
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-MODAL DATA MIXTURES
FOR VISION-LANGUAGE MODEL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language models (VLMs) are typically trained on a diverse set of multi-
modal domains, yet current practices rely on costly manual tuning. This paper
introduces MMix, a principled framework for automatically determining multi-
modal data mixtures for VLM training. We formulate this task as a modality-aware
alignment maximization over domains, deriving multi-modal alignment scores
from the dual solution through inter-modal coupling variables. Our method is
crucially designed to handle domains with missing modalities, allowing for the
systematic integration of language-only domains. In experiments on both 0.5B
and 7B VLMs, MMix boosts accuracies on diverse evaluation benchmarks with
marginal computational cost. Remarkably, it matches the expert-tuned performance
1.28× faster in image-text tuning and extends to more complex multi-modal video
scenarios outperforming uniform weights performance with only 33% steps.

1 INTRODUCTION

Vision-Language Models (VLMs) have advanced significantly with the availability of large-scale
multi-modal datasets. The training data for VLMs is typically a complex mixture from numerous
domains and multiple modalities (Bai et al., 2023b; Liu et al., 2023c; Li et al., 2024a; Liu et al., 2024a).
For example, LLaVA-OneVision is trained on 20.6% Doc/Chart/Screen, 20.1% Math/Reasoning, and
8.9% OCR data, etc., and includes text and vision modalities (Li et al., 2024a). Since such domains
help maintain and balance the skill distribution that a trained large multimodal model should cover
(Li et al., 2024a), many studies follow the topic or capability-oriented rule with domain structure
when collecting data, such as LLaVA (Liu et al., 2023c; Li et al., 2024a), Qwen (Bai et al., 2023a;
Yang et al., 2025), LLAMA (Dubey et al., 2024), Gemini (Team et al., 2023), InstructBLIP (Dai
et al., 2023), and others (Li et al., 2025; Tong et al., 2024; Chen et al., 2024e; Laurençon et al., 2024).
Moreover, the composition of these domains critically impacts VLM effectiveness (Bai et al., 2023b;
Li et al., 2024a; Liu et al., 2024b; Gadre et al., 2023). “How to determine the optimal proportions of
each domain to ensure VLMs’ performance?” is an essential question and remains an open challenge.

Existing strategies for constructing multimodal data mixtures often lack a formal methodology. Data
recipes for many state-of-the-art models are not publicly released, while open-source models typically
rely on expensive manual tuning or heuristic adjustments based on developers’ experience (Bai et al.,
2023b; Li et al., 2024a). For instance, Flamingo relies on empirically-tuned weights (Alayrac et al.,
2022), LLaVA-NeXT manually adds data domains to improve specific skills (Liu et al., 2024b), and
InstructBLIP uses a simple sampling heuristic (Dai et al., 2023) to handle data imbalance. Such
approaches are inefficient, unscalable, and potentially suboptimal. Consequently, a principled and
efficient methodology for optimizing the data mixture for VLMs is notably absent.

Although data mixing strategies have shown considerable success in Large Language Model (LLM)
training (Xie et al., 2023; Fan et al., 2024b; Liu et al., 2024c; Kang et al., 2024), directly transferring
these unimodal approaches to VLMs presents significant challenges due to their fundamental differ-
ences. The VLM data mixing problem introduces two unique challenges: (i) integrating features
from different modalities (e.g., text and vision); and (ii) handling domains with missing modalities,
which frequently arises in VLM training where some domains include text-image paired data for
visual learning, while others have text-only data for preserving linguistic abilities. Therefore, a
specialized, modality-aware methodology is required for effective VLM data mixing.
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In this paper, we introduce MMix, a framework for automatically determining multimodal data
mixtures for VLM training. MMix computes modality-aware alignment scores by formulating
the multimodal data mixing problem as domain alignment maximization and deriving the scores
in terms of the dual solution. We achieve cross-modal integration via shared latent variables that
map multi-modal features into a common space. In addition, MMix handles missing modalities by
ensuring they do not introduce noise in the alignment objective. The resulting scores directly translate
into resampling weights, yielding improved generalization and higher efficiency without relying on
costly manual tuning.

Specifically, the novelty and contribution of this work can be summarized as:

• We design the first automatic data mixing strategy for VLMs. We introduce modality-
aware domain alignment scores that serve as domain training weights. We formulate the
data mixing problem as alignment maximization over domains with coupling multi-modal
variables, where the alignment scores can be derived from the dual solution.

• Our method is designed to handle heterogeneous multi-modal data, which is a fundamental
challenge for VLMs. It supports domains with differing modalities by ensuring incomplete
data contributes no error to the alignment objective.

• We empirically validate our multi-modal data mixing method on 0.5B and 7B VLMs across
diverse benchmarks, demonstrating its performance improvements and efficiency gains.
Notably, it outperforms uniform weights with just 56% steps and achieves expert-tuned
weights performance 1.28× faster on the 0.5B model in image-text instruction tuning. It can
scale to more complex settings including video modality, where it improves generalization
over uniform weights with only 33% steps.

2 RELATED WORKS

Data composition in VLMs. The performance of modern VLMs is critically dependent on the
composition of their training data. A standard practice in the field is to curate data into distinct,
skill-oriented domains to ensure a balanced set of capabilities. For example, the development of
the LLaVA family (Liu et al., 2023c; Li et al., 2024a; Liu et al., 2024a) involved explicitly adding
new data domains like DocVQA and ChartQA to improve targeted skills such as OCR and chart
understanding. They openly release the LLaVA-OneVision (Li et al., 2024a) datasets as collections of
domain-specific data, which we use in our experiments. Similarly, the Qwen-VL (Bai et al., 2023b)
and Gemini (Team et al., 2023) employ a multi-stage training pipeline that combines multi-modal
data with text-only dialogue to maintain language capabilities. InstructBLIP (Gu et al., 2025) also
groups 26 public datasets into 11 categories to cover a wide variety of tasks and capabilities. Many
other works (Li et al., 2025; Tong et al., 2024; Chen et al., 2024e; Laurençon et al., 2024) follow such
a capability-oriented rule to construct domains. While preliminary steps in the data pipeline such as
data cleaning, toxicity removal, quality filtering, and coreset selection are also important aspects, our
work focuses on the subsequent challenge of weighting the given pre-curated, skill-specific domains.

Data mixing. Despite the widespread practice of domain-structured data curation in VLMs, the sub-
sequent step of determining the proportional mixture of these domains largely relies on developer in-
tuition or costly empirical tuning. For instance, LLaVA-One (Li et al., 2024a) and Flamingo (Alayrac
et al., 2022) manually tuned domain weights for their promising performance. Other approaches, like
that for LLaVA-NeXT (Liu et al., 2024b), involve reactively adding new data to address perceived
skill gaps, which is inefficient and heuristic. InstructBLIP (Gu et al., 2025) observes that ignoring
the mixing problem in VLMs leads to unstable training and harms performance. While data mixing
has been studied more formally for unimodal LLMs, these approaches are fundamentally ill-suited
for VLMs. Most of them (Xie et al., 2023; Fan et al., 2024b; Liu et al., 2024c; Ye et al., 2024; Kang
et al., 2024) rely on proxy models’ training, which is difficult to combine in the multi-stage VLM
pipeline. Recent directions (Xie et al., 2025; Zhang et al., 2025) integrate into LLM training, but they
are not designed to handle multimodal features and cannot manage domains with missing modalities.

2
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Figure 1: Pipeline of multi-modal domain mixing for VLM training. Modality-specific embed-
dings x[v]

i are extracted from the midstage trained model for each domain. Some domains may lack
certain modalities (e.g., the language domain has no image data). The k domains are then mapped to a
shared multi-modal space by the latent variables α of the multi-modal alignment maximization prob-
lem (4). The multi-modal kernel matrix KMM is computed as the pairwise inner products between
domain embeddings across modalities via (5). Finally, (6) is applied to KMM and α to obtain score
Si, i = 1, . . . , k indicating the multi-modal alignment of each domain. A resampling non-uniform
distribution p is obtained by softmax-normalizing the scores. Finally, image-text instruction tuning of
the target VLM is carried out by sampling according to the obtained data mixture p.

3 MULTI-MODAL MIXING WITH MODALITY-AWARE DOMAIN ALIGNMENT

We propose MMix, a principled framework for automatic multi-modal data mixing. Key challenges
in VLM data include the wide heterogeneity of features across different modalities and the set of
available modalities differing across data domains. First, we formulate the multi-modal data mixing
problem under alignment maximization to a specific common signal direction across modalities. We
quantify each domain’s contribution in a single vision-language alignment space. Then, we derive a
new multi-modal objective handling missing modalities. Our mixing pipeline is shown in Figure 1.

Setup and objective. Let DMM = {D1, . . . , Dk} be the set of k VLM training data domains (e.g.,
Math, OCR, etc.). These domains define the skill sets that the final trained VLM should possess. Data
within a domain Di have the same modalities, while the modalities across domains could be different.
Each sample a[v] from modality v, v = 1, . . . , V (e.g., vision or text) where V is the number of modal-
ities, can be represented through its semantic embedding h(L)(a[v]) extracted from the L-th hidden
layer of the pretrained VLM h. The i-th domain embedding x

[v]
i ∈ Rd, v = 1, . . . , V, i = 1, . . . , k

for the v-th modality can be constructed as the semantic centroid x
[v]
i = 1

|Di|
∑

a[v]∈Di
h(L)(a[v]),

which can effectively represent data domains thanks to the high-dimensional, non-linear representa-
tions learned by Transformers (Xie et al., 2025; Ling et al., 2025). The data mixing objective is to
determine a domain weight vector p ∈ ∆k, where ∆k is the probability simplex (Albalak et al., 2023;
Fan et al., 2024b), enhancing the generalization performance of VLMs. The VLM is trained with the
specific sampling probability pi for data from the i-th domain.

3.1 MULTI-MODAL DOMAIN ALIGNMENT SCORES

We first consider the case of mixing multiple domains containing only a single modality. Since there
are multiple domains corresponding to various capabilities, the fundamental goal of VLM training is
to equip the model with generalizable knowledge that can transfer across domains. Each domain Di

is associated with an alignment score S′
i with the projection direction w within the embedding space

optimally representing the general structure in all k domains. By assigning a uniform target value of
1 for all domains, our optimization objective seeks a weight vector w that exhibits strong alignment
with the entire collection of domain embeddings xi, i = 1, . . . , k, rather than biasing it towards any
specific one. This leads to the following primal optimization problem:

min
w,e

1

2λ

k∑
i=1

e2i +
1

2
∥w∥2F s.t. ei = 1− w⊤xi, i = 1, . . . , k, (1)

3
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where w ∈ Rd represents the projection vector, e = [e1, . . . , ek] ∈ Rk denotes the individual
projection errors for each domain, and λ > 0 is a regularization parameter.

Interpretation. The form (1) has a well-defined interpretation from the perspective of signal
processing. It is analogous to a beamformer (Van Trees, 2002) where the mean embedding acts as the
desired steering vector, representing the common structure shared across domains, and the covariance
matrix represents the dispersion of the domains. Consequently, the optimal projection corresponds to
a direction that balances maximizing alignment with the shared signal while minimizing interference
through the covariance (Σ + λId)

−1 operator. The resulting projection score S′
i = w⊤xi therefore

quantifies how well each domain xi aligns with the robust, common-mode direction. A higher score
indicates stronger alignment with the characteristics shared by the domains.

To enable the multi-modal integration, we first write a lower bound of the primal objective in (1) that
yields equivalent solutions. Through introducing latent variables α′

i and the Fenchel-Young inequality
1
2λe

2 + λ
2α

′2 ≥ eα′, ∀e, α′ ∈ Rk (Rockafellar, 1974; Suykens, 2017), we can express the primal
problem of single modality as:

J =
1

2λ

k∑
i=1

e2i +
1

2
∥w∥2F s.t. ei = 1− w⊤xi, i = 1, . . . , k

≥
k∑

i=1

eiα
′
i −

λ

2
∥α′∥2F +

1

2
∥w∥2F

=

k∑
i=1

(1− w⊤xi)α
′
i −

λ

2
∥α′∥2F +

1

2
∥w∥2F =: JSM,

(2)

where α′ = [α′
1, . . . , α

′
k] ∈ Rk is the vector of latent variables. By analyzing the stationary conditions

of the lower-bound single-modality objective function JSM with respect to w and α′ and eliminating
the primal variable w, the following solution in the latent variables is obtained: α′ = (K+λIk)

−11k,
where K ∈ Rk×k is the domain affinity kernel matrix with Kij = x⊤

i xj , Ik is the k × k identity
matrix, and 1k is a k×1 column vector of ones. The unimodal domain score S′

i can then be expressed
as: S′

i = [K(K + λI)−11k]i, which is consistent with the result in terms of covariance obtained
from the original problem (1) as in the derivation details in Appendix A.1 and Appendix A.2.

Importantly, such dual structure with explicit latent variables α′
i in Equation (2) facilitates the

extension to multi-modal integration. Let w[v] be the projection weight for modality v = 1, . . . , V .
Define the alignment objective for each modality v as J [v]

SM(w[v], α). We express the multi-modal
scoring objective as

J̃MM =

V∑
v=1

J
[v]
SM(w[v], α) =

V∑
v=1

k∑
i=1

(1− (w[v])⊤x
[v]
i )αi −

λ

2

V∑
v=1

∥α∥2F +
1

2

V∑
v=1

∥∥∥w[v]
∥∥∥2
F
, (3)

which implicitly sets α′[1] = · · · = α′[V ]
= α, giving the connections between the domain embed-

dings of each modality and the latent variables of a shared multi-modal latent space, realizing the
inter-modality couplings.

Interpretation. The dual multi-modal objective (3) jointly optimizes the scores (w[v])⊤x
[v]
i for all

domains and modalities. Specifically, w[v] learns to optimally align the domain embeddings within
each modality. The first term of (3) can be interpreted as an energy function (Bengio et al., 2009)
penalizing high-energy solutions, i.e., large (1− (w[v])

⊤
x
[v]
i ) disagreements. The dual variable αi

serves as a consensus variable: large values push all modality weights to reduce disagreement for that
domain. The remaining terms serve as regularization controlling the weight norm and the distribution
of the dual variables.

3.2 MULTI-MODAL SCORES WITH MISSING MODALITIES

Accommodating data with incomplete modality coverage is a key challenge in VLM training. For
instance, with vision and text modalities, some domains may only contain text, while others may

4
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Algorithm 1 Multi-modal Data Mixtures (MMix)

1: Input: Number of domains k, number of modalities V , domain embeddings x
[v]
i ∈ Rd for

i = 1, . . . , k and available modalities v = 1, . . . , V , and regularization parameter λ.
2: Fill the missing embeddings: set x[v]

i = 0d for the unavailable modalities.
3: Construct kernel matrix: K [v] = [(x

[v]
i )⊤x

[v]
j ]ki,j=1 for modality v.

4: Construct the multi-modal domain affinity matrix: KMM =
∑V

v=1 K
[v].

5: Compute modality scores S[v]
i =

[
K [v](KMM + λI)−1δ

]
i
.

6: Domain weights: pi =
exp(

∑V
v=1 S

[v]
i )∑k

j=1 exp(
∑V

v=1 S
[v]
i )

.

7: Output: Domain weights p = [p1, . . . , pk].

present both. This scenario commonly occurs in practical settings as VLMs are typically trained on a
mix of multi-modal and pure text data to retain the model’s dialogue capabilities.

To address the issue of missing modalities, we adjust the projection errors appropriately. To be
specific, we set x[v]

i = 0d along with zero target for the missing modality v in the i-th domain, which
ensures that domains lacking a modality do not introduce spurious errors in the alignment objective.
Therefore, the final multi-modal scoring objective from Equation (3) can be expressed as:

JMM =

V∑
v=1

k∑
i=1

[
(δ

[v]
i − (w[v])⊤x

[v]
i )αi −

λ

2
α2
i

]
+

1

2

V∑
v=1

∥∥∥w[v]
∥∥∥2
F
, (4)

where δ
[v]
i ∈ {0, 1} indicates the existence of modality v in domain Di.

We obtain the solution in the shared latent variables α in the multi-modal setting by stationary
conditions of (4) through the derivation in Appendix A.3, summarized in the following Proposition.
Proposition 3.1 (Multi-modal Domain Alignment Scores). Define the multi-modal kernel matrix
as KMM ∈ Rk×k with entries KMMij

=
∑V

v=1 K
[v]
ij , with K

[v]
ij = (x

[v]
i )⊤x

[v]
j . The optimal latent

variables for the multi-modal alignment problem are given by:

α = (KMM + λI)−1δ, (5)

where δ = [δ1, ..., δk]
⊤ with entries δi =

∑V
v=1 δ

[v]
i . Note that δi is always a positive constant since

all domains have at least one modality. At optimality, the domain alignment score S
[v]
i = w[v]⊤x

[v]
i

for modality v of domain Di in kernel representation is:

S
[v]
i =

[
K [v](KMM + λI)−1δ

]
i
, (6)

with KMM realizing the modality couplings.

A high score S
[v]
i indicates that the v-th modality of domain Di is well aligned with a common

direction expressed through multi-modal coupling coefficients αi. After computing the scores S[v]
i

for each modality v of domain Di, a single score is obtained for all the modalities by assembling
the scores for each domain. The resampling distribution p for VLM training is then obtained by

softmax-normalizing the scores: pi =
exp(

∑V
v=1 S

[v]
i )∑k

i=1 exp(
∑V

v=1 S
[v]
i )

.

Computational complexity and practical implementation. Our complete algorithm is summa-
rized in Algorithm 1. Computing embeddings x[v]

i requires a cheap inference pass through the model
from the previous stage. The kernel score computation (6) involves inverting a small k × k matrix,
which is computationally cheap given the typically small number of domains k used in VLM training.
Notably, our method and operates independently of the VLM’s optimization algorithm, enabling
direct integration into existing training pipelines by simply adjusting sampling weights without
modifying the underlying optimization procedure. This noninvasive approach is a key advantage in
the VLM setting where many differing training pipelines are commonly used.

5
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4 EXPERIMENTS

We conduct a comprehensive empirical evaluation of our multi-modal data mixing method for visual
instruction tuning of LLaVA-OneVision (Li et al., 2024a) on diverse VLM benchmarks. We follow
the standard domain construction of (Li et al., 2024a), with each domain corresponding to a target
skill for a VLM. This domain-based structure is known to be crucial for balancing skill distribution,
providing an ideal testbed for data mixing strategies (Laurençon et al., 2024; Dong et al., 2025).
Furthermore, the data incorporate text, image, and video modalities and realistically reflects practical
challenges where some modalities are absent in the domains.

First, we evaluate our method on the stage-2 image-text instruction tuning (Li et al., 2024a), which
contains five domains including text and image modalities, and compare generalization on multiple
benchmarks to other mixing baselines. MMix improves performance over expert-tuned mixtures at
marginal computational cost. Further, we explore the transferability of our domain weights across
model sizes. Then, we introduce an additional video modality in, showing that our automatic mixing
naturally extends to more complex multi-modal settings, yielding consistent improvements and
providing an efficient, scalable alternative to costly expert tuning.

Training setup. We train LLaVA-OneVision 0.5B and 7B models with batch size 128, sequence
length 8192, and learning rate 10−5 with cosine decay. For experiments in Section 4.1, models are
trained for 4500 steps following Li et al. (2024a) s.t. each example is used only once. The training data
consists of five domains: General, Doc/Chart/Screen, Math/Reasoning, General OCR, and Language.
The first four domains are structured as image-text pairs, while the Language domain consists of text
data only, lacking the image modality. In Section 4.2, we introduce an additional VideoQA domain
with video-text data and train for 3000 steps to further test our method’s multi-modal capabilities.

Baselines. UNIFORM is the cost-free mixture assigning equal weights pi = 1
k , which, despite its

simplicity, can be a strong baseline (Michel et al., 2021; Fan et al., 2024b). HUMAN corresponds
to the domain weights manually optimized by the authors of (Li et al., 2024a). TEXT, IMAGE, and
VIDEO represent weights derived solving Equation (1) based on embeddings from a single modality.
If a domain lacks a specific modality, its corresponding weight is set to zero. AVG averages the
domain weights of all single modalities. For example, AVG = 1

2 (TEXT + IMAGE) in Section 4.1
and AVG = 1

3 (TEXT + IMAGE + VIDEO) in Section 4.2. Moreover, FUSED are the domain weights
computed from the fused multi-modal embedding, which is generated by the VLM after processing
all modalities as a unified sequence. MMix computes the domain weights through Equation (6). The
processes of embedding extraction and domain weight assignment are detailed in Appendix B.3.

Evaluation benchmarks. We use various benchmarks for evaluation of generalization in diverse
tasks and they can be categorized into three classes following (Li et al., 2024a): (1) Chart, Dia-
gram, and Document Understanding. Charts and diagrams are key formats for visual information
expression. We evaluate the results on AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022),
DocVQA (Mathew et al., 2021), and InfoVQA (Mathew et al., 2022), and OCRBench (Liu et al.,
2024d) for text recognition. (2) Perception and Multi-discipline Reasoning. For more complex
visual detection scenarios, we also evaluate on more challenging multi-disciplinary visual-language
reasoning tasks. Specifically, we follow the multi-modal benchmarks of MME (Yin et al., 2023),
MMBench (Liu et al., 2023d), and reasoning benchmarks including MathVerse (Zhang et al., 2024b),
MMMU (Yue et al., 2024), and ScienceQA (Lu et al., 2022a). (3) Real-world Understanding and
Multi-modal Chatbots. We also benchmark the capability of VLMs as a general-purpose assistant in
the real world with specific benchmarks, including RealworldQA (x.ai, 2024) and MMStar (Chen
et al., 2024c). In Table 4, we add two video benchmarks: Video-MMMU (Hu et al., 2025) and
MVBench (Li et al., 2024b). We use the LLMs-Eval library (Zhang et al., 2024a) for evaluation.

4.1 MMIX IMPROVES PERFORMANCE ON BOTH 0.5B AND 7B VLMS

We train LLaVA-OneVision-0.5B using the domain reweighting strategies discussed in Baselines
above during the single-image (i.e., no video) training phase. The domain weights are shown in
Figure 2 (left) and listed in Appendix B.4. These models are evaluated on ten diverse benchmarks,
with the 0-shot accuracy results presented in Table 1. Our MMix strategy achieves the highest average
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score across all benchmarks, bringing a 1.24% improvement over UNIFORM. Importantly, it even
surpasses HUMAN that requires large grid searches with significant cost and is not scalable, while
our method can find mixtures automatically. Remarkably, MMix learns faster: as shown in Figure 2
(right), it outperforms UNIFORM with just 56% steps and outperforms HUMAN with 78% steps,
corresponding to 1.8× and 1.28× speedup factors, respectively.

For further analysis, as shown in Table 1, MMix outperforms 1) AVG that handles different modalities
separately, and 2) FUSED that uses the fused embeddings from VLM with all available modalities as
input. Moreover, MMix also surpasses unimodal strategies that ignore the information from other
modalities, as demonstrated in Appendix B.5. This indicates the importance of distinctly considering
the contributions of each modality and addressing the missing modal data specifically. Moreover, our
ablation studies in Appendix B.6 demonstrate the robustness of MMix’s domain weights.

In addition, an interesting observation we find is that the downweighted domains do not result in
sacrificing the model’s corresponding capabilities. Specifically, even when MMix downweights
Math and OCR domains compared with UNIFORM, it preserves the capabilities on MathVerse and
OCRBench in Table 1. This suggests that our method supports positive transfer across domains,
where emphasizing a subset of high-alignment domains can promote emergent capabilities in others
as well, even when they receive less training weight.
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Figure 2: Comparison of different data mixture strategies in the image-text instruction tuning.
(Left) Domain weights for UNIFORM, HUMAN, and MMix. (Right) Zero-shot average downstream
accuracy of 0.5B models, where MMix achieves consistent improvement.

Table 1: Comparison of data mixing strategies for LLaVA-0.5B image-text instruction tun-
ing. Results are reported as 0-shot accuracy across ten evaluation benchmarks. We compare our
MMix against baselines: UNIFORM (equal weights), HUMAN (manual weights), AVG (averaged
single-modality weights), and FUSED (weights from input concatenation). MMix achieves the best
performance on 8 out of 10 benchmarks over UNIFORM and improves on 6 benchmarks over HUMAN.

Benchmark UNIFORM HUMAN AVG FUSED MMix
AI2D 42.78±0.04 43.75±0.01 45.50±0.02 44.59±0.05 43.52±0.09

DocVQA 42.90±0.02 42.66±0.00 42.44±0.03 42.67±0.01 42.92±0.02

InfoVQA 22.25±0.03 22.61±0.07 22.43±0.04 23.50±0.03 22.13±0.05

MathVerse 18.27±0.03 17.26±0.11 18.32±0.06 19.29±0.08 18.91±0.07

MMBench 36.34±0.00 40.21±0.04 39.86±0.08 37.71±0.12 42.44±0.04

MMStar 33.45±0.06 36.04±0.10 33.50±0.14 34.44±0.20 35.88±0.03

MMMU 30.00±0.16 29.67±0.31 29.00±0.09 29.22±0.21 29.78±0.16

ScienceQA 62.42±0.02 65.84±0.02 64.80±0.04 63.46±0.09 64.50±0.01

OCRBench 45.30±0.05 44.60±0.09 45.30±0.06 43.50±0.09 45.80±0.05

RealworldQA 46.27±0.18 44.05±0.06 45.49±0.10 45.36±0.12 46.54±0.06

Average 38.00±0.09 38.67±0.12 38.66±0.08 38.37±0.12 39.24±0.08

Number over UNIFORM - 5/10 6/10 6/10 8/10
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Table 2: Comparison of data mixing strategies for LLaVA-7B image-text instruction tuning.
Results are reported as 0-shot accuracy across ten evaluation benchmarks. MMix achieves the best
performance on 8 out of 10 benchmarks over UNIFORM and improves on 5 benchmarks over HUMAN.

Benchmark UNIFORM HUMAN AVG FUSED MMix
AI2D 74.48±0.04 74.03±0.11 75.10±0.08 75.74±0.05 75.58±0.09

DocVQA 57.91±0.08 58.64±0.05 58.28±0.12 57.29±0.15 58.32±0.03

InfoVQA 34.76±0.15 35.91±0.09 36.95±0.07 36.06±0.11 36.23±0.18

MathVerse 29.31±0.09 26.85±0.14 27.33±0.18 28.68±0.06 28.55±0.12

MMBench 75.69±0.02 76.12±0.03 76.23±0.05 75.77±0.08 75.74±0.06

MMStar 49.04±0.11 50.26±0.16 50.44±0.09 49.46±0.14 50.19±0.10

MMMU 46.33±0.21 46.78±0.18 46.78±0.22 46.78±0.17 46.89±0.15

ScienceQA 87.31±0.06 90.38±0.02 89.53±0.04 85.52±0.09 90.23±0.07

OCRBench 56.80±0.13 57.30±0.08 56.70±0.11 56.60±0.08 57.90±0.14

RealworldQA 58.17±0.10 57.91±0.12 56.99±0.14 57.65±0.10 57.47±0.05

Average 56.98±0.11 57.42±0.11 57.43±0.13 56.96±0.11 57.71±0.11

Number over UNIFORM - 7/10 7/10 5/10 8/10

Domain weights transfer to larger models. Recent research on data mixing in text-only LLMs
shows that domain weights derived from smaller models can be effectively transferred to larger ones
(Xie et al., 2023; Fan et al., 2024b; Liu et al., 2024c). We investigate this phenomenon in VLMs.
Specifically, we train 7B models with the domain weights obtained from 0.5B models. The evaluation
results are presented in Table 2. Remarkably, MMix maintains its performance advantage over
baselines even at this increased model scale, outperforming UNIFORM on 8 out of the 10 benchmarks.

Table 3: Computational cost is neg-
ligible relative to full model training.
Cost in H100 GPU hours.

Component Cost (h)
Embedding extraction 0.58
Score computation 0.01
Total 0.59

Training (0.5B) 90
Training (7B) 620

Marginal computational cost. The computational overhead
of our method is negligible, as we discussed computational
complexity in Section 3. (i) Embedding extraction is a fast
inference-only process. In our experiments, the embedding
extraction takes 35 minutes on a single H100 GPU. (ii) Align-
ment score computation via (6) completes in seconds since
the number of domains is small. The cost of our weight com-
putation is marginal compared to the 90 and 620 GPU hours
required to train 0.5B and 7B VLMs, respectively. Crucially,
our automated approach also eliminates the need for expensive,
time-consuming manual tuning of data mixtures, which is a
key bottleneck in current VLM development.

4.2 MMIX SCALES TO MORE COMPLEX MULTI-MODAL SETTINGS

We further demonstrate the flexibility of MMix in more complex multimodal scenarios by adding
a VideoQA domain that introduces video–text data. This creates a total of six domains with three
modalities: text, image, and video. Our domain weights embeddings for this new configuration are
shown in Figure 3 (left) and fully reported in Appendix B.7. We train 0.5B and 7B models with
new domain weights and evaluate models on both image-only benchmarks (same pipeline as in
Section 4.1) and benchmarks specifically designed to test video capabilities, namely MVBench (Li
et al., 2024b) and Video-MMMU (Hu et al., 2025).

The results in Table 4 demonstrate that MMix achieves better performance over UNIFORM in this
more complex setting as well. In addition, MMix is consistently the overall best performing mixture
over both AVG and FUSED. This verifies the effectiveness of our multi-modal construction compared
to single-modality mixtures and simple early fusion. Notably, MMix achieves UNIFORM performance
in only 33% steps, as shown in Figure 3 (right), resulting in a 3× average speedup. Importantly, this
experiment highlights the extensibility of our method to richer multi-modal configurations without
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requiring manual efforts in costly grid searches; in fact, the expert-tuned HUMAN baseline was not
available for this more complex setting, underscoring the practicality of automatic mixing.
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Figure 3: Comparison of different data mixtures in the video-image-text instruction tuning.
(Left) Domain weights for UNIFORM and MMix. (Right) Zero-shot average downstream accuracy of
0.5B models, where MMix outperforms UNIFORM during the whole training process.

Table 4: Comparison of data mixtures for LLaVA-0.5B/7B video-image-text instruction tuning.
Results are reported as 0-shot accuracy across twelve evaluation benchmarks. MMix achieves the
best performance on two model sizes. Full results with standard deviations are in Appendix B.8.

Benchmark 0.5B 7B

UNIF. AVG FUSED MMix UNIF. AVG FUSED MMix
AI2D 41.68 42.81 42.84 42.88 71.83 72.41 72.83 72.15

DocVQA 42.20 41.68 41.29 42.54 56.47 56.42 55.67 57.51

InfoVQA 21.65 21.97 21.17 22.40 35.74 34.65 34.40 35.89

MathVerse 15.61 15.62 17.77 15.10 25.63 25.52 24.75 26.40

MMBench 34.36 26.80 35.14 34.45 71.05 75.52 73.28 74.57

MMStar 30.43 35.54 36.14 33.97 48.18 49.03 46.55 48.79

MMMU 30.00 29.78 30.44 29.78 45.67 45.11 44.78 45.56

ScienceQA 60.29 60.29 59.40 61.03 83.44 86.07 83.29 87.26

OCRBench 45.30 43.20 46.60 45.00 56.50 56.90 57.60 57.20

RealworldQA 47.19 46.41 46.27 47.32 57.91 56.99 59.22 57.39

Video-MMMU 13.78 13.78 12.78 13.84 29.78 30.56 29.11 30.33

MVBench 36.67 36.50 37.02 40.70 52.73 51.58 53.12 53.60

Average 34.93 34.53 34.74 35.75 52.91 53.39 52.88 54.40

# over UNIF. - 4/12 7/12 9/12 - 6/12 5/12 10/12

5 CONCLUSION

This paper presents a principled approach to the key problem of automatically optimizing multi-
modal data mixtures for vision-language model training. Our formulation through modality-aware
alignment maximization with coupling inter-modal variables addresses fundamental challenges in
VLM training: handling missing modalities, optimizing cross-modal alignment, and determining
domain mixing weights without costly grid searches. Empirical evaluations demonstrate that our
method outperforms both uniform and manually-tuned mixtures across diverse VLM benchmarks
with marginal computational cost. Our approach allows direct integration with existing diverse VLM
training pipelines and making it valuable for practical applications. By automating multi-modal data
mixing, our method offers a path towards more data- and compute-efficient VLM training.
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A PROBLEM FORMULATION

A.1 FORMULATION FOR SINGLE MODALITY SETTING

Let the data mixture problem consist of k data domains and their domain embeddings xi ∈ Rd with
their target yi ∈ R, i = 1, . . . , k. We first write the primal domain alignment problem for single
modality:

min
w,e

1

2λ

k∑
i=1

e2i +
1

2
∥w∥2 s.t. ei = yi − w⊤xi, i = 1, . . . , k, (7)

where w ∈ Rd, e = [e1, . . . , ek] ∈ Rk are the projections, λ > 0 is a regularization constant.

From the Lagrangian with dual variables ν:

L(w, e; ν) = 1

2λ

k∑
i=1

e2i +
1

2
∥w∥2 −

k∑
i=1

νi(ei − yi + w⊤xi),

one takes the conditions for optimality, which are given as

∂L
∂w

= w −
k∑

i=1

νixi = 0 =⇒ w =

k∑
i=1

νixi,

∂L
∂ei

=
1

λ
ei − νi = 0 =⇒ ei = λνi, ∀i

∂L
∂νi

= ei − yi + w⊤xi = 0 =⇒ λνi − yi +

k∑
i=j

νjx
⊤
j xi = 0 ∀i.

Eliminating w in the last condition gives the dual solution:
Kν = y − λν,

(K + λI)ν = y,

ν = (K + λI)−1y,

where we defined the kernel matrix as K = [x⊤
i xj ]

k
i,j=1, and the target vector y = [y1, . . . , yk]

⊤.

We are now ready to define the alignment score of domain i as S′
i = w⊤xi in its kernel form:

S′
i = w⊤xi =

 k∑
j=1

νjxj

⊤

xi =
[
K(K + λI)−1y

]
i
. (8)

A.1.1 PRIMAL AND DUAL SCORE REPRESENTATIONS

We can write Equation (7) in the unconstrained form:

min
w

1

2λ

k∑
i=1

(yi − w⊤xi)
2 +

1

2
∥w∥2.

This is a ridge regression problem where the target vector is y = [y1, . . . , yk]
⊤. Let X be the k × d

data matrix with rows x⊤
1 , x

⊤
2 , . . . , x

⊤
k . Then the objective becomes:

min
w

1

2λ
∥y −Xw∥2 + 1

2
∥w∥2.

The solution to this ridge regression problem is:

w = (X⊤X + λI)−1X⊤y.

The alignment score for domain i is S′
i = w⊤xi. The vector of alignment scores can be computed as

S′ = Xw. Substituting the expression for w:

S′
i = [X(X⊤X + λI)−1X⊤y]i.

This is equivalent to (8) by standard matrix identity, i.e., Woodbury identity. The following remark
summarizes the computational aspect of the primal and dual representations of the alignment score.
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Remark A.1 (Efficient computation of the alignment score). The primal solution is written in terms of
the covariance X⊤X , while the dual solution is in terms of the kernel matrix XX⊤. In the context of
data mixture with large VLMs, the embedding dimension d may be very large, so it is computationally
advantageous to work in the dual with complexity O(k3) where the number of data domains k is
typically much smaller.

A.2 INTRODUCING LATENT VARIABLES

We first give a lower bound to the objective (7) and introduce latent variables α′
i, which will be used

to couple the domains in the multi-modal setting. Starting from the primal single-modal problem (7),
the following lower bound holds:

J =
1

2λ

k∑
i=1

e2i +
1

2
∥w∥2F s.t. ei = yi − w⊤xi, i = 1, . . . , k

≥
k∑

i=1

eiα
′
i −

λ

2
∥α′∥2F +

1

2
∥w∥2F

=

k∑
i=1

(yi − w⊤xi)α
′
i −

λ

2
∥α′∥2F +

1

2
∥w∥2F =: JSM,

(9)

where λ > 0 is a regularization constants and JSM is the single modality objective. The above bound
is based on the property that for two arbitrary vectors e, α′ one has 1

2λe
2 + λ

2α
′2 ≥ eα′, ∀e, α′ ∈ Rk.

The inequality can be verified using the Schur complement by writing in its quadratic form:

1

2

[
eT α′⊤

] [ 1
λI I
I λI

] [
e
α′

]
≥ 0.

From the Schur complement, it states the condition 1
2 (λI − I(λI)I) ≥ 0, which proves the above

inequality. This is also known as conjugate feature duality (Suykens, 2017) or the Fenchel–Young
inequality for quadratic functions (Rockafellar, 1974).

Through the inequality, we have introduced latent variables, i.e. α′
i, into the objective. We proceed by

studying the stationary condition of JSM.
∂JSM

∂w
= −

k∑
i=1

α′
ixi + w = 0 ⇒ w =

k∑
i=1

α′
ixi,

∂JSM

∂α′
i

= yi − w⊤xi − λα′
i = 0 ⇒ α′

i =
1

λ

(
yi − w⊤xi

)
∀i.

(10)

By eliminating w in (10), we obtain

w⊤xi =

 k∑
j=1

α′
jxj

⊤

xi =

k∑
j=1

α′
j (x

⊤
j xi) ∀i.

Thus the solution in the latent variables is

α′
i =

1

λ

yi −
k∑

j=1

α′
j (x

⊤
j xi)


α′ = (K + λI)−1y.

The score of domain i, i.e., Si = w⊤xi, writes in terms of the latent variables as:

S′
i = w⊤xi =

 k∑
j=1

α′
jxj

⊤

xi =

k∑
j=1

α′
j(x

⊤
j xi) = [K(K + λI)−1y]i, (11)

which matches (8) obtained by the original problem (7). Let y = 1k, it recovers the uni-modal
alignment score in Section 3.1.
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A.3 PROOF OF PROPOSITION 3.1

We first characterize the stationary points of JMM defined in Equation (4), as the stationary conditions
lead to the optimal solution in the dual of the multi-modal problem. Note that the coupling across
modalities can be achieved by creating a common latent space (Houthuys et al., 2018; Tao et al.,
2024), i.e., by introducing the same latent variables α across all modalities in JMM. By taking the
partial derivatives of the weights w[v] and the latent variables α, the conditions of the stationary
points leading to MM scores are characterized by:

∂JMM

∂w[v]
= −

k∑
i=1

αix
[v]
i + w[v] = 0 =⇒ w[v] =

k∑
i=1

αix
[v]
i

∂JMM

∂αi
=

V∑
v=1

(
δ
[v]
i − (w[v])⊤x

[v]
i

)
− λαi = 0

⇒
V∑

v=1

δ
[v]
i −

V∑
v=1

(
k∑

j=1

αj (x
[v]
j )⊤x

[v]
i︸ ︷︷ ︸

K
[v]
ij

)
− λαi = 0

⇒
V∑

v=1

δ
[v]
i −

k∑
j=1

αj

V∑
v=1

K
[v]
ij − λαi = 0

⇒
V∑

v=1

δ
[v]
i −

k∑
j=1

αjKMMij − λαi = 0,where K
[v]
MMij

=

V∑
v=1

K
[v]
ij .

(12)

Define the multi-modal kernel matrix as KMM ∈ Rk×k with entries KMMij
=
∑V

v=1 K
[v]
ij , with

K
[v]
ij = (x

[v]
i )⊤x

[v]
j . The above conditions can be rewritten in matrix form as:

(KMM + λI)α = δ,

where δ ∈ Rk is the vector with entries δi =
∑V

v=1 δ
[v]
i with δ

[v]
i ∈ {0, 1} representing the existence

of the modality v of the domain i. The solution in the latent variable therefore is
α = (KMM + λI)−1δ.

We can compute the domain alignment score for each modality as S[v]
i = w[v]⊤x

[v]
i . For modality v,

at optimality:

w[v] =

k∑
j=1

αjx
[v]
j ⇒ S

[v]
i = w[v]⊤x

[v]
i =

k∑
j=1

αj(x
[v]
j )⊤x

[v]
i .

Substituting α = (KMM + λI)−1δ., it yields in matrix form:

S
[v]
i =

[
K [v](KMM + λI)−1δ

]
i
,

which is the multi-modal alignment score of domain i for modality v. The ensemble score of domain
i then considers all modalities as Si =

∑V
v=1 S

[v]
i .

B ADDITIONAL EXPERIMENTS

B.1 DIFFERENCE BETWEEN IMAGE AND TEXT MODALITIES

In the multi-modality training process, there are two main challenges from the data perspective: (i)
domains may have different modalities, and (ii) each domain’s data features may vary significantly as
captured by different modalities.

We take the LLaVA-OneVision dataset (LLaVA-OneVision-Data, 2024) as an example. The LLaVA-
OneVision dataset includes five domains along with two modalities, image and text. Four domains
include both image and text modalities, while the “Language” domain only has text. We visualize the
embedding similarity matrix for text and image modalities independently in Figure 4. It shows that
the domain kernels represented in different modalities, i.e., text and image, can vary considerably.
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(a) Text modality. (b) Image modality.

Figure 4: Embedding kernel similarity matrix for different modalities.

B.2 EXPERIMENTAL SETUP

We use the LLaVA-OneVision publicly available data (LLaVA-OneVision-Data, 2024) for training
and follow the domain segmentation in the LLaVA-OneVision paper (Li et al., 2024a).

Note that some training datasets used in (Li et al., 2024a) were not released and some datasets use
different naming conventions than (Li et al., 2024a). Our specific domain settings are:

• General: aokvqa (cauldron,llava_format) (Schwenk et al., 2022), clevr (cauldron,llava_format)
(Johnson et al., 2017), hateful_memes (cauldron,llava_format) (Kiela et al., 2020), im-
age_textualization (filtered) (Pi et al., 2024), iconqa (cauldron,llava_format) (Lu et al., 2021b),
IconQA (MathV360K) (Lu et al., 2021b), scienceqa (cauldron,llava_format) (Saikh et al., 2022),
scienceqa (nona_context) (Saikh et al., 2022), st_vqa (cauldron,llava_format) (Xia et al., 2023),
tallyqa (cauldron,llava_format) (Acharya et al., 2019), VisualWebInstruct (filtered) (Jia et al.,
2025), visual7w (cauldron,llava_format) (Zhu et al., 2016), vistext (cauldron) (Tang et al., 2023),
VizWiz (MathV360K) (Gurari et al., 2018), vqarad (cauldron,llava_format) (Lau et al., 2018),
vsr (cauldron,llava_format) (Liu et al., 2023a), websight (cauldron) (Laurençon et al., 2024),
allava_instruct_laion4v (Chen et al., 2024a), allava_instruct_vflan4v (Chen et al., 2024a), vision_flan
(filtered) (Xu et al., 2024b), intergps (cauldron,llava_format) (Lu et al., 2021a), llavar_gpt4_20k
(Zhang et al., 2023b), sharegpt4o (Chen et al., 2024b), sharegpt4v (coco) (Chen et al., 2024b),
sharegpt4v (knowledge) (Chen et al., 2024b), sharegpt4v (llava) (Chen et al., 2024b), sharegpt4v
(sam) (Chen et al., 2024b)
• Doc/Chart/Screen: ai2d (cauldron,llava_format) (Kembhavi et al., 2016), ai2d (gpt4v) (Kemb-
havi et al., 2016), ai2d (internvl) (Kembhavi et al., 2016), chart2text (cauldron) (Kantharaj et al.,
2022), chartqa (cauldron,llava_format) (Masry et al., 2022), diagram_image_to_text (cauldron),
dvqa (cauldron,llava_format) (Kafle et al., 2018), figureqa (cauldron,llava_format) (Kahou et al.,
2017), hitab (cauldron,llava_format) (Cheng et al., 2021), infographic_vqa (Mathew et al., 2022),
infographic_vqa_llava_format (Mathew et al., 2022), screen2words (cauldron) (Wang et al., 2021),
tqa (cauldron,llava_format) (Kembhavi et al., 2017), ureader_cap (Ye et al., 2023), ureader_ie (Ye
et al., 2023), robut_sqa (cauldron) (Ghosh et al., 2024), robut_wikisql (cauldron) (Ghosh et al., 2024),
robut_wtq (cauldron,llava_format) (Ghosh et al., 2024), visualmrc (cauldron) (Tanaka et al., 2021), in-
fographic (gpt4v) (Mathew et al., 2022), lrv_chart (Liu et al., 2023b), mapqa (cauldron,llava_format)
(Chang et al., 2022), multihiertt (cauldron) (Zhao et al., 2022)
• Math/Reasoning: CLEVR-Math (MathV360K) (Lindström & Abraham, 2022), FigureQA
(MathV360K) (Kahou et al., 2017), GEOS (MathV360K) (Seo et al., 2015), GeoQA+ (MathV360K)
(Anand et al., 2024), Geometry3K (MathV360K) (Lu et al., 2021a), MapQA (MathV360K) (Chang
et al., 2022), Super-CLEVR (MathV360K) (Li et al., 2023), TabMWP (MathV360K) (Lu et al.,
2022b), UniGeo (MathV360K) (Chen et al., 2022), geo170k (align) (Gao et al., 2023), geo170k (qa)
(Gao et al., 2023), geomverse (cauldron) (Kazemi et al., 2023), mavis_math_metagen (Zhang et al.,

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2024c), mavis_math_rule_geo (Zhang et al., 2024c), lrv_normal (filtered) (Liu et al., 2023b), geo3k
(Lu et al., 2021a), raven (cauldron) (Zhang et al., 2019), PMC-VQA (MathV360K) (Zhang et al.,
2023a), tabmwp (cauldron) (Lu et al., 2022b)
• General OCR: chrome_writting (Wendler & Gambot, 2023), hme100k (Yuan et al., 2022), iam
(cauldron) (Marti & Bunke, 2002), iiit5k (Mishra et al., 2012), k12_printing, rendered_text (cauldron)
(Wendler & Gambot, 2023), textcaps (Sidorov et al., 2020), textocr (gpt4v) (Singh et al., 2021), sroie,
orand_car_a
• Language: magpie_pro (l3_80b_mt), magpie_pro (l3_80b_st), magpie_pro (qwen2_72b_st) (Xu
et al., 2024a)
• Video: academic_qa, youtube (Zhang et al., 2024d), ActivityNetQA (Yu et al., 2019), NeXT-QA
Xiao et al. (2021), PerceptionTest (Pătrăucean et al., 2023)

B.3 EMBEDDING EXTRACTION AND DOMAIN WEIGHT ASSIGNMENT

For embedding computation, we use the pretrained LLaVA-OneVision model that has completed
stage-1.5 pre-training and we randomly sample a subset of data from each domain. Given the presence
of multiple datasets per domain, we extracted embeddings for 512 samples from each individual
dataset. These sample embeddings were then averaged to create a single representation for each
dataset. Subsequently, we averaged these dataset-level embeddings to capture the overall character
of its respective domain. Then, we use domain-level embeddings to compute domain weights.

Once we compute the domain weights pi using Algorithm 1, our training sampling strategy takes
dataset size into account as follows. We sample datasets proportionally to their size within each
domain, and then sample individual data points uniformly from the chosen dataset. This results in the
final sampling probability for a dataset DS in domain Di being P = |DS|

|Di| pi, followed by uniformly
sampling over instances in DS.

B.4 DOMAIN WEIGHTS FOR THE IMAGE-TEXT INSTRUCTION TUNING (SECTION 4.1)

We report domain weights for Section 4.1 with five domains and two modalities in Table 5. Note that
AVG = 1

2 (TEXT+IMAGE). IMAGE† sets its Language weight as same as HUMAN and reweight the
others in IMAGE.

Table 5: VLM Mixtures for the image-text instruction tuning. Domain weights of different mixing
strategies. IMAGE† sets its Language weight as same as HUMAN and reweight the others in IMAGE.

Domain UNI. HUMAN TEXT IMAGE AVG FUSED MMix IMAGE†

General 20.00 36.10 20.90 35.66 28.28 14.74 22.09 30.56
Doc/Chart/Screen 20.00 20.60 43.28 29.49 36.29 40.95 31.86 25.27
Math/Reasoning 20.00 20.10 15.24 17.92 16.58 20.21 16.63 15.36
General OCR 20.00 8.90 10.22 16.93 13.58 14.14 15.66 14.51
Language 20.00 14.30 10.35 0.00 5.18 9.95 13.76 14.30

B.5 PERFORMANCE OF DOMAIN WEIGHTS COMPUTED BY SINGLE MODALITY

We add two unimodal strategies, TEXT and IMAGE†, in Tables 6 and 7 as addition for Tables 1
and 2. These two unimodal methods compute the domain weights derived from single modality in
Section 3.1, based solely on text or image embeddings. Note that the Language domain does not
have image data, thus IMAGE has 0% on this domain. For a more reasonable comparison, we set its
Language domain weight to the same as HUMAN and reweight the others, finalizing to IMAGE† in
Table 5. Importantly, MMix still outperforms these unimodal strategies.
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Table 6: Comparison of data mixing strategies for LLaVA-0.5B image-text instruction tuning.
Results are reported as 0-shot accuracy across ten evaluation benchmarks. MMix achieves the best
average performance, including the single-modality methods.

Benchmark UNIFORM HUMAN AVG FUSED MMix TEXT IMAGE†

AI2D 42.78 43.75 45.50 44.59 43.52 45.95 44.33
DocVQA 42.90 42.66 42.44 42.67 42.92 43.08 42.42
InfoVQA 22.25 22.61 22.43 23.50 22.13 23.45 21.47
MathVerse 18.27 17.26 18.32 19.29 18.91 16.50 18.53
MMBench 36.34 40.21 39.86 37.71 42.44 35.82 39.00
MMStar 33.45 36.04 33.50 34.44 35.88 34.19 34.67
MMMU 30.00 29.67 29.00 29.22 29.78 27.89 30.67
ScienceQA 62.42 65.84 64.80 63.46 64.50 64.60 63.86
OCRBench 45.30 44.60 45.30 43.50 45.80 45.30 45.20
RealworldQA 46.27 44.05 45.49 45.36 46.54 45.36 46.67

Average 38.00 38.67 38.66 38.37 39.24 38.21 38.69
# over UNIFORM - 5/10 6/10 6/10 8/10 5/10 7/10

Table 7: Comparison of data mixing strategies for LLaVA-7B image-text instruction tuning.
Results are reported as 0-shot accuracy across ten evaluation benchmarks. MMix achieves the best
average performance, including single-modality methods.

Benchmark UNIFORM HUMAN AVG FUSED MMix TEXT IMAGE†

AI2D 74.48 74.03 75.10 75.74 75.58 75.42 75.58
DocVQA 57.91 58.64 58.28 57.29 58.32 58.73 57.86
InfoVQA 34.76 35.91 36.95 36.06 36.23 36.83 36.22
MathVerse 29.31 26.85 27.33 28.68 28.55 26.14 27.83
MMBench 75.69 76.12 76.23 75.77 75.74 75.60 76.98
MMStar 49.04 50.26 50.44 49.46 50.19 49.51 50.72
MMMU 46.33 46.78 46.78 46.78 46.89 47.11 45.67
ScienceQA 87.31 90.38 89.53 85.52 90.23 86.91 90.08
OCRBench 56.80 57.30 56.70 56.60 57.90 57.70 57.50
RealworldQA 58.17 57.91 56.99 57.65 57.47 57.65 57.39

Average 56.98 57.42 57.43 56.96 57.71 57.16 57.59
# over UNIFORM - 7/10 7/10 5/10 8/10 6/10 6/10

B.6 ABLATION STUDIES

Regularization parameter λ. The parameter λ is related to the degree of regularization. Despite
this control, Table 8 demonstrates that our obtained domain weights are largely stable with respect to
changes in λ.

Number of samples for embedding extraction. As we discussed in Appendix B.3, we sample a
subset of datasets for embedding extraction. We test the robustness of domain weights with respect
to the number of samples. The domain weights based on 256, 512, or 1024 samples from each
individual dataset are reported in Table 8, which confirms that the domain weights obtained are stable
regardless of the number of samples.

Embedding aggregation. Except for averaging the dataset-level averaged embeddings to represent
each domain, another way is to aggregate dataset-level embeddings to domain embeddings according
to their dataset sizes. Basically, sum the dataset-level embeddings reweighted by their sizes as domain
weights. The domain weights computed by these two strategies are highly similar, as reported in
Table 8.
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Number of domains. We run additional experiments with a reduced number of domains. We
exclude ’General’ from the original five domains, and the new domain weights obtained by MMix
are: 26.7% Doc/Chart/Screen, 28.7% Math/Reasoning, 31.6% General OCR, and 13.0% Language.
The domain weights of UNIFORM are 25% per domain. Table 9 demonstrates that MMix consistently
shows a higher average accuracy. This validates the robustness of our method across different
numbers of domains. Furthermore, the experiment in Section 4.2, which introduces a Video domain,
demonstrates that MMix remains effective as the number of domains changes.

Table 8: Domain weights across λ values, and number of samples. We observe that our method is
robust to the choice of λ, the number of samples used, and two embedding aggregation methods.

Domain λ Values Number of Samples Aggregate embeddings
1 10 100 256 512 1024 Equally Dataset sizes

General 21.57 22.09 23.14 24.48 22.09 23.96 22.09 23.20
Doc/Chart/Screen 28.90 31.86 34.79 27.32 31.86 30.84 31.86 30.98
Math/Reasoning 17.47 16.63 15.95 18.71 16.63 17.32 16.63 17.80
General OCR 16.74 15.66 14.49 16.72 15.66 17.04 15.66 16.91
Language 15.32 13.76 11.64 12.77 13.76 10.84 13.76 11.11

Table 9: Comparison of data mixtures on 4 domains for LLaVA-0.5B image-text instruction
tuning. MMix is robust across different numbers of domains.

Benchmark UNIFORM MMix
AI2D 42.75 43.75
DocVQA 40.79 41.71
InfoVQA 22.89 22.96
MathVerse 17.51 18.27
MMBench 30.76 33.59
MMStar 35.68 33.24
MMMU 28.89 31.78
ScienceQA 53.99 54.09
OCRBench 43.30 44.70
RealworldQA 38.30 42.88

Average 35.48 36.69
Number over UNIFORM - 9/10

B.7 DOMAIN WEIGHTS FOR VIDEO-IMAGE-TEXT INSTRUCTION TUNING (SECTION 4.2)

We report domain weights for Section 4.2 with six domains and three modalities in Table 10. Note
that AVG = 1

3 (TEXT+IMAGE+VIDEO).

Table 10: VLM Mixtures. Domain weights across different mixing strategies for three modalities.

Domain UNIFORM TEXT IMAGE VIDEO AVG FUSED MMix
General 16.67 16.62 35.66 0.00 17.43 10.77 24.66
Doc/Chart/Screen 16.67 14.42 29.49 0.00 16.70 13.20 14.74
Math/Reasoning 16.67 30.73 17.92 0.00 16.22 9.44 16.65
General OCR 16.67 9.27 16.93 0.00 8.73 38.60 17.55
Language 16.67 13.89 0.00 0.00 4.63 16.73 5.91
Video 16.67 15.08 0.00 100.00 38.36 11.26 20.49

B.8 TABLE 4 WITH STANDARD DEVIATIONS

We show the results with standard deviations of Table 4 in Tables 11 and 12.
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Table 11: Comparison of data mixtures for LLaVA-0.5B video-image-text instruction tuning.

Benchmark UNIFORM AVG FUSED MMix
AI2D 41.68±0.08 42.81±0.09 42.84±0.10 42.88±0.04

DocVQA 42.20±0.06 41.68±0.05 41.29±0.06 42.54±0.08

InfoVQA 21.65±0.07 21.97±0.06 21.17±0.08 22.40±0.10

MathVerse 15.61±0.10 15.62±0.14 17.77±0.11 15.10±0.08

MMBench 34.36±0.02 26.80±0.03 35.14±0.06 34.45±0.04

MMStar 30.43±0.05 35.54±0.08 36.14±0.06 33.97±0.04

MMMU 30.00±0.15 29.78±0.09 30.44±0.13 29.78±0.11

ScienceQA 60.29±0.11 60.29±0.10 59.40±0.12 61.03±0.09

OCRBench 45.30±0.12 43.20±0.07 46.60±0.08 45.00±0.15

RealworldQA 47.19±0.18 46.41±0.16 46.27±0.12 47.32±0.10

Video-MMMU 13.78±0.08 13.78±0.04 12.78±0.10 13.84±0.06

MVBench 36.67±0.06 36.50±0.10 37.02±0.10 40.70±0.12

Average 34.93±0.10 34.53±0.09 34.74±0.10 35.75±0.09

Number over UNIFORM - 4/12 7/12 9/12

Table 12: Comparison of data mixtures for LLaVA-7B video-image-text instruction tuning.

Benchmark UNIFORM AVG FUSED MMix
AI2D 71.83±0.03 72.41±0.08 72.83±0.06 72.15±0.06

DocVQA 56.47±0.04 56.42±0.06 55.67±0.08 57.51±0.10

InfoVQA 35.74±0.12 34.65±0.10 34.40±0.07 35.89±0.06

MathVerse 25.63±0.11 25.52±0.12 24.75±0.08 26.40±0.14

MMBench 71.05±0.03 75.52±0.06 73.28±0.04 74.57±0.05

MMStar 48.18±0.08 49.03±0.06 46.55±0.04 48.79±0.07

MMMU 45.67±0.14 45.11±0.10 44.78±0.12 45.56±0.13

ScienceQA 83.44±0.04 86.07±0.13 83.29±0.10 87.26±0.08

OCRBench 56.50±0.11 56.90±0.08 57.60±0.09 57.20±0.14

RealworldQA 57.91±0.16 56.99±0.15 59.22±0.08 57.39±0.09

Video-MMMU 29.78±0.07 30.56±0.05 29.11±0.08 30.33±0.06

MVBench 52.73±0.08 51.58±0.12 53.12±0.07 53.60±0.11

Average 52.91±0.09 53.39±0.10 52.88±0.08 54.40±0.10

Number over UNIFORM - 6/12 5/12 10/12

C FURTHER COMPARISONS WITH RELATED WORKS

Data mixing in LMs. Finding a high-quality data composition for LM pretraining is crucial for
improved performance. Domain reweighting improves LM downstream performance by rebalancing
data contributions from different sources (Brown et al., 2020; Touvron et al., 2023; Blakeney et al.,
2024), but manual data mixing is not scalable and may lead to suboptimal domain weights (Albalak
et al., 2024; Jiang et al., 2024; Aryabumi et al., 2024). Therefore, some works in the LM field explore
the data mixing problems. DoReMi (Xie et al., 2023) employs a small proxy model to redistribute
weights across various domains using Group DRO (Sagawa et al., 2020), thereby enhancing the
training effectiveness of large base models. Group DRO was also used in (Thudi & Maddison, 2025).
DoGE (Fan et al., 2024b;a) employs approximate bilevel optimization to train proxy models for
domain weight determination. Recently, (Liu et al., 2024c) employs linear regression models to
approximate validation loss across diverse data mixtures by training a large number of very small
proxy models. Chen et al. (2024d) create a more general framework with the above methods as
specific instantiations. Nevertheless, proxy-based methods necessitate algorithmic modifications in
the training procedure, incurring supplementary proxy computational expenditure when multiple
training stages are required, as is the case in VLMs. Moreover, these approaches are limited to small
proxy models, which may not be feasible within the context of VLMs with both vision and language
models. Other approaches focus on optimizing certain skills, e.g., Chen et al. (2023) introduced a
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skills-oriented framework for modulation of data mixtures during model training. Thudi et al. (2025)
use proxy models in a bilevel optimization framework to optimize the data mixture with downstream
data samples. Held et al. (2025) propose mixing by estimating influence on downstream performance
from each domain and assuming a linear model for the mixture weights. Another line of works
featurize the datasets by deriving a compact domain representation, e.g., through clustering Zhang
et al. (2025) or pooling Xie et al. (2025). The domain featureizations are then used to optimize dataset
compositions, i.e., deciding weights to assign to the components of a combined dataset, through,
e.g., correlation with validation set performance (Zhang et al., 2025) or through leverage scores (Xie
et al., 2025). Drawing inspiration from scaling law research (Kaplan et al., 2020; Hoffmann et al.,
2022), Data Mixing Laws (Ye et al., 2024) characterize the relationship between mixtures through
exponential formulations, with other data mixture scaling laws proposed in (Que et al., 2024; Gu
et al., 2024; Jiang et al., 2024; Kang et al., 2024). Overall, these works have shown that choosing the
right data mixture in LMs can boost performance significantly in terms of perplexity and downstream
tasks’ accuracy. However, these works are limited to LMs and do not consider the challenges posed
by VLMs, which require a more complex data mixture strategy due to, e.g., the multimodal nature of
the data, missing modalities, and different training pipelines.

Leverage score mixing. Our unimodal scores measure the alignment of each domain w.r.t. the
weight vector w optimally aligned with the entire distribution, formulated through an alignment
maximization task (1). Other common related learning tasks include ridge leverage scores (RLS).
RLS measures the uniqueness of each data point through a weighted norm of the rows of the
eigenvector matrix of the covariance. Specifically, RLS aims to find a vector w being orthogonal
to all data points except xi. It can be formulated as regression for each domain i separately with
error variables ej = γj − w⊤xj , with γj = 1 if j = i, 0 otherwise . Xie et al. (2025) assign
higher weights to domains with lower RLS, thus employing inverse RLS as a proxy for dominant
directions. In our scores, we formulate (1) that seeks w exhibiting alignment with the entire collection
of domain embeddings. This is achieved by assigning a uniform target value of 1 for all domains, i.e.,
ei = 1− w⊤xi. Our scores thus have a different objective, which can be analyzed in the following
perspectives. (i) Our resulting alignment score directly quantifies domain relevance, allowing for
direct reweighting without inversion. This foundational difference in objective allows for a more
natural and direct measure of alignment to the data domains. (ii) Our work aims to capture multi-
modal couplings in the data domains. Our new direct formulation (1) facilitates the construction
of the multi-modal objective. By introducing shared latent variables αi via the Fenchel-Young
inequality (2), we achieve principled coupling across multiple modalities in the dual formulation,
whereas Xie et al. (2025) cannot easily achieve such extension through the inverse RLS.

Data strategies for VLMs. Data mixtures in VLMs are typically hand-picked by the model
developers based on intuition or large grid searches, and no systematic approach is used to select the
training data mixture. Qwen-VL (Bai et al., 2023b) employs a three-stage training pipeline utilizing
a multilingual and multimodal corpus. The pre-training data is task-specific, e.g., captioning and
OCR data. In the instruction tuning stage, they combine multi-modal and text-only dialogue to
mantain language capabilities performance. LLaVA (Liu et al., 2023c; Li et al., 2024a; Liu et al.,
2024a) additionally integrates LLM-generated instruction-following data with visual inputs. They
openly release the LLaVA-OneVision (Li et al., 2024a) datasets as collections of domain-specific data,
which we use in our experiments. Bunny (He et al., 2024) emphasizes the importance of high-quality
data curation. Their approach focuses on finding coresets of the training dataset to improve model
performance by removing uninformative image-text pairs. SAIL-VL (Dong et al., 2025) constructs a
high-quality dataset through recaptioning via existing frontier VLMs. This curated dataset facilitates
effective pretraining and fine-tuning of VLMs across various scales. Previous data selection works
on CLIP training include, e.g., CiT (Xu et al., 2023), which proposes a dynamic data curation
method coupling a data objective into the learning process by measuring the similarity between text
embeddings and task-specific metadata; and, SIEVE (Mahmoud et al., 2024), which introduces a
dataset pruning technique using synthetic captions generated by image-captioning models, allowing
to identify and remove noisy or misaligned samples, enhancing dataset quality. Data strategies
for VLMs have also been studied, e.g., data cleaning, toxicity removal, deduplication; see (Bai
et al., 2024) for a comprehensive survey. DataComp (Gadre et al., 2023) deals with data filtering.
Infinity-MM (Gu et al., 2025) investigates the scaling of multimodal models by increasing both model
capacity and training data volume. W.r.t. integrating multiple modalities more in general, this is a
long-standing challenge in machine learning (Baltrušaitis et al., 2019; Huang et al., 2023; Li et al.,
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2024c). Simple fusion methods, such as early fusion via concatenation (Barnum et al., 2020) or late
fusion by ensembling (Boulahia et al., 2021; Li & Tang, 2024), are often used. Another strategy
is to learn a shared latent space where modalities are mapped to, enabling tasks like cross-modal
retrieval (Liu et al., 2023c; Zhu et al., 2023), using contrastive learning (Radford et al., 2021; Alayrac
et al., 2022) or duality (Houthuys et al., 2018; Tao et al., 2024). Other methods utilize attention to
represent interaction between modality-specific encoders (Lu et al., 2019; Cai et al., 2024). Overall,
the composition of training data is crucial for the performance of VLMs. To avoid reliance on
expensive iterative performance measurements, our work introduces a method that can automatically
assign appropriate resampling weights to each multi-modal domain of VLM training data.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilize LLMs to assist in the preparation of this manuscript. The use of these tools was strictly
limited to improving grammar, refining phrasing, and ensuring overall readability. The scientific
contributions, including all ideas, methodologies, and analyses, are entirely our own.
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