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Abstract

Noisy labels pose a common challenge for training accurate deep neural networks.
To mitigate label noise, prior studies have proposed various robust loss functions to
achieve noise tolerance in the presence of label noise, particularly symmetric losses.
However, they usually suffer from the underfitting issue due to the overly strict
symmetric condition. In this work, we propose a simple yet effective approach for
relaxing the symmetric condition, namely ϵ-softmax, which simply modifies the
outputs of the softmax layer to approximate one-hot vectors with a controllable
error ϵ. Essentially, ϵ-softmax not only acts as an alternative for the softmax layer,
but also implicitly plays the crucial role in modifying the loss function. We prove
theoretically that ϵ-softmax can achieve noise-tolerant learning with controllable
excess risk bound for almost any loss function. Recognizing that ϵ-softmax-
enhanced losses may slightly reduce fitting ability on clean datasets, we further
incorporate them with one symmetric loss, thereby achieving a better trade-off
between robustness and effective learning. Extensive experiments demonstrate the
superiority of our method in mitigating synthetic and real-world label noise. The
code is available at https://github.com/cswjl/eps-softmax.

1 Introduction

In recent years, deep neural networks (DNNs) have achieved remarkable advancements across various
machine learning tasks [1, 2]. Despite its significant success, the prevalence of noisy labels in real-
world datasets is a pervasive issue, often stemming from human bias or a lack of relevant professional
knowledge [2]. The application of supervised learning methods directly to data with noisy labels
consistently results in a decline in model performance [3]. Moreover, the ability to generalize from
weak learners plays a pivotal role in the alignment of large language models [4]. Consequently, the
pursuit of noise-tolerant learning has emerged as a compelling and significant challenge within the
domain of weakly supervised learning, garnering increased attention in recent years [5, 6, 7, 8].

The literature presents several strategies for remedying this issue, with the design of robust loss
functions standing out as a particularly popular approach due to its simplicity and broad applicability.
Some previous works [9, 10, 5] theoretically proved that a loss function is noise-tolerant to label
noise under mild conditions if it is symmetric:

K∑
k=1

L(f(x), k) = C, ∀x ∈ X ,∀f ∈ H (1.1)

where k ∈ [K] is the label corresponding to each class, C is a constant, andH is the hypothesis class.

Furthermore, Asymmetric Loss Functions (ALFs) [7] are proposed as an extension of symmetric
losses, which are designed for clean-label-dominant noise. However, both symmetric and asymmetric
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losses, such as Mean Absolute Error (MAE) [5] and Asymmetric Unhinged Loss (AUL) [7], encounter
the underfitting problem and prove challenging to optimize [5, 6, 7]. The fitting ability of existing
symmetric loss functions is constrained by the overly strict symmetric condition in Equation 1.1 [7].
Some approaches aim to improve the classical symmetric loss MAE by incorporating the robustness of
the MAE and the rapid convergence of the Cross Entropy (CE). Examples include Generalized Cross
Entropy (GCE) [11], Symmetric Cross Entropy (SCE) [12], and Jensen-Shannon Divergence Loss
(JS) [13]. However, these loss functions often mechanically select an intermediate value between the
derivatives of CE and MAE, essentially representing a trade-off between fitting ability and robustness.
This prompts a crucial question: How can we simultaneously achieve both robustness and effective
learning?

Zhou et al. [14] proposed an alternative approach to achieve the symmetric condition, diverging
from the development of a new robust loss function. By restricting the hypothesis class H, which
restricts the outputs of the prediction function f to one-hot vectors, any loss function can inherently
become symmetric, i.e.,

∑K
k=1 L(f(x), k) = C, ∀x ∈ X ,∀L ∈ L. However, a notable challenge

arises from the fact that directly mapping outputs to one-hot vectors constitutes a non-differentiable
operation. Accordingly, the crux of the matter lies in formulating an effective method to constrain
the outputs to one-hot vectors. Previous attempts, such as temperature-dependent softmax [14],
sparseness constraint [15], sparse regularization [14], and variance enlargement [16], have aimed
to approximate one-hot vectors through the application of regularization methods. Nevertheless,
these methods lack predictability, fail to achieve a quantitative approximation to one-hot vectors, and
exhibit limited effectiveness, particularly at higher noise rates. Up to this point, a reliable approach
for rigorously enforcing one-hot vector outputs remains elusive. Addressing this gap continues to
pose a significant challenge in realizing the symmetric condition.

In this paper, we present a simple yet effective and theoretically sound approach for approximating
outputs to one-hot vectors, which we term ϵ-softmax. This method serves as a valuable alternative
to the conventional softmax function in mitigating label noise. The distinctive attribute of ϵ-softmax
lies in its guarantee to possess a controllable approximation error ϵ to one-hot vectors, thus achieving
perfect constraint for the hypothesis class. This approach is universally applicable across diverse mod-
els and loss functions, as it only needs to implement a simple layer resembling softmax. Specifically,
the process of applying our ϵ-softmax is outlined as follows:

Step 1. p(·|x)← softmax(h(x)),

Step 2. pt ← pt +m, where t = arg max
k∈[K]

pk

Step 3. p(·|x)← p(·|x)/(m+ 1).

Herein, p(·|x) represents the prediction probabilities, pk denotes the k-th element of the vector
p(·|x), and h(x) denotes the logits. Step 1 obtains the original predictions by the softmax function.
Step 2 involves a hyperparameter m ≥ 0 to amplify the maximum term in the predictions with
a controllable approximation error to one-hot vectors. Step 3 performs a normalization to make
predictions sum to one, which also reduces the values of non-maximum terms.

The above description underscores that ϵ-softmax as a plug-and-play module applicable to any
classifier incorporating a softmax layer. Through the adjustment of the parameter m, our approach
allows for the quantitative approximation of output to one-hot vectors, and thus owns the ability
for mitigating label noise in classification. The main contributions of our work are highlighted as
follows:

• We propose a simple yet effective scheme, ϵ-softmax, for mitigating label noise. This
scheme operates as a plug-and-play module, seamlessly integrating with any classifier that
incorporates a softmax layer through just two additional lines of code.

• We offer rigorous theoretical analyses, which indicate that ϵ-softmax is capable of control-
lably approximating one-hot vectors. Consequently, ϵ-softmax-enhanced loss functions
can achieve noise-tolerant learning and Bayes optimal top-k error.

• We develop practical loss functions that enhance noise-tolerant learning. These include
integration with MAE, achieving a better trade-off between robustness and effective learning.
Extensive experimental results demonstrate the superiority of our method.
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2 Preliminary

Problem Formulation. In a typical supervised classification scenario, let X ⊂ Rd represent the
d-dimensional input space, and Y = [K] = {1, 2, ...,K} is the label space, where K is the number
of classes. We are provided with a labeled dataset S = {(xn, yn)}Nn=1, where each (xn, yn) is drawn
i.i.d. from an underlying distribution D over X × Y . The classifier f is a mapping from the sample
space to the label space, the prediction label ŷ = argmaxk f(x)k. Here, the prediction function
f : X → ∆K estimates the probability p(·|x), and ∆K = {u ∈ [0, 1]K : 1⊤u = 1} represents the
probability simplex. Typically, the function f is expressed as f = softmax ◦ h, where h denotes
the logits input to the softmax layer. In the context of deep learning, h is commonly a neural network.
The objective or loss function is defined as a measure of distance L : ∆K × ∆K → R. For a
classification problem, the loss function is characterized by L(u, ey), where ey represents the one-hot
vector with its y-th element set to 1. In this study, we consider the loss functional L, where ∀L ∈ L,
L(u,v) =

∑K
k=1 ℓ(uk, vk) with a basic loss function ℓ. For brevity, we slightly abuse notation by

defining L(u, k) = L(u, ek).

Label Noise Model. In the context of learning with noisy labels, the accessible training set is
the noisy counterpart S̃ = {(xn, ỹn)}Nn=1 rather than the clean set S. We characterize the noise
corruption process as the flipping of the clean label of x into its noisy version ỹ with a probability
denoted as ηx,ỹ = p(ỹ|x, y). ηx =

∑
k ̸=y ηx,k denotes the noise rate for x. Our focus is on two

prevalent types of label noise [6, 7] :

– Symmetric or uniform noise: ηx,y = 1− η and ηx,k ̸=y = η
K−1 ,

– Asymmetric or class-conditional noise: ηx,y = 1− ηy and
∑

k ̸=y ηx,k = ηy ,

where ηx = η for symmetric noise, ηx = ηy denotes the noise rate for the y-th class, and ηx,i is not
necessarily equal to ηx,j , i ̸= j for asymmetric noise.

We also empirically consider learning with human-annotated noisy labels.

Expected Risk and Noise Tolerance. In learning with clean labels, given a loss function
L ∈ L and a prediction function f , the expected risk with respect to f is defined as: RL(f) =
E(x,y)∼D[L(f(x), y)]. The objective is to learn an optimal classifier f∗ that minimizes the expected
risk, i.e., f∗ ∈ argminf∈F RL(f).

In the case of learning with noisy labels, the corresponding noisy expected risk with respect to f is
defined as:

Rη
L(f) = ED

[
(1− ηx)L(f(x), y) +

∑
k ̸=y

ηx,kL(f(x), k)
]
, (2.1)

where
∑

k ̸=y ηx,kL(f(x), k) is the noisy part that usually poses challenges in training accurate
DNNs.

A loss function L is claimed to be noise-tolerant if the global minimizer f∗
η ofRη

L(f) also minimizes
RL(f), that is, f∗

η ∈ argminf RL(f).

All-k Consistency. Consistency is an important property of a loss function. A standard consistency
is for achieving Bayes optimal top-1 error. We consider much stronger consistency for achieving
Bayes optimal top-k error for any k ∈ [K]. To this end, we introduce some definitions about top-k
consistency [17, 8].

For any vector f ∈ RK , we let rk(f) denote a top-k selector that selects the k indices of the
largest entries of f by breaking ties arbitrarily. Given a data (x, y), its top-k error is defined as
errk(f,x, y) = I(y /∈ rk(f(x))). The goal of a classification algorithm under the top-k error metric
is to learn a predictor f that minimizes the errk expected risk: Rerrk(f) = E(x,y)∼D[errk(f,x, y)].

For a fixed k ∈ [K], a loss function L is top-k consistent if for any sequence of measurable
functions f : X → ∆K , we have the global minimizer f∗ ofRL(f) also minimizesRerrk(f), that is,
f∗ ∈ argminf Rerrk(f). If the above holds for all k ∈ [K], it is referred to as All-k consistency.
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3 Methodology and Theoretical Investigation

The symmetry condition in Equation 1.1, theoretically ensures that a symmetric loss function can be
noise-tolerant [5]. Existing methods primarily focus on designing new loss functions. Those derived
based on this design principle exhibit drawbacks, such as being challenging to optimize [5, 6] and
prone to encounter the gradient explosion problem [7]. In this work, we take an alternative approach
by proposing to constrain the hypothesis classH such that any loss functions will be approximately
symmetric thereby rendering them robust to label noise.

3.1 Robustness

We introduce ϵ-softmax to make the output f(x) approximate one-hot vectors. The implementation
of ϵ-softmax is easy to follow, as outlined in the gray box of the Introduction Section 1, requiring
just two additional lines of code alongside the standard softmax layer. This underscores that ϵ-
softmax is a plug-and-play module applicable to any classifier that incorporates a softmax layer. In
this following, we investigate in theory how ϵ-softmax realizes the controllable approximation of
outputs to one-hot vectors, thereby enhancing the noise tolerance of any loss function.

Approximating One-Hot Vectors. We first introduce the concept of ϵ-relaxation for a hypoth-
esis class and then prove ϵ-softmax can strictly approximate outputs to one-hot vectors with a
controllable error.
Definition 1 (ϵ-relaxation). Given a fixed vector v and its permutation set Pv

1, the ϵ-relaxation of
Pv is defined as the hypothesis classHv,ϵ, in which any hypothesis f ∈ Hv,ϵ outputs vectors in the
ϵ-ball of Pv, i.e.,Hv,ϵ = {f : minu∈Pv ∥f(x)− u∥2 ≤ ϵ,∀x}.

Without loss of generality, we consider v as a one-hot vector, which is common in machine learning,
to facilitate the implementation and analysis. We then denote the permutation set of the one-hot
vector as Pe1

, where all elements are also one-hot vectors. In accordance with Definition 1, we can
further derive that:
Lemma 1. ϵ-softmax can achieve ϵ-relaxation for one-hot vectors:

min
u∈Pe1

∥f(x)− u∥2 ≤ ϵ =

√
1−1/K

m+1 , (3.1)

where f(x) = ϵ-softmax ◦ h(x).

Lemma 1 suggests that ϵ-softmax effectively enables f(x) to approximate one-hot vectors with a

controllable error
√

1−1/K

m+1 .

Robustness Guarantee. We then establish theoretical guarantees for the robustness in mitigating
label noise, where the constrained hypothesis classHe1,ϵ is considered.

Zhou et al. [14] established the excess risk bound [18] under symmetric noise, which holds when
outputs fall within an ϵ-relaxation of a permutation set. We prove a more comprehensive conclusion
by considering asymmetric noise, of which symmetric noise is a special case.
Theorem 1 (Excess Risk Bound under Asymmetric Noise). In a multi-class classification problem,
if the loss function L ∈ L satisfies |

∑K
k=1(L(u1, k)− L(u2, k))| ≤ δ when ∥u1 − u2∥2 ≤ ϵ, and

δ → 0 as ϵ → 0, then for asymmetric label noise ηx,k < (1− ηy) ,∀k ̸= y, if RL(f
∗) = 0 , the

excess risk bound for f ∈ Hv,ϵ can be expressed as

RL(f
∗
η ) ≤ 2δ +

2cδ

a
, (3.2)

where c = ED (1− ηy), a = minx,k(1 − ηy − ηx,k), f∗
η and f∗ denote the global minimum of

Rη
L(f) andRL(f), respectively.

Theorem 1 demonstrate that under mild conditions for symmetric and asymmetric label noise, any loss
function can be made noise-tolerant when the function f(x) increasingly approximates a permutation
set Pv (i.e., δ → 0 as ϵ→ 0).

1For example, consider the vector v = [v1, v2], its permutation set is defined as Pv = {[v1, v2], [v2, v1]}.
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ϵ-Softmax-Enhanced Loss Functions. Lemma 1 enable f(x) = ϵ-softmax ◦ h(x) in closely
approximating a one-hot vector, aligns with the principle outlined in Theorem 1 within the framework
of the hypothesis classHe1,ϵ. Hence, ϵ-softmax progressively enhances the noise tolerance of any
loss function as the hyperparameter m approaches infinity (ϵ→ 0 as m→∞ and the discrepancy
δ → 0).

In this paper we consider CE loss and Focal loss (FL) [19]. We combine them with ϵ-softmax,
denoted as CEϵ and FLϵ. ϵ-softmax approach is effective in adapting them to become more resilient
to noise, ensuring better performance in the presence of label noise.

3.2 Consistency

Fundamentally, ϵ-softmax not only acts as an alternative for the softmax layer, but also plays the
crucial role in modifying the loss function. Consistency is an important property of a loss function. A
standard consistency is for achieving Bayes optimal top-1 error. We show much stronger consistency
for achieving Bayes optimal top-k error for any k ∈ [K] of the CE loss when combined with ϵ-
softmax. To establish the All-k consistency, we first introduce some existing results of sufficient
condition of top-k consistency by top-k calibration [17, 8].

Let Pk(f ,q) denote that f is top-k preserving with respect to the underlying label distribution q, i.e.,
if for all l ∈ [K], ql > q[k+1] ⇒ fl > f[k+1], and ql < q[k] ⇒ fl < f[k]. Here, q[k] denotes he k-th
greatest entry of q. For example, if q = [0.2, 0.4, 0.4], then q[1] = 0.4, q[2] = 0.4, q[3] = 0.2.

Definition 2 (All-k calibrated). For a fixed k ∈ [K], a loss function L is called top-k calibrated if
for all q ∈ ∆K it holds that:

inf
f∈RK :¬Pk(f,q)

RL(f) > inf
f∈RK

RL(f). (3.3)

A loss function is called All-k calibrated if the loss function L is top-k calibrated for all k ∈ [K].

Yang and Koyejo [17] demonstrate that suppose L is a nonnegative top-k calibrated loss function,
then L is top-k consistent. Furthermore, Zhu et al. [8] show that if f∗ = argminf RL(f) is rank
preserving with respect to q, then L is All-k calibrated. f is called rank preserving w.r.t q, i.e., if for
any pair qi < qj it holds that fi < fj .

Then we establish comprehensive All-k consistency for CEϵ as follows:
Lemma 2. For one-hot label ey , CEϵ is All-k calibrated and All-k consistency.
Theorem 2. For any label q ∈ ∆K , let y = argmaxk∈[K] qk and t = argmaxk∈[K] pk , if t = y
and qy −maxk ̸=y qk > m

m+1 , CEϵ is All-k calibrated and All-k consistency.

Lemma 2 and Theorem 2 mean that CEϵ performs well not only on the top-1 prediction, but also on
the top-k predictions for any k ∈ [K]. We show the All-k consistency property of different losses in
Table 1, the consistency of other losses refer to [8].

Table 1: All-k consistency between different loss functions.
Loss CE MAE NCE GCE SCE AUL AGCE AEL LDR-KL CEϵ

All-k Consistency

3.3 Gradient Analysis of ϵ-Softmax.

To provide a comprehensive understanding of ϵ-softmax in mitigating label noise, we further
analyze the gradient of the CE loss when combined with ϵ-softmax. The gradient of LCEϵ(f(x), y)
with respect to the model h(x) can be derived as follows:

∂LCEϵ(f(x), y)

∂h(x)
=

{
− 1

py+m ·
∂py

∂h(x) , t = y

− 1
py
· ∂py

∂h(x) , t ̸= y
, (3.4)

where f = ϵ-softmax ◦ h, p(x) = softmax(h(x)) denotes the probabilities by standard softmax,
and t = argmaxk∈[K] pk is the class with the largest value in prediction probabilities.

Remark. The gradient in Equation 3.4 shows that CEϵ will be equivalent to the standard CE if the
maximum prediction is not the target class (i.e., t ̸= y), in which the division of m+1 in probabilities
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(c) CEϵ+MAE (η = 0)
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(d) CEϵ+MAE (η = 0.8)

Figure 1: Test accuracies on CIFAR-10 under symmetric noise with different m, where the red box
represents the zoomed-in accuracies of the last 20 epochs. (a) and (b) illustrate CEϵ with 0 (clean)
and 0.8 noise rates, respectively. (c) and (d) illustrate CEϵ+MAE (α = 0.01, β = 5) similarly.

is omitted due to the partial deviation. Conversely, when the prediction class t matches the target
class y, the gradient undergoes dynamic scaling by py

py+m . This scaling results in smaller gradients,
akin to a form of soft early-stopping [20], which facilitates the mitigation of overfitting to noisy
labels. Such a characteristic enables Deep Neural Networks (DNNs) to efficiently fit clean samples in
the early phases of training [21, 20], while simultaneously preventing the overfitting of noisy labels
in the later stages of the training process. As illustrated in Figure 1(b), CEϵ achieves a stable test
accuracy curve, even in the challenging scenario with 0.8 symmetric label noise, without overfitting
to noisy labels. On the contrary, CE with the standard softmax tends to rapidly overfit to noisy labels
after the early phase of training, leading to poor performance.

3.4 Better Trade-off between Robustness and Effective Learning

It can be noted that the incorporation of ϵ-softmax somewhat sacrifices the fitting ability of the
CE loss on clean datasets, as shown in Figure 1(a). Therefore, we need to enhance the fitting ability
using additional techniques. Inspired by the Active Passive Loss [6], we propose to accommodate
with the symmetric loss MAE. For instance, we formulate the combination of CEϵ and MAE (a.k.a.,
CEϵ+MAE) as follows

LCEϵ+MAE = α · LCEϵ + β · LMAE, (3.5)
ditto for FLϵ+MAE.
Lemma 3. For any loss function Lϵ with ϵ-softmax and symmetric loss function Lsymmetric defined
in Equation 1.1, the excess risk bound of α · Lϵ + β · Lsymmetric is equivalent to that of α · Lϵ.

Lemma 3 suggests that the ϵ-softmax-enhanced loss function Lϵ can be seamlessly integrated with
any symmetric loss function while not modifying the inherent robustness. As can be noticed in
Figure 1(c) and Figure 1(d), CEϵ+MAE not only depicts strong fitting capabilities but also achieves
better noise tolerance. More interestingly, the test accuracy on clean datasets obtained by CEϵ+MAE
even exceeds that of the standard CE loss.

Strict Convexity of CEϵ+MAE. To elaborate on how the combination of CEϵ and MAE can
overcome the underfitting issue, we conduct an in-depth analysis from the optimization perspective.
When the prediction t = y, the gradients of CEϵ, CE and MAE w.r.t. py ∈ (0, 1], are − 1

py+m , − 1
py

and −2, respectively. As can be seen, CE and CEϵ are strictly convex, while MAE exhibits linearity.
Moreover, CE has stronger convexity compared to CEϵ (specifically, the gradient of CE changes more
rapidly as 1/p2y > 1/(py +m)2), rendering CE more susceptible to overfitting noisy labels while
CEϵ suffering from underfitting for large m, as illustrated in Figure 1(a) and Figure 1(b). Conversely,
owing to the linearity, MAE treats every sample equally, making it robust to label noise but leading to
more training time for convergence [11]. Hence, the combination of CEϵ and MAE, which notably
forms a strictly convex function (where the convexity can be controlled by m), can provide better
trade-off between robustness and effective learning.

Association with APL. Additionally, our proposed CEϵ+MAE coincides with the concept of active
and passive losses in [6]. Specifically, for a loss function denoted as L(f(x), y) = ℓ1(f(x), y) +∑

k ̸=y ℓ2(f(x), k), L is active if ℓ2(f(x), k) = 0 for any k ̸= y, and L is passive if ℓ2(f(x), k) ̸= 0

for some k ̸= y. Active losses only explicitly maximize the target probability f(x)y, while passive
losses also explicitly minimize non-target probabilities {f(x)k}k ̸=y. For example, CE is an active
loss, while MAE is passive. Based on these two loss terms, Ma et al. [6] proposed to combine a robust
active loss and a robust passive loss into an “Active Passive Loss” (APL) framework for improving
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Table 2: Last epoch test accuracies (%) of different methods on CIFAR-10/100 symmetric and
asymmetric noise. The results "mean±std" are reported over 3 random runs and the top-2 best results
are boldfaced.

CIFAR-10 Clean Symmetric Noise Rate (η) Asymmetric Noise Rate (η)
0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4

CE 90.50±0.35 75.47±0.27 58.46±0.21 39.16±0.50 18.95±0.38 86.98±0.31 83.82±0.04 79.35±0.66 75.28±0.58

FL 89.70±0.24 74.50±0.18 58.23±0.40 38.69±0.06 19.47±0.74 86.64±0.12 83.08±0.07 79.34±0.30 74.68±0.31

GCE 89.42±0.21 86.87±0.06 82.24±0.25 68.43±0.26 25.82±1.03 88.43±0.20 86.17±0.29 80.72±0.42 74.01±0.53

NLNL 90.73±0.20 73.70±0.05 63.90±0.44 50.68±0.47 29.53±1.55 88.54±0.25 84.74±0.08 81.26±0.43 76.97±0.52

SCE 91.30±0.08 87.58±0.05 79.47±0.48 59.14±0.07 25.88±0.49 89.87±0.27 86.48±0.25 81.30±0.18 74.99±0.16

NCE+MAE 89.02±0.10 86.79±0.28 83.60±0.14 75.93±0.41 46.96±0.67 88.03±0.27 85.53±0.08 81.10±0.52 74.98±0.48

NCE+RCE 91.03±0.28 88.41±0.24 85.13±0.56 79.20±0.06 55.28±1.26 90.25±0.08 88.11±0.23 85.35±0.18 79.43±0.21
NFL+RCE 91.08±0.29 89.00±0.23 85.90±0.19 79.79±0.52 55.47±2.73 89.99±0.35 88.33±0.26 85.27±0.13 79.05±0.35

NCE+AUL 91.06±0.24 89.11±0.07 85.79±0.16 79.57±0.21 57.59±0.84 90.18±0.23 88.30±0.44 85.28±0.04 79.14±0.36

NCE+AGCE 91.13±0.11 89.00±0.29 85.91±0.15 80.36±0.36 49.98±4.81 89.90±0.09 88.36±0.11 85.73±0.12 79.28±0.37
NCE+AEL 88.43±0.25 86.46±0.28 83.06±0.23 75.15±0.32 43.22±0.46 87.59±0.38 85.98±0.14 82.87±0.16 75.78±0.12

LDR-KL 91.38±0.35 89.01±0.09 85.46±0.11 74.93±0.33 34.78±0.67 90.24±0.18 88.38±0.02 85.03±0.16 77.68±0.37

CE+LC 90.06±0.41 85.66±0.32 79.18±0.57 53.87±0.57 21.04±0.47 87.99±0.06 84.01±0.01 79.71±0.51 74.34±0.30

CEϵ+MAE 91.40±0.12 89.29±0.10 85.93±0.19 79.52±0.14 58.96±0.70 90.30±0.11 88.62±0.18 85.56±0.12 78.91±0.25

FLϵ+MAE 91.11±0.13 89.13±0.25 86.15±0.29 79.81±0.27 58.02±1.12 90.39±0.15 88.40±0.07 85.31±0.17 79.04±0.10

CIFAR-100 Clean Symmetric Noise Rate (η) Asymmetric Noise Rate (η)
0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4

CE 70.79±0.58 56.21±2.04 39.31±0.74 22.38±0.74 7.33±0.10 65.10±0.74 58.26±0.31 49.99±0.54 41.15±1.04

FL 70.58±0.34 56.32±1.43 40.83±0.52 22.44±0.54 7.68±0.37 65.00±0.46 58.12±0.44 51.16±1.32 41.46±0.38

GCE 70.57±0.25 64.55±0.36 56.60±1.61 45.19±0.92 19.85±0.88 63.94±2.08 60.89±0.06 53.36±1.58 40.82±0.85

NLNL 68.72±0.60 46.99±0.91 30.29±1.64 16.60±0.90 11.01±2.48 59.55±1.22 50.19±0.56 42.81±1.13 35.10±0.20

SCE 70.41±0.20 55.23±0.76 40.23±0.29 21.44±0.52 7.63±0.24 64.54±0.30 57.62±0.70 50.17±0.19 41.01±0.74

NCE+MAE 67.69±0.05 63.21±0.44 57.91±0.45 45.26±0.44 23.72±0.99 65.70±1.04 62.87±0.42 55.82±0.19 41.86±0.27

NCE+RCE 67.89±0.47 64.60±0.92 58.64±0.19 45.25±0.50 24.87±0.52 66.20±0.28 63.18±0.37 55.05±0.32 41.21±0.66

NFL+RCE 68.28±0.30 64.57±0.52 57.64±0.74 45.47±0.59 24.35±0.32 66.18±0.38 63.63±0.30 55.33±0.25 40.82±0.67

NCE+AUL 69.55±0.40 65.12±0.36 55.86±0.20 37.88±0.32 12.69±0.14 67.06±0.23 58.16±0.17 48.06±0.16 38.30±0.12

NCE+AGCE 68.78±0.24 65.30±0.46 59.95±0.15 47.63±0.94 24.13±0.06 67.15±0.40 64.21±0.17 56.18±0.24 44.15±0.08

NCE+AEL 64.47±0.19 48.07±0.16 32.29±0.71 19.78±1.03 10.50±0.51 58.20±0.37 50.19±0.61 43.82±0.32 35.13±0.23

LDR-KL 71.03±0.28 56.69±0.06 40.69±0.66 22.59±0.23 7.49±0.33 65.93±0.01 58.47±0.04 50.92±0.15 41.94±0.37

CE+LC 71.80±0.34 56.26±0.09 37.36±0.49 17.46±0.62 6.32±0.16 65.85±0.30 58.84±0.02 50.46±0.12 40.97±0.39

CEϵ+MAE 70.83±0.18 65.45±0.31 59.20±0.42 48.15±0.79 26.30±0.46 67.58±0.04 64.52±0.18 58.47±0.12 48.51±0.36
FLϵ+MAE 70.58±0.68 65.45±1.39 59.58±0.80 48.09±0.35 26.73±0.45 67.73±0.12 64.80±0.29 58.88±0.30 48.10±0.23

sufficient learning with underfitting losses. Note that CEϵ is also active, thus CEϵ+MAE coincides
with the APL framework and further mitigates the underfitting issue.

To further validate CEϵ+MAE, we incorporate it with sample selection, pseudo-label prediction [22],
and MixUp [23], culminating in a semi-supervised learning algorithm we term CEϵ+MAE (Semi).
The algorithm details can be found in the Appendix C. In our experiments, we use "CEϵ+MAE (Semi)"
to ensure a fair comparison with other hybrid methods with sample selection and semi-supervised
learning (SSL). No additional techniques are utilized for "CEϵ+MAE".

4 Experiments

In this section, we conduct extensive experiments to validate the superiority of ϵ-softmax in
mitigating label noise. Complete experimental setting and results can be found in the Appendix D
and E.

4.1 Evaluation on Benchmark Datasets

We evaluate our proposed methods on benchmark datasets CIFAR-10 / CIFAR-100 [24] with synthetic
label noise, following [6, 7].

Baselines. We consider several baseline methods for comparison, including Standard CE and
FL [19]; MAE; GCE [11]; NLNL [25]; SCE [12]; APL [6], including NCE+MAE, NCE+RCE,
and NFL+RCE; AFLs [7], including NCE+AEL, NCE+AGCE, and NCE+AUL; LDR-KL [8]; and
LogitClip [26], including CE+LC.
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Table 3: Ablation experiments on CIFAR-100. The results "mean±std" are reported over 3 random
runs and the best results are boldfaced. If m = 0, CEϵ+MAE equals CE+MAE.

CIFAR-100 Clean Symmetric Asymmetric
0.4 0.8 0.4

CE 70.79±0.58 39.31±0.74 7.33±0.10 41.15±1.04

MAE 5.31±1.19 2.78±1.68 2.13±0.98 3.11±0.26

CEϵ+MAE (m = 0) 69.33±0.51 37.00±0.40 11.65±0.18 41.53±0.97

CEϵ+MAE (m = 1e2) 70.55±0.47 39.39±0.77 13.05±0.58 48.51±0.36
CEϵ+MAE (m = 1e4) 70.83±0.18 59.20±0.42 26.30±0.46 40.36±0.96

CEϵ+MAE (m = 1e5) 67.72±0.88 56.41±0.22 22.14±0.56 7.56±1.10

(a) CE (η = 0.2) (b) CE (η = 0.4) (c) CEϵ+MAE (η = 0.2) (d) CEϵ+MAE (η = 0.4)

Figure 2: Visualizations of learned representations on CIFAR-10 with symmetric label noise. The
x-axis and y-axis represent the first and second dimensions of the 2D embeddings, respectively.

Results. Table 2 presents the test accuracy of various loss functions under symmetric and asym-
metric label noise. As can be seen, our proposed ϵ-softmax-enhanced loss functions, CEϵ+MAE
and FLϵ+MAE, demonstrate remarkable performance, ranking among the top-2 in most cases across
both datasets. These methods consistently outperform others such as GCE, SCE, NLNL, NCE+MAE
and LDR-KL, regardless of the noise rates. In scenarios of clean labels, CEϵ+MAE and FLϵ+MAE
also exhibit strong fitting abilities, outperforming NCE+RCE and NCE+AGCE. In particular, on
CIFAR-100 with 0.4 asymmetric noise, most robust loss functions have no effect, but our methods
achieve over 48% accuracy, significantly outperforming all other methods. These findings underscore
the robustness and effectiveness of ϵ-softmax-enhanced loss functions, delivering their excellent
performance in various noise scenarios.

Ablation Experiments. We perform detailed ablation experiments to further explore the role of
each component and hyperparameter m in our CEϵ+MAE, experimental results are shown in Table 3.
We can observe that CE will severely fit the noise label, and the symmetric loss MAE is difficult to
optimize. CE+MAE (i.e., m = 0) is a trade-off between robustness and fitting ability, increasing
noise tolerance at the cost of reducing fitting ability on clean labels, consistent with previous works
[11, 12, 13]. In particular, our CEϵ+MAE shows remarkable properties. As the parameter m
experiences a moderate increase, CEϵ+MAE not only achieves noise tolerance for symmetric and
asymmetric noise, but also achieves effective learning for the clean scenario. Additionally, the
experimental results suggest that strict constraints are better suited for symmetric noise, while looser
constraints are more effective for asymmetric noise.

Visualization. We conduct a further analysis to compare the effectiveness of CEϵ+MAE and
traditional CE in learning representations. We train models with different label noise and use the
trained models to extract feature representations of the test set by t-SNE [27]. The visualizations
for CIFAR-10 symmetric noise are depicted in Figure 2. Notably, the embeddings generated by CE
show evident overfitting to label noise, as seen in the blending of embeddings from distinct classes.
In sharp contrast, embeddings from the CEϵ+MAE method consistently form clear, well-separated
clusters, demonstrating its superior ability to learn robust and distinct representations under noisy
label conditions.

4.2 Evaluation on Human-Annotated Datasets

We further conduct comparison studies on human-annotated datasets CIFAR-10N/CIFAR-100N [28],
following the experiment setting in [28].
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Table 4: Best epoch test accuracies (%) of different methods on CIFAR-N datasets. We compare meth-
ods without and with semi-supervised learning (SSL) and sample selection. The results "mean±std"
are reported over 5 random runs and the best results are boldfaced.

Method CIFAR-10N CIFAR-100N
Without SSL Aggregate Random 1 Random 2 Random 3 Worst Noisy

CE 87.77±0.38 85.02±0.65 86.46±1.79 85.16±0.61 77.69±1.55 55.50±0.66

Forward T 88.24±0.22 86.88±0.50 86.14±0.24 87.04±0.35 79.79±0.46 57.01±1.03

GCE 87.85±0.70 87.61±0.28 87.70±0.56 87.58±0.29 80.66±0.35 56.73±0.30

T-Revision 88.52±0.17 88.33±0.32 87.71±1.02 87.79±0.67 80.48±1.20 51.55±0.31

Peer Loss 90.75±0.25 89.06±0.11 88.76±0.19 88.57±0.09 82.00±0.60 57.59±0.61

F-Div 91.64±0.34 89.70±0.40 89.79±0.12 89.55±0.49 82.53±0.52 57.10±0.65

Negative-LS 91.97±0.46 90.29±0.32 90.37±0.12 90.13±0.19 82.99±0.36 58.59±0.98

VolMinNet 89.70±0.21 88.30±0.12 88.27±0.09 88.19±0.41 80.53±0.20 57.80±0.31

AGCE 88.81±0.24 87.88±0.43 88.01±0.23 87.97±0.64 81.43±0.32 N/A

CEϵ+MAE 91.80±0.33 90.43±0.29 90.53±0.28 90.64±0.35 83.74±0.43 61.78±0.14

Method CIFAR-10N CIFAR-100N
With SSL Aggregate Random 1 Random 2 Random 3 Worst Noisy

Co-teaching+ 90.61±0.22 89.70±0.27 89.47±0.18 89.54±0.22 83.26±0.17 57.88±0.24

JoCoR 91.44±0.05 90.30±0.20 90.21±0.19 90.11±0.21 83.37±0.30 59.97±0.24

ELR+ 94.83±0.10 94.43±0.41 94.20±0.24 94.34±0.22 91.09±1.60 66.72±0.07

Divide-Mix 95.01±0.71 95.16±0.19 95.23±0.07 95.21±0.14 92.56±0.42 71.13±0.48

CORES* 95.25±0.09 94.45±0.14 94.88±0.31 94.74±0.03 91.66±0.09 55.72±0.42

CAL 91.97±0.32 90.93±0.31 90.75±0.30 90.74±0.24 85.36±0.16 61.73±0.42

PES (Semi) 94.66±0.18 95.06±0.15 95.19±0.23 95.22±0.13 92.68±0.22 70.36±0.33

SOP+ 95.61±0.13 95.28±0.13 95.31±0.10 95.39±0.11 93.24±0.21 67.81±0.23

Proto-semi 95.03±0.14 95.48 ± 0.17 95.48±0.21 95.67±0.10 92.97±0.33 67.73±0.67

CEϵ+MAE (Semi) 95.95±0.06 95.79±0.13 95.91±0.06 95.96±0.09 95.12±0.10 71.97±0.18

Table 5: Last epoch accuracies (%) on the WebVision and ILSVRC12 validation sets and the
Clothing1M test set. The best results are boldfaced.

Method CE GCE SCE AGCE NCE+RCE NCE+AGCE LDR-KL CEϵ+MAE

Top-1 66.08 61.96 67.92 69.48 66.88 66.00 69.64 71.32WebVision Top-5 84.76 76.80 86.36 87.28 86.48 85.20 87.16 88.48

Top-1 60.72 60.52 63.28 65.12 63.96 62.68 65.24 67.20ILSVRC12 Top-5 84.76 76.56 85.16 86.12 84.68 84.96 86.12 87.48

Clothing1M 67.38 69.03 67.40 68.43 68.67 67.52 66.88 69.85

Baselines. For a fair comparison, we divide the baselines into those without and those with semi-
supervised learning (SSL) and sample selection:

– Without SSL: Standard loss CE, Forward T [29], GCE [11], T-Revision [30], Peer Loss [31],
F-Div [32], Negative-LS [33], VolMinNet [34], and AGCE [35].

– With SSL: Co-teaching+ [36], JoCoR [37], ELR+ [38], DivideMix [39], CORES* [40], CAL [41],
PES (Semi) [20], SOP+ [42], and Proto-semi [43].

Results. Table 4 reports the test accuracy results of each method on the human-annotated datasets.
The results show that the proposed CEϵ+MAE and CEϵ+MAE (Semi) provide significant improve-
ments in handling human-annotated label noise, especially at high noise rates. Among the methods
without SSL, CEϵ+MAE stands out on the CIFAR-100N "Noisy" case as the only method to exceed
61% accuracy. Within the methods with SSL, CEϵ+MAE (Semi) shows a pronounced superiority in
all scenarios, especially in the most difficult CIFAR-10N "Worst" case and CIFAR-100N "Noisy" case.
In the CIFAR-10N "Worst" case, CEϵ+MAE (Semi) achieves an impressive accuracy rate of over
95%, significantly outperforming competing methods. These results underscore the effectiveness of
the ϵ-softmax-enhanced loss function in counteracting label noise for human-annotated scenarios.

4.3 Evaluation on the Real-World Datasets

We perform experiments on massively real-world noisy datasets, including WebVision [44],
ILSVRC12 (ImageNet) [45] and Clothing1M [46], following the experiment setting in [7].
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Results. In Table 5, we showcase the accuracies achieved on WebVision, ILSVRC12 and Cloth-
ing1M by various leading methods. Notably, our CEϵ+MAE method outshines others, achieving
the highest results on all real-world datasets. It surpasses CE by approximately 5.5% on WebVision
and 6.5% on ILSVRC12. For Clothing1M, we finetune a pretrained ResNet-50, so the differences
between the methods are relatively small, but our method still achieves the best accuracy. These
results underline the robustness and efficacy of the ϵ-softmax-enhanced loss function in real-world
scenarios.

5 Conclusion

In this paper, we introduced ϵ-softmax, a simple yet effective and theoretically sound scheme
for noise-tolerant learning. Our method is not only easy to implement but also can be seamlessly
integrated with any softmax-based DNNs, requiring just two additional lines of code. Our rigorous
and comprehensive theoretical analysis reveals that ϵ-softmax effectively alleviates the common
issue of overfitting to noisy labels. Furthermore, we propose to incorporate ϵ-softmax-enhanced loss
functions with MAE, achieving better trade-off between effective learning and robustness. Extensive
experimental results demonstrate the superior performance of our method in mitigating label noise.

Broader Impacts

This work has the potential to advance the development of machine learning methods that can be
deployed in contexts where it is costly to gather accurate annotations. This is an important issue in
applications such as medicine, where machine learning has great potential societal impact. This work
will not have negative social impacts.
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A Limitation and Discussion

The limitation of ϵ-softmax is that it may slightly reduce fitting ability on clean case. Therefore, we
propose to combine the ϵ-softmax-enhanced loss with the symmetric loss MAE. Consequently, our
practical loss functions utilized for noise-tolerant learning exhibit a hybrid form similar to GCE and
SCE, but their meanings are significantly different.

Comparing with GCE and SCE. GCE is a hybrid of CE and MAE var the negative Box-Cox
transformation [11]. SCE combines CE with Reverse CE (RCE), where the RCE component actually
acts as a scaled version of the MAE. This relationship is unveiled through the following derivation,
adapted from Section 4.3 in SCE [12]: LRCE = −

∑K
k=1 p(k | x) log q(k | x) = −p(y | x) log 1−∑

k ̸=y p(k | x)A = −A
∑

k ̸=y p(k | x) = −A(1 − p(y | x)) = −A
2 LMAE. Consequently, SCE

essentially translates to CE+MAE. Hence, GCE and SCE increases the fitting ability but reduces
the robustness because of the CE term. Conversely, our CEϵ is inherently robust. The combination
of CEϵ and MAE does not reduce the robustness, as demonstrated by Lemma 3, and also improves
the fitting ability. We perform further experiments cimparing with GCE and CE+MAE (SCE), the
results can be seen in Table 6. Our CEϵ+MAE obtains obviously the best results at all noise rates,
significantly outperforming GCE and CE+MAE (SCE).

Meanwhile, we further compare our ϵ-softmax with temperature-dependent softmax.

Comparing with Temperature-Dependent Softmax. softmax(h(x)τ ), where τ is the temperature
parameter, is a useful technique for making outputs sparse [14]. Compared to our ϵ-softmax,
temperature-dependent softmax does not achieve a quantitative approximation to a one-hot vector
for each output, and therefore cannot achieve a controllable excess risk bound. We also perform
further experiments cimparing with temperature-dependent softmax. For simplicity, we refer to CE
with temperature-dependent softmax as CEτ , the results can be seen in Table 6. Our CEϵ+MAE
obtains obviously the best results at all noise rates, significantly outperforming temperature-dependent
softmax.

Table 6: Last epoch test accuracies (%) of ablation and comparetion experiments on CIFAR-100.
The results "mean±std" are reported over 3 random runs. The best results are boldfaced and the best
results of each method are underlined. If m = 0, CEϵ+MAE equals CE+MAE.

CIFAR-100 Clean Symmetric Asymmetric
0.4 0.8 0.4

CE 70.79±0.58 39.31±0.74 7.33±0.10 41.15±1.04

MAE 5.31±1.19 2.78±1.68 2.13±0.98 3.11±0.26

GCE (q = 0.3) 70.31±0.95 38.72±0.87 6.43±0.17 38.79±1.47

GCE (q = 0.5) 70.57±0.25 50.61±0.64 8.16±0.40 38.58±0.55

GCE (q = 0.7) 65.22±1.57 56.60±1.61 18.23±0.25 40.82±0.85

GCE (q = 0.9) 18.27±2.43 17.61±2.25 19.85±0.88 13.96±1.69

CEτ+MAE (τ = 0.3) 70.00±1.51 36.87±2.12 14.61±0.47 40.37±3.10

CEτ+MAE (τ = 0.5) 69.57±0.46 47.99±0.48 13.62±0.24 45.53±1.19

CEτ+MAE (τ = 0.7) 70.11±0.71 36.08±2.21 10.58±0.20 46.92±0.45

CEτ+MAE (τ = 0.9) 69.32±0.27 36.34±1.47 11.19±0.04 42.27±0.92

CEϵ+MAE (m = 0) 69.33±0.51 39.72±0.67 11.65±0.18 41.53±0.97

CEϵ+MAE (m = 1e2) 70.55±0.47 48.39±0.53 13.05±0.58 48.51±0.36
CEϵ+MAE (m = 1e4) 70.83±0.18 59.20±0.42 26.30±0.46 40.36±0.96

CEϵ+MAE (m = 1e5) 67.72±0.88 54.99±1.05 22.14±0.56 7.56±1.10

B Proof of Theorems

Lemma 1. ϵ-softmax can achieve ϵ-relaxation for one-hot vectors:

min
u∈Pe1

∥f(x)− u∥2 ≤ ϵ =

√
1−1/K

m+1 , (B.1)

where f(x) = ϵ-softmax ◦ h(x).
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Proof.

min
u∈Pe1

∥f(x)− u∥2 =

√
1− 2pt +

∑K
k=1 p

2
k

m+ 1

=

√
1− pt −

∑K
k=1 pk(pt − pk)

m+ 1

≤
√
1− pt
m+ 1

≤
√
1− 1/K

m+ 1
.

Theorem 1 (Excess Risk Bound under Asymmetric Noise). In a multi-class classification problem,
if the loss function L ∈ L satisfies |

∑K
k=1(L(u1, k)− L(u2, k))| ≤ δ when ∥u1 − u2∥2 ≤ ϵ, and

δ → 0 as ϵ → 0, then for asymmetric label noise ηx,k < (1− ηy) ,∀k ̸= y, if RL(f
∗) = 0, the

excess risk bound for f ∈ Hv,ϵ can be expressed as

RL(f
∗
η ) ≤ 2δ +

2cδ

a
, (B.2)

where c = ED (1− ηy), a = minx,k(1 − ηy − ηx,k), f∗
η and f∗ denote the global minimum of

Rη
L(f) andRL(f), respectively.

Proof.

Rη
L(f) = ED [(1− ηy)L(f(x), y)] + ED

∑
k ̸=y

ηx,kL(f(x), k)


≤ ED

(1− ηy)

C + δ −
∑
k ̸=y

L(f(x), k)

+ ED

∑
k ̸=y

ηx,kL(f(x), k)


= (C + δ)ED(1− ηy)− ED

∑
k ̸=y

(1− ηy − ηx,k)L(f(x), k)


where C =

∑K
k=1 L(v, k), ditto

Rη
L(f) ≥ (C − δ)ED(1− ηy)− ED

∑
k ̸=y

(1− ηy − ηx,k)L(f(x), k)


hence, (

Rη
L (f∗)−Rη

L(f
∗
η )
)
≤2δED(1− ηy)+

ED
∑
k ̸=y

(1− ηy − ηx,k)
[
L(f∗

η (x), k)− L (f∗(x), k)
]

According to the assumption RL(f
∗) = 0, we have L(f∗(x), y) = 0 then L(f∗(x), k) = C

k−1 where
k ̸= y. Since L(f∗

η (x), k) − L(f∗(x), k) ≤ 0 where k ̸= y, the second term on the right of the
inequality is a non-positive value. And Rη

L (f∗)−Rη
L(f

∗
η ) ≥ 0. So we have∣∣∣∣∣∣ED

∑
k ̸=y

(1− ηy − ηx,k)
(
L(f∗

η (x), k)− L(f∗(x), k)
)∣∣∣∣∣∣ ≤ 2cδ,

where c = ED (1− ηy).

Let a = minx,k(1 − ηy − ηx,k), we have
∣∣∣ED

∑
k ̸=y

(
L(f∗

η (x), k)− L(f∗(x), k)
)∣∣∣ ≤ 2cδ

a . Note

that f∗
η , f

∗ ∈ Hv,ϵ means that |
∑

k

(
L(f∗

η (x), k)− L(f∗(x), k)
)
| ≤ 2δ, then we obtain∣∣ED

(
L(f∗

η (x), y)− L(f∗(x), y)
)∣∣ ≤ 2δ +

2cδ

a
,
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that is,RL(f
∗
η ) ≤ RL(f

∗) + 2δ + 2cδ
a = 2δ + 2cδ

a .

Lemma 2. For one-hot label ey , CEϵ is All-k calibrated and All-k consistency.

Proof. Here f = ϵ-softmax ◦ h, p(·|x) = softmax(h(x)) denotes the probabilities by standard
softmax, pk ∈ (0, 1] and t = argmaxk∈[K] pk is the class with the largest value in prediction
probabilities.

if t = y:

∂LCEϵ(f(x), y)

∂h(y|x)
=

∂ − log
py+m
m+1

∂py
· ∂py
∂h(y|x)

= − 1

m+ 1
· m+ 1

py +m
· ∂py
∂h(y|x)

= − 1

py +m
· ∂py
∂h(y|x)

= − py
py +m

(1− py).

By the first-order optimality condition ∂LCEϵ (f(x),y)
∂h(x) = 0, we have: py = 1. Hence, for any k ̸= y,

we have ek = 0 < ey and pk < py .

if t ̸= y:

∂LCEϵ
(f(x), y)

∂h(y|x)
=

∂ − log
py

m+1

∂py
· ∂py
∂h(y|x)

= − 1

m+ 1
· m+ 1

py
· ∂py
∂h(y|x)

= − 1

py
· ∂py
∂h(y|x)

= −(1− py).

By the first-order optimality condition ∂LCEϵ (f(x),y)
∂h(x) = 0, we have: py = 1. Hence, for any k ̸= y,

we have ek = 0 < ey and pk < py .

Hence, CEϵ is All-k calibrated. Since CEϵ is nonnegative, so CEϵ is All-k consistency.

Theorem 2. For any label q ∈ ∆K , let y = argmaxk∈[K] qk and t = argmaxk∈[K] pk , if t = y
and qy −maxk ̸=y qk > m

m+1 , CEϵ is All-k calibrated and All-k consistency.

Proof. For ∂LCEϵ (f(x),q)
∂h(y|x) , we have:

∂LCEϵ
(f(x),q)

∂h(y|x)
= −qt

m+ 1

pt +m
· 1

m+ 1
· ∂pt
∂h(t|x)

−
∑
k ̸=t

qk
1

pk
· ∂pk
∂h(t|x)

= −qt
1

pt +m
pt(1− pt)−

∑
k ̸=t

qk
1

pk
(−pkpt).

By the first-order optimality condition ∂LCEϵ (f(x),q)
∂h(y|x) = 0, we have:

qt
1

pt +m
pt(1− pt) =

∑
k ̸=t

qkpt

⇒ qt
1

pt +m
(1− pt) = 1− qt

⇒ pt = qt(1 +m)−m

Since, m
m+1 < qt ≤ 1, we can get 0 < pt ≤ 1.

For ∂LCEϵ (f(x),q)
∂h(j ̸=y|x) , we have:

∂LCEϵ
(f(x),q)

∂h(j ̸= y|x)
= −qt

1

pt +m
· ∂pt
∂h(j|x)

−
∑
k ̸=t,j

qk
1

pk
· ∂pk
∂h(j|x)

− qj
1

pj
· ∂pj
∂h(j|x)

= −qt
1

pt +m
(−pjpt)−

∑
k ̸=t,j

qk
q

pk
(−pjpk) + qj(pj − 1)
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By the first-order optimality condition ∂LCEϵ (f(x),q)
∂h(j ̸=y|x) = 0, we have:

qt
pjpt

pt +m
+

∑
k ̸=t,j

qkpj + qjpj = qj

⇒ pj =
qj

qtpt

pt+m +
∑

k ̸=t,j qk + qj
=

qj
qtpt

pt+m + 1− qt

Substituting pt = qt(1 +m)−m, we can get pj = qj(m+ 1). Since qt >
m

m+1 , so qj <
1

m+1 and
0 < pj < 1.

For i, j ̸= t, if qi < qj , we have pi < pj . Consider qk ̸=t and qt, because of the condition
qy − qk ̸=y> m

m+1
, we have qk < qt, qt − qk = qt(1 +m)−m− qk(m+ 1) > 0.

Hence, CEϵ is All-k calibrated. Since CEϵ is nonnegative, so CEϵ is All-k consistency.

The gradient of CEϵ.

∂LCEϵ
(f(x), y)

∂h(x)
=

{
− 1

py+m ·
∂py

∂h(x) , t = y

− 1
py
· ∂py

∂h(x) , t ̸= y
, (B.3)

where f = ϵ-softmax ◦ h, p(x) = softmax(h(x)) denotes the probabilities by standard softmax,
and t = argmaxk∈[K] pk is the class with the largest value in prediction probabilities.

Proof. The proof is similar to Theorem 2.

if t = y:

∂LCEϵ
(f(x), y)

∂h(x)
=

∂ − log
py+m
m+1

∂py
· ∂py
∂h(x)

= − 1

m+ 1
· m+ 1

py +m
· ∂py
∂h(x)

= − 1

py +m
· ∂py
∂h(x)

.

if t ̸= y:
∂LCEϵ(f(x), y)

∂h(x)
=

∂ − log
py

m+1

∂py
· ∂py
∂h(x)

= − 1

m+ 1
· m+ 1

py
· ∂py
∂h(x)

= − 1

py
· ∂py
∂h(x)

.

Lemma 3. For any loss function Lϵ with ϵ-softmax and symmetric loss function Lsymmetric defined
in Equation 1.1, the excess risk bound of α · Lϵ + β · Lsymmetric is equivalent to that of α · Lϵ.

Proof. For u1,u2 ∈ Hv,ϵ and u3,u4 ∈ ∆K , we have

|
K∑

k=1

(α · Lϵ(u1, k) + β · Lsymmetric(u3, k))−
K∑

k=1

(α · Lϵ(u2, k) + β · Lsymmetric(u4, k)) |

=|
K∑

k=1

α · Lϵ(u1, k)−
K∑

k=1

α · Lϵ(u2, k) + 0|

=α · |
K∑

k=1

·Lϵ(u1, k)−
K∑

k=1

·Lϵ(u2, k)|

≤α · δ
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C The Algorithm of CEϵ+MAE (Semi)

Algorithm 1 CEϵ+MAE (Semi)

1: Input: The noisy labeled dataset S̃ = {(xn, ỹn), n = 1, · · · , N}, initialized
model f , loss function LCEϵ+MAE, total epochs Tall, robust learning epochs
Trobust and trade-off parameter λ

2: for epoch = 1 to Trobust do:
3: Train f on S̃ var LCEϵ+MAE
4: end for
5: for epoch = Trobust to Tall do:
6: Sample selection: Divide the dataset S into labeled (clean) dataset
Sl = {(xn, yn), n = 1, · · · , |Sl|} and unlabeled (noisy) dataset Su =
{(xn), n = 1, · · · , |Su|}

7: for each minibatch Dl ∈ Sl and Du ∈ Su do:
8: qn = argmax(f(xn)), xn ∈ Du # Pseudo-label prediction
9: D̂u{(x̂n, qn)} = Augment (Du{(xn, qn)})

10: W = shuffle(concat(Dl, D̂u))
11: D′

l = MixUp(Dl,Wn) n = 1, · · · , |Dl|
12: D′

u = MixUp(Du,Wn+|Dl|) n = 1, · · · , |Du|
13: Lossl = LCEϵ+MAE(f,D

′

l)

14: Lossu = LCEϵ+MAE(f,D
′

u)
15: Loss = Lossl + λ · Lossu
16: Train f on Loss
17: end for
18: end for
19: return f

Algorithm Details and Parameters. Reference to [20], we set Trobust = 65, Trobust = 300 and
learning rate decay 0.1 at [60, 160, 260] epochs. Other experimental settings are the same as the
CIFAR-N experiment [28] in the Appendix D.

For sample selection: We simply select k samples from each class with the least loss as clean
samples. For CIFAR-10N, we set k = 2500 for “Worst” case and 3500 for others. For CIFAR-100N,
we set k = 250 for “Noisy” case and 350 for others. In practice, if k > |sample_num|, we set
k = |sample_num| − 20.

For pseudo-label prediction: In the actual training, we do the pseudo-label prediction using two
standard augment versions from the sample. We add the probabilities and divide by 2 to make the
pseudo-label prediction. At the same time, we set the threshold σ = 0.2 and discard the samples
whose prediction probability is less than the threshold.

For the Augment to Du, we employ RandAugment [47]. We set the trade-off parameter λ to grow
linearly from 0 to 1 over 200 epochs. The MixUp parameter α is set to 0.75 for epochs less than 100,
and adjusted to 4 for epochs greater than 100. CEϵ+MAE m = 1e4, α = 0.5, β = 1 is the same as the
CIFAR-N experiment for the robust learning stage and m = 10, α = 1, β = 1 for the semi-supervised
learning stage. In CEϵ+MAE (Semi), we ensemble the outputs of two networks during inference and
exchange the samples selected by the two networks during training, as is customary for methods that
train two networks simultaneously [21, 36, 39, 38].

D Experiments

D.1 Evaluation on Benchmark Datasets

Noise Generation. We follow the approach of previous studies [6, 7] to experiment with two types
of synthetic label noise: symmetric (uniform) noise and asymmetric (class-conditional) noise. In the
case of symmetric label noise, we intentionally corrupt the training labels by randomly flipping labels
within each class to incorrect labels in other classes. As for asymmetric label noise, we flip the labels
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within a specific sets of classes: For CIFAR-10, the flips occur from TRUCK→ AUTOMOBILE,
BIRD→ AIRPLANE, DEER→ HORSE, and CAT↔ DOG. For CIFAR-100, the 100 classes are
grouped into 20 super-classes, each containing 5 sub-classes, and we flip the labels within the same
super-class into the next.

Experimental Setting. We follow the same experimental settings in [6, 7]: An 8-layer CNN is used
for CIFAR-10 and a ResNet-34 for CIFAR-100. The networks are trained for 120 and 200 epochs
for CIFAR-10 and CIFAR-100 with batch size 128. We use the SGD optimizer with momentum 0.9
and cosine learning rate annealing. The weight decay is set to 1× 10−4 and 1× 10−5 for CIFAR-10
and CIFAR-100. The initial learning rate is set to 0.01 for CIFAR-10 and 0.1 for CIFAR-100.
Clipping the gradient norm to 5.0 and the minimum allowable value for log to 1 × 10−8. Typical
data augmentations including random shift and horizontal flip are applied to CIFAR-10; random shift,
horizontal flip and random rotation are applied to CIFAR-100.

Parameters Setting. We set the parameter settings which match their original papers for all baseline
methods [6, 7]. Specifically, for FL, we set γ = 0.5. For GCE, we set q = 0.7 for CIFAR-10, and q =
[0.5, 0.5, 0.7, 0.7, 0.9] for CIFAR-100 clean and symmetric noise (η ∈ [0, 0.2, 0.4, 0.6, 0.8]), q = 0.7
asymmetric noise. For SCE, we set A = −4, α = 0.1, β = 1 for CIFAR-10, and α = 6, β = 0.1 for
CIFAR-100. For APL (NCE+MAE, NCE+RCE and NFL+RCE), we set α = 1, β = 1 for CIFAR-10,
and α = 10, β = 0.1 for CIFAR-100. For NCE+AUL, we set a = 6.3, q = 1.5, α = 1, β = 4
for CIFAR-10, and a = 6, q = 3, α = 10, β = 0.015 for CIFAR-100. For NCE+AGCE, we set
a = 6, q = 1.5, α = 1, β = 4 for CIFAR-10, and a = 1.8, q = 3, α = 10, β = 0.1 for CIFAR-100.
For NCE+AEL, we set a = 5, α = 1, β = 4 for CIFAR-10, and a = 1.5, α = 10, β = 0.1 for
CIFAR-100. For CE+LC, we set δ = [1, 1, 1, 1.5, 1.5] for CIFAR-10 clean and symmetric noise
(η ∈ [0, 0.2, 0.4, 0.6, 0.8]) and δ = 2.5 for CIFAR-10 asymmetric noise. We set δ = 2.5 for
CIFAR-100 asymmetric noise and δ = 0.5 for others. For LDR-KL, We set λ = 10 for CIFAR-10
and 1 for CIFAR-100. For our CEϵ+MAE, we set β = 5,m = 1e5, α = 0.01 for CIFAR-10
symmetric, and m = 1e3, α = 0.02 for asymmetric. For CIFAR-100, we set β = 1, m = 1e4 and
α = [0.1, 0.05, 0.03, 0.0125, 0.0075] for clean and symmetric noise (η ∈ [0, 0.2, 0.4, 0.6, 0.8]), and
m = 1e2, α = [0.015, 0.007, 0.005, 0.004] for asymmetric noise (η ∈ [0.1, 0.2, 0.3, 0.4]). For our
FLϵ+MAE, we set γ = 0.1 and others are same as CEϵ+MAE. For NLNL, we use the results in [7]
directly.

D.2 Evaluation on Human-Annotated Datasets

Experimental Setting. We follow the experimental settings in [28]: Train a Resnet-34 using
SGD for 100 epochs with initial learning rate 0.1, momentum 0.9, and weight decay 0.0005. Set
the learning rate decay 0.1 at 60 epochs. Standard data augmentation including random shift and
horizontal flip are applied. Best epoch test accuracies are compared. The results of the comparison
methods are taken directly from [28] and the original papers [35, 43].

Parameters Setting. For our CEϵ+MAE, we set m = 1e4, α = 0.5, β = 1 for CIFAR-10N/100N.
CEϵ+MAE (Semi) has been covered in detail in the previous section C.

D.3 Evaluation on Real-World Dataset WebVision

Experimental Setting. For WebVision, the training details follow [7]: We use the mini WebVision
setting [6, 7] and train a ResNet-50 using SGD for 250 epochs with initial learning rate 0.4, nesterov
momentum 0.9 and weight decay 3×10−5 and batch size 256. The learning rate is multiplied by 0.97
after each epoch of training. All the images are resized to 224× 224. Typical data augmentations
including random width/height shift, color jittering, and horizontal flip are applied. We train the
model on Webvision and evaluate the trained model on the same 50 concepts on the corresponding
WebVision and ILSVRC12 validation sets.

For Clothing1M, we use ResNet-50 pre-trained on ImageNet similar to [46]. All the images are
resized to 224× 224. We use SGD with a momentum of 0.9, a weight decay of 1× 10−3, and batch
size of 256. We train the network for 10 epochs with a learning rate of 5× 10−3 and a decay of 0.1
at 5 epochs. Typical data augmentations including random shift and horizontal flip are applied.

Parameters Setting. We set the best parameter settings which match their original papers for all
baseline methods [6, 7]. Specifically, for GCE, we set q = 0.7 for WebVision and 0.6 for Clothing1M.
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For SCE, we set A = −4, α = 10, β = 1. For NCE+RCE, we set α = 50, β = 0.1 for WebVision
and α = 10, β = 1 for Clothing1M. For AGCE, we set a = 1e − 5, q = 0.5. For NCE+AGCE,
we set a = 2.5, q = 3, α = 50, β = 0.1. For LDR-KL, we set λ = 1. For our CEϵ+MAE, we set
m = 1e3, α = 0.015, β = 0.3 for WebVison and α = 0.012, β = 0.1 for Clothing1M.

E More Experimental Results

Visualization. We show more visualizations of learned representations in Figure 3.

Detailed Experimental Results of CEϵ+MAE (Semi) The more detailed results are reported in
Table 7.

Instance-Dependent Noise. We follow the method in PDN [48] to generate instance-dependent
noise. The experimental setting is the same as CIFAR-10/CIFAR-100. For CEϵ+MAE on CIFAR-10,
we set α = 0.045, β = 10,m = 1e5. For CIFAR-100, we use the same parameters as symmetric
noise. The results are reported in Table 8.

(a) CE (η = 0) (b) CE (η = 0.2) (c) CE (η = 0.4) (d) CE (η = 0.6)

(e) CEϵ+MAE (η = 0) (f) CEϵ+MAE (η = 0.2) (g) CEϵ+MAE (η = 0.4) (h) CEϵ+MAE (η = 0.6)

Figure 3: Visualizations of learned representations on CIFAR-10 with different symmetric label noise
(η ∈ [0, 0.2, 0.4, 0.6]). The x-axis and y-axis represent the first and second dimensions of the 2D
embeddings, respectively.

Table 7: Last and best epoch test accuracies (%) of CEϵ+MAE (Semi) on CIFAR-N datasets. The
results "mean±std" are reported over 5 random runs.

CEϵ+MAE (Semi) CIFAR-10N CIFAR-100N
clean Aggregate Random 1 Random 2 Random 3 Worst clean Noisy

Last 96.06±0.15 95.83±0.14 95.76±0.12 95.83±0.12 95.87±0.11 95.01±0.16 78.54±0.33 71.78±0.23

Best 96.15±0.18 95.95±0.06 95.79±0.13 95.91±0.06 95.96±0.09 95.12±0.10 78.79±0.24 71.97±0.18

Table 8: Last epoch test accuracies (%) on CIFAR-10/100 instance-dependent noise (IDN). The
results "mean±std" are reported over 3 random runs and the best results are boldfaced.

Method CIFAR-10 IDN CIFAR-100 IDN
0.2 0.4 0.6 0.2 0.4 0.6

CE 75.05±0.31 57.27±0.96 37.62±0.02 54.46±1.73 40.81±0.25 25.57±0.03

GCE 86.95±0.38 79.35±0.30 52.30±0.12 61.95±1.37 56.99±0.42 44.19±0.36

SCE 86.79±0.17 74.56±0.49 49.63±0.14 55.58±0.74 39.71±0.39 25.63±0.76

NCE+RCE 89.06±0.31 85.07±0.17 70.45±0.26 64.13±0.49 57.15±0.24 43.22±2.31

NCE+AGCE 88.90±0.22 85.16±0.26 72.68±0.21 65.33±0.18 58.59±0.68 43.42±0.24

LDR-KL 88.99±0.15 84.10±0.24 63.11±0.23 59.19±0.34 43.74±0.12 26.10±0.16

CEϵ+MAE 89.27±0.42 85.26±0.29 74.32±0.89 67.44±0.19 60.80±0.20 46.53±0.54
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. Specifically, we provide a simple yet effective method for
mitigating label noise with elaborated descriptions and theoretical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in the Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21



Answer: [Yes]
Justification: We provide the full set of assumptions in the main paper and all proofs in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the experiment details in the Appendix D and submit the code for
reproducibility in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted the code for with sufficient instructions to faithfully
reproduce the main experimental results. And the datasets are obtained from open source.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all experiments, we include error bars for added clarity.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information in the experiment details. All experiments are
implemented by PyTorch and are conducted on NVIDIA GeForce RTX 4090.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We promise that the research conducted in the paper conforms, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed broader impact of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not use pretrained language models, image generators, etc.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The existing asserts in this paper are properly credited an are the license and
terms of use explicitly mentioned and properly respected with appropriate citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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