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Abstract001

Large language models (LLMs) have demon-002
strated impressive ability in solving complex003
mathematical problems with multi-step reason-004
ing and can be further enhanced with well-005
designed in-context learning (ICL) examples.006
However, this potential is often constrained by007
two major challenges in ICL: granularity mis-008
match and irrelevant information. We observe009
that while LLMs excel at decomposing math-010
ematical problems, they often struggle with011
reasoning errors in fine-grained steps. More-012
over, ICL examples retrieved at the question013
level may omit critical steps or even mislead014
the model with irrelevant details. To address015
this issue, we propose BoostStep, a method016
that enhances reasoning accuracy through step-017
aligned ICL, a novel mechanism that carefully018
aligns retrieved reference steps with the corre-019
sponding reasoning steps. Additionally, Boost-020
Step incorporates an effective "first-try" strat-021
egy to deliver exemplars highly relevant to022
the current state of reasoning. BoostStep is023
a flexible and powerful method that integrates024
seamlessly with chain-of-thought (CoT) and025
tree search algorithms, refining both candidate026
selection and decision-making. Empirical re-027
sults show that BoostStep improves GPT-4o’s028
CoT performance by 4.6% across mathemat-029
ical benchmarks, significantly surpassing tra-030
ditional few-shot learning’s 1.2%. Moreover,031
it can achieve an additional 7.5% gain com-032
bined with tree search. Surprisingly, it en-033
hances state-of-the-art LLMs to solve challeng-034
ing math problems using simpler examples. It035
improves DeepSeek-R1-671B’s performance036
on AIME by 2.2%, leveraging simple examples037
only from the MATH dataset.038

1 Introduction039

Mathematical reasoning is a crucial and challeng-040

ing task in the development of artificial intelligence.041

It serves as an indicator of a model’s ability to042

perform complex reasoning and has a wide range043
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Figure 1: Our step-aligned in-context learning (ICL)
outperforms traditional problem-level few-shot learning
for about 4% across in-domain, out-domain and cross-
modality mathematical benchmark on GPT4o. More-
over, on benchmarks with lower similarity with the refer-
ence problem set (i.e. OlympiadBench and multi-modal
benchmarks), where problem-level ICL may have a neg-
ative impact, BoostStep still provides valuable guidance.

of applications, such as problem-solving, theorem 044

proving, and scientific discovery. 045

When solving complex mathematical problems, 046

cutting-edge LLMs often adopt a multi-step rea- 047

soning strategy. Specifically, they first decompose 048

a complex problem into several simpler steps and 049

then solve each single step independently. 050

Through the analysis of error cases, we found 051

that current SOTA models are relatively correct 052

in the step-dividing phase, that is, the model can 053

know exactly what tasks should be completed in 054

each step. However, there are still a lot of mis- 055

takes within each reasoning step, such as wrong 056

formula use, wrong calculation, insufficient enu- 057

meration, etc. To quantitatively substantiate this ob- 058

servation, we provide GPT-4o-mini with a ground 059

truth reasoning process to determine whether the 060
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error in another response was due to an overarching061

flawed reasoning approach or a deviation within062

a particular step. In less advanced models like063

LLaMA-3.1-8B (Dubey et al., 2024), 91.3% of er-064

rors originate from single-step reasoning. In more065

advanced models like GPT-4o, up to 99.2% of er-066

rors are ascribable to some particular steps. This067

exaggerated proportion suggests that the correct-068

ness of single-step reasoning is the bottleneck of069

reasoning capability.070

Various approaches have been employed to im-071

prove reasoning correctness, such as producing072

chains of thought through prompt engineering (Ko-073

jima et al., 2022; Wei et al., 2022), fine-tuning with074

mathematical data (Shao et al., 2024; Yang et al.,075

2024; Ying et al., 2024), or generating multiple076

candidate reasoning paths using Tree Search Meth-077

ods (Zhang et al., 2024b,a; Wang et al., 2024b).078

Among those techniques, in-context learning is079

a particularly important one, which offers similar080

examples to provide detailed guidance. However,081

the examples retrieved by traditional problem-level082

in-context learning are listed before the reasoning083

process, thereby lacking fine-grained guidance dur-084

ing the reasoning process. Moreover, since the085

example problem can’t be identical to the new one,086

the irrelevant steps in those examples may even be-087

come a distraction from the current reasoning, thus088

even negatively affecting the single-step reasoning089

capability for some specific steps.090

To this end, we refine in-context learning from091

problem-level to step-level granularity to offer sim-092

ilar example steps during an ongoing reasoning093

process for fine-grained step-aligned guidance. We094

also ensure that the introduced example is still rele-095

vant at the step level to avoid distractions.096

Firstly, we have constructed an example problem097

bank with step-level granularity based on reasoning098

content instead of commonly adopted grammatical099

separation. This ensures the steps in the problem100

bank are consistent with the actual reasoning steps,101

thereby providing more appropriate guidance.102

Building on the step-level granularity within the103

example problem bank, we propose an approach104

that incorporates in-context learning through a105

"first-try" format during an ongoing reasoning pro-106

cess. Specifically, for a given problem to be solved,107

we break down the solving process into step-by-108

step reasoning paths. During the reasoning of a109

single step, we first allow the model to attempt a110

‘first try’ to comprehend what the model currently111

needs to reason about. Based on this initial attempt,112

we searched the problem bank to find similar steps 113

that can guide the model to accurately output the 114

current step. This helps ensure a higher similar- 115

ity between the retrieved examples and the current 116

step so the distraction from irrelevant steps can be 117

avoided and the guidance effect can be improved. 118

Compared with traditional problem-level ICL, 119

our method provides examples during the reason- 120

ing process directly based on the steps to be solved, 121

thereby offering more relevant guidance. It demon- 122

strates significant improvements over traditional 123

few-shot learning across various benchmarks, with 124

an average increase of 3.4% on GPT-4o. 125

Moreover, our method also reduces the sensi- 126

tivity to the similarity between the example and 127

the target problem, as two different problems can 128

still share similar steps. Consequently, dissimilar 129

problems can still offer effective guidance. On 130

multi-modal benchmarks with lower similarity to 131

example problems, traditional few-host learning 132

has a detrimental effect, resulting in an accuracy 133

reduction of 0.9% on GPT-4o. In contrast, our 134

approach still achieves an improvement of 2.8%. 135

Besides, BoostStep also shows a promising po- 136

tential to improve the reasoning quality on harder 137

problems with simpler examples. With examples 138

from MATH (Hendrycks et al., 2021), it helps 139

Deepseek-R1 achieve an improvement of 2.2% on 140

the much more challenging AIME problems. 141

Moreover, our method is also highly compatible 142

with various current reasoning strategies that em- 143

ploy step-level tree search. Typically, a tree-search 144

method requires a reason model to generate multi- 145

ple step-level candidate reasoning paths and a critic 146

model to evaluate the correctness of these candi- 147

dates. Our approach can be integrated into both 148

aspects. Specifically, when the reason model gen- 149

erates new candidate reasoning nodes, our method 150

can introduce similar examples in the aforemen- 151

tioned ‘first-try’ manner to improve the accuracy of 152

candidates. Additionally, it can aid the critic model 153

by incorporating similar example steps into the 154

evaluation of candidate reasoning processes to pro- 155

vide similar guidance. Experiments indicate that 156

both applications contribute positively and bring 157

about an improvement of 8.5% jointly on GPT-4o. 158

2 Related Works 159

Mathematical Reasoning. Mathematical reason- 160

ing has long been a highly challenging task in the 161

field of artificial intelligence. In the early days 162
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of artificial intelligence, constrained by a lack of163

general capabilities, early methods (Feigenbaum164

et al., 1963; Fletcher, 1985) primarily attempted165

to perform simple mathematical reasoning through166

rule-based methods. With the advent of large lan-167

guage models with enhanced reasoning capabili-168

ties, contemporary approaches typically focus on169

enhancing performance during both the training170

and inference phases. The first category improves171

mathematical capability by fine-tuning with more172

high-quality mathematical data (Shao et al., 2024;173

Yang et al., 2024; Lewkowycz et al., 2022; Yue174

et al., 2023; Xu et al., 2024). This strategy can fun-175

damentally improve the base model’s mathematical176

capabilities. However, it demands substantial high-177

quality mathematical data and computational re-178

sources. Consequently, more efforts have been put179

into exploring various techniques during inference180

to enhance mathematical reasoning performance.181

Some work (Wei et al., 2022; Kojima et al., 2022)182

involves prompt engineering to enable models to183

generate comprehensive chains of thought. Other184

studies (Madaan et al., 2024; Gou et al., 2023; Ke185

et al., 2024) use self-refinement techniques to re-186

vise the initial reasoning outputs.187

Step-level Mathematical Reasoning. Recently,188

to further enhance mathematical reasoning capa-189

bilities, many studies have shifted the granular-190

ity of mathematical reasoning from the problem191

level to the step level. This approach involves ad-192

dressing each next step individually and completing193

small segments of reasoning within the overall task.194

These works often employ tree searching strategies195

like Tree of Thoughts (ToT) (Yao et al., 2024; Besta196

et al., 2024) or Monte Carlo Tree Search (Zhang197

et al., 2024b,a; Chen et al., 2024; Feng et al., 2023;198

Zhu et al., 2022), extending multiple steps to op-199

timize step answers and ultimately obtain the op-200

timal solution. Additionally, Process Supervision201

Models (PRMs) (Lightman et al., 2023; Luo et al.,202

2024) are frequently used to verify the correctness203

of new candidate nodes in real-time and prune rea-204

soning paths, thereby improving the accuracy of the205

final answer. This more detailed auxiliary strategy206

demonstrates greater potential.207

In-context Learning in Mathematical Reason-208

ing. In-context learning can provide low-cost guid-209

ance to models through similar examples, thereby210

enhancing the quality of model outputs and their211

ability to follow prompts. Consequently, it has212

been widely adopted. However, research on in-213

context learning within mathematical reasoning214

tasks remains insufficient. Typically, this approach 215

involves providing the model with similar prob- 216

lems and their ground truth solutions to offer a gen- 217

eral strategy for solving new problems (Hendrycks 218

et al., 2021; Wei et al., 2022). Some efforts have 219

been made to improve the relevance of retrieved 220

examples by designing better retrieval mechanisms 221

and incorporating appropriate reference rejection 222

techniques (Liu et al., 2024b). Others try to pro- 223

vide high-level context instead to improve the gen- 224

eralizability (Wu et al., 2024). However, all these 225

methods share a common limitation: the lack of 226

fine-grained step-level guidance. Some recent ap- 227

proaches (Dong et al., 2024) introduce ICL into 228

the reason process. However, they still perform 229

ICL in problem granularity and thus may not offer 230

effective guidance for next-step reasoning. 231

3 Step-Level In-Context Learning 232

3.1 Revisiting In-Context Learning from 233

Conditional Probability 234

Current models often employ next-token predic- 235

tion for training and inference, where the condi- 236

tional probability is central to the model’s gen- 237

eration of the next token. Given a problem q, a 238

model’s reasoning process can be represented by 239

rpredict = argmax
r

Pmodel(r | q), where we train 240

the model to get a better conditional probability 241

Pmodel so that rpredict can be closer to the ground 242

truth answer rgt = argmax
r

Pgt(r | q). 243

In-context learning provides the model with con- 244

ditional probabilities similar to the ground truth 245

answer for imitation without changing the prob- 246

ability model Pmodel. Specifically, an example 247

problem q′ and its corresponding correct solution 248

r′ is provided and it can be posited that the con- 249

ditional probability P (r′ | q′) is similar to the 250

probability of the ground truth answer of the tar- 251

get problem P (rgt | q). Consequently, the model 252

will imitate this similar example and r′predict = 253

argmax
r

Pmodel(r | q, q′, r′) will be closer to rgt 254

comparing to rpredict. 255

However, given that the actual reasoning pro- 256

cess r can be highly complex, the complete rea- 257

soning process is often divided into multiple steps 258

s1, s2, . . .. Step-level reasoning iteratively guides 259

the model to generate the next step s0−shot
i+1 = 260

argmax
s

Pmodel(s | q, s1, s2, . . . , si). 261

At the step granularity, examples retrieved based 262

on the problem q are evidently insufficient for 263
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Figure 2: Our strategy refines in-context learning from problem-level granularity (fig.a) to step-level granularity(fig.b)
to provide more real-time fine-grained guidance. Moreover, our strategy can guide the reasoning and verifying
process in tree-searching strategies by introducing examples.

providing appropriate guidance. Similar problem264

q′ may not necessarily contain the corresponding265

steps to guide the reasoning for the new problem q.266

Moreover, irrelevant steps may provide dissimilar267

conditional probabilities, thereby distracting the268

model’s reasoning process.269

To this end, we propose step-aligned in-context270

learning and a first-try strategy to provide de-271

tailed and relevant example steps when in step-272

level reasoning. Specifically, when generating273

new steps si+1 based on previous reasoning steps274

si, si−1, . . . , s1 and question q, we first utilize a275

first-try strategy to obtain an approximate esti-276

mate of sfirsti+1 . Then, we use this sfirsti+1 to re-277

trieve a similar step s′n+1 along with the cor-278

responding q′, s′1, s
′
2, . . . , s

′
n. Since these two279

steps are similar, a very reasonable assumption280

is that P (s′n+1 | q′, s′1, . . . , s
′
n) closely approx-281

imates P (sgti+1
| q, s1, . . . , si). Therefore,282

the generated step si+1 = argmax
s

Pmodel(s |283

q, s1, . . . , si, q
′, s′1, . . . , s

′
n, , s

′
n+1, ) will be more284

closed to sgti+1
comparing to s0−shot

i+1 . Details285

about our step-level in-context learning and first-try286

Figure 3: Different problems may contain similar steps.
Problem-level in-context learning will ignore this ex-
ample due to low problem similarity. In contrast, our
step-level in-context learning strategy can introduce the
core skills by step-level retrieval and guidance.

strategy will be explained in Sec. 3.3 287

3.2 Step-Level Example Problem Bank 288

Due to the need for further improvement in math- 289

ematical capabilities, current open-source mathe- 290

matical data no longer consist solely of problems 291

and their final answers to determine whether the fi- 292
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nal answer obtained is correct or not. Instead, they293

also provide detailed solution processes to provide294

more fine-grained measurements. However, most295

current open-source mathematical data still do not296

break down the solution processes to the step level.297

Some approaches (Lightman et al., 2023) pro-298

posed using a clear semantic delimiter like the pe-299

riod ’.’ or a new line to segment steps. This strategy300

allows for the quick decomposition of each step301

from a complete process without any additional302

assistance. However, this simple decomposition303

mode is obviously unreliable. Essentially, a single304

reasoning step should have a consistent target and305

a complete thought process, making it the atomic306

granularity of reasoning. Using a period ’.’ or a307

new line as a delimiter may disrupt this atomicity.308

For example, it may split a complete enumeration309

for the same objective into multiple steps.310

Therefore, we suggest that the most appropriate311

method for step segmentation is to allow the rea-312

son model itself to autonomously decompose the313

process. This approach ensures that the granular-314

ity of the decomposed steps in example problem315

bank aligns with that of the real-time reasoning316

steps. Specifically, we define the concept of a step317

through prompts, which encapsulate a complete318

and simple inference. This guides GPT-4o in de-319

composing the answer at the step level.320

A major advantage of decomposing the question321

example bank into individual steps is that it facil-322

itates step-level retrieval and guidance, which is323

of significant importance. As illustrated in Fig. 3,324

two distinctly different problems may contain simi-325

lar key steps. Traditional problem-level in-context326

learning often overlooks such examples, whereas327

step-level in-context learning can effectively recall328

these steps, thereby providing fine-grained guid-329

ance to the ongoing reasoning process330

3.3 Step-Level ICL with First-try Strategy331

The core challenge of in-context learning lies in332

how to effectively retrieve relevant problems or333

steps for effective guidance. This is contingent334

upon both the similarity between the problem335

database and the target problem, as well as the336

specific retrieval strategy employed. Traditional337

problem-level in-context learning involves retriev-338

ing similar problems based solely on the problem339

statement. This approach is relatively straightfor-340

ward but effective, as similar problems typically341

encompass similar reasoning processes.342

At the more granular step level, however, the343

situation becomes much more complex. A sim- 344

ple strategy is to perform retrieval using the 345

given problem and all preceding reasoning steps 346

si−1, si−2, . . . , s1, q. The clear drawback of this 347

method is the excessive length of the retrieval con- 348

tent, which diminishes the emphasis on the unique- 349

ness of the current step. Another strategy is to use 350

the previous step si−1 to retrieve s′j−1 from a step- 351

level database, thereby guiding the reasoning of si 352

through the correct resolution of s′j . However, this 353

approach is rather crude, as it models step-level 354

reasoning as a Markov process, which is evidently 355

unreasonable. Similar steps can be applicable to 356

different reasoning tasks, and therefore similarity 357

in the previous step does not necessarily indicate 358

that the retrieved subsequent step will provide valu- 359

able guidance for the reasoning in the current step. 360

To this end, we propose a straightforward and 361

effective "first-try" strategy to enhance the similar- 362

ity of search steps. Our premise is that the most 363

accurate way to estimate the next step is to actually 364

allow the model to attempt the reasoning for the 365

next step. Specifically, given a problem q and all 366

preceding reasoning steps si−1, si−2, . . . , s1, we 367

first instruct the model to attempt continuing the 368

reasoning process to arrive at a tentative step stryi 369

without the aid of any examples. Subsequently, 370

we use stryi to retrieve similar steps s′j along with 371

their corresponding problem q′ and preceding steps 372

s′1, . . . , s
′
j−1 from a step-level database. Finally, 373

we feed the retrieved similar steps back to the 374

model, enabling it to deduce the final step si. Be- 375

sides, we add a widely accepted strategy reference 376

rejection. Specifically, if the similarity of the re- 377

trieved most similar example remains below a cer- 378

tain threshold, we consider that there are no suf- 379

ficiently similar examples available for reference. 380

Consequently, we do not provide any examples to 381

avoid the negative effects associated with incoher- 382

ent in-context learning. This "try-retrieve-reason" 383

strategy significantly enhances retrieval relevance, 384

thereby improving reasoning effectiveness. Experi- 385

ments in Sec. 4.4 compare our method with several 386

other retrieval strategies, demonstrating the superi- 387

ority of our approach. 388

3.4 Step-Level Guidance in Tree Search 389

Our step-level in-context learning can significantly 390

enhance the model’s single-step reasoning capabil- 391

ity, which makes it easily integrated into common 392

step-level tree-search strategies. 393

Generally, tree search methods necessitate two 394
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key components: a reason model that generates395

step-level reasoning and a Process-Supervised Re-396

ward Model (PRM) that continuously evaluates the397

current reasoning step in real time. Our method398

is beneficial for both of these components. It en-399

hances the step-level reasoning performed by the400

reason model and improves the effectiveness of the401

PRM in evaluating current reasoning steps.402

For the reason model, tree search methods in-403

herently require step-by-step reasoning expansion.404

When expanding at node si, we can apply the pre-405

viously mentioned strategy: the model performs n406

first tries and retrieve for n example steps. For each407

example, the model then completes the reasoning408

to generate n child nodes s1i+1, . . . , s
n
i+1 with the409

help of these examples. Similarly, our strategy can410

improve the accuracy of individual nodes sji+1.411

Evidently, judgment ability is closely related to412

reasoning ability. Therefore, since our strategy can413

enhance the accuracy of single-step reasoning, a414

reasonable assumption is that introducing appropri-415

ate example steps can improve the PRM’s ability416

to assess the correctness of the current reasoning417

process. In particular, when evaluating the correct-418

ness of an inference step candidate sji , we retrieve419

similar steps s′k along with their corresponding420

preceding steps s′k−1, . . . , s
′
1 and question q′ from421

the step-level example bank. Similarly, the prob-422

ability distributions P (s′k|s′k−1, . . . , s
′
1, q

′) and423

P (sgti |si−1, . . . , s1, q) exhibit similarities. This424

resemblance aids in assessing the discrepancy be-425

tween sji and sgti , thereby enhancing the accuracy426

of the critic model’s evaluations.427

Detailed ablation experiments in Sec. 4.5 demon-428

strate that both strategies contribute positively to429

step-level tree search methods.430

4 Experiments431

4.1 Experiment setting432

Reasoning Model. Our primary reasoning model433

is GPT-4o (Hurst et al., 2024). To demonstrate the434

generality, we also conducted tests on Qwen2.5-435

Math-72B-Instruct (Yang et al., 2024). More-436

over, current SOTA reasoning models Qwen-QwQ-437

32B (Team, 2024) and DeepSeek-R1-671B (Guo438

et al., 2025) were also included in our experiment.439

Evaluation Benchmark. We tested our approach440

on several challenging open-source mathemati-441

cal benchmarks, including MATH500 (Hendrycks442

et al., 2021), AQuA (Ling et al., 2017),443

OlympiadBench-TO (He et al., 2024) and MATH-444

Bench (Liu et al., 2024a) College-level and High- 445

level tasks. In addition, we manually collected a 446

selection of problems from the AMC-10 and AMC- 447

12 competitions to serve as even more challenging 448

benchmarksTo simulate benchmarks with lower 449

similarity to the example problem bank, we also 450

conducted tests on MathVision (Wang et al., 2024a) 451

and MathVerse (Zhang et al., 2025), highly chal- 452

lenging multi-modal math benchmarks 453

Example Problem Bank. The example problem 454

bank is obtained from PRM800K (Lightman et al., 455

2023) and the steps are divided by GPT-4o. 456

Retriever. We utilized the classic TF-IDF en- 457

coding method combined with cosine similarity as 458

the retriever for all methods. The TF-IDF weight 459

matrix is derived from the example problem bank 460

because the impact of the newly generated step 461

is negligible, and real-time calculation of TF-IDF 462

would require a significant amount of time. 463

Hyper-Parameters. The temperature value is 0 in 464

all the experiments except for step-level tree search, 465

which needs some random sampling to generate 466

different reasoning candidates, and the temperature 467

value for tree search methods is set at 0.3. The 468

reference rejection threshold is 0.7. 469

Prompt. Apart from some necessary guidance like 470

step-level reasoning, we ensured that the prompts 471

for each method were as similar as possible to make 472

the comparison fairer. The specific prompts are 473

listed in the supplementary materials. 474

4.2 Comparing to Problem-Level ICL 475

We conduct a rigorous comparison of our step-level 476

in-context learning and traditional problem-level 477

few-shot learning in various aspects. For traditional 478

problem-level few-shot learning, we set the shot 479

number to 4, which is a common setting. 480

Performance We compare the performance be- 481

tween traditional few-shot learning and our step- 482

level in-context learning across multiple bench- 483

marks and base models. The results are pre- 484

sented in Tab. 1. Our step-level in-context learning 485

achieves a general and significant improvement 486

across various benchmarks compared to problem- 487

level few-shot learning. 488

Potential A key focus of in-context learning 489

is determining how difficult a particular example 490

can effectively guide the new problems, indicat- 491

ing the potential of these methods. Problem-level 492

in-context learning faces significant challenges 493

in leveraging simpler examples to enhance the 494

model’s reasoning performance on more difficult 495
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Table 1: A comparison of different in-context learning strategies on different benchmarks on GPT-4o and Qwen2.5-
Math-72B-Instruct. The example problem bank is constructed from PRM800K, so MATH500 is an in-domain
benchmark while others are all out-domain benchmarks. The best results are in bold.

Model Method
in-domain out-domain Avg

MATH AMC12 AMC10 AQUA MathBench(C) MathBench(H) OlympiadBench

GPT-4o
0-shot 73.4 53.6 55.8 81.1 80.0 77.3 40.6 66.0

few-shot 73.8 56.5 56.7 83.9 80.7 79.3 39.3 67.2 (+1.2)
Ours 76.4 63.0 60.4 85.4 82.0 84.0 43.3 70.6 (+4.6)

Qwen
0-shot 83.0 67.4 67.7 84.6 80.6 82.0 49.7 73.6

few-shot 83.8 67.4 66.8 85.0 81.3 82.7 49.9 73.8 (+0.2)
Ours 85.2 69.2 69.6 86.6 82.7 84.7 52.7 75.8 (+2.2)

Table 2: Comparison of different strategies in multi-
modal mathematical benchmarks with lower similarity
with our problem bank. Base models are all GPT-4o.

Method MathVision MathVerse Avg

0-shot 30.6 53.2 41.9
few-shot 28.7 (-1.9) 53.2 (0.0) 41.0 (-0.9)

Ours 35.2 (+4.6) 54.2 (+1.0) 44.7 (+2.8)

Table 3: Experiments on the sensitivity of the similarity
between the question and the example problem bank.
R_t indicates that the examples are the t_th similar with-
out any rejection strategy.

Method Math-level5 AMC12 AMC10

0-shot 50.7 53.6 55.8

few-shot R_1 52.2 (+1.5) 56.5 (+2.9) 56.7 (+0.9)
few-shot R_4 46.3 (-4.4) 52.2 (-1.4) 53.7 (-2.1)

Ours R_1 56.0 (+5.3) 62.3 (+8.7) 60.4 (+4.6)
Ours R_4 52.2 (+1.5) 61.6 (+8.0) 58.1 (+2.3)

questions. However, our strategy offers guidance496

at the step level, thereby overcoming this upper497

limit. To validate this, we select SOTA reason-498

ing models QwQ-32B-Preview (Team, 2024) and499

DeepSeek R1 (Guo et al., 2025) and utilized sim-500

pler example problems from PRM800K to guide501

the reasoning on the most challenging mathemat-502

ical benchmark AIME (MAA, 2024). The results503

are shown in tab. 4, which indicate that traditional504

few-shot learning fails to provide effective guid-505

ance while our strategy demonstrates continuous506

improvement, demonstrating that it can boost the507

most advanced reasoning models on the most chal-508

lenging tasks with a much simpler example.509

Generalizability Traditional few-shot learning510

requires the example problem bank highly similar511

to the questions to be solved, which limits its gen-512

eralizability. To compare the generalizability, We513

also test different methods on multi-modal mathe-514

Table 4: Experiment on "simple-aids-difficult" potential.
We use simpler example problems from PRM800K to
guide SOTA reasoning models Deepseek-R1 and Qwen-
QwQ on the most challenging mathematical bench-
marks AMC 12 and AIME. Considering that the AIME
consists of only 30 questions each year, making the re-
sults prone to fluctuations, we evaluated the questions
three times annually and reported the average accuracy.

Model Method AMC12 AIME23 AIME24

QwQ
0-shot 79.7 38.9 43.3

few-shot 81.2 33.3 (-5.6) 38.9 (-4.4)
Ours 88.4 41.1 (+2.2) 47.8 (+4.5)

DS-R1
0-shot 94.2 75.6 80.0

few-shot 97.1 65.6 (-10.0) 70.0 (-10.0)
Ours 97.1 77.8 (+2.2) 82.2 (+2.2)

matical benchmarks including MathVision (Wang 515

et al., 2024a) and MathVerse (Zhang et al., 2025), 516

which has much lower similarity with our example 517

problem bank. The results are shown in Tab. 2. 518

Problem-level few-shot learning not only fails to 519

enhance reasoning performance but can also have 520

a negative impact, while our method continues to 521

achieve appreciable improvements, demonstrating 522

better general applicability. 523

Robustness We also manually decrease the sim- 524

ilarity between the examples and the problems by 525

selecting the t_th similar example during reasoning 526

to evaluate the robustness. The result is shown in 527

Tab. 3. We can observe that traditional problem- 528

level in-context learning suffers from a severe de- 529

crease and is even worse than 0-shot learning when 530

t is larger than 4. In contrast, our method does not 531

show a significant decline and is consistently better 532

than the 0-shot reasoning. 533

4.3 Construction of Example Problem Bank 534

To better align with the steps in reasoning, we pro- 535

pose constructing a step-level problem bank based 536

on the reasoning content rather than grammatical 537
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Table 5: Comparison of different step-level example
problem Bank construction methods.

Strategy AMC12 AMC10 MATH

Grammatical Separation 56.5 58.1 74.8
Reasoning Content 63.0 60.4 76.4

Table 6: Comparison of different retrieval strategies in
step-level in-context learning. ’Path’ represents retriev-
ing by the reasoning path including all previous steps
si−1, si−2, . . . , s1 and question q, while ’Pre-Step’ rep-
resents retrieving by only the immediately preceding
step si−1. The best results are in bold.

Strategy AMC12 AMC10 MATH MathVision

Path 56.5 58.1 73.8 31.7
Pre-Step 57.2 56.7 74.0 31.0
First-try 63.0 60.4 76.4 35.2

divisions. To prove our assumption, we compare538

our approach with a commonly used strategy that539

constructs steps based on grammatical segmenta-540

tion, using periods ’.’ as the delimiter, on the same541

dataset PRM800K and under identical conditions.542

Results are presented in Tab. 5. Our method largely543

outperforms those using periods as a delimiter.544

4.4 Comparison of Retrieving Strategies545

The key factor of in-context learning lies in the546

relevance of the retrieved examples. At the finer-547

grained step level, designing an appropriate re-548

trieval strategy becomes even more crucial and549

challenging. Therefore, we propose the first-try550

strategy, which involves understanding what the551

model currently needs to reason about using a first552

attempt and then searching the problem set for sim-553

ilar steps to guide the model in fully outputting the554

current step. To validate the effectiveness of this555

method, we compare it with several other strate-556

gies mentioned in Sec.3.3, retrieving by the entire557

reasoning path si−1, si−2, . . . , s1, q or only by the558

immediately preceding step si−1.559

Tab. 6 presents the detailed result. Our method560

significantly outperforms the other two retrieving561

strategies, better anticipating the content that needs562

to be inferred in the current step.563

4.5 Example-guided Step-level Tree Search564

The reasoning capability of the reason model and565

the verifying capability of the critic model are two566

core factors of step-level tree search methods, and567

our strategy can bring benefits in both ways. On568

one hand, it can improve the accuracy of gener-569

Table 7: A detailed ablation on incorporating retrieving
similar steps to provide fine-grained guidance during the
reasoning and verifying phases of step-level tree search
methods. Base models are GPT-4o and prompts are the
same. The best results are in bold.

Reason Verify AMC12 AMC10 MATH Avg

w/o tree-search 53.6 55.8 73.4 60.9

% % 58.7 59.0 77.8 65.2 (+4.3)
! % 64.4 62.2 79.2 68.6 (+7.7)
% ! 61.6 60.4 78.2 66.7 (+5.8)
! ! 65.2 63.6 79.4 69.4 (+8.5)

ating candidate nodes using the previously men- 570

tioned first-try strategy when reasoning nodes are 571

generated. On the other hand, it can increase the 572

accuracy of evaluation by introducing similar exam- 573

ples during critic model assessments and therefore 574

ensures that the correct reasoning nodes are more 575

likely to be preserved. These can be decoupled, al- 576

lowing us to demonstrate the effectiveness of each 577

component through ablation studies. 578

We utilize GPT-4o as the reason model, GPT-4o- 579

mini as the PRM and adopt the Pairwise Preference 580

Reward Model (PPRM) configuration (Zhang et al., 581

2024b) to ensure a more robust evaluation. Detailed 582

settings will be listed in the appendix. 583

Tab. 7 presents the results of integrating in- 584

context learning into the reasoning and evaluation 585

phases of Tree Search methods. The results of this 586

ablation study indicate that introducing example 587

steps can enhance both the reasoning and verify- 588

ing capabilities of tree search methods. Therefore 589

both approaches contribute to the improvement of 590

overall reasoning performance. 591

5 Conclusion 592

We propose BoostStep, providing fine-grained 593

guidance during the reasoning process by searching 594

for similar steps from a step-level example problem 595

bank according to the first-try reasoning attempt. 596

BosotStep is a strong and general approach, enhanc- 597

ing the model’s reasoning capabilities and reducing 598

the dependency on the similarity of the example 599

problem set. It demonstrates better performance, 600

potential, generalizability and robustness compar- 601

ing to traditional problem-level few-shot learning. 602

Moreover, our method can also enhance the rea- 603

soning and evaluation capability of step-level tree 604

search methods by introducing similar steps in rea- 605

soning and verifying phases. 606
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6 Limitations607

Currently, our example problem bank is entirely608

sourced from PRM800k, resulting in a relatively ho-609

mogeneous distribution of example problems and610

example steps. Although our method has more po-611

tential to guide more difficult problems with much612

simpler examples, a greater quantity and more di-613

verse distribution of example problems can evi-614

dently provide more effective guidance for address-615

ing a range of problems.616

Furthermore, the TF-IDF retriever used is based617

on modeling language term frequency directly and618

thus lacks an understanding of mathematical con-619

tent, which limits its retrieval capabilities on math620

problems. Utilizing a retriever specifically de-621

signed for mathematical problems can certainly622

enhance the quality of retrieval.623
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A Detailed Experiment Setting823

A.1 Prompt824

Prompt for 0-shot COT: You are a professional825

math problem solver. Solve the problem step by826

step and output the final answer within \\boxed{}.827

828

Prompt for problem-level few-shot learning:829

You are a professional math problem solver. Solve830

the problem step by step and output the final an-831

swer within \\boxed{}. In case you don’t know832

how to solve it, I will give you example problems833

with their full solutions which you can refer to.834

Example i:835

Problem: xxx836

Solution: xxx837

838

Prompt for first-try in step-level COT: You are a839

professional math problem solver. I will give you840

a math problem and part of its solution. And you841

need to only output the next step of the solution,842

starting with ’Step i:’, where i is the step number.843

If you think that the final step is derived, put the844

answer within \\boxed{}.845

846

Prompt for step-level few-shot learning: You are847

a professional math problem solver. I will give you848

a math problem and part of its solution. And you849

need to only output the next step of the solution,850

starting with ’Step i:’, where i is the step number.851

In case you don’t know how to derive the correct852

content, an example with ’Key Step’ will be given.853

You need to learn how ’Key Step’ is derived, and854

implement similar strategy in your derivation pro-855

cedure. If you think that the final step is derived,856

put the answer within \\boxed{}.857

Example Problem: xxx858

Example Solution: Step1: xxx, Step2: xxx, ...,859

Stepi(Key Step): xxx.860

A.2 Details of Grading and Metrics861

We follow the setting of Opencompass (Contribu-862

tors, 2023) and VLMEvalKit (Duan et al., 2024).863

Specifically, we first require the model to put the864

final answer within \\boxed{}. Then, we use GPT-865

4o-mini as the critic model to compare the final866

answer with the ground truth answer. Compared to867

string matching, this approach can eliminate some868

false negative evaluations because the same mathe-869

matical expression can be expressed in many forms.870

If the model fails to follow the the expected format871

in the prompt and the rule-based extraction fails,872

the solution is directly judged as inconsistent with 873

ground truth. 874

A.3 Benchmarks 875

We tested our approach on several mathemati- 876

cal benchmarks, including MATH500 (Hendrycks 877

et al., 2021), AQuA (Ling et al., 2017), 878

OlympiadBench-TO (He et al., 2024) and MATH- 879

Bench (Liu et al., 2024a). Specifically, we use 880

the Olympiad-TO (text-only) subset of Olympiad- 881

Bench and the application problems in college- 882

level and high-level difficulty of MATHBench. 883

For multi-modal math benchmarks, we use 884

MathVision-Mini (Wang et al., 2024a) and vision- 885

dominant version of problems in MathVerse-Mini 886

(Zhang et al., 2025). 887

B Detailed Setup for Example-Guided 888

Step-Level Tree Search 889

In the setup for tree search methods, we utilize GPT- 890

4o as the reason model and employ GPT-4o-mini 891

as the Process-supervised Reward Model (PRM). 892

For the PRM, we adopted the Pairwise Preference 893

Reward Model (PPRM) configuration (Zhang et al., 894

2024b). Specifically, PPRM transforms the abso- 895

lute rewards calculation into preference predictions 896

between solutions to calculate rewards. This ap- 897

proach reduces the variability associated with scor- 898

ing characteristics and thus leads to a more robust 899

and consistent evaluation of different solutions. 900

The complete reasoning process in our experi- 901

ment is as follows: we start with the target problem 902

as the root node and obtain two initial solution 903

steps through sampling to serve as the two initial 904

parent nodes. In each step-level reasoning phase, 905

we expand these two parent nodes through sam- 906

pling, generating four candidate child nodes. Us- 907

ing the PPRM, we select the two child nodes with 908

higher confidence to become the parent nodes for 909

the next step of reasoning. This process continues 910

until both candidate nodes have completed their 911

reasoning paths, resulting in the final answers. Fi- 912

nally, PPRM is used to select the ultimate answer 913

from these two reasoning paths. 914

C Case Study 915

Here we demonstrate a specific example of how our 916

step-level in-context learning boosts step-level rea- 917

soning. Given the question, we first let the model 918

have a first try on step one. Unfortunately, be- 919

cause the model is unfamiliar with trigonometric 920
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Figure 4: A specific example of adjusting reasoning
during real-time inference through step-level in-context
learning. The first try uses a wrong equation while the
retrieving example step guides the model to use the
correct equation and get the correct conclusion.

functions, it makes an error on the tangent sum for-921

mula, therefore leading to a wrong step. However,922

we can get a rough idea of what the model wants923

to calculate at this step according to the first try.924

Then, we find a similar step that correctly leverages925

the tangent sum formula in the step-level example926

problem bank. Therefore, with the guidance pro-927

vided, the model correctly applied the tangent sum928

formula during the second reasoning attempt and929

arrived at the correct answer.930
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