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Abstract

Large language models (LLMs) have demon-
strated impressive ability in solving complex
mathematical problems with multi-step reason-
ing and can be further enhanced with well-
designed in-context learning (ICL) examples.
However, this potential is often constrained by
two major challenges in ICL: granularity mis-
match and irrelevant information. We observe
that while LLMs excel at decomposing math-
ematical problems, they often struggle with
reasoning errors in fine-grained steps. More-
over, ICL examples retrieved at the question
level may omit critical steps or even mislead
the model with irrelevant details. To address
this issue, we propose BoostStep, a method
that enhances reasoning accuracy through step-
aligned ICL, a novel mechanism that carefully
aligns retrieved reference steps with the corre-
sponding reasoning steps. Additionally, Boost-
Step incorporates an effective "first-try" strat-
egy to deliver exemplars highly relevant to
the current state of reasoning. BoostStep is
a flexible and powerful method that integrates
seamlessly with chain-of-thought (CoT) and
tree search algorithms, refining both candidate
selection and decision-making. Empirical re-
sults show that BoostStep improves GPT-40’s
CoT performance by 4.6% across mathemat-
ical benchmarks, significantly surpassing tra-
ditional few-shot learning’s 1.2%. Moreover,
it can achieve an additional 7.5% gain com-
bined with tree search. Surprisingly, it en-
hances state-of-the-art LLMs to solve challeng-
ing math problems using simpler examples. It
improves DeepSeek-R1-671B’s performance
on AIME by 2.2%, leveraging simple examples
only from the MATH dataset.

1 Introduction

Mathematical reasoning is a crucial and challeng-
ing task in the development of artificial intelligence.
It serves as an indicator of a model’s ability to
perform complex reasoning and has a wide range
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Figure 1: Our step-aligned in-context learning (ICL)
outperforms traditional problem-level few-shot learning
for about 4% across in-domain, out-domain and cross-
modality mathematical benchmark on GPT40. More-
over, on benchmarks with lower similarity with the refer-
ence problem set (i.e. OlympiadBench and multi-modal
benchmarks), where problem-level ICL may have a neg-
ative impact, BoostStep still provides valuable guidance.

of applications, such as problem-solving, theorem
proving, and scientific discovery.

When solving complex mathematical problems,
cutting-edge LLMs often adopt a multi-step rea-
soning strategy. Specifically, they first decompose
a complex problem into several simpler steps and
then solve each single step independently.

Through the analysis of error cases, we found
that current SOTA models are relatively correct
in the step-dividing phase, that is, the model can
know exactly what tasks should be completed in
each step. However, there are still a lot of mis-
takes within each reasoning step, such as wrong
formula use, wrong calculation, insufficient enu-
meration, etc. To quantitatively substantiate this ob-
servation, we provide GPT-40-mini with a ground
truth reasoning process to determine whether the



error in another response was due to an overarching
flawed reasoning approach or a deviation within
a particular step. In less advanced models like
LLaMA-3.1-8B (Dubey et al., 2024), 91.3% of er-
rors originate from single-step reasoning. In more
advanced models like GPT-40, up to 99.2% of er-
rors are ascribable to some particular steps. This
exaggerated proportion suggests that the correct-
ness of single-step reasoning is the bottleneck of
reasoning capability.

Various approaches have been employed to im-
prove reasoning correctness, such as producing
chains of thought through prompt engineering (Ko-
jima et al., 2022; Wei et al., 2022), fine-tuning with
mathematical data (Shao et al., 2024; Yang et al.,
2024; Ying et al., 2024), or generating multiple
candidate reasoning paths using Tree Search Meth-
ods (Zhang et al., 2024b,a; Wang et al., 2024b).

Among those techniques, in-context learning is
a particularly important one, which offers similar
examples to provide detailed guidance. However,
the examples retrieved by traditional problem-level
in-context learning are listed before the reasoning
process, thereby lacking fine-grained guidance dur-
ing the reasoning process. Moreover, since the
example problem can’t be identical to the new one,
the irrelevant steps in those examples may even be-
come a distraction from the current reasoning, thus
even negatively affecting the single-step reasoning
capability for some specific steps.

To this end, we refine in-context learning from
problem-level to step-level granularity to offer sim-
ilar example steps during an ongoing reasoning
process for fine-grained step-aligned guidance. We
also ensure that the introduced example is still rele-
vant at the step level to avoid distractions.

Firstly, we have constructed an example problem
bank with step-level granularity based on reasoning
content instead of commonly adopted grammatical
separation. This ensures the steps in the problem
bank are consistent with the actual reasoning steps,
thereby providing more appropriate guidance.

Building on the step-level granularity within the
example problem bank, we propose an approach
that incorporates in-context learning through a
"first-try" format during an ongoing reasoning pro-
cess. Specifically, for a given problem to be solved,
we break down the solving process into step-by-
step reasoning paths. During the reasoning of a
single step, we first allow the model to attempt a
“first try’ to comprehend what the model currently
needs to reason about. Based on this initial attempt,

we searched the problem bank to find similar steps
that can guide the model to accurately output the
current step. This helps ensure a higher similar-
ity between the retrieved examples and the current
step so the distraction from irrelevant steps can be
avoided and the guidance effect can be improved.
Compared with traditional problem-level ICL,
our method provides examples during the reason-
ing process directly based on the steps to be solved,
thereby offering more relevant guidance. It demon-
strates significant improvements over traditional
few-shot learning across various benchmarks, with
an average increase of 3.4% on GPT-4o.
Moreover, our method also reduces the sensi-
tivity to the similarity between the example and
the target problem, as two different problems can
still share similar steps. Consequently, dissimilar
problems can still offer effective guidance. On
multi-modal benchmarks with lower similarity to
example problems, traditional few-host learning
has a detrimental effect, resulting in an accuracy
reduction of 0.9% on GPT-40. In contrast, our
approach still achieves an improvement of 2.8%.
Besides, BoostStep also shows a promising po-
tential to improve the reasoning quality on harder
problems with simpler examples. With examples
from MATH (Hendrycks et al., 2021), it helps
Deepseek-R1 achieve an improvement of 2.2% on
the much more challenging AIME problems.
Moreover, our method is also highly compatible
with various current reasoning strategies that em-
ploy step-level tree search. Typically, a tree-search
method requires a reason model to generate multi-
ple step-level candidate reasoning paths and a critic
model to evaluate the correctness of these candi-
dates. Our approach can be integrated into both
aspects. Specifically, when the reason model gen-
erates new candidate reasoning nodes, our method
can introduce similar examples in the aforemen-
tioned ‘first-try’ manner to improve the accuracy of
candidates. Additionally, it can aid the critic model
by incorporating similar example steps into the
evaluation of candidate reasoning processes to pro-
vide similar guidance. Experiments indicate that
both applications contribute positively and bring
about an improvement of 8.5% jointly on GPT-4o.

2 Related Works

Mathematical Reasoning. Mathematical reason-
ing has long been a highly challenging task in the
field of artificial intelligence. In the early days



of artificial intelligence, constrained by a lack of
general capabilities, early methods (Feigenbaum
et al., 1963; Fletcher, 1985) primarily attempted
to perform simple mathematical reasoning through
rule-based methods. With the advent of large lan-
guage models with enhanced reasoning capabili-
ties, contemporary approaches typically focus on
enhancing performance during both the training
and inference phases. The first category improves
mathematical capability by fine-tuning with more
high-quality mathematical data (Shao et al., 2024;
Yang et al., 2024; Lewkowycz et al., 2022; Yue
et al., 2023; Xu et al., 2024). This strategy can fun-
damentally improve the base model’s mathematical
capabilities. However, it demands substantial high-
quality mathematical data and computational re-
sources. Consequently, more efforts have been put
into exploring various techniques during inference
to enhance mathematical reasoning performance.
Some work (Wei et al., 2022; Kojima et al., 2022)
involves prompt engineering to enable models to
generate comprehensive chains of thought. Other
studies (Madaan et al., 2024; Gou et al., 2023; Ke
et al., 2024) use self-refinement techniques to re-
vise the initial reasoning outputs.

Step-level Mathematical Reasoning. Recently,
to further enhance mathematical reasoning capa-
bilities, many studies have shifted the granular-
ity of mathematical reasoning from the problem
level to the step level. This approach involves ad-
dressing each next step individually and completing
small segments of reasoning within the overall task.
These works often employ tree searching strategies
like Tree of Thoughts (ToT) (Yao et al., 2024; Besta
et al., 2024) or Monte Carlo Tree Search (Zhang
et al., 2024b,a; Chen et al., 2024; Feng et al., 2023;
Zhu et al., 2022), extending multiple steps to op-
timize step answers and ultimately obtain the op-
timal solution. Additionally, Process Supervision
Models (PRMs) (Lightman et al., 2023; Luo et al.,
2024) are frequently used to verify the correctness
of new candidate nodes in real-time and prune rea-
soning paths, thereby improving the accuracy of the
final answer. This more detailed auxiliary strategy
demonstrates greater potential.

In-context Learning in Mathematical Reason-
ing. In-context learning can provide low-cost guid-
ance to models through similar examples, thereby
enhancing the quality of model outputs and their
ability to follow prompts. Consequently, it has
been widely adopted. However, research on in-
context learning within mathematical reasoning

tasks remains insufficient. Typically, this approach
involves providing the model with similar prob-
lems and their ground truth solutions to offer a gen-
eral strategy for solving new problems (Hendrycks
et al., 2021; Wei et al., 2022). Some efforts have
been made to improve the relevance of retrieved
examples by designing better retrieval mechanisms
and incorporating appropriate reference rejection
techniques (Liu et al., 2024b). Others try to pro-
vide high-level context instead to improve the gen-
eralizability (Wu et al., 2024). However, all these
methods share a common limitation: the lack of
fine-grained step-level guidance. Some recent ap-
proaches (Dong et al., 2024) introduce ICL into
the reason process. However, they still perform
ICL in problem granularity and thus may not offer
effective guidance for next-step reasoning.

3 Step-Level In-Context Learning

3.1 Revisiting In-Context Learning from
Conditional Probability

Current models often employ next-token predic-
tion for training and inference, where the condi-
tional probability is central to the model’s gen-
eration of the next token. Given a problem ¢, a
model’s reasoning process can be represented by
Tpredict = argmax Proder(r | q), where we train

the model to get a better conditional probability
Pr0der 80 that 7p,04i+ can be closer to the ground
truth answer 7y, = arg max Py(r | q).

T

In-context learning provides the model with con-
ditional probabilities similar to the ground truth
answer for imitation without changing the prob-
ability model P,,,4¢;. Specifically, an example
problem ¢’ and its corresponding correct solution
r’ is provided and it can be posited that the con-
ditional probability P(r’ | ¢') is similar to the
probability of the ground truth answer of the tar-
get problem P(r4 | q). Consequently, the model
will imitate this similar example and r;redi o =
argmax Ppoder (7 | ¢,¢',7") will be closer to 74
compgring tO Tpredict-

However, given that the actual reasoning pro-
cess r can be highly complex, the complete rea-
soning process is often divided into multiple steps
s1, 82, - . .. Step-level reasoning iteratively guides
the model to generate the next step s?_;fh"t =

arg max Prodet (s | q, 81,52, .., 5;).

At the step granularity, examples retrieved based
on the problem ¢ are evidently insufficient for



a) Problem-Level Granularity
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Figure 2: Our strategy refines in-context learning from problem-level granularity (fig.a) to step-level granularity(fig.b)
to provide more real-time fine-grained guidance. Moreover, our strategy can guide the reasoning and verifying
process in tree-searching strategies by introducing examples.

providing appropriate guidance. Similar problem
¢’ may not necessarily contain the corresponding
steps to guide the reasoning for the new problem gq.
Moreover, irrelevant steps may provide dissimilar
conditional probabilities, thereby distracting the
model’s reasoning process.

To this end, we propose step-aligned in-context
learning and a first-try strategy to provide de-
tailed and relevant example steps when in step-
level reasoning. Specifically, when generating
new steps s;+1 based on previous reasoning steps
Siy Si—1,--.,81 and question ¢, we first utilize a
first-try strategy to obtain an approximate esti-
mate of s/, Then, we use this s/} to re-
trieve a similar step s/, ; along with the cor-

responding ¢', s}, sh,...,s),. Since these two
steps are similar, a very reasonable assumption
is that P(s), ., | ¢,s,...,s,) closely approx-
imates P(sgt,,, | ¢,81,...,8i). Therefore,
the generated step s;+1 = argmax Ppoder(s |
S
/ / / / s
q515---55i,q 81, .., 8,,,8,,1,) Will be more
. 0—shot .
closed to sg, , comparing to s;,"". Details

about our step-level in-context learning and first-try

Question: The real number $xs Question: Let x"8 + 98x"4 + 1 = p(x)
satisfies 3x + \\frac{13}{2x} = 3. q(x), where p(x) and q(x) are monic,
Find 64x"6 + \\frac{1}{729x"6}. non-constant polynomials with

integer coefficients. Find p(1) + q(1).
Step 1: Multiplying both sides ... | = ......

we Step 15: If x - \\frac{1}{x} =2 +i

get 4x"2 + \\frac{4}{3} + = \sart{6}then...

\\frac{1}{9x"2} = 4,50 4x"2 + : , we get

\\frac{13{9x"2} = \\frac{83}{3} X2 - 4x + 2 + \\frac{43}{x} +
. . \\frac{1}{x"2} = -6,50 X"2 - 4x + 8 +

Step 3: Cubing both sides, we ... \Wrac{4}{x} + \frac{1}{x"2} = 0

Question Similarity: 0.01  Step Similarity: 0.81
Core Skills: When solving polynomials, it is often useful to consider
expressions of the form (x + \frac{1}{x}) and square them.

Figure 3: Different problems may contain similar steps.
Problem-level in-context learning will ignore this ex-
ample due to low problem similarity. In contrast, our
step-level in-context learning strategy can introduce the
core skills by step-level retrieval and guidance.

strategy will be explained in Sec. 3.3

3.2 Step-Level Example Problem Bank

Due to the need for further improvement in math-
ematical capabilities, current open-source mathe-
matical data no longer consist solely of problems
and their final answers to determine whether the fi-



nal answer obtained is correct or not. Instead, they
also provide detailed solution processes to provide
more fine-grained measurements. However, most
current open-source mathematical data still do not
break down the solution processes to the step level.

Some approaches (Lightman et al., 2023) pro-
posed using a clear semantic delimiter like the pe-
riod ’.” or a new line to segment steps. This strategy
allows for the quick decomposition of each step
from a complete process without any additional
assistance. However, this simple decomposition
mode is obviously unreliable. Essentially, a single
reasoning step should have a consistent target and
a complete thought process, making it the atomic
granularity of reasoning. Using a period ’.” or a
new line as a delimiter may disrupt this atomicity.
For example, it may split a complete enumeration
for the same objective into multiple steps.

Therefore, we suggest that the most appropriate
method for step segmentation is to allow the rea-
son model itself to autonomously decompose the
process. This approach ensures that the granular-
ity of the decomposed steps in example problem
bank aligns with that of the real-time reasoning
steps. Specifically, we define the concept of a step
through prompts, which encapsulate a complete
and simple inference. This guides GPT-40 in de-
composing the answer at the step level.

A major advantage of decomposing the question
example bank into individual steps is that it facil-
itates step-level retrieval and guidance, which is
of significant importance. As illustrated in Fig. 3,
two distinctly different problems may contain simi-
lar key steps. Traditional problem-level in-context
learning often overlooks such examples, whereas
step-level in-context learning can effectively recall
these steps, thereby providing fine-grained guid-
ance to the ongoing reasoning process

3.3 Step-Level ICL with First-try Strategy

The core challenge of in-context learning lies in
how to effectively retrieve relevant problems or
steps for effective guidance. This is contingent
upon both the similarity between the problem
database and the target problem, as well as the
specific retrieval strategy employed. Traditional
problem-level in-context learning involves retriev-
ing similar problems based solely on the problem
statement. This approach is relatively straightfor-
ward but effective, as similar problems typically
encompass similar reasoning processes.

At the more granular step level, however, the

situation becomes much more complex. A sim-
ple strategy is to perform retrieval using the
given problem and all preceding reasoning steps
Si—1,8i—2,...,51,q. The clear drawback of this
method is the excessive length of the retrieval con-
tent, which diminishes the emphasis on the unique-
ness of the current step. Another strategy is to use
the previous step s;—1 to retrieve 33-71 from a step-
level database, thereby guiding the reasoning of s;
through the correct resolution of S;. However, this
approach is rather crude, as it models step-level
reasoning as a Markov process, which is evidently
unreasonable. Similar steps can be applicable to
different reasoning tasks, and therefore similarity
in the previous step does not necessarily indicate
that the retrieved subsequent step will provide valu-
able guidance for the reasoning in the current step.

To this end, we propose a straightforward and
effective "first-try" strategy to enhance the similar-
ity of search steps. Our premise is that the most
accurate way to estimate the next step is to actually
allow the model to attempt the reasoning for the
next step. Specifically, given a problem ¢ and all
preceding reasoning steps S;—1, Si—2,...,S51, We
first instruct the model to attempt continuing the
reasoning process to arrive at a tentative step sfry
without the aid of any examples. Subsequently,
we use 5. to retrieve similar steps s’ along with
their corresponding problem ¢’ and preceding steps
81s--,8;_1 from a step-level database. Finally,
we feed the retrieved similar steps back to the
model, enabling it to deduce the final step s;. Be-
sides, we add a widely accepted strategy reference
rejection. Specifically, if the similarity of the re-
trieved most similar example remains below a cer-
tain threshold, we consider that there are no suf-
ficiently similar examples available for reference.
Consequently, we do not provide any examples to
avoid the negative effects associated with incoher-
ent in-context learning. This "try-retrieve-reason"
strategy significantly enhances retrieval relevance,
thereby improving reasoning effectiveness. Experi-
ments in Sec. 4.4 compare our method with several
other retrieval strategies, demonstrating the superi-
ority of our approach.

3.4 Step-Level Guidance in Tree Search

Our step-level in-context learning can significantly
enhance the model’s single-step reasoning capabil-
ity, which makes it easily integrated into common
step-level tree-search strategies.

Generally, tree search methods necessitate two



key components: a reason model that generates
step-level reasoning and a Process-Supervised Re-
ward Model (PRM) that continuously evaluates the
current reasoning step in real time. Our method
is beneficial for both of these components. It en-
hances the step-level reasoning performed by the
reason model and improves the effectiveness of the
PRM in evaluating current reasoning steps.

For the reason model, tree search methods in-
herently require step-by-step reasoning expansion.
When expanding at node s;, we can apply the pre-
viously mentioned strategy: the model performs n
first tries and retrieve for n example steps. For each
example, the model then completes the reasoning
to generate n child nodes s}, 4, ..., s, with the
help of these examples. Similarly, our strategy can
improve the accuracy of individual nodes s7_ ;.

Evidently, judgment ability is closely related to
reasoning ability. Therefore, since our strategy can
enhance the accuracy of single-step reasoning, a
reasonable assumption is that introducing appropri-
ate example steps can improve the PRM’s ability
to assess the correctness of the current reasoning
process. In particular, when evaluating the correct-
ness of an inference step candidate sg , We retrieve
similar steps s) along with their corresponding
preceding steps s;._4, ..., s} and question ¢’ from
the step-level example bank. Similarly, the prob-
ability distributions P(s}|s}_,...,s],¢') and
P(sgt;|Si-1,--.,51,q) exhibit similarities. This
resemblance aids in assessing the discrepancy be-
tween sg and s4,, thereby enhancing the accuracy
of the critic model’s evaluations.

Detailed ablation experiments in Sec. 4.5 demon-
strate that both strategies contribute positively to
step-level tree search methods.

4 Experiments

4.1 Experiment setting

Reasoning Model. Our primary reasoning model
is GPT-40 (Hurst et al., 2024). To demonstrate the
generality, we also conducted tests on Qwen2.5-
Math-72B-Instruct (Yang et al., 2024). More-
over, current SOTA reasoning models Qwen-QwQ-
32B (Team, 2024) and DeepSeek-R1-671B (Guo
et al., 2025) were also included in our experiment.
Evaluation Benchmark. We tested our approach
on several challenging open-source mathemati-
cal benchmarks, including MATH500 (Hendrycks
et al., 2021), AQuA (Ling et al, 2017),
OlympiadBench-TO (He et al., 2024) and MATH-

Bench (Liu et al., 2024a) College-level and High-
level tasks. In addition, we manually collected a
selection of problems from the AMC-10 and AMC-
12 competitions to serve as even more challenging
benchmarksTo simulate benchmarks with lower
similarity to the example problem bank, we also
conducted tests on MathVision (Wang et al., 2024a)
and MathVerse (Zhang et al., 2025), highly chal-
lenging multi-modal math benchmarks

Example Problem Bank. The example problem
bank is obtained from PRM80OK (Lightman et al.,
2023) and the steps are divided by GPT-4o.
Retriever. We utilized the classic TF-IDF en-
coding method combined with cosine similarity as
the retriever for all methods. The TF-IDF weight
matrix is derived from the example problem bank
because the impact of the newly generated step
is negligible, and real-time calculation of TF-IDF
would require a significant amount of time.
Hyper-Parameters. The temperature value is 0 in
all the experiments except for step-level tree search,
which needs some random sampling to generate
different reasoning candidates, and the temperature
value for tree search methods is set at 0.3. The
reference rejection threshold is 0.7.

Prompt. Apart from some necessary guidance like
step-level reasoning, we ensured that the prompts
for each method were as similar as possible to make
the comparison fairer. The specific prompts are
listed in the supplementary materials.

4.2 Comparing to Problem-Level ICL

We conduct a rigorous comparison of our step-level
in-context learning and traditional problem-level
few-shot learning in various aspects. For traditional
problem-level few-shot learning, we set the shot
number to 4, which is a common setting.

Performance We compare the performance be-
tween traditional few-shot learning and our step-
level in-context learning across multiple bench-
marks and base models. The results are pre-
sented in Tab. 1. Our step-level in-context learning
achieves a general and significant improvement
across various benchmarks compared to problem-
level few-shot learning.

Potential A key focus of in-context learning
is determining how difficult a particular example
can effectively guide the new problems, indicat-
ing the potential of these methods. Problem-level
in-context learning faces significant challenges
in leveraging simpler examples to enhance the
model’s reasoning performance on more difficult



Table 1: A comparison of different in-context learning strategies on different benchmarks on GPT-40 and Qwen2.5-
Math-72B-Instruct. The example problem bank is constructed from PRMS800K, so MATHS500 is an in-domain
benchmark while others are all out-domain benchmarks. The best results are in bold.

Model ‘ Method ‘ in-domain ‘ out-domain Avg
| MATH | AMCI2 | AMCI0 | AQUA | MathBench(C) | MathBench(H) | OlympiadBench |
0-shot 734 53.6 558 | 8L.1 80.0 71.3 40.6 66.0
GPT-4o | few-shot |  73.8 56.5 567 | 839 80.7 793 39.3 67.2 (+1.2)
Ours 76.4 63.0 60.4 | 854 82.0 84.0 433 70.6 (+4.6)
0-shot 83.0 67.4 67.7 | 84.6 80.6 82.0 49.7 73.6
Qwen | few-shot |  83.8 67.4 668 | 85.0 81.3 82.7 49.9 73.8 (+0.2)
Ours 85.2 69.2 69.6 | 86.6 82.7 84.7 527 75.8 (+2.2)

Table 2: Comparison of different strategies in multi-
modal mathematical benchmarks with lower similarity
with our problem bank. Base models are all GPT-4o.

Method ‘ MathVision ‘ MathVerse ‘ Avg
0-shot 30.6 53.2 41.9
few-shot | 28.7 (-1.9) | 53.2(0.0) | 41.0(-0.9)
Ours 35.2 (+4.6) | 54.2 (+1.0) | 44.7 (+2.8)

Table 4: Experiment on "simple-aids-difficult" potential.
We use simpler example problems from PRM80OK to
guide SOTA reasoning models Deepseek-R1 and Qwen-
QwQ on the most challenging mathematical bench-
marks AMC 12 and AIME. Considering that the AIME
consists of only 30 questions each year, making the re-
sults prone to fluctuations, we evaluated the questions
three times annually and reported the average accuracy.

Table 3: Experiments on the sensitivity of the similarity
between the question and the example problem bank.
R_t indicates that the examples are the t_th similar with-
out any rejection strategy.

Method | Math-level5 | AMCI2 | AMCIO
O-shot | 507 | 536 | 558
few-shot R_1 | 522 (+1.5) | 56.5 (+2.9) | 56.7 (+0.9)
few-shot R_4 | 463 (-44) | 52.2(-1.4) | 53.7(-2.1)
OursR_1 | 56.0(+5.3) | 62.3 (+8.7) | 60.4 (+4.6)
OursR_4 | 522(+1.5) | 61.6 (+8.0) | 58.1 (+2.3)

questions. However, our strategy offers guidance
at the step level, thereby overcoming this upper
limit. To validate this, we select SOTA reason-
ing models QwQ-32B-Preview (Team, 2024) and
DeepSeek R1 (Guo et al., 2025) and utilized sim-
pler example problems from PRMS800OK to guide
the reasoning on the most challenging mathemat-
ical benchmark AIME (MAA, 2024). The results
are shown in tab. 4, which indicate that traditional
few-shot learning fails to provide effective guid-
ance while our strategy demonstrates continuous
improvement, demonstrating that it can boost the
most advanced reasoning models on the most chal-
lenging tasks with a much simpler example.
Generalizability Traditional few-shot learning
requires the example problem bank highly similar
to the questions to be solved, which limits its gen-
eralizability. To compare the generalizability, We
also test different methods on multi-modal mathe-

Model | Method | AMCI2 | AIME23 | AIME24

0O-shot | 79.7 389 433

QwQ | few-shot | 81.2 | 33.3(-5.6) | 38.9(-4.4)
Ours 88.4 | 41.1(+22) | 47.8 (+4.5)
0-shot | 942 75.6 80.0

DS-RI | few-shot | 97.1 | 65.6(-10.0) | 70.0 (-10.0)
Ours 971 | 77.8(+2.2) | 822 (+2.2)

matical benchmarks including MathVision (Wang
et al., 2024a) and MathVerse (Zhang et al., 2025),
which has much lower similarity with our example
problem bank. The results are shown in Tab. 2.
Problem-level few-shot learning not only fails to
enhance reasoning performance but can also have
a negative impact, while our method continues to
achieve appreciable improvements, demonstrating
better general applicability.

Robustness We also manually decrease the sim-
ilarity between the examples and the problems by
selecting the t_th similar example during reasoning
to evaluate the robustness. The result is shown in
Tab. 3. We can observe that traditional problem-
level in-context learning suffers from a severe de-
crease and is even worse than 0-shot learning when
t is larger than 4. In contrast, our method does not
show a significant decline and is consistently better
than the 0-shot reasoning.

4.3 Construction of Example Problem Bank

To better align with the steps in reasoning, we pro-
pose constructing a step-level problem bank based
on the reasoning content rather than grammatical



Table 5: Comparison of different step-level example
problem Bank construction methods.

| AMCI12 | AMCI0 | MATH

56.5 58.1 74.8
63.0 60.4 76.4

Strategy

Grammatical Separation
Reasoning Content

Table 6: Comparison of different retrieval strategies in
step-level in-context learning. "Path’ represents retriev-
ing by the reasoning path including all previous steps
Si—1,Si—2,...,51 and question q, while 'Pre-Step’ rep-
resents retrieving by only the immediately preceding
step s;—1. The best results are in bold.

Strategy | AMCI12 | AMCI10 | MATH | MathVision

Path 56.5 58.1 73.8 31.7
Pre-Step 57.2 56.7 74.0 31.0
First-try 63.0 60.4 76.4 35.2

divisions. To prove our assumption, we compare
our approach with a commonly used strategy that
constructs steps based on grammatical segmenta-
tion, using periods ’.” as the delimiter, on the same
dataset PRM8O0OOK and under identical conditions.
Results are presented in Tab. 5. Our method largely
outperforms those using periods as a delimiter.

4.4 Comparison of Retrieving Strategies

The key factor of in-context learning lies in the
relevance of the retrieved examples. At the finer-
grained step level, designing an appropriate re-
trieval strategy becomes even more crucial and
challenging. Therefore, we propose the first-try
strategy, which involves understanding what the
model currently needs to reason about using a first
attempt and then searching the problem set for sim-
ilar steps to guide the model in fully outputting the
current step. To validate the effectiveness of this
method, we compare it with several other strate-
gies mentioned in Sec.3.3, retrieving by the entire
reasoning path s;_1, S;—2, ..., S1,q or only by the
immediately preceding step s;_1.

Tab. 6 presents the detailed result. Our method
significantly outperforms the other two retrieving
strategies, better anticipating the content that needs
to be inferred in the current step.

4.5 Example-guided Step-level Tree Search

The reasoning capability of the reason model and
the verifying capability of the critic model are two
core factors of step-level tree search methods, and
our strategy can bring benefits in both ways. On
one hand, it can improve the accuracy of gener-

Table 7: A detailed ablation on incorporating retrieving
similar steps to provide fine-grained guidance during the
reasoning and verifying phases of step-level tree search
methods. Base models are GPT-40 and prompts are the
same. The best results are in bold.

Reason | Verify | AMC12 | AMCIO | MATH | Avg

wlo tree-search | 536 | 558 | 734 | 609
X X 58.7 59.0 77.8 | 65.2 (+4.3)
v X 64.4 62.2 79.2 | 68.6 (+7.7)
X v 61.6 60.4 782 | 66.7 (+5.8)
v v 65.2 63.6 794 | 69.4 (+8.5)

ating candidate nodes using the previously men-
tioned first-try strategy when reasoning nodes are
generated. On the other hand, it can increase the
accuracy of evaluation by introducing similar exam-
ples during critic model assessments and therefore
ensures that the correct reasoning nodes are more
likely to be preserved. These can be decoupled, al-
lowing us to demonstrate the effectiveness of each
component through ablation studies.

We utilize GPT-40 as the reason model, GPT-4o0-
mini as the PRM and adopt the Pairwise Preference
Reward Model (PPRM) configuration (Zhang et al.,
2024b) to ensure a more robust evaluation. Detailed
settings will be listed in the appendix.

Tab. 7 presents the results of integrating in-
context learning into the reasoning and evaluation
phases of Tree Search methods. The results of this
ablation study indicate that introducing example
steps can enhance both the reasoning and verify-
ing capabilities of tree search methods. Therefore
both approaches contribute to the improvement of
overall reasoning performance.

5 Conclusion

We propose BoostStep, providing fine-grained
guidance during the reasoning process by searching
for similar steps from a step-level example problem
bank according to the first-try reasoning attempt.
BosotStep is a strong and general approach, enhanc-
ing the model’s reasoning capabilities and reducing
the dependency on the similarity of the example
problem set. It demonstrates better performance,
potential, generalizability and robustness compar-
ing to traditional problem-level few-shot learning.
Moreover, our method can also enhance the rea-
soning and evaluation capability of step-level tree
search methods by introducing similar steps in rea-
soning and verifying phases.



6 Limitations

Currently, our example problem bank is entirely
sourced from PRMS800K, resulting in a relatively ho-
mogeneous distribution of example problems and
example steps. Although our method has more po-
tential to guide more difficult problems with much
simpler examples, a greater quantity and more di-
verse distribution of example problems can evi-
dently provide more effective guidance for address-
ing a range of problems.

Furthermore, the TF-IDF retriever used is based
on modeling language term frequency directly and
thus lacks an understanding of mathematical con-
tent, which limits its retrieval capabilities on math
problems. Utilizing a retriever specifically de-
signed for mathematical problems can certainly
enhance the quality of retrieval.
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A Detailed Experiment Setting

A.1 Prompt

Prompt for 0-shot COT: You are a professional
math problem solver. Solve the problem step by
step and output the final answer within \\boxed{ }.

Prompt for problem-level few-shot learning:
You are a professional math problem solver. Solve
the problem step by step and output the final an-
swer within \\boxed{}. In case you don’t know
how to solve it, I will give you example problems
with their full solutions which you can refer to.
Example i:

Problem: xxx

Solution: xxx

Prompt for first-try in step-level COT: You are a
professional math problem solver. I will give you
a math problem and part of its solution. And you
need to only output the next step of the solution,
starting with *Step 7:°, where ¢ is the step number.
If you think that the final step is derived, put the
answer within \\boxed{ }.

Prompt for step-level few-shot learning: You are
a professional math problem solver. I will give you
a math problem and part of its solution. And you
need to only output the next step of the solution,
starting with *Step ¢:°, where ¢ is the step number.
In case you don’t know how to derive the correct
content, an example with *Key Step’ will be given.
You need to learn how ’Key Step’ is derived, and
implement similar strategy in your derivation pro-
cedure. If you think that the final step is derived,
put the answer within \\boxed{ }.

Example Problem: xxx

Example Solution: Stepl: xxx, Step2: xxX, ...,
Stepi(Key Step): xxx.

A.2 Details of Grading and Metrics

We follow the setting of Opencompass (Contribu-
tors, 2023) and VLMEvalKit (Duan et al., 2024).
Specifically, we first require the model to put the
final answer within \\boxed{ }. Then, we use GPT-
4o0-mini as the critic model to compare the final
answer with the ground truth answer. Compared to
string matching, this approach can eliminate some
false negative evaluations because the same mathe-
matical expression can be expressed in many forms.
If the model fails to follow the the expected format
in the prompt and the rule-based extraction fails,
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the solution is directly judged as inconsistent with
ground truth.

A.3 Benchmarks

We tested our approach on several mathemati-
cal benchmarks, including MATHS00 (Hendrycks
et al.,, 2021), AQuA (Ling et al.,, 2017),
OlympiadBench-TO (He et al., 2024) and MATH-
Bench (Liu et al., 2024a). Specifically, we use
the Olympiad-TO (text-only) subset of Olympiad-
Bench and the application problems in college-
level and high-level difficulty of MATHBench.

For multi-modal math benchmarks, we use
MathVision-Mini (Wang et al., 2024a) and vision-
dominant version of problems in MathVerse-Mini
(Zhang et al., 2025).

B Detailed Setup for Example-Guided
Step-Level Tree Search

In the setup for tree search methods, we utilize GPT-
40 as the reason model and employ GPT-40-mini
as the Process-supervised Reward Model (PRM).
For the PRM, we adopted the Pairwise Preference
Reward Model (PPRM) configuration (Zhang et al.,
2024b). Specifically, PPRM transforms the abso-
lute rewards calculation into preference predictions
between solutions to calculate rewards. This ap-
proach reduces the variability associated with scor-
ing characteristics and thus leads to a more robust
and consistent evaluation of different solutions.

The complete reasoning process in our experi-
ment is as follows: we start with the target problem
as the root node and obtain two initial solution
steps through sampling to serve as the two initial
parent nodes. In each step-level reasoning phase,
we expand these two parent nodes through sam-
pling, generating four candidate child nodes. Us-
ing the PPRM, we select the two child nodes with
higher confidence to become the parent nodes for
the next step of reasoning. This process continues
until both candidate nodes have completed their
reasoning paths, resulting in the final answers. Fi-
nally, PPRM is used to select the ultimate answer
from these two reasoning paths.

C Case Study

Here we demonstrate a specific example of how our
step-level in-context learning boosts step-level rea-
soning. Given the question, we first let the model
have a first try on step one. Unfortunately, be-
cause the model is unfamiliar with trigonometric



Question: For some value of x, 0 < x < 180, tan 53° tan 81° tan x° = tan 53°
+tan 81° + tan x°. Find x.

First-Try: Use the identity for the tangent of the sum of angles, i@
tan(A+B+C)=tanA+tanB +tanC-tanAtanBtanC i~
(Wrong Equation) and compare it with the given equation. s,\mtl

Example Step: From the addition formula for tangent,

tan (A + B + C) = \frac{tan A + tan B + tan C - tan A tan B tan -
C}1 - (tan Atan B + tan A tan C + tan B tan C)} (Key Example )
Equation). Since A+ B + C = 180°, this is 0. Hence, tan A + tan & LA
B +tan C = tan A tan B tan C.

Final-Reasoning: Notice that the equation resembles the
identity for the tangent of a sum of angles. We can use the

identity: tan(A + B + C) = \frac{tan A + tan B + tan C - tan A 5@

tan B tan C}{1 - (tan A tan B + tan B tan C + tan C tan A)} D

(Correct Equation) 7
1

Next step: Since the equation is symmetric in terms of the
tangents, we can assume that the angles 53°, 81°, and x° sum to 180°.
Therefore, we have: 53° + 81° + x° = 180°. (Correct Conclusion)

Figure 4: A specific example of adjusting reasoning
during real-time inference through step-level in-context
learning. The first try uses a wrong equation while the
retrieving example step guides the model to use the
correct equation and get the correct conclusion.

functions, it makes an error on the tangent sum for-
mula, therefore leading to a wrong step. However,
we can get a rough idea of what the model wants
to calculate at this step according to the first try.
Then, we find a similar step that correctly leverages
the tangent sum formula in the step-level example
problem bank. Therefore, with the guidance pro-
vided, the model correctly applied the tangent sum
formula during the second reasoning attempt and
arrived at the correct answer.
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