately be seen to be a strict monoidal category by the associativity of the tensor
product on vector spaces and by the associativity of the tensor product on linear maps between tensor spaces.

C(G) is R–linear because the morphism space HomG((Rn)⊗k, (Rn)⊗l), for any two objects (Rn)⊗k and (Rn)⊗l in C(G),
is a vector space over R and the composition of morphisms is R-bilinear because composition is R-bilinear for linear
maps on vector spaces. It is also clear that the bifunctor ⊗ is R–bilinear since it is the standard tensor product for vector
spaces.

Proof of Proposition 4.14. G is a strict monoidal category because the bifunctor on objects reduces to the addition operation
on natural numbers, which is associative, and the bifunctor on morphisms is the tensor product of isomorphism classes of
bilabelled graphs given in Definition 4.11, which is associative because both the concatenation of tuples and the (set) unions
of graphs are associative operations.

G is R–linear because the morphism space between any two objects is by definition a vector space, and the composition of
morphisms is R-bilinear by definition. For the same reason, the bifunctor is also R–bilinear.

Proof of Proposition 4.21. This is effectively the same proof as the one that is given for Proposition 4.3, except we replace
linear maps by matrices.

In order to prove Theorem 4.25, we first need to recall the definition of a strict R–linear monoidal functor.

Definition A.4. Suppose that (C,⊗C ,1C) and (D,⊗D,1D) are two strict R–linear monoidal categories.

A strict R–linear monoidal functor from C to D is a functor F : C → D such that

1. for all objects X,Y in C, F(X ⊗C Y) = F(X)⊗D F(Y)

12

Graph Automorphism Group Equivariant Neural Networks

2. for all morphisms f, g in C, F(f ⊗C g) = F(f)⊗D F(g)

3. F(1C) = 1D, and

4. for all objects X,Y in C, the map
HomC(X,Y) → HomD(F(X),F(Y)) (23)

given by f 7→ F(f) is R–linear.

Proof of Theorem 4.25. Let G be a graph having n vertices. We show each of the four conditions of Definition A.4 in turn.

1. Let k, l be any two objects in G. Then

FG(k ⊗ l) = FG(k + l) = (Rn)⊗k+l = (Rn)⊗k ⊗ (Rn)⊗l = FG(k)⊗FG(l) (24)

2. This is Lemma 4.23.

3. It is clear from the statement of the theorem that FG sends the unit object 0 in G to R, which is the unit object in CG.

4. This is immediate from the definition of a G-homomorphism matrix.

It is clear that the functor FG is full, once again by the definition of a G-homomorphism matrix.

Proof of Proposition 4.31. Suppose that H = (H,k, l). Let H2 be the subgraph consisting of the subset of free vertices
(including the edges that are solely between these vertices) that are entirely disconnected from any vertices that are in a
connected component containing a non-free vertex. Define H1 to be the graph that is H without H2.

Then, by construction, H is a disjoint union of H1 and H2, as graphs, and, if we define H1 := (H1,k, l), then it is clear that

XG
H = cGH2

XG
H1

(25)

where cGH2
is a constant denoting the number of graph homomorphisms from H2 to G, as required.

Proof of Proposition 4.32. Firstly, there is an R–linear isomorphism

HomG(k, l) → HomG(l + k, 0) (26)

that is given on bilabelled graph diagrams by

7→

l + 1 l + k

1 l

??

l + 1 l + k1 l

??

. . .

.

. . .

. . .

(27)

with inverse given by

7→
. . .

l + 1 l + k1 l

??

.

l + 1 l + k

1 l

??

. . .

. . .

(28)

13

Graph Automorphism Group Equivariant Neural Networks

Similarly, for any graph G having n vertices, there is an R-linear isomorphism

HomAut(G)((Rn)⊗k, (Rn)⊗l) → HomAut(G)((Rn)⊗l+k,R) (29)

that is given by
XG

H 7→ FG([MMl]) ◦ (Id⊗k ⊗XG
H) (30)

where Id is the n× n identity matrix, with inverse given by

XG
H 7→ (Id⊗l ⊗XG

H) ◦ (FG([UUl])⊗ Id⊗k) (31)

Here, MMl is the (2l, 0)–bilabelled graph diagram

l + 1 2l1 l

.

(32)

and UUl is its involution, as defined in Definition 4.12.

Since, for any graph G having n vertices, the functor FG is strict monoidal, by Theorem 4.25, we get that the following
diagram commutes:

HomG(k, l)

HomAut(G)((Rn)⊗l+k,R)

HomG(l + k, 0)

HomAut(G)((Rn)⊗k, (Rn)⊗l)

(33)

Since FG gives a bijective correspondence between all isomorphism classes of bilabelled graphs and the spanning set
elements for HomAut(G), as shown in Theorem 4.27, we can use the commuting square to obtain a spanning set for
HomAut(G)((Rn)⊗k+l,R) from the spanning set for HomAut(G)((Rn)⊗k, (Rn)⊗l).

Now, fixing q,m ≥ 0 such that q + m = k + l, we can run the arrows of the commuting square in reverse to obtain a
spanning set for HomAut(G)((Rn)⊗q, (Rn)⊗m), as required.

B. Recovery of the Characterisation of the Equivariant, Linear Maps for the Symmetric Group
We saw in Example 2.10 that the automorphism group of the complement of the complete graph, Aut(Kn), is the symmetric
group Sn. As a result of applying Theorem 4.27 to this case, we can recover the diagram basis for HomSn

((Rn)⊗k, (Rn)⊗l)
for any non-negative integers k and l that first appeared in Godfrey et al. (2023).

To recover the diagram basis, we reduce the set of isomorphism classes of (k, l)–bilabelled graphs H that we need to
consider in (17), as follows. Firstly, we only need to consider isomorphism classes of (k, l)–bilabelled graphs H whose
underlying graphs H are edgeless, since if H has either some edge between two distinct vertices or a loop, then for there to
be a graph homomorphism from H to Kn, the graph Kn would need to have an edge between two distinct vertices or a
loop. Secondly, we only need to consider isomorphism classes of (k, l)–bilabelled graphs H whose underlying graph H
is edgeless, having at most n vertices, since the image under FG of any (k, l)–bilabelled graph whose underlying graph
is edgeless having more than n vertices would correspond to a scalar multiple of the image of a (k, l)–bilabelled graph
whose underlying graph is edgeless having at most n vertices, Thirdly, we only need to consider isomorphism classes of
(k, l)–bilabelled graphs H whose underlying graph H is edgeless having at most n vertices where no vertex is left free in
H , that is, there is no red vertex in H that is not attached by a black edge to some black vertex, by Proposition 4.31.

But this subset of isomorphism classes of (k, l)–bilabelled graphs is precisely all set partitions of {1, . . . , l + k} having at
most n blocks! By construction, the image of this subset under FG is a spanning set of HomSn((Rn)⊗k, (Rn)⊗l) and, by a
dimension count, the image, in fact, forms a basis, which is precisely the diagram basis of Godfrey et al. (2023).

14

Graph Automorphism Group Equivariant Neural Networks

(1, 1)–Bilabelled Graph Diagram H Set Partition Diagram Standard Basis Element XK4

H

1

1

2

1

2


1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1



1 2

1

2

1

2


1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1



Figure 4. We use Theorem 4.27 to obtain the diagram basis of HomS4(R4,R4) from all of the (1, 1)–bilabelled graph diagrams.

C. Spanning Set Examples
Example C.1 (Diagram Basis for HomSn(Rn,Rn)). Suppose we take the complement of the complete graph having n
vertices, Kn. There is only one possible way to label the vertices of this graph, up to all automorphisms:

. . .1 2 3 n− 1 n

In Example 2.10, we saw that its automorphism group, Aut(Kn), is the symmetric group Sn.

Since the order of each tensor power space is 1, by the arguments in Section B, it is enough to consider the isomorphism
classes of (1, 1)–bilabelled graphs H whose underlying graph H is edgeless having at most n vertices where no vertex
is left free in H . Because only at most two vertices cannot be left free for (1, 1)–bilabelled graphs H , we only need to
consider isomorphism classes of (1, 1)–bilabelled graphs H whose underlying graph H is edgeless having at most two
vertices.

This leads to two possibilities, namely [H1] and [H2], where H1 = (K1, (1), (1)) and where H2 = (K2, (1), (2)). They
are given in the left hand column of Figure 4. (Note, for example, that the bilabelled graph (K2, (2), (1)) is in the same
isomorphism class as H2.)

In the right hand column of Figure 4, we show the corresponding G-homomorphism matrices for the case where G = K4,
that is, n = 4, with the case for general n being very similar. Here we have used Definition 4.15 to find the entries of
each of the matrices. To be clear, for general n, the (i, j)-entry of XKn

H1
, by definition, is equal to the number of graph

homomorphisms from K1 to Kn such that 1 is mapped to i and 1 is mapped to j, which is δi,j . By contrast, the (i, j)-entry
of XKn

H2
, is equal to the number of graph homomorphisms from K2 to Kn such that 2 is mapped to i and 1 is mapped to j,

which is 1 for all i, j ∈ [n].

In the middle column, we have also shown the equivalent set partition diagrams that appear in Pearce-Crump (2022) to
highlight how the (1, 1)–bilabelled graph diagrams are related to set partition diagrams in this case. This is also consistent
with the procedure that is given in the orange box since the longest path in Kn is 0. Hence, only the set partitions of {1, 2},
expressed as (2, 0)–bilabelled graph diagrams that are then mapped under Frobenius duality to (1, 1)–bilabelled graph
diagrams, are needed to obtain a spanning set — which is actually a basis — of HomSn

(Rn,Rn).

Example C.2 (Basis for HomD4(R4,R4)). In Example 2.12, we said that the automorphism group of two copies of the
complete graph on two vertices, Aut(2K2), is isomorphic to the dihedral group D4 of order 8.

There are three different ways to label the vertices of the graph 2K2, up to all automorphisms, namely:

15

Graph Automorphism Group Equivariant Neural Networks

(1, 1)–Bilabelled Graph
Diagram H

Standard Basis Element
XA

H

Standard Basis Element
XB

H

Standard Basis Element
XC

H

1

1

2


1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1




1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1




1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1



1 2

1

2


1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1




1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1




1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1



1

2

1

2


1 2 3 4

1 0 1 0 0
2 1 0 0 0
3 0 0 0 1
4 0 0 1 0




1 2 3 4

1 0 0 1 0
2 0 0 0 1
3 1 0 0 0
4 0 1 0 0




1 2 3 4

1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0



Figure 5. Depending on how D4 is embedded as a subgroup of S4, we obtain a basis of HomD4(R4,R4), where here D4 refers to the
specific embedding in S4 that is obtained from the different labellings of the vertices of 2K2, considered up to all automorphisms.

1 3

4 2

1 2

4 3

1 2

3 4

We will refer to these graphs as A, B and C, respectively, throughout the rest of this example.

The automorphism group of each graph is isomorphic to D4, but each automorphism group is a different embedding of D4 in
S4. Said differently, while each automorphism group is isomorphic to D4, the elements in each automorphism group are not
the same when thought of as elements of S4. Specifically, the group corresponding to the first diagram is ⟨(1423), (13)(24)⟩,
whereas the second is ⟨(1432), (12)(34)⟩, and the third is ⟨(1342), (12)(34)⟩.

Consequently, when we would like to find a spanning set for HomD4
(R4,R4), we need to consider which embedding of

D4 in S4 we are referring to, or, more simply, which labels we have used for the graph 2K2. As a result, we will obtain a
spanning set (which we will show is actually a basis) for HomD4(R4,R4), one for each embedding of D4 in S4. Note that
these spanning sets, whilst different, will all be isomorphic under a change of basis that reorders the standard basis vectors
in R4. This is a consequence of all of the automorphism groups being isomorphic to each other.

We present the bases for each instance of 2K2 in Figure 5.

We focus on finding the basis for the automorphism group of the graph A, noting that the approach for the other graphs is
similar. We follow the procedure that is given in the orange box. We see that the longest path m between any two vertices in
A is 1.

Step 1: We calculate all set partitions of [l + k] = {1, 2} and express them as (2, 0)–bilabelled graph diagrams, labelling
only the black vertices.

16

Graph Automorphism Group Equivariant Neural Networks

They are given by

A0 =

1 2

and B0 =

1 2

(34)

Step 2: From A0 and B0, we calculate all possible (2, 0)–bilabelled graph diagrams that have only internal red edges
between red vertices.

Since the number of red vertices c in A0 is 1, this implies that the number of edges in the complete graph K1 is 0, and so
we do not obtain any new (2, 0)–bilabelled graph diagrams from A0.

However, for B0:

• The number of red vertices, c, in B0 is 2. Hence the number of edges in the complete graph K2, e, is 1.

• We now create all possible length e = 1 strings having values in 0 → 2m = 2. Remove the all 0 string.

Hence we obtain the length one strings 1 and 2. We use each of these strings to create a new (2, 0)–bilabelled graph diagram
from B0, which we shall call B1,1 and B1,2, by inserting t new edges between the two red vertices, where t equals 1 and 2
respectively. Hence, B1,1 and B1,2 are given as follows:

B1,1 =

1 2

; B1,2 =

1 2

(35)

Step 3: From A0 and B0, we now calculate all possible (2, 0)–bilabelled graph diagrams that have only external red edges
between red vertices.

For A0, as the number of red vertices is 1, we create all length one strings having entries in 0 to m = 1, removing the all 0
string. We create a new (2, 0)–bilabelled graph diagram from the string 1 by adding 1 new red edge outwards from the red
vertex in A0, adding in a new red vertex to make this new red edge possible. Hence we obtain

A2 =

1 2

(36)

For B0, as the number of red vertices is 2, we create all length two strings having entries in 0 to m = 1, removing the all 0
string. Hence we create three new (2, 0)–bilabelled graph diagrams from the strings 01, 10 and 11, by adding 1 new red
edge outwards from the red vertices in A0 corresponding to the ones in the string, adding in a new red vertex for each new
red edge. Hence we obtain

B2,1 =

1 2

; B2,2 =

1 2

; B2,3 =

1 2

(37)

Step 4: We calculate all possible (2, 0)–bilabelled graph diagrams that have external red edges from B1,1 and B2,2.

17

Graph Automorphism Group Equivariant Neural Networks

We do not create any new (2, 0)–bilabelled graph diagrams in this step as the set originals is empty for B1,1 and B2,2.

Step 5: As A does not have any loops, we immediately move onto Step 6.

Step 6: We now apply Frobenius duality to each (2, 0)–bilabelled graph diagram found in Steps 1 to 5 inclusive to obtain
their form as (1, 1)–bilabelled graph diagrams.

This is equivalent to dragging the black vertex labelled 1 up to the top row. At this stage, we choose to arbitrarily label the
red vertices as well. Using the same names for the bilabelled graph diagrams, we obtain:

A0 = 1

1

2

; B0 = 1 2

1

2

; B1,1 =
1

2

1

2

; B1,2 =
1 2

3

1

2

(38)

A2 =
1 2

1

2

; B2,1 =
1 2 3

1

2

; B2,2 =
1

2

3

1

2

; B2,3 =
1

2

3

4

1

2

(39)

Step 7: We calculate the A-homomorphism matrices that correspond to the (1, 1)–bilabelled graph diagrams given in Step 6.
We remove all duplicate matrices as well as any all zero matrices, weight those that remain, and then add them together to
obtain the weight matrix for an Aut(A) ∼= D4-equivariant linear layer function from R4 to R4.

The A-homomorphism matrices that correspond to the (1, 1)–bilabelled graph diagrams given in (38) are


1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

 ;


1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1

 ;


1 2 3 4

1 0 1 0 0
2 1 0 0 0
3 0 0 0 1
4 0 0 1 0

 and


1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

 (40)

whereas the A-homomorphism matrices that correspond to the (1, 1)–bilabelled graph diagrams given in (39) are


1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

 ;


1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1

 ;


1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1

 and


1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1

 (41)

respectively.

Clearly, only the A-homomorphism matrices corresponding to A0, B0 and B1,1 are unique, and so they form a spanning
set for HomD4

(R4,R4), for D4 = Aut(A) = ⟨(1423), (12)(34)⟩, considered as a subgroup of S4.

Hence the weight matrix that we obtain for an Aut(A) ∼= D4-equivariant linear layer function from R4 to R4 is


1 2 3 4

1 λ1,2 λ2,3 λ2 λ2

2 λ2,3 λ1,2 λ2 λ2

3 λ2 λ2 λ1,2 λ2,3

4 λ2 λ2 λ2,3 λ1,2

 (42)

for weights λ1, λ2, λ3 ∈ R, where λi,j means λi + λj .

18

Graph Automorphism Group Equivariant Neural Networks

Note that, for this example, each spanning set corresponding to an instance of 2K2 happens to be a basis of HomD4
(R4,R4).

Indeed, for each instance of 2K2, the subset consisting of the first two matrices in each column in Figure 5 is a basis
for HomS4(R4,R4), by Example C.1, and since D4 is a proper subgroup of S4 and the spanning set for HomD4(R4,R4)
includes one further matrix that is not a linear combination of these two matrices, this implies that it must be a basis.

Note further, by Example 2.11, that we could have used the cycle graph C4 to obtain automorphism groups that are
isomorphic to D4. In fact, if we label the cycle graphs as follows, we obtain

1 3

4 2

1 2

4 3

1 2

3 4

which are the complements of the three instances A,B,C of 2K2. This is clear since C4 = 2K2. In fact, in this case, we
actually have that Aut(C4) = Aut(2K2), considered as subgroups of S4, for each of the three possible labellings of the
vertices.

However, the basis for HomD4
(R4,R4) for each version of D4 coming from the three instances A,B,C of C4 is different,

but related, to each of those for the three instances A,B,C of 2K2. We present these bases in Figure 6. Note that only the
matrix corresponding to the third (1, 1)–bilabelled graph diagram B1,1 has changed, so even though the embeddings of D4

in S4 are the same for a given labelling of the vertices, how those vertices are connected (resulting in either the square C4 or
its complement 2K2) affects the basis that we obtain for HomD4

(R4,R4). In fact, it is clear that, for each of G = A,B,C,
we have that

XG
B1,1

= J − I −XG
B1,1

(43)

where J is the all ones matrix, and I is the identity matrix. By Example 4.17, we see that this is, in fact, the equation

AG = J − I −AG (44)

which describes the commonly known result of how to obtain the adjacency matrix of the complement of a graph G from
the adjacency matrix of the original graph G!
Example C.3 (Spanning Set for HomS2(R3,R3)). It is clear that, for a graph G having n = 3 vertices such that its
automorphism group is S2, there are three different ways to label the vertices of the graph, up to all automorphisms, namely:

1 32 1 32 1 32

We will refer to these graphs as A, B and C, respectively, throughout the rest of this example.

We focus on graph A, with the approach for the other graphs being similar. In this case, S2 = Aut(A) = {id, (12)} as a
subgroup of S3.

Given that the longest path m between any two vertices in A is 1, and that l = k = 1, we see that, by following the procedure
that is given in the orange box, Steps 1 to 6 inclusive are exactly the same as in Example C.2. Hence the (1, 1)–bilabelled
graph diagrams that we need to consider are those that are given in (38) and (39).

However, given that the graph A is different from the one that appears in Example C.2, the A-homomorphism matrices that
correspond to the (1, 1)–bilabelled graph diagrams given in (38) are now


1 2 3

1 1 0 0
2 0 1 0
3 0 0 1

 ;


1 2 3

1 1 1 1
2 1 1 1
3 1 1 1

 ;


1 2 3

1 0 1 0
2 1 0 0
3 0 0 0

 and


1 2 3

1 1 0 0
2 0 1 0
3 0 0 0

 (45)

and the A-homomorphism matrices that correspond to the (1, 1)–bilabelled graph diagrams given in (39) are now


1 2 3

1 1 0 0
2 0 1 0
3 0 0 0

 ;


1 2 3

1 1 1 0
2 1 1 0
3 1 1 0

 ;


1 2 3

1 1 1 1
2 1 1 1
3 0 0 0

 and


1 2 3

1 1 1 0
2 1 1 0
3 0 0 0

 (46)

19

Graph Automorphism Group Equivariant Neural Networks

(1, 1)–Bilabelled Graph
Diagram H

Standard Basis Element
XA

H

Standard Basis Element
XB

H

Standard Basis Element
XC

H

1

1

2


1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1




1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1




1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1



1 2

1

2


1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1




1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1




1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1



1

2

1

2


1 2 3 4

1 0 0 1 1
2 0 0 1 1
3 1 1 0 0
4 1 1 0 0




1 2 3 4

1 0 1 0 1
2 1 0 1 0
3 0 1 0 1
4 1 0 1 0




1 2 3 4

1 0 1 1 0
2 1 0 0 1
3 1 0 0 1
4 0 1 1 0



Figure 6. Choosing the cycle graph C4 instead to obtain an embedding of D4 inside S4, we obtain a basis of HomD4(R4,R4), one for
each possible labelling of the vertices of C4, that is related to the basis obtained from the complement graph, 2K2.

All of the A-homomorphism matrices are unique except for those coming from B1,2 and A2, and so by removing the matrix
corresponding to A2, we obtain a spanning set HomS2

(R3,R3), for S2 = Aut(A) = ⟨(id, (12)⟩, as a subgroup of S3. We
label the remaining matrices in the order in which they are presented using the index set {1, . . . , 7}.

Hence the weight matrix that we obtain for an Aut(A) ∼= S2-equivariant linear layer function from R3 to R3 is


1 2 3

1 λ1,2,4,5,6,7 λ2,3,5,6,7 λ2,6

2 λ2,3,5,6,7 λ1,2,4,5,6,7 λ2,6

3 λ2,5 λ2,5 λ1,2

 (47)

for weights λ1, . . . , λ7 ∈ R.

We can find the elements of the spanning set for HomS2
(R3,R3) for the other two embeddings of S2 in S3, given by Aut(B)

and Aut(C). For Aut(B), we perform the permutation (13) on each index of the rows and columns of the spanning set
matrices found for Aut(A), and for Aut(C), we perform the permutation (23) instead.
Example C.4 (Spanning Set for HomS2((R3)⊗2,R3)). We refer to the same three graphs, A,B,C, that were given in
Example C.3, and, once again, focus on graph A, with the approach for the other graphs being similar.

Recall that, in this case, S2 = Aut(A) = {id, (12)}, as a subgroup of S3. We still have that the longest path in A is 1. We
follow the procedure that is given in the orange box. However, in order to keep the A-homomorphism matrices in close
proximity with the bilabelled graph diagrams that they correspond to, we have chosen to apply Step 6 and the first part of
Step 7 during Steps 1 through 5 inclusive.

Step 1: We calculate all set partitions of [l + k] = {1, 2, 3} and express them as (3, 0)–bilabelled graph diagrams, labelling
only the black vertices.

They are given by

20

Graph Automorphism Group Equivariant Neural Networks

A0 =

1 32

; B0 =

1 2 3

; C0 =

1 23

; D0 =

12 3

and E0 =

1 2 3

(48)

and correspond, after Frobenius duality, to the A-homomorphism matrices


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 1

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 1 0 0 0 0 0 0
2 0 0 0 1 1 1 0 0 0
3 0 0 0 0 0 0 1 1 1

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 1 0 0 1 0 0
2 0 1 0 0 1 0 0 1 0
3 0 0 1 0 0 1 0 0 1

 (49)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 1 0 0 0 1
2 1 0 0 0 1 0 0 0 1
3 1 0 0 0 1 0 0 0 1

 and


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1

 (50)

Step 2: We calculate all possible (3, 0)–bilabelled graph diagrams that have only internal red edges between red vertices
from the five bilabelled graph diagrams given in Step 1.

Clearly there are no new bilabelled graph diagrams coming from A0 in this step.

However, for B0, C0 and D0, calling these generically by H , we have that

• The number of red vertices, c, in H is 2. Hence the number of edges in the complete graph K2, e, is 1.

• We now create all possible length e = 1 strings having values in 0 → 2m = 2. Remove the all 0 string.

Hence we obtain the length one strings 1 and 2. We use these strings to create two new (3, 0)–bilabelled graph diagrams
from each of B0, C0 and D0, by inserting t new edges between the two red vertices, where t equals 1 and 2, respectively.
The new (3, 0)–bilabelled graph diagrams are given as follows:

B1,1 =

1 2 3

; B1,2 =

1 2 3

; C1,1 =

1 23

(51)

C1,2 =

1 23

; D1,1 =

12 3

; D1,2 =

12 3

(52)

They correspond, after Frobenius duality, to the A-homomorphism matrices


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (53)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (54)

21

Graph Automorphism Group Equivariant Neural Networks

For E0, we have that

• The number of red vertices, c, in E0 is 3. Hence the number of edges in the complete graph K3, e, is 3.

• We now create all possible length e = 3 strings having values in 0 → 2m = 2. Remove the all 0 string.

There are 26 such strings. If we label the red vertices in E0, without loss of generality, as 1, 2 and 3, from left to right, then
we can let the indices in each string refer to possible connections between vertices 1 and 2, vertices 1 and 3, and vertices 2
and 3, written (12), (13) and (23), also from left to right and without loss of generality.

Table 1. All Possible Length 3 Strings With Entries in 0 → 2m = 2

(12)(13)(23) (12)(13)(23) (12)(13)(23)
000 001 002
010 011 012
020 021 022
100 101 102
110 111 112
120 121 122
200 201 202
210 211 212
220 221 222

To create the 26 new (3, 0)–bilabelled graph diagrams, we now add in the edges (and new red vertices) between the labelled
red vertices in E0, according to the entries in the string.

They are

E001 =

1 2 3

; E002 =

1 2 3

(55)

E010 =

1 2 3

; E011 =

1 2 3

; E012 =

1 2 3

(56)

E020 =

1 2 3

; E021 =

1 2 3

; E022 =

1 2 3

(57)

E100 =

1 2 3

; E101 =

1 2 3

; E102 =

1 2 3

(58)

22

Graph Automorphism Group Equivariant Neural Networks

E110 =

1 2 3

; E111 =

1 2 3

; E112 =

1 2 3

(59)

E120 =

1 2 3

; E121 =

1 2 3

; E122 =

1 2 3

(60)

E200 =

1 2 3

; E201 =

1 2 3

; E202 =

1 2 3

(61)

E210 =

1 2 3

; E211 =

1 2 3

; E212 =

1 2 3

(62)

E220 =

1 2 3

; E221 =

1 2 3

; E222 =

1 2 3

(63)

and correspond, after Frobenius duality, to the A-homomorphism matrices


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 1 0 1 0 0 0 0 0
2 0 1 0 1 0 0 0 0 0
3 0 1 0 1 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 1 0 0 0 0
2 1 0 0 0 1 0 0 0 0
3 1 0 0 0 1 0 0 0 0

 (64)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 1 0 0 1 0 0 1 0
2 1 0 0 1 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 1 0 0 1 0 0 0 0
2 1 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (65)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 1 0 0 1 0 0
2 0 1 0 0 1 0 0 1 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (66)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 1 1 1 0 0 0
2 1 1 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (67)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (68)

23

Graph Automorphism Group Equivariant Neural Networks


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (69)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 1 0 0 0 0 0 0
2 0 0 0 1 1 1 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (70)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (71)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (72)

Step 3: We calculate all possible (3, 0)–bilabelled graph diagrams that have only external red edges between red vertices
from the five bilabelled graph diagrams given in Step 1.

For A0, as the number of red vertices is 1, we create all length one strings having entries in 0 to m = 1, removing the all 0
string. As a result, we create a new (3, 0)–bilabelled graph diagram from the string 1 by adding 1 new red edge outwards
from the red vertex in A0, adding in a new red vertex to make this new red edge possible. Hence we obtain

A2 =

1 32

(73)

which, after Frobenius duality, corresponds to the A-homomorphism matrix


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (74)

However, for B0, C0 and D0, calling these generically by H , we know that the number of red vertices, c, in H is 2. As a
result, we create all length two strings having entries in 0 to m = 1, removing the all 0 string. There are three such strings,
01, 10 and 11. Hence we create three new (3, 0)–bilabelled graph diagrams using these strings from each of B0, C0 and
D0, by adding 1 new red edge outwards from a red vertex that corresponds to a 1 in the string, adding in a new red vertex to
make this new red edge possible. They are given by

B2,1 =

1 2 3

; B2,2 =

1 2 3

; B2,3 =

1 2 3

(75)

C2,1 =

1 23

; C2,2 =

1 23

; C2,3 =

1 23

(76)

24

Graph Automorphism Group Equivariant Neural Networks

D2,1 =

12 3

; D2,2 =

12 3

; D2,3 =

12 3

(77)

which, after Frobenius duality, correspond to the A-homomorphism matrices


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0
3 0 0 0 0 0 0 1 1 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 1 0 0 0 0 0 0
2 0 0 0 1 1 1 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (78)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 1 0 0 0 0 0
2 0 1 0 0 1 0 0 0 0
3 0 0 1 0 0 1 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 1 0 0 1 0 0
2 0 1 0 0 1 0 0 1 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 1 0 0 0 0 0
2 0 1 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (79)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 1 0 0 0 1
2 1 0 0 0 1 0 0 0 1
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 1 0 0 0 0
2 1 0 0 0 1 0 0 0 0
3 1 0 0 0 1 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 1 0 0 0 0
2 1 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (80)

For E0, we know that the number of red vertices, c, in E0 is 3. As a result, we create all length three strings having entries
in 0 to m = 1, removing the all 0 string. There are seven such strings, 001, 010, 011, 100, 101, 110 and 111. Hence we
create seven new (3, 0)–bilabelled graph diagrams using these strings from E0, by adding 1 new red edge outwards from a
red vertex that corresponds to a 1 in the string, adding in a new red vertex to make this new red edge possible. They are
given by

E2,1 =

1 2 3

; E2,2 =

1 2 3

; E2,3 =

1 2 3

; E2,4 =

1 2 3

(81)

E2,5 =

1 2 3

; E2,6 =

1 2 3

; E2,7 =

1 2 3

(82)

which, after Frobenius duality, correspond to the A-homomorphism matrices


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 0 1 1 0 1 1 0
2 1 1 0 1 1 0 1 1 0
3 1 1 0 1 1 0 1 1 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 1 1 1 1 0 0 0
2 1 1 1 1 1 1 0 0 0
3 1 1 1 1 1 1 0 0 0

 (83)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 0 0 0
3 1 1 0 1 1 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 0 0 0 0 0 0 0 0 0

 (84)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 0 1 1 0 1 1 0
2 1 1 0 1 1 0 1 1 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 1 1 1 1 0 0 0
2 1 1 1 1 1 1 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (85)

Step 4: We calculate all possible (3, 0)–bilabelled graph diagrams that have external red edges from the 32 bilabelled graph
diagrams that were given in Step 2.

25

Graph Automorphism Group Equivariant Neural Networks

None of the bilabelled graph diagrams given in (51) and (52) will lead to new bilabelled graph diagrams, since each red
vertex in each bilabelled graph diagram is connected with another red vertex in the diagram.

Only six bilabelled graph diagrams in (55) - (63) give rise to new bilabelled graph diagrams: they are E001, E002, E010,
E020, E100, and E200, as they are the only bilabelled graph diagrams that have at least one (in this example, exactly one)
red vertex that is not connected with any other vertex.

As each bilabelled graph diagram has three red vertices having only a single red vertex that is not connected with any other
vertex, and since m = 1, this step produces exactly one string of length three, where each position in the string corresponds
to a red vertex in the bilabelled graph diagram.

Hence, from E001, E002, and E010, we obtain

E001,E =

1 2 3

; E002,E =

1 2 3

; E010,E =

1 2 3

(86)

and from E020, E100, and E200, we obtain

E020,E =

1 2 3

; E100,E =

1 2 3

; E200,E =

1 2 3

(87)

These six bilabelled graph diagrams correspond, after Frobenius duality, to the following A-homomorphism matrices.


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 1 0 1 0 0 0 0 0
2 0 1 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 1 0 0 0 0
2 1 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (88)


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 0 0 0 1 1 0 0 0 0
2 1 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 ;


1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 1 1 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0

 (89)

Step 5: There are no new bilabelled graph diagrams to consider in this step as A does not have any loops.

In total, this gives us 60 (3, 0)–bilabelled graph diagrams that are appropriate for A.

We have implicitly applied Step 6 in calculating the A-homomorphism matrices during Steps 1 through 5 inclusive since we
had to convert each (3, 0)–bilabelled graph diagram into a (2, 1)–bilabelled graph diagram first before applying the functor
FG to obtain each A-homomorphism matrix. Hence we move onto the second half of Step 7: we remove all duplicate
matrices and the all zero matrices. We see that we are left with 31 matrices in the spanning set. After this, to obtain the
weight matrix for an Aut(A) ∼= S2-equivariant linear layer function from (R3)⊗2 to R3, we would weight each of the 31
matrices in the spanning set and then add them together.

It is important to highlight that the vector space Hom((R3)⊗2,R3), in which HomS2
((R3)⊗2,R3) lives, is of dimension 27;

hence, there must be linear dependencies amongst the 31 spanning set elements that we have found. However, determining
these linear dependencies in general at the graph level a priori is left for future work.

We can also find the elements of the spanning set for HomS2
((R3)⊗2,R3) for the other two embeddings of S2 in S3, given

by Aut(B) and Aut(C). For Aut(B), we perform the permutation (13) on each index of the rows and columns of the
spanning set matrices found for Aut(A), and for Aut(C), we perform the permutation (23) instead.

26

Graph Automorphism Group Equivariant Neural Networks

D. Adding Features and Biases
D.1. Features

We have assumed throughout that the feature dimension for all of the layers that appear in a graph automorphism group
equivariant neural network is one. We can adapt all of the results that we have shown for the case where the feature
dimension of the layers is greater than one.

Let G be a graph having n vertices, and suppose that an r-order tensor has a feature space of dimension dr. We now wish to
find a spanning set for

HomAut(G)((Rn)⊗k ⊗ Rdk , (Rn)⊗l ⊗ Rdl) (90)

in the standard basis of Rn.

The spanning set can be found by adapting the result given in (17), and is

{XG
H,i,j | [H] ∈ G(k, l), i ∈ [dl], j ∈ [dk]} (91)

where now, if H := (H,k, l), then XG
H,i,j is the (nl×dl)× (nk×dk) matrix that has (I, i, J, j)–entry given by the number

of graph homomorphisms from H to G such that l is mapped to I and k is mapped to J , and is 0 otherwise.

D.2. Biases

Including bias terms in the layer functions of an Aut(G)-equivariant neural network is also possible. If we consider a
learnable linear layer in HomAut(G)((Rn)⊗k, (Rn)⊗l), Pearce-Crump (2022) shows that the Aut(G)-equivariance of the
bias function, β : ((Rn)⊗k, ρk) → ((Rn)⊗l, ρl), needs to satisfy

c = ρl(g)c (92)

for all g ∈ Aut(G) and for all c ∈ (Rn)⊗l.

Since any c ∈ (Rn)⊗l satisfying (92) can be viewed as an element of HomAut(G)(R, (Rn)⊗l), to find the matrix form of c,
all we need to do is to find a spanning set for HomAut(G)(R, (Rn)⊗l).

But this is simply a matter of applying Theorem 4.27, setting k = 0.

27

