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ABSTRACT

Unsupervised domain adaptation for video recognition is challenging where the
domain shift includes both spatial variations and temporal dynamics. Previous
works have focused on exploring contrastive learning for cross-domain alignment.
However, limited variations in intra-domain positives, false cross-domain positives,
and false negatives hinder contrastive learning from fulfilling intra-domain discrim-
ination and cross-domain closeness. This paper presents a non-contrastive learning
framework without relying on negative samples for unsupervised video domain
adaptation. To address the limited variations in intra-domain positives, we set
unlabeled target videos as anchors and explored to mine "informative intra-domain
positives" in the form of spatial/temporal augmentations and target nearest neigh-
bors (NNs). To tackle the false cross-domain positives led by noisy pseudo-labels,
we reversely set source videos as anchors and sample the synthesized target videos
as "robust cross-domain positives" from an estimated target distribution, which are
naturally more robust to the pseudo-label noise. Our approach is demonstrated to
be superior to state-of-the-art methods through extensive experiments on several
cross-domain action recognition benchmarks.

1 INTRODUCTION

Recent breakthroughs in deep neural networks have transformed numerous computer vision tasks,
including tasks such as image and video recognition (He et al., 2016; Carreira & Zisserman, 2017a;
Mittal et al., 2020). Nevertheless, achieving such remarkable results typically necessitates time-
consuming human annotations. To address this issue, semi-supervised learning (Miyato et al., 2018)
and self-supervised learning (SSL) (He et al., 2020) have been studied to utilize the knowledge
available in a dataset with abundant labeled samples to improve the performance of models trained on
datasets with scarce labeled data. However, the domain shift problem between the source and target
datasets usually exists in real-world scenarios, leading to performance degradation. Unsupervised
domain adaption (UDA) has been exploited to transfer knowledge across datasets with domain
discrepancies to mitigate this problem. Although many methods have been created specifically for
images, there is still a significant lack of exploration in the field of UDA for videos.

Recently, some studies have endeavored to perform UDA for video action recognition through the
direct alignment of frame/clip-level features (Chen et al., 2019a; Pan et al., 2020a; Choi et al., 2020).
However, these methods usually extend the image-based UDA methods without considering long-
term temporal information or action semantics. Song et al. (2021) and Kim et al. (2021b) alleviate
these issues with contrastive learning to learn such long-term spatial-temporal representations by
instance discrimination. To further understand how contrastive learning helps UDA, we firstly recall
that domain-wise discrimination and class-wise closeness are the two main criteria to solve UDA
problems (Shi & Sha, 2012; Tang et al., 2020). Considering an unlabeled video from the target
domain as an anchor, we explain that Song et al. (2021) introduces intra-domain positives (in the
form of cross-modal correspondence, e.g, optical flow) to help UDA by learning discriminative
representation in the target domain. Additionally, Kim et al. (2021b) utilizes cross(source)-domain
positives with the help of pseudo-labels and benefits the class-wise closeness by pushing the samples
of the same class but different domains closer.
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Figure 1: On HMDB→UCF: (a) Effect of false negatives and intra/cross-domain positives. We study two
contrastive methods in video DA: STCDA (Song et al., 2021) with intra-domain positives and LCMC (Kim et al.,
2021b) with cross-domain positives. We observe that limited variations in intra-domain positives, pseudo-label
noise in cross-domain positives and false negatives are the three issues that largely hinder the performance.
(b) Purity comparison among nearest neighbors (NNs) and pseudo label. We found the NNs in target
domain are clean and fit as informative and robust intra-domain positives. Note that purity is the cleanness of
pseudo-supervision compared to the ground truth.

By thoroughly studying the effect of the positives and negatives selection from the existing contrastive-
based methods in Figure 1 (a), we empirically find that limited variations in intra-domain positives,
pseudo-label noise in cross-domain positives and false negatives are the three issues that largely
hinder the performance. Explicitly, when selecting the negatives based on the ground-truth, intra-
domain positives from self-correspondence (Song et al., 2021) is 3.5% below the ones from ground
truth. Further, selecting the cross-domain positives based on pseudo-labels induces 2% drop compared
to the ground-truth. Importantly, when selecting the negatives from either different instance (Song
et al., 2021) or pseudo-labels (Kim et al., 2021b), the performance of the four baselines in Figure 1 (a)
drops by 2 ∼ 4%. Besides, the purity analysis in Figure 1 (b) also indicates that the pseudo-labels of
target video are noisy and thus not reliable for selecting cross-domain positives and negatives. Based
on the observations, several straightforward questions might be raised:

1. Are there any unexplored intra-domain positives to enrich intra-domain variations?
2. How to alleviate the pseudo-label noise issue when selecting cross-domain positives?
3. How to address the adverse effect from false negatives?

To answer the first question, we propose to leverage the temporal and spatial augmentations of
the unlabeled target video as intra-domain positives. The rationale is that partially modifying
the spatial/temporal information of videos could alter the samples without changing the whole
action semantics. Incorporating those samples as positives could help the model be invariant to
spatial/temporal shift. Take a step further, we also explore the anchor’s nearest neighbors (NNs) in
target feature space, which capture rich target-domain variations. By analyzing the purity of the NNs
in both source and target domain in Figure 1 (b), we observe that target-domain NNs are clean and
thus fit as intra-domain positives.

To address the second question, we are motivated from (Xie et al., 2018) that though the pseudo-labels
assigned to target samples are noisy, the class-conditional centroids µt

c of target features would
weaken this noise by averaging all the target features of same pseudo class. To incorporate it into our
contrastive learning framework, we re-formulate the optimization reversely by setting source videos
as anchors and then mining target videos as cross-domain positives. We then estimate the gaussian
target distribution N (µt

c,Σ
t
c) of target features based on pseudo-labels. Given a source video as

anchor, synthesized target features can be drawn from this distribution that shares the same class
as the source anchor. Consequently, we could leverage those synthesized features as cross-domain
positives as the estimated target distribution is robust to pseudo-label noise.

To tackle the last question, we present an effective non-contrastive learning framework without
relying on negative samples for video domain adaptation. Specifically, we are motivated by the recent
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Figure 2: Overview of our intra/cross-domain positives. (a) spatial/temporal augmentations as
intra-domain positives. (b) target nearest neighbors as robust intra-domain positives. Note that
we consider self-augmentation as the 1st NN. (c) synthesizing target features from an estimated
target distribution as cross-domain positives. In short, intra-domain positives help target-domain
discrimination while cross-domain positives support class closeness across domains.

advances in SSL (Grill et al., 2020; Chen & He, 2021) to discard the negatives and maximize the
similarity between the anchor and positives in feature space with the help of an extra MLP head and
a stop-gradient operation. Beyond adopting this non-contrastive optimization into our setting, we
highlight our compelling finding that the MLP head is crucial for intra-domain positives optimization
but largely hampers the convergence for cross-domain positives. Consequently, we remove the MLP
head for the latter case. To summarize our main contributions:

• By studying the effects of the positives and the negatives from previous contrastive-based
video DA methods, we make the first attempt to emphasize that limited variations in intra-
domain positives, pseudo-label noise in inter-domain positives and false negatives are the
three under-explored bottlenecks

• We contribute a unified solution to address the above issues by introducing more informative
and robust intra-domain and cross-domain positives without relying on negative samples for
video DA problem.

• We conduct comprehensive experiments and analysis on challenging cross-domain action
recognition benchmarks (UCF-HMDB and Epic-Kitchens) and thoroughly verify our superi-
ority over state-of-the-art methods.

2 RELATED WORK

2.1 ACTION RECOGNITION

Action recognition is a challenging task with significant potential for practical applications. Many
previous approaches are deployed in both 2D (Karpathy et al., 2014a), and 3D CNN-based framework
(such as I3D (Carreira & Zisserman, 2017a), ResNet3D (Hara et al., 2017)), which achieves
significant progress on RGB modality. To incorporate multiple modalities or temporal dynamics, the
two-stream architecture (Simonyan & Zisserman, 2014) is a commonly employed technique in which
RGB and optical-flow (Karpathy et al., 2014b) are processed independently using two CNNs, followed
by a late fusion. The SlowFast (Feichtenhofer et al., 2019) utilizes dual branches to recognize actions
through video with different frame rates. Although supervised benchmarks have shown encouraging
results, such models heavily rely on large datasets that demand considerable human annotation effort.
Conversely, our research is centered on UDA scenarios for action recognition, where the data in the
target domain lacks labeling.

2.2 SELF-SUPERVISED LEARNING

Self-supervised representation has made significant strides in improving performance on images and
videos through the use of various pretext tasks, such as rotations (Gidaris et al., 2018) and jigsaw
puzzles (Noroozi & Favaro, 2016), as well as contrastive learning (Chen et al., 2020; He et al., 2020;
Han et al., 2020). Recently, non-contrastive learning methods (i.e., BYOL (Grill et al., 2020) and
SimSiam (Chen & He, 2021)) dominate the SSL performance by learning meaningful representation
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by maximizing the similarity between two positive samples without considering negative pairs. While
our method is motivated by the non-contrastive learning above, we highlight our difference in mining
"informative" and "robust" intra-domain and cross-domain positives beyond instance-level variations
for better target-domain discrimination and class-wise closeness. Importantly, we observe that the
predictor in SimSiam (Chen & He, 2021), which is designed for preventing model collapse, would
lead to convergence issue for cross-domain positives. In contrast, we remove the predictor for
cross-domain positives in optimization while maintain it for intra-domain positives. We will explain
the details in the experiment section.

2.3 UNSUPERVISED DOMAIN ADAPTATION

There are several directions to make UDA effective. Specifically, mainstream methods seek for
learning domain-invariant feature representations by minimizing distribution discrepancy (Tzeng
et al., 2014; Chung et al., 2022; Qiu et al., 2021; Liu et al., 2021), utilizing adversarial learning (Ganin
et al., 2016; Long et al., 2018; Saito et al., 2018; Pan et al., 2020b), cross-domain augmentation (Wang
et al., 2021; Li et al., 2021b) and contrastive alignment (Saito et al., 2020; Kim et al., 2021a; Harary
et al., 2022; Li et al., 2021a). Self-training (Xie et al., 2018; Zou et al., 2018; 2019) also thrives
on UDA by training the model with labeled source data and pseudo-labeled target data. However,
less attention has been paid to video domain adaptation until recently. Existing video UDA methods
can be summarized into two folds: temporal attention-based adversarial learning (Chen et al.,
2019b; Luo et al., 2020; Pan et al., 2020a) and SSL-based cross-domain alignment(Munro & Damen,
2020; Choi et al., 2020; Song et al., 2021; Kim et al., 2021b). Explicitly, self-supervisions such as
predicting video clips order (Choi et al., 2020), multi-modality correspondence (Munro & Damen,
2020) and contrastive learning (Song et al., 2021; Kim et al., 2021b; Sahoo et al., 2021), have been
exploited. Compared to the image-based DA methods, our method provides a new perspective for
domain discrimination and class-wise closeness via exploring positive samples in contrastive learning.
Compared to the contrastive-based video DA methods, (1) we provide empirical insights on the
limitations of existing contrastive methods by analyzing the effect of positives ans negatives; (2) we
address the issues by proposing more informative and robust intra-domain positives and cross-domain
positives without replaying on negative samples.

Discussion on Xie et al. (2018). It is worth noting some fundamental differences between our
algorithm and Xie et al. (2018). From the optimization view, they propose centroids alignment
across domains where target centroids are updated with the current target batch based on pseudo-
labels and thus will receive gradients. If the pseudo labels are noisy, wrong gradients will hurt the
training. In comparison, we align the cross-domain samples within constrastive framework where our
synthesized target features are detached from gradients; thus, only the source batch will receive the
robust gradients. Algorithmically, besides the estimation of target centroids, we further integrate
target covariance to estimate the whole gaussian distribution of target domain. Table 2 shows that we
have a significant improvement over Xie et al. (2018).

3 PROPOSED METHOD

The problem of UDA involves a labeled source domain Ds = (xs
i ,y

s
i )|i = 1Ns , comprising Ns

source videos, and an unlabeled target domain Dt = (xt
i)|i = 1Nt of Nt target videos. Both domains

share a common label space L. The joint distributions of source and target domain are not identically
and independently distributed, specifically defined as P (xs,ys) ̸= Q(xt,yt). The objective is to
develop a deep neural network for action recognition on both the labeled source videos Ds and
unlabeled target videos Dt. The model should be able to generalize effectively on new target domain
videos. To specify, the model is comprised of a feature extractor F followed by a classifier G.

3.1 INTRA-DOMAIN POSITIVES

The objective of intra-domain positives is to achieve domain-level discrimination, where the data in
the source and target domains are segregated into separate semantic clusters.
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Intra-source Discrimination. As source domain videos have labels, we simply minimize the
supervised cross-entropy loss to achieve source-domain discrimination:

Lce(x
s
i , y

s
i ) = −

1

Ns

Ns∑
i=1

log pi,ys
i
, (1)

where pi,ys
i
= G(F (xs

i ))ys
i

is the ysi -th element of a K-dimensional prediction and K indicates the
number of class.

Self-supervision as Intra-domain positives. Without proper regularization on unlabeled target
data, target-domain discrimination cannot be realized for free. Motivated by the self-supervised
learning methods (Chen & He, 2021; Bai et al., 2021), our first proposal is to train a model to learn a
discriminative representation of the target domain by maximizing the similarity between different
augmented views of the unlabeled target data. Specifically, we consider 1) spatial augmentation,
including standard image-based augmentation such as random flip, crop and color distortion. 2)
temporal augmentation, including video play speed (Benaim et al., 2020), and shuffled clips (Fernando
et al., 2017). Precisely, we randomly double the sampling rate (×2) for video play speed or randomly
shuffle a clip (1/3 consecutive frames) of a video.

The rationale behind is that the effectiveness of the intra-domain positives are highly coupled with
how "informative" and "clean" the positives are given an anchor video. "Informative" positives
usually capture rich spatial variations (e.g., background/viewpoint changes) or temporal dynamics
(e.g., video speed/action length). Our choices of spatial and temporal augmentations above could
partially change the anchor video along these variations without changing the whole action semantics.
Consequently, incorporating those samples as intra-domain positives could help the model be invariant
to the variations in spatial and temporal axis.

Explicitly, our model takes two randomly augmented views xt
1 and xt

2 from a target video xt as input:
one view is strongly augmented by one of the augmentations above while the other view is weakly
augmented. The feature extractor F operates on both views, converting them into feature space. A
two-layer prediction MLP head, represented by H , then takes the feature of one view, transforms it,
and matches it with the feature of the other view. As shown in Figure 2 (a), our intra-target domain
alignment loss can be formulated as maximizing the cosine similarity between the two views:

Lintra(x
t
1, x

t
2) = D(ht

1, z
t
2), (2)

D(ht
1, z

t
2) = −

ht
1

∥ht
1∥2

zt2
∥zt2∥2

, (3)

where ht
1 = H(F (xt

1)) is the predictor output, zt2 = F (xt
2) is the spatial-temporal feature, ∥·∥

is l2-norm and D(·, ·) is a cosine distance function. Specifically, the operation of stop-gradient is
applied to zt2 and we implement it by modifying Eqn. 3 as D(ht

1, stopgrad(z
t
2)).

Explanation on optimization without negatives. Unlike traditional contrastive learning objec-
tive (Song et al., 2021; Kim et al., 2021b), we only involve positive pairs (e.g, (xt

1, x
t
2)) into the

optimization without negative samples. The insight (Chen & He, 2021) behind is that the negative
samples in contrastive-learning play a role in preventing models from collapsing solutions (e.g,
constant outputs). Alternatively, it is found that applying the predictor H(·) on one view xt

1 and the
stop-gradient operation stopgrad(·) on the other view xt

2 could also avoid model collapse.

As the existing contrastive video DA methods are largely constrained by the false negatives issue
(Figure 1), we leverage this optimization to cut off the reliance on the negatives and thus avoid the
error accumulation led by false negatives.

Target nearest neighbors as Intra-domain positives. The empirical finding in Figure 1(b) shows
that intra-domain NNs (target NNs) have higher purity than cross-domain NNs (source NNs) and
pseudo-labels. It motivates us to further explore the intra-domain NNs as intra-domain positives
which capture rich spatial and temporal variations in target domain.

Following the notation of Eqn. 3, we add the detached feature zt2 of the weakly-augmented view and
its class pseudo label ŷt = argmaxG(zt2) to a memory bank, denoted as Mt = {(zti , ŷi

t)|Nt
i=1} in

an online fashion where the size equals to the number of target dataset Nt. Mt is updated with the
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newest features and pseudo labels given a current batch. Then we retrieve the k nearest neighbors
of zt2 in the memory bank to obtain k target features {ẑjt|kj=1}. Finally, we extend the Eqn. 3 to
incorporate target NNs as intra-domain positives:

Lt−intra(x
t) =

1

k

k∑
j=1

D(ht
1, ẑj

t). (4)

The overall loss is calculated by summing up the aforementioned loss function across all target
videos Dt. By pulling unlabeled target videos close to their NNs, the model could achieve the better
target-domain discrimination. Importantly, the Eqn. 4 is equivalent to the Eqn. 3 when k = 1. As
k increases, the intra-domain positives could cover richer target-domain variations while under the
risk of bringing false positives. The trade-off between the "informativeness" and "robustness" of
intra-domain positives is discussed in experiment section in Figure 3.

3.2 ROBUST CROSS-DOMAIN POSITIVES

While the intra-domain positive focuses on domain-wise discrimination, it ignores the cross-domain
alignment in the shared action semantic space. A natural solution is to extend Eqn. 4 by incorporating
source domain positives which cover cross-domain spatial-temporal variations. As target videos do
not have labels, we resort to use the pseudo-labels for choosing source samples or directly using
source NNs as positives. However, as Figure 1 (b) suggests, both source NNs and pseudo labels have
low purity. Incorporating cross-domain positives based on such noisy supervisions would result in
false domain alignment.

To tackle this issue, we formulate it reversely to utilize source videos as anchors and mine for
more informative target domain positives. Previous work (Xie et al., 2018) motivates us that,
though the pseudo-labels assigned to target samples are noisy, the class-conditional centroids µt

c of
target features would weaken this noise by averaging all the target features of same pseudo class.
Consequently, the target centroid of each class µt

c is more robust to pseudo-label noise. To further
explore target domain variations, we also estimate the corresponding covariance matrix Σt

c from the
target features of the same pseudo-class.

Instead of directly mining real target videos as positives based on noisy NNs or PL, we randomly
sample a synthesized target feature from a normal distribution N (µt

c,Σ
t
c) of the same action class c

to the source anchor video in the form of

z̃t ∼ N (µt
c, αΣ

t
c), (5)

where the coefficient α controls the target domain’s variation. In the implementation, the target
class centroids and the covariance matrix are computed based on the target features of the same
pseudo-class from the memory bank Mt in Eqn. 4. As the estimation in the first few epochs is not so
accurate, we set α = (t/T )× α0 where t and T are the current epoch and maximum epochs. As a
result, the negative impact of the estimated covariance in the early training stage will be reduced.

Similarly to Eqn. 4, our model takes a source video xs as input (anchor) and processes it with the
feature extractor F . Then we match it to the synthesized positives sampled from the class-conditional
target distribution of class ys from Eqn. 5 in feature space. As shown in Figure 2 (c), when the
number of sampled positives is M , our cross-domain alignment loss can be formulated as:

Ls−cross(x
s) =

1

M

M∑
i=1

D(zs, z̃it), (6)

where zs = F (xs) is the feature of the source anchor and z̃i
t is the target positive sampling from

N (µt
ys
, αΣt

ys
). We further derive a close-form upper-bound for the expectation of Eqn. 6 under all

possible target features as L∞
s−cross in appendix B.1.

Explanation on cross-domain optimization. Unlike Eqn. 4, we do not transform the zs by the
predictor H which is originally designed for avoiding model collapse. Interestingly, we find that
discarding the predictor H helps better convergence for cross-domain positives in optimization. Our
insight is that, as source feature zs and the synthesized target feature z̃t are from different distribution,
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pulling them close requires non-trivial optimization efforts and thus models are less prone to collapse.
In contrast, matching different views of a target video zt from the same distribution is relatively
"easy". Without regularization from the predictor H , models will easily match all the views (e.g,
augmentations or intra-domain NNs) of the target video into a constant output.

3.3 OVERALL OPTIMIZATION

In summary, the overall optimization includes the intra-domain positives in section 3.1 and the
cross-domain positives in section 3.2 as follows:

Lrgb
all = Ls

ce + L∞
s−cross + λLt−intra, (7)

where λ is a hyperparameter to control the strength of intra-domain alignment. We empirically set the
λ to 15 for the convergence of Lt−intra due to the predictor. Our framework can be easily extended
to two-stream network by adding Eqn. 8 for optical flow modality as Lflow

all . Also, the optical flow
correspondence of target videos can be integrated as intra-domain positives in Lt−intra (Eqn.15).
Our algorithm with pseudo code will be found in appendix Alg.1.

4 EXPERIMENT

4.1 DATASETS

We conducted experiments to assess our method on two prevalent benchmark datasets for video
domain adaptation, specifically UCF↔HMDB (Chen et al., 2019a) and Epic-Kitchens (Munro &
Damen, 2020). To ensure consistency with prior research, we utilized the training and testing
partitions provided by the respective authors in (Chen et al., 2019a; Munro & Damen, 2020).

UCF↔ HMDB is first assembled by Chen et al. (Chen et al., 2019a) for studying video domain adap-
tation problem. This dataset is a subset of the UCF (Soomro et al., 2012) and HMDB datasets (Kuehne
et al., 2011), comprising 3, 209 videos distributed among 12 classes that overlap for human activity
recognition. We present our results on two different scenarios: UCF→ HMDB and UCF← HMDB.

Epic-Kitchens is a fine-grained egocentric action recognition dataset with videos from three different
domains (D1, D2, and D3) representing P08, P01, and P22 kitchens, respectively, from the full
Epic-Kitchens dataset (Damen et al., 2018). The dataset is challenging and includes videos from the
eight largest action classes. It is released by the authors in (Munro & Damen, 2020) for exploring
video domain adaptation on the fined-grained setting.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Baselines. We conducted a comparative study with various baseline methods, including: (1) source
only and supervised target only approaches, which utilize labeled source data and labeled target
data, respectively, to train the neural network; (2) existing UDA methods that employ adversarial
learning, such as DANN (Ganin et al., 2016) and ADDA (Tzeng et al., 2017), (3) existing UDA
based on pseudo-labeling, including CRST (Zou et al., 2019) and MSTN (Xie et al., 2018). (4)
existing video domain adaptation methods, including TA3N (Chen et al., 2019a), ABG (Luo et al.,
2020), TCoN (Pan et al., 2020a), MM-SADA (Munro & Damen, 2020), SAVA (Choi et al., 2020),
STCDA (Song et al., 2021) and LCMC (Kim et al., 2021b).

Results on UCF-HMDB. Table 2 illustrates the performance of our method and other competing
methods on the UCF-HMDB dataset. Our framework outperforms the previous state-of-the-art
methods on various backbones and achieves the highest performance. Compared to the recent
methods incorporating self-supervision such as clip-order prediction (SAVA (Choi et al., 2020)),
appearance-motion correspondence (MM-SADA (Munro & Damen, 2020)) and contrastive learning
(STCDA (Song et al., 2021) and LCMC (Kim et al., 2021b)), our method makes a significant
improvement using I3D backbone with 1.8% on UCF→HMDB and 3.5% on HMDB→UCF task
respectively. Though not specifically designed for motion space, our method can extend to two-stream
backbone with additional gains to 86.1% on UCF→HMDB and 95.4% on HMDB→UCF, achieving
the state-of-the-art performance.
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Table 1: Results on Epic-Kitchens Datasets. All the methods use I3D two-stream backbone including both
RGB and flow modality if not specify.
Method Backbone D2 → D1 D3 → D1 D1 → D2 D3 → D2 D1 → D3 D2 → D3 Mean
Source-only I3D 42.5 44.3 42.0 56.3 41.2 46.5 45.5
AdaBN (Li et al., 2018) I3D 44.6 47.8 47.0 54.7 40.3 48.8 47.2
MMD (Long et al., 2015) I3D 43.1 48.3 46.6 55.2 39.2 48.5 46.8
MCD (Saito et al., 2018) I3D 42.1 47.9 46.5 52.7 43.5 51.0 47.3
MM-SADA (Munro & Damen, 2020)(RGB) I3D 41.7 42.1 45.0 48.4 39.7 46.1 43.9
MM-SADA (Munro & Damen, 2020)(RGB + Flow) I3D 48.2 50.9 49.5 56.1 44.1 52.7 50.3
LCMC (Kim et al., 2021b) I3D 49.5 51.5 50.3 56.3 46.3 52.0 51.0
STCDA (Song et al., 2021)(RGB) I3D 44.4 41.1 47.7 45.5 41.2 47.6 44.6
STCDA (Song et al., 2021)(RGB + Flow) I3D 49.0 52.6 52.0 55.6 45.5 52.5 51.2
Ours (RGB) I3D 44.8 41.8 48.1 46.8 41.9 48.2 45.2
Ours (RGB + Flow) I3D 49.9 53.5 52.7 57.5 46.9 53.4 52.3
Supervised-target I3D 62.8 62.8 71.7 71.7 74.0 74.0 69.5

Table 2: Results on UCF-HMDB dataset. Two-stream denotes
the methods using I3D two-stream network for both RGB and flow
stream respectively. Supervised Target denotes the baseline training
with labeled target data only. ∗ stands for the self-implementation.

Method Backbone UCF→ HMDB HMDB→ UCF
Source-only (Chen et al., 2019a) ResNet-101 71.6 73.9
DANN (Ganin et al., 2016) ResNet-101 75.3 76.4

JAN (Long et al., 2017) ResNet-101 74.7 79.3

AdaBN (Li et al., 2018) ResNet-101 75.5 77.4

MCD (Saito et al., 2018) ResNet-101 74.4 79.3

TA3N (Chen et al., 2019a) ResNet-101 78.3 81.8

ABG (Luo et al., 2020) ResNet-101 79.1 85.1

TCoN (Pan et al., 2020a) ResNet-101 87.2 89.1

Supervised Target (Chen et al., 2019a) ResNet-101 82.8 94.9
Source-only (Choi et al., 2020) I3D 80.3 88.8

DANN (Ganin et al., 2016) I3D 80.7 88.0

ADDA (Tzeng et al., 2017) I3D 79.1 88.4

MSTN∗ (Xie et al., 2018) I3D 80.2 89.9

CRST∗ (Long et al., 2017) I3D 80.9 90.2

TA3N (Chen et al., 2019a) I3D 81.4 90.5

SAVA (Choi et al., 2020) I3D 82.2 91.2

STCDA (Song et al., 2021) I3D 81.9 91.9

Ours I3D 84.0 94.7
Supervised Target (Choi et al., 2020) I3D 95.0 96.8
Source-only (Song et al., 2021) Two-stream 82.8 90.7
MM-SADA (Munro & Damen, 2020) Two-stream 84.2 91.1
STCDA (Song et al., 2021) Two-stream 83.1 92.1
LCMC (Kim et al., 2021b) Two-stream 84.7 92.8
Ours Two-stream 86.1 95.4
Supervised Target (Song et al., 2021) Two-stream 95.8 97.7

Results on Epic-Kitchens. Ta-
ble 1 shows the results on Epic-
Kitchens, which is another challeng-
ing dataset comprising a total of
six transfer tasks with imbalanced
data distribution across different ac-
tion classes. Our approach demon-
strates superior performance on all
six transfer tasks with an average
accuracy of 52.3%. Compared to
adversarial alignment (AdaBN (Li
et al., 2018) and MCD (Saito et al.,
2018) ), self-correspondence learn-
ing (MM-SADA (Munro & Damen,
2020)) and contrastive learning meth-
ods (STCDA (Song et al., 2021) and
LCMC (Kim et al., 2021b)), similar
observations can be found that our
method outperforms all the compet-
ing methods in the challenging Epic-
Kitchens dataset by 1.1%.

4.3 ABLATION
STUDY AND ANALYSIS

Effectiveness of Proposed Positives.
As presented from Table 3, intra-
domain positives bring a significant improvement on UCF→HMDB by 2.6% and HMDB→UCF
by 5.0%. Cross-domain positives also improve the performance by a large margin. Surprisingly,
each proposed component individually outperforms the previous state-of-the-art methods (e.g.,
SAVA (Choi et al., 2020) and STCDA (Song et al., 2021)) on the I3D backbone. Incorporating these
two components into the same framework brings further gains on both UCF→HMDB by 3.7% and
HMDB→UCF by 5.9%. These results suggest that intra/cross-domain positives could benefit each
other. Precisely, the better target domain discrimination brought by intra-domain positives helps the
better estimation of target distribution in Eqn.5. In return, cross-domain positives help cross-domain
alignment and result in more accurate target NNs for intra-domain positives in Eqn. 4. Last, the
performance could be further boosted with our optimization without negatives.

Effect of Optimization w/o Negatives. As shown in Table 3, optimization without negatives boosts
the performance of both intra-domain positive, cross-domain positives and jointly training by a
significant margin. Explicitly, when jointly training, it improves 1.5% on UCF→HMDB and 1.6%
on HMDB→UCF compared to the baseline of conventional contrastive optimization with negatives.

Effect of Augmentation Strategies. When k = 1, our Intra-Pos could generalize to self-supervised
learning where the target anchor videos are pushed to be close to their augmentations. Explicitly,
we incorporated spatial augmentations such as random cropping and color distortion, as well as
temporal augmentations like video playrate change and clips shuffling. Table 4 shows that all types
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of augmentations benefit the performance, and integrating all of them gives the best performance.
Interestingly, UCF→HMDB favors the temporal augmentations more than the spatial augmentations
while an opposite observation is found in HMDB→UCF.

Table 3: Ablation Study on UCF-HMDB for each
component. Intra-Pos: Intra-domain Positives in
Eqn.4, Cross-Pos: Cross-domain Positives in Eqn.6,
w/o Negatives: Optimization w/o negatives in Sec.3.1

Intra-Pos Cross-Pos w/o Neg UCF→ HMDB HMDB→ UCF
✗ ✗ ✗ 80.3 88.8
✓ ✗ ✗ 81.8 92.6
✓ ✗ ✓ 82.9 93.8
✗ ✓ ✗ 80.9 90.9
✗ ✓ ✓ 82.6 92.3
✓ ✓ ✗ 82.5 93.1
✓ ✓ ✓ 84.0 94.7

Table 4: Ablation Study on augmentation strate-
gies and cross-domain positive. The gray rows are
the Intra-Pos with all augmentations and the Cross-
Pos with covariance estimiation and w/o predictor.

Method UCF→ HMDB HMDB→ UCF
Intra-Pos (default, k=1) 81.8 92.3

w/ Spatial Aug. 80.8 92.1
w/ Speed Aug. 81.1 91.2
w/ Shuffle Aug. 81.3 91.4

Cross-Pos 82.6 92.3
w/o Σt

c 82.2 91.8
w/ predictor 80.2 89.1

Figure 3: Hyperparameters sensitivity on the number of neighbors k (bottom
x-axis, left y-axis), intra-target coefficient λ (top x-axis, right y-axis) and class
covariance coefficient α0 on HMDB→UCF.

Effect of Class-
conditional Covariance.
Our cross-domain align-
ment pulls a source video to
the synthesized target video
representations from the es-
timated target distribution.
We claim that the estimated
class mean feature vector
provides the shared action
semantics from the target
domain. Its corresponding
covariance brings target
spatial-temporal variations
to the source samples. Ta-
ble 4 shows a performance
drop on Cross-domain without the covariance Σt

c on both tasks of UCF-HMDB, demonstrating the
importance of integrating target variations.

Effect of Predictor in Cross-domain postives. Unlike previous non-contrastive learning method
(Chen & He, 2021), we find that applying the predictor results in poor performance in Tab. 4. We
further tried increasing the optimization strength with larger loss ratio but still failed. We hypothesize
that, due to the domain shift, pulling the source features closer to the target requires non-trivial
optimization effort and thus the model is less prone to the "collapsing solutions". Therefore, adding a
predictor would make the optimization even harder.

Hyperparameters Sensitivity. Figure 3 presents the effect of choosing different neighbors k with
λ = 15. We observe that adding neighbors in Eqn.4 generally boosts the performance and k = 5
gives the best performance. For λ, we set it λ from {5, 10, 15, 20} with k = 5. Empirically, we
observe that relatively large λ helps the convergence on the predictor in Figure 3, and λ = 15 achieves
the best performance. For α0, it can be implicitly considered as the radius of target class distribution.
It is shown that Σt

c becomes most effective when α0 = 0.25 in Figure 3. In this case, the sampled
target variations from Σt

c are more likely to be clean. In summary, our method is robust to different
hyperparameters.

5 CONCLUSION AND FUTURE WORK

In this work, we introduce the bottlenecks of in existing contrastive-based video DA methods and
propose a unified solution to address them without relying on negatives by mining informative
and robust intra-domain positives and cross-domain positives. Our approach has been thoroughly
evaluated on various benchmark datasets, and the experimental results demonstrate its superiority
over the current state-of-the-art methods. Regarding the future work, multimodal learning would be
an interesting direction to be integrated with our algorithm by mining cross-modal nearest neighbors
and estimating target distribution from other modalities.
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A APPENDIX

In this material, we show the additional optimization detail, comparison to Imagge-based Domain
adaptation methods and algorithm pseudo code to our main submission.

B OPTIMIZATION DETAIL

In summary, our framework can be readily implemented and optimized within an end-to-end deep
learning framework using the overall objective function:

Lrgb
all = Lrgb

s−ce + L
rgb
s−cross

∞ + λLrgb
t−intra, (8)

B.1 CLOSE-FORM UPPER-BOUND FOR CROSS-POSITIVES OPTIMIZATION

The naive implementation is not computational efficient when M is large. To tackle this issue, we
consider the case that the number of M goes to infinity, and then derive a close-form upper-bound for
the expectation of Eqn. 6 under all possible target features as:

L∞
s−cross = Ez̃it [log e

D(zs,z̃i
t)], (9)

≤ − logEz̃it [e
zsz̃i

t

], (10)

= − log ez
sµt

ys
+α

2 (zs)TΣt
ys

zs

, (11)

= D(zs, µt
ys
)− α

2
(zs)TΣt

ys
zs. (12)

For simplicity, all the zs, z̃it, µt
ys

and Σt
ys

above are l2-normalized if not coupled with D(·, ·). The
Eqn.10 emerges from the Jensen inequality E log(X) ≤ logE[X] on the concave function log(·).
Based on the moment generation function E[eaX ] = eaµ+

1
2a

TΣa where X ∼ N (µ,Σ), Eqn.11 can
be obtained from Eqn.10 under Gaussian assumption. The overall cross-domain alignment loss above
is averaged for all source videos Ns. Notably, the computational cost of Eqn. 12 is different from
backpropagating losses over M ×Ns source-target pairs. As the N (µt

ys
, αΣt

ys
) is estimated offline

based on the memory bank, Eqn. 12 can be computed efficiently without explicitly sampling target
features.

B.2 EXTENSION TO TWO-STREAM NETWORK

For fair comparison to the methods that utilizing optical flow such as MM-SADA Munro & Damen
(2020), STCDA Song et al. (2021) and LCMC Kim et al. (2021b), our method could be extended to
two-stream network using both RGB and optical flow as inputs as well. Following the setting above,
we have:

Lflow
all = Lflow

s−ce + L
flow
s−cross

∞ + λLflow
t−intra. (13)

Besides Lrgb
all and Lflow

all , we also incorporate the cross-modality self-supervision in target domain as:

Lcross
t−intra(x

rgb
t , xflow

t ) = D(zrgbt , zflowt ) +D(zflowt , zrgbt ), (14)

where zrgbt = F r(xrgb
t ), zflowt = F f (xflow

t ) are the features of RGB and flow images.

To sum up, the overall objective function for two-stream network is shown as follows:

Lall = Lrgb
all + Lflow

all + λLcross
t−intra, (15)

C IMPLEMENTATION DETAILS

Following Choi et al. (2020); Song et al. (2021); Kim et al. (2021b), we use I3D Carreira & Zisserman
(2017b) as the backbone feature encoder network, initialized with Kinetics pre-trained weights.
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Algorithm 1 Robust Cross-domain Positives for video DA

Input: Labeled source domain Ds = {(xs
i ,y

s
i )|

Ns
i=1}, unlabeled target domain Dt = {(xt

i)|
Nt
i=1};

warm-start iteration T0, maximum iteration T and batch size B; hyper-parameters: λ and α0.
Output: Parameters of model ΘF and predictor ΘH .

1: for t = 1 to T0 do
2: Update Θ with labeled source videos Ls

ce.
3: end for
4: for t = T0 to T do
5: α=(t/T )× α0

6: Sample {(xs
i ,y

s
i )}Bi=1 and {(xt

i)}Bj=1 from Ds and Dt, respectively.
7: Obtain deep features {zsi}Bi=1, {ztj}Bj=1 and softmax outputs {p̂s

i}Bi=1, {p̂t
j}Bj=1 for source and

target samples, respectively.
8: Generate target pseudo labels based on {p̂t

j}Bj=1.
9: Update memory bank Mt = {(zti , ŷi

t)|Nt
i=1} with target features and pseudo labels in current

batch t.
10: Randomly apply strong spatial or temporal augmentation on the target samples as the second

view {(x̂t
i)}Bj=1.

11: Obtain their deep features and transform them as {ht
j}Bj=1 by the predictor ΘH .

12: Given the current target features {ztj}Bj=1, we mine the top-K nearest neighbors from Mt as
{ẑjt|kj=1} and compute the intra-domain positives loss Lt−intra.

13: for each class c do
14: Estimate target features means µc

t according to memory module Mt.
15: Estimate the target intra-class covariance matrix Σc

t according to memory module Mt.
16: end for
17: Based on N (µt

c, αΣ
t
c), compute the cross-domain alignment loss L∞

s−cross.
18: Update ΘF , ΘH by minimizing the loss Lrgb

all in Eqn. 8 with stochastic gradient descent
(SGD).

19: end for

The dimension of the features extracted from the I3D encoder is 1024. We randomly sample 16
consecutive frames out of a video clip with a size of 224 × 224. For inference, we use 16 uniformly
sampled frames per video to recognize the action. We follow the standard ‘pre-train then adapt’
procedure used in prior works Tzeng et al. (2017); Choi et al. (2020) to train the model with only
source data for 3 epochs as a warm start before the proposed approach is employed. Then we train
models in Eqn. 8 for 40 epochs in total. For the hyperparameters, we select λ from {5, 10, 15, 20},
α0 from {0.1, 0.25, 0.5, 0.75} and the number of neighbors k from {1, 2, 5, 10, 20}. We conduct
hyperparameter sensitivity experiments in sec. 4.3. We set k = 5, λ = 15 and α0 = 0.25 for all
datasets. We train all the models end-to-end using SGD with a momentum of 0.9 and a weight decay
of 1e-7. We use an initial learning rate of 0.01 for the I3D with a cosine learning rate scheduler for
our experiments. We use a batch size of 32 equally split over the two domains. We report the average
action recognition accuracy over 3 random trials. We use four 12G NVIDIA GPUs for training.

D COMPARISON TO IMAGE-BASED DOMAIN ADAPTATION BASELINE

We compare our approach with the following Image-based DA baselines. (1) existing UDA based on
advanced pseudo-labeling and entropy minimization methods which can be considered as cross(inter)-
domain alignment approaches, including CRST Zou et al. (2019) and MSTN Xie et al. (2018) and
MEDM Wu et al. (2021). (2) existing DA method based on intra-domain discrimination IDA Pan
et al. (2020b).

We shows results of our method with other competing approaches on UCF-HMDB dataset in Table 5.
Our framework outperforms both inter-domain and intra-domain methods by a significant margin.
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Table 5: Results on UCF-HMDB dataset for Image-based DA baselines. Supervised Target denotes the
baseline training with labeled target data only. ∗ stands for the self-implementation.

Method Backbone UCF → HMDB HMDB → UCF
Source-only Choi et al. (2020) I3D 80.3 88.8

MSTN∗ Ganin et al. (2016) I3D 80.2 89.9

CRST∗ Long et al. (2017) I3D 80.9 90.2

MEDM∗ Wu et al. (2021) I3D 80.6 89.8
IDA∗ Pan et al. (2020b) I3D 81.6 91.4
Ours I3D 84.0 94.7
Supervised Target Choi et al. (2020) I3D 95.0 96.8

Figure 4: Feature Visualizations using t-SNE on HMDB→UCF.
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Figure 5: On UCF→HMDB: Purity comparison among nearest neighbors (NNs) and pseudo label.

E ADDITIONAL ANALYSIS AND ABLATION STUDY

Purity comparison on UCF→HMDB. We conduct purity comparison on UCF→HMDB to fur-
ther verify the observation in Figure 1(b). Given UCF→HMDB is a more challenging task than
HMDB→UCF, we found similar observation that the target NNs are generally more robust and
accurate than the source NNs and pseudo-labels.

Importantly, we first highlight our contribution in exploring the power of intra-domain positives
which are missing in previous contrastive-based methods, such as Song et al. (2021) and Kim et al.
(2021b). Further, we consider the target (intra-domain) NNs are generally more robust than PL and
source NNs and suitable for intra-domain positives based on Figure 1(b) and Figure 5.

Feature Visualizations. We visualize the feature embedding by t-SNE (Maaten & Hinton, 2008)
among each component of proposed methods, including the source only model, intra-domain, cross-
domain and ours. As seen from Figure 4, intra-domain shows better class discrimination while
cross-domain aligns two domains more tightly. Ours incorporates the merits of both two methods.
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