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ABSTRACT

Inspired by the tremendous success of self-attention mechanism in natural lan-
guage processing, the Vision Transformer (ViT) creatively applies it to image
patch sequences and achieves incredible performance. However, ViT brings about
feature redundancy and low utilization of model capacity. To address this problem,
we propose a novel and effective method named Orthogonal Vision Transformer
(O-ViT), to optimize ViT from the geometric perspective. O-ViT limits parame-
ters of self-attention blocks to reside on the orthogonal manifold, which can reduce
the similarity between trainable parameters and construct a higher degree of dis-
tinction between features. Moreover, O-ViT achieves both orthogonal constraints
and negligible optimization overhead by adopting a surjective mapping between
the orthogonal group and its Lie algebra. Comparative experiments on various im-
age recognition tasks demonstrate the validity of O-ViT. The experimental results
show that O-ViT can boost the performance of ViT by up to 6.4%.

1 INTRODUCTION

Recent years have witnessed Vision Transformer (ViT) taking over Convolution Neural Network
(CNN) and achieving dramatic success in computer vision, such as image classification Touvron
et al. (2021a); Yuan et al. (2021). ViT benefits from transferring the self-attention mechanism
Vaswani et al. (2017) from language sequences to vision tasks to learn the internal characteristics of
image patch sequences Kolesnikov et al. (2021). CNN kernels have a local view, which needs to be
expanded layer by layer. By comparison, the self-attention mechanism allows ViT to obtain global
features even in shallow layers Kolesnikov et al. (2021). Nonetheless, linear transformations (e.g.,
generations of query, key and value matrices) in the self-attention of ViT bring about feature redun-
dancy and exploding or vanishing outputs, which restricts ViT to find the optimal solution or slower
its optimization. On the one hand, the redundancy of learned features is related to the similarity
between row or column vectors of trainable parameters. On the other hand, if the linear transforma-
tion expands or shrinks the norm of input vectors, the final output of ViT may be too “inflated” or
“degraded”, since there is a nest of full connection layers on top of self-attention blocks.

This motivates us to explore the optimization of ViT on the orthogonal manifold, where parameters
are less redundant and can learn more discriminative features Wu et al. (2021b). To achieve this
goal, we put forward a novel method named Orthogonal Vision Transformer (O-ViT). Each Matrix
A that resides on the orthogonal manifold satisfies ATA = AAT = E Wang et al. (2020), where E
is an identity matrix. On the one hand, the orthogonal coefficient matrix of linear transformations
has mutually orthogonal row or column vectors, which have low similarity and can learn essential
features, further alleviating over fitting and improving generalization ability. There has been work
to use orthogonality to realize dimension reduction and feature selection Wu et al. (2021b). On the
other hand, given that ∥AX∥ = (AX)T (AX) = XTATAX = ∥X∥, orthogonal transformations
can maintain the length of input vector, mitigating exploding or vanishing final outputs. Compared
with layer normalization, it is more intuitive to keep vector norm unchanged at early stages of train-
ing from a geometric view. The norm keeping property can also alleviate explosion and vanishing
gradients in the rectified linear unit (ReLU) function Arjovsky et al. (2016). Furthermore, rounding
error will accumulate in the forward calculation of ViT, since parameters are stored in decimal form.
On account of eigenvalues with length ∥ · ∥ of absolute 1, orthogonal transformations are insensitive
to rounding error and have numerical stability Lahlou & Oppenheim (2016). Moreover, orthogonal
manifold reduces the dimension of solution space, leading to a faster convergence speed.
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Optimizing on the manifold Smith (1994) has achieved impressive performance in deep learning
Wang et al. (2020); Arjovsky et al. (2016). For instance, Huang & Gool (2017); Huang et al. (2018)
utilize geometry constraints to construct analogous-convolution architecture. Moreover, orthogonal
parameterization is proved to reduce filter similarities, preserve energy Wang et al. (2020), make
spectra uniform Zhou et al. (2008), and stabilize the activation distribution in different network
layers Rodrı́guez et al. (2017). Furthermore, orthogonal initializations of parameters can yield depth-
independent learning times Saxe et al. (2014). However, there is few work to conduct orthogonal
optimization in ViT, and this paper aims to bridge the gap between ViT and geometry optimization.

The gradient backpropagation is difficult in geometry optimization Smith (1994), since updating
trainable parameters along the manifold involves extensive orthogonal projection and retraction op-
eration calculation Bronstein et al. (2021). We pay attention to a surjective mapping between the
orthogonal group and its Lie algebra, allowing O-ViT to transform computation-expensive geometry
optimization into a general optimization problem in Euclidean space. Another way to achieve cheap
optimization is to substitute a hard orthogonal regularizer for optimizing on the manifold, which
has been widely used in orthogonal CNN and RNN Wang et al. (2020). They use ∥ATA − E∥2F
as a penalty term of the main task. Even an earlier practise of orthogonal ViT used the above or-
thogonal regularizers Zhang et al. (2021). Our approach does not adopt hard or soft orthogonal
regularizers (λ∥ATA − E∥2F , λ is a hyperparameter) due to the following issues: i) training cost
of imposing penalty term for a trade-off is high; ii) a trade-off may fail to converge to an optimal
point that satisfies both main task and orthogonal regularization; and iii) the result of soft orthogonal
regularizers partly depends on the hyperparameter λ, which is unreliable. Compared with hard or
soft-orthogonality, our approach based on direct parameterization is clearer and more concise.

This paper makes the following three major contributions:

1. We propose a novel method named O-ViT to restrict space-projection parameters in self-
attention to be on the orthogonal manifold and aggregate multiple orthogonal self-attention
blocks, which is the first to improve ViT in a geometric optimization way.

2. O-ViT can pull the geometric optimization back to Euclidean optimization. As a result,
O-ViT can be optimized by general gradient descent optimizers, which avoids complex or-
thogonal projection and retraction. Moreover, O-ViT uses no hard orthogonality constraint.

3. We conduct comparative experiments between O-ViT and ViT on well-known datasets,
which demonstrate the superiority of O-ViT over other existing ViTs.

This rest of this paper is organized as follows. After Section 2 introduces the background, Section 3
details the framework and parameterization strategy of O-ViT. Section 4 presents experimental re-
sults to show the superiority of O-ViT. Finally, Section 5 concludes the paper.

2 BACKGROUND

The proposed O-ViT combines ViT and the optimization on manifold for deep learning.

2.1 VISION TRANSFORMER (VIT)

Based on the assumption of translation invariance Touvron et al. (2021b); Kayhan & van Gemert
(2020), CNN shares and translates one convolution kernel filter to extract local features at different
positions in one channel. To get rid of CNN, ViT takes advantage of the self-attention mechanism,
the essence of which is represented as

Q,K, V = XWQ, XWK , XWV ,

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,
(1)

where X is input feature. WQ, WK , and WV are trainable matrices applied to X to generate query
matrix Q, key matrix K, and value matrix V . dk is the dimension of K. The self-attention block
measures the correlation between different projection spaces (Q and K), and the normalized corre-
lation is applied to V as an attention map. ViT first embeds the input image into fixed-size patches
and then embeds their positional information named Patch Embedding and Positional Embedding
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Fayyaz et al. (2021). Then, the scaled dot-product self-attention mechanism, which is served as an
encoder, is applied to the above embedding. Equation (1) is also called single-head self-attention,
which can be improved by multi-head ones Yan et al. (2019), i.e.,

head(h) = Attention(Q(h),K(h), V (h))

MultiHead(X) = [head(1); · · · ;head(n)]WO,
(2)

where n is the number of heads, h is the head index, and [head(1); · · · ;head(n)] means concatenat-
ing n heads in the last dimension. Let d = n× dk, WO is a learnable parameter of size Rd×d.

ViT can be interpreted by a biologically plausible memory model named Sparse Distributed Memory
(SDM) Bricken & Pehlevan (2021). The intersection of hyperspheres adopted by read operations in
SDM can approximate the softmax function in ViT. Although it has no relation with orthogonality,
such geometry interpretation inspires us to rethink ViT from a geometric view. There are various
variants of ViT, such as deeper ViTs Touvron et al. (2021b); Zhou et al. (2021), compact transformers
Wu et al. (2021a), cross transformers processing image at different scales Chen et al. (2021), and
twin transformers mixing local and global attention Chu et al. (2021). Orthogonal parameterization
does not conflict with the above variants and can be applied to them as a convenient plug-and-play.

2.2 OPTIMIZATION ON MANIFOLD FOR DEEP LEARNING

Let Hn indicate the half space defined by x1 ≥ 0 in n-dimensional Euclidean space Rn. Hausdorff
space M is called n-dimensional topological manifold when each point p has an open neighborhood
U(p) homeomorphic with Rn or Hn. There are two steps in optimization on manifolds: orthogonal
projection and retraction operation Bronstein et al. (2021). As shown in Figure 1, on a manifold
M, f(θ) descents steepest in the direction of H, which is opposite to the direction of Riemannian
gradient grad f(θ) Hawe (2013). grad f(θ) can be obtained by orthogonal projection Π, which
projects the gradient at a point θ from ambient Euclidean space to tangent space TθM:

grad f(θ) = ΠTθM(∇f(θ)), (3)

where ∇f(θ) represents the Euclidean gradient. The smooth red curve in Figure 1 denotes a
geodesic Γθ(γH) in the direction of H with a step size γ. The geometric optimization requires
to update point θ to point θ′ along the curve Γθ(γH), in an opposite direction of grad f(θ). Due to
high complexity, the geodesic is approximated by the retraction Rθ(γH) : TθM→M in practice
Kumar et al. (2018), mapping updated parameters from the tangent space back to the manifold.

Figure 1: Update θ to θ′ on a smooth manifold

3 OUR PROPOSED METHOD

We pay attention to the invariant metric inherited by orthogonal matrices and creatively restrict
linear transformation matrices of self-attention in ViT to reside on the orthogonal manifold. We also
explore a computationally economic way to parameterize them. We first briefly describe O-ViT’s
architecture in Section 3.1. Then we introduce O-ViT’s orthogonality technique in Section 3.2 and
explain theoretical advantages that support its efficiency in optimization in Section 3.3.

3.1 O-VIT ARCHITECTURE

O-ViT architecture differs from other ViTs in the design of the self-attention block. Given the input
X , O-ViT defines an orthogonal self-attention block as

Q,K, V = X h(AQ), X h(AK), X h(AV ), (4)
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where AQ, AK and AV are all skew-symmetric matrices Lee (2005), and they can be extended
to skew-Hermitian matrices in case of unitary constraints. Algorithm 1 and Algorithm 2 present
the orthogonalization performed over self-attention block. Algorithm 1 demonstrates three possi-
ble strategies of orthogonal parameterization (e.g., Skew Symmetric Transited Orthogonalization
(“SSTO”), “Exp” and “Cayley”). Lines 1-2 shows the “Exp” orthogonalization that utilizes the Lie
exponential mapping on matrix Lie groups, i.e., exp(W ) := E + W + W 2

2 + · · · . Our “SSTO”
orthogonalization adopts a two-step strategy. Firstly, line 4 transforms an arbitrary weight matrix
to a skew-symmetric one. Then line 5 employs h(W ) = 2(E + W )−1 − E to map it to the
orthogonal group. There is a special relationship between skew-symmetric and orthogonal matri-
ces, therefore, we use skew-symmetric matrices as a transition to realize orthogonal constraints.
It will be detailed in the following subsection. Lines 6-7 present the “Cayley” orthogonalization,
[(E + W

2 )(E − W
2 )]−1, which is a first order approximation of the Riemannian exponential map-

ping. As seen in the Algorithm 2, the query, key, and value weight matrices are imposed orthogonal
parameterization (refer to lines 1-3) before projecting input feature X to corresponding query, key
and value spaces (refer to line 4) and calculating the attention map (refer to line 5).

Algorithm 1 Parameterization
Input: W, orthType
Output: W

1: if orthType == “Exp” then
2: W = matrix exponential(W ) = Σ∞

k=0
Wk

W !
3: else if orthType == “SSTO” then
4: W = W −WT

5: W = 2(E +W )−1 − E
6: else if orthType == “Cayley” then
7: W = [(E + W

2 )(E − W
2 )]−1

8: end if
9: return W

Algorithm 2 Orth Self Attention
Input: X, orthType
Parameter: WQ,WK ,WV

Output: attn
1: WQ = Parameterization(WQ, orthType)
2: WK = Parameterization(WK , orthType)
3: WV = Parameterization(WV , orthType)
4: Q,K, V = XWQ, XWK , XWV

5: attn = softmax(QKT

√
dk

)V

6: return attn

Furthermore, Algorithm 3 presents our architectural innovation for self-attention block, i.e., our
MultiOrth self-attention block introduces an aggregation layer to synthesize the attention driven by
multiple orthogonal parameterization strategies. “X” and “attn” represent the input and output of
MultiOrth self-attention block, respectively. “orthoType” indicates the orthogonal implementation
type of the aggregation layer, whose value is in the set {“Cayley”, “SSTO”, “Exp”}. Lines 1-3
reveal that all of three orthogonalization strategies are adopted. The basis of orthogonal parameter
space formed by different orthogonalization strategies are different, learning differing components
of the attention map. To comprehensively accept the different attention value, this paper applies a
linear layer as an aggregator on top of the concatenation of them (refer to lines 4-6 and line 10).
Along with training, elements of the linear layer will converge to weight or vote for three orthogonal
self-attention blocks appropriately. Furthermore, we can even restrict parameters of aggregation
layer to reside on the orthogonal manifold (refer to lines 7-9), when countering complex variants of
ViT that may exacerbate feature redundancy. Note that the parameterization in Algorithm 2 is not
an initialization. It will be executed in every forward epoch of the orthogonal self-attention block.

4



Under review as a conference paper at ICLR 2023

Algorithm 3 MultiOrth Self Attention
Input: X, orthType
Output: attn

1: attnExp = Orth Self Attention(X, “Exp”)
2: attnSSTO = Orth Self Attention(X, “SSTO”)
3: attnCayley = Orth Self Attention(X, “Cayley”)
4: attnConcat = [attnExp: attnSSTO: attnCayley]
5: n = attnConcat.last dimension
6: Aggregator = Linear Layer(input dim = n, output dim = 1

3n)
7: if orthType != null and orthType in [“Exp”, “SSTO”, “Cayley”] then
8: Aggregator.weight

= Parameterization(Aggregator.weight, orthType)
9: end if

10: attn = Aggregator(attnConcat)
11: return attn

3.2 ORTHOGONAL PARAMETERIZATION

O-ViT employs skew-symmetric matrices Casado & Martı́nez-Rubio (2019) as a transition to re-
alize orthogonal constraints. The Lie algebras of special orthogonal group Casado & Martı́nez-
Rubio (2019) and unitary group are Casado & Martı́nez-Rubio (2019) skew-symmetric and skew-
Hermitian matrices. They are isomorphic to a vector space Casado & Martı́nez-Rubio (2019). Any
real square matrix A ∈ Rn×n can be mapped into a skew-symmetric matrix by A− AT , given that
(A − AT ) + (A − AT )T = 0. In the same token, any complex square matrix A ∈ Cn×n can be
transformed into a skew-Hermitian matrix.

In the Lie group theory, the exponential mapping exp : g → G Casado & Martı́nez-Rubio (2019)
builds correspondence between skew-symmetric matrices so(n) and its Lie Group O(n). Though
the mapping exp(X) := Σ∞

k=0
Xk

k! is not surjective in general, compact Lie groups are one of special
families in which the exponential mapping is surjective. However, it is computationally expensive,
and the huge number produced by the exponent may induce gradient vanishing problems in the soft-
max function. As an alternative solution, Cayley method is the first order approximation. Moreover,
this paper focuses on the advantages of orthogonality over ViT models. In order to fully demon-
strate the merits of the orthogonality over ViT, various kinds of orthogonalization implementations
are necessary to be investigated. As a supplement, we use the map h : g → G, h := 2(E+X)−1−E
Hsu (1953) to project any skew-symmetric matrix X ∈ Rn×n to the orthogonal group and name the
above projection as “SSTO”. Moreover, the equation h(X) = 2(E + X)−1 − E is a surjective
mapping between the orthogonal group and its Lie algebra Hsu (1953) . For any Y ∈ O(n), there
exists an skew-symmetric matrix X that satisfies h(X) = Y .
Proof. h(X)hT (X) = [2(E+X)−1−E][2(E+X)−1−E]T = [2(E+X)−1− (E+X)−1(E+
X)][2(E +X)−1 − (E +X)−1(E +X)]T = (E +X)−1(E +X) = E.

∀Y ∈ O(n), we have X = 2(E + Y )−1−E Hsu (1953) satisfies: h(X) = h(2(E + Y )−1−E) =
2[E + [2(E + Y )−1 − E]]−1 − E = Y .

3.3 FROM RIEMANNIAN TO EUCLIDEAN OPTIMIZATION

Manifold optimization belongs to the domain of constrained optimization Kotary et al. (2021), there-
fore, the constraint indicated by specific Riemannian manifold should be satisfied in the minimiza-
tion of the optimization objective. To achieve this, the optimal solution must be searched on Rie-
mannian manifolds rather than Euclidean space, which requires orthogonal projection and retraction
operation. The above steps do not exist in Euclidean optimization, which makes general optimizers
useless in geometric optimization. To address this problem, Kumar et al. (2018) introduced con-
straint Stochastic Gradient Descent-Momentum (SGD-M) and constraint Root Mean Square Prop
(RMSProp) as a counterpart of regular optimizers in Euclidean space. However, considering that
it is an expensive computation overhead to operate orthogonal projection and retraction, O-ViT
chooses to avoid them rather than adapt to them. Our O-ViT’s parameterization has the following
properties that helps it gain the above goal and become a sensible option for geometry optimization.
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The optimization of O-ViT can be transformed into an optimization problem in Euclidean space. Let
θB represent the trainable parameter subjected to the orthogonal group, the constrained optimization
problem defined as follows

min
θB∈G

f(x; θB) (5)

is equivalent to following optimization problem, i.e.,

min
θA∈g

f(x; θA), (6)

where θA is a skew-symmetric matrix. Evidently, an optimal solution θ̂B for Equation (5) and an
optimal solution θ̂A for Equation (6) have an equivalent relationship that θ̂B = h(θ̂A), since the
map h : g → G introduced in Section 3.2 is surjective. Therefore, if the second problem has a
solution, then we will definitely find a solution to the first problem. As a result, our O-ViT can
be optimized with Euclidean optimizers. Since the skew-symmetric matrix space is isomorphic
to a vector space, Equation (6) is actually a non-constrained problem. As described in Figure 1,
∆θB = −γ grad f(x; θB) is on the tangent space TθBM , rather than along the geodesic curve
Hawe (2013). Therefore, a retraction Rθ(∆θB) from tangent space to manifold is needed, and θB
should be updated by θBRθ(∆θB) rather than θB +∆θB , i.e.,

θ′B ← θBRθ(−γ grad f(x; θB)). (7)

Moreover, the mapping θ̂B = h(θ̂A) induces the following iteration of trainable parameter θA

h(θ′A)← h(θA − γ∇(f ◦ h)(x; θA)), (8)

where the gradient ∇(f ◦ h) is defined in Euclidean space, making trainable parameters of Equa-
tion (6) updated in Euclidean space. As a consequence, traditional gradient descent optimizers such
as ADAM can be directly used to optimize the orthogonality-constrained O-ViT. Furthermore, our
O-ViT does not create saddle points. Saddle points are unstable fixed points of the gradient descent
optimization algorithm and are difficult to reach on the orthogonal manifold Absil et al. (2008).
h(X) = 2(E + X)−1 − E constructs a one-to-one correspondence between the skew-symmetric
matrices and the orthogonal group. Provided that the optimization problem stays in its tangent space
o(n), the parameter update is unique. It implies that our parameterization avoids saddle points.

4 EXPERIMENTS

To evaluate the efficiency of our proposed O-ViT, we conducted comparative experiments between
O-ViT and ViT on different datasets. We assessed the performance of O-ViT in three aspects: i)
under same conditions, the recognition accuracy of O-ViT is higher than ViT and the convergence
of the O-ViT is faster, ii) O-ViT withstands the disturbance of noise better than ViT, and iii) O-ViT
can reduce the numbers of parameters while ensuring a credible accuracy.

We used three benchmarks: BaseViT, DeepViT, and CaiT, whose license is MIT license. BaseViT
means the most original and fundamental ViT. DeepViT Zhou et al. (2021), and CaiT Touvron et al.
(2021b) are variants of BaseViT, therefore, we used them as a supplement to the original ViT. We
are the first to use exponential mapping (Exp) Lezcano-Casado (2019) on ViT. ViTs orthogonalized
by exponential mapping, skew symmetric transited orthogonalization, and cayley strategies can be
collectively referred to as Exp-ViTs (e.g., Exp-BaseViT, Exp-DeepViT, and Exp-CaiT), SSTO-ViTs,
and Cayley-ViTs. All of the above ViTs belong to O-ViT, and can be referred to as SingleOrth-ViT.

We implemented our O-ViT on top of the deep learning framework PyTorch. Unless otherwise
stated, the reported results were measured in Top-1 Accuracy, and we did not take the Top-5 Accu-
racy into consideration. We set the same cropped size 32×32 for input data (except for the ImageNet
dataset cropped into a size of 224× 224) and the same hyper-parameters for the neural network for
the fair comparison in one control group. We employed a standard data augmentation strategy: ran-
dom rotation, crop, and horizontal flip. We used AdaGrad as the optimizer. The learning rate was set
as 5.0× 10−3 initially, whose value would be dynamically adjusted during training. We set weight
decay and momentum as 7.0× 10−4 and 0.9, respectively. We performed experiments on PCs with
a single Nvidia GTX 3090 GPU.
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TABLE 1: TOP1-ACCURACY COMPARISON OF RECOGNITION PROBLEMS

Method SVHN YaleB CIFAR10 CIFAR100 Caltech101 ImageNet50
BaseViT 94.65% 95.94% 82.79% 56.27% 47.46% 47.12%

Exp-BaseViT (O-VIT) 95.72% 97.32% 85.40% 58.75% 47.34% 46.32%
SSTO-BaseViT (O-VIT) 94.47% 98.13% 83.65% 57.16% 45.59% 47.25%
Cayley-BaseViT (O-VIT) 95.36% 99.25% 84.43% 58.21% 48.42% 46.56%

MO-BaseViT (O-VIT) 95.60% 99.52% 86.07% 61.65% 53.90% 48.40%
DeepViT 21.59% 72.32% 60.51% 34.89% 47.34% 32.88%

Exp-DeepViT (O-VIT) 83.33% 94.82% 64.08% 36.43% 46.78% 32.72%
SSTO-DeepViT (O-VIT) 85.43% 99.57% 63.81% 36.63% 52.82% 35.12%
Cayley-DeepViT (O-VIT) 82.66% 97.12% 63.65% 36.55% 51.86% 32.68%
MO-DeepViT (O-VIT) 87.86 % 99.73% 65.88% 37.32% 54.52% 33.52%

CaiT 91.97% 12.01% 75.39% 49.50% 25.99% 47.20%
Exp-CaiT (O-VIT) 94.99% 88.31% 82.72% 57.01% 50.51% 50.36%

SSTO-CaiT (O-VIT) 92.32% 99.57% 79.03% 52.00% 54.80% 56.00%
Cayley-CaiT (O-VIT) 94.03% 99.68% 80.06% 55.59% 54.07% 50.24%

MO-CaiT (O-VIT) 93.67% 99.79% 83.79% 63.91% 55.59% 53.28%
1 Baselines of “BaseViT” and “CaiT” are downloaded from https://github.com/kentaroy47/vision-transformers-cifar10. Baselines of “DeepViT” are

downloaded from https://github.com/lucidrains/vit-pytorch.
2 “MO” combines all of three orthogonalization strategies. In “MO-DeepViT” and “MO-CaiT”, parameters of aggregation layer are orthogonalized by

“SSTO”.

4.1 ABLATION STUDY

We chose various image recognition tasks (e.g., character recognition task, face recognition task,
and object recognition task) to evaluate the performance of O-ViT in comparison with ViT. Table 2
presents details such as the number of categories, and the size of training set and test set. ImageNet
is such a huge article classification dataset that there are altogether 1000 categories in it. We selected
first 50 categories as a subset for experiments named ImageNet50. Note that the data we used does
not contain personally identifiable information or offensive content.

TABLE 2: VIT BENCHMARK CONFIGURATIONS
Dataset Training Set # Testing Set # Categories #
SVHN 73257 26032 10
YaleB 2314 1874 38

CIFAR10 50000 10000 10
CIFAR100 50000 10000 100
Caltech101 7280 1864 102
Imagenet50 25000 5000 50

We want to figure out two issues in the ablation stage: i) what is the efficiency of O-ViT compared
with ViT, and ii) whether an aggregation of different orthogonal strategies works better than single
orthogonalization. Moreover, we selected DeepViT and CaiT to show the efficiency of O-ViT on
deepening the network architecture, since DeepViT and CaiT involve more than one attention block.
All results were obtained by training for 100 epochs from scratch. Table 3 presents details of ViT
benchmarks. We set the patch size to be 16× 16 for ImageNet50 and 4× 4 for other datasets.

TABLE 3: VIT BENCHMARK CONFIGURATIONS
Parameters BaseViT DeepViT CaiT

Self-Attention Block # 1 6 9
Hidden size 512 512 512
MLP size 2048 2048 2048

Heads 12 8 8

Figure 2 plots the classification accuracy vs. epoch for different methods on datasets from SVHN
to ImageNet50 (please refer to Section A.1 for the full version). Almost all O-ViTs outperform
ViTs in terms of classification accuracy and convergence speed (65 out of 72), which illustrates
that introducing orthogonal constraints in self-attention blocks can improve the visual performance
of ViT. For example, by imposing multi-orthogonal parameterization, the accuracy of BaseViT is
improved by 6.4% on the Caltech101 dataset.

Moreover, we pay attention to the influence of orthogonal constraints on the depth of ViT. Since
both DeepViT and CaiT are explorations of deepening ViT, the success of imposing orthogonal
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Figure 2: Performance comparison for different datasets

constraints on them shows the potential of orthogonal parameterization on increasing the depth of
the network. The self-attention mechanism adopts the softmax function to normalize the similarity
between the query and key, while exponents in softmax induce zero gradients resulted from very
large numbers. When the zero gradient is transmitted to front layers, the shrinking effects will grow
exponentially, yielding the gradient vanishing problem. Parameters are updated in accordance with
the direction of gradient descent, hence, the vanishing gradient will inevitably restrict ViT to go
deeper. Orthogonal parameterization can alleviate the above gradient vanishing problem due to its
norm-keeing property, helping ViT go deeper.

MultiOrth-ViT outperforms SingleOrth-ViT (e.g., Exp-ViT, SSTO-ViT and Cayley-ViT) in most
cases (45 out of 54). As seen from Table 1 (please refer to Section A.2 for the full version), the
effectiveness of aggregating multiple orthogonalization strategies on learning a more essential fea-
ture map is reflected incisively and vividly in DeepViT (17 out of 18). Although all of the three
orthogonal strategies can learn more essential and non-redundant features, they restrict orthogonal
parameters in different coordinate systems and learn different sides. Therefore, combining different
orthogonal strategies will learn more comprehensive features. On account of 6 or 9 self-attention
blocks, DeepViT and CaiT have a lot more parameters than BaseViT. To mitigate over-fitting, we
orthogonalize parameters in the aggregation layer. Experimental results confirm that the above prac-
tice can enhance the recognition accuracy.

4.2 ROBUSTNESS

To evaluate the robustness of O-ViTs compared to ViTs, we added four kinds of noise to different
datasets’ testing samples. O-ViTs we chose in this stage belong to MO-ViTs. All noises obey the
Gaussian distribution with the expected value of 0. Let std represent the standard deviation of the
Gaussian distribution, four Gaussian noises were: i) std = 0.05, ii) std = 0.08, iii) std = 0.1 and
iv) std = 1. We only show two kinds of noise interference (refer to Table 4) since space is limited.
Please see the appendix Section A.3 for the full version. We employed the recognition accuracy of
noise-corrupted images to measure the robustness of methods. Consequently, the higher value of
accuracy represents the stronger robustness.
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Table 4: Comparison between O-ViTs and ViTs with Noises
Method YaleB CIFAR10 Caltech101 ImageNet50

std = 0.1 std = 0.05 std = 0.1 std = 0.05 std = 0.1 std = 0.05 std = 0.1 std = 0.05
BaseViT 65.15% 94.88% 82.75% 82.79% 36.95% 45.42% 45.21% 46.92%

O-BaseViT 74.07% 96.37% 85.96% 86.04% 33.73% 36.84% 45.02% 45.64%
DeepViT 64.30% 70.92% 55.16% 59.67% 41.92% 43.56% 30.72% 31.68%

O-DeepViT 96.16% 99.04% 56.11% 60.65% 51.41% 52.09% 34.08% 34.72%
CaiT 3.63% 3.74% 75.09% 75.42% 25.25% 25.42% 43.0% 43.28%

O-CaiT 98.72% 99.31% 82.66% 82.50% 53.22% 54.46% 50.61% 51.35%

Table 4 shows the comparison between robustness performance between ViTs and O-ViTs on YaleB,
CIFAR10, Caltech101, and ImageNet50 datasets with noises at different intensities. We can see
that methods with O- prefixes outperform their counterparts in most cases (20 out of 24) consider-
ing noise. The above results confirm that orthogonal projections can resist the corruption of input
images to a certain extent, which makes O-ViT have stronger robustness than ViT. For example,
for the CIFAR10 dataset, We can see a sharp increase in the robustness performance of CaiT af-
ter imposing orthogonal constraints. Moreover, the O-DeepViT shows obvious advantages over its
non-orthogonal counterpart on YaleB and Caltech101 dataset. Table 4 also presents that, for other
datasets with noise corruption, OViTs perform better ViTs at least 1% and up to two times.

To sum up, methods applied orthogonal constraints (O-ViTs) yield a higher recognition accuracy in
majority cases with noise turbulence, which confirms the stronger robustness of orthogonal param-
eterization compared with general parameterization under noises.

Table 5: Comparison between O-ViT and ViT in Terms of Accuracy and the Number of Parameters
Dataset ViT O-ViT

accuracy [%] parameters [M] accuracy [%] parameters [M]
YaleB 95.94 19.01 98.15 10.74
SVHN 94.65 19.07 94.29 12.77

CIFAR10 82.79 19.07 80.35 9.62
CIFAR100 56.27 19.12 55.41 9.67
Caltech101 47.46 19.23 47.97 10.92
ImageNet50 47.12 21.01 45.76 13.70

4.3 THE NUMBER OF PARAMETERS

Table 5 shows recognition accuracy and the number of trainable parameters of O-ViT and ViT on
different datasets. O-ViTs we chose in this stage are parameterized by skew symmetric transited
orthogonalization. On the YaleB and Caltech101 dataset, O-ViT recognizes more accurately than
ViT while the number of parameters of O-ViT is nearly half of ViT with the same depth. As to
other datasets, O-ViT is less accurate than ViT by a narrow margin while the number of parameters
of O-ViT is significantly smaller than that of ViT with the same depth. Orthogonal parameters can
reduce redundancy theoretically, while the above experiment results confirm that O-ViT can reduce
the number of parameters while guaranteeing an acceptable accuracy.

5 CONCLUSION

Self-attention in ViT performs well on image recognition tasks. However, its efficiency still has
space for investigation and development. In this study, low intra-similarity in the orthogonal matrix
and metric invariance property of orthogonal transformations were concerned. We imposed orthogo-
nal constraints on ViT and proposed a novel approach, O-ViT, to push the boundaries of the existing
ViT in a geometric way. Moreover, we utilized an implementation trick based on classic Lie group
theory to simplify the constrained optimization over compact Lie groups, e.g., the orthogonal group.
It is of independent interest and could have more applications in variants of ViT or in combination
with other machine learning methods. Furthermore, we have conducted comparative experiments
on different vision recognition tasks to provide practical evidence of O-ViT’s performance. Experi-
ments also proved the soundness of O-ViT in deepening the self-attention in ViT.
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A APPENDIX

A.1 PERFORMANCE COMPARISON FOR DIFFERENT DATASETS

Figure 1 shows the full version of the performance comparison for different datasets.
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Figure 1: Performance comparison for different datasets
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A.2 TOP1-ACCURACY COMPARISON RESULTS OF RECOGNITION PROBLEMS

Table 1 shows the full version of top1-accuracy comparison results of different recognition problems
between O-ViT and ViT.

TABLE 1: TOP1-ACCURACY COMPARISON RESULTS OF RECOGNITION PROBLEMS
Method SVHN YaleB CIFAR10 CIFAR100 Caltech101 ImageNet50

BaseViT 94.65% 95.94% 82.79% 56.27% 47.46% 47.12%
Exp-BaseViT (O-VIT) 95.72% 97.32% 85.40% 58.75% 47.34% 46.32%

SSTO-BaseViT (O-VIT) 94.47% 98.13% 83.65% 57.16% 45.59% 47.25%
Cayley-BaseViT (O-VIT) 95.36% 99.25% 84.43% 58.21% 48.42% 46.56%

ExpCay-BaseViT (O-VIT) 94.65% 99.63% 85.77% 60.40% 52.43% 48.60%
MO-BaseViT (O-VIT) 95.60% 99.52% 86.07% 61.65% 53.90% 48.40%

DeepViT 21.59% 72.32% 60.51% 34.89% 47.34% 32.88%
Exp-DeepViT (O-VIT) 83.33% 94.82% 64.08% 36.43% 46.78% 32.72%

SSTO-DeepViT (O-VIT) 85.43% 99.57% 63.81% 36.63% 52.82% 35.12%
Cayley-DeepViT (O-VIT) 82.66% 97.12% 63.65% 36.55% 51.86% 32.68%

ExpCay-DeepViT (O-VIT) 79.94% 98.51% 61.40% 34.52% 51.69% 32.28%
MO-DeepViT (O-Lin) (O-VIT) 87.86 % 99.73% 65.88% 37.32% 54.52% 33.52%

CaiT 91.97% 12.01% 75.39% 49.50% 25.99% 47.20%
Exp-CaiT (O-VIT) 94.99% 88.31% 82.72% 57.01% 50.51% 50.36%

SSTO-CaiT (O-VIT) 92.32% 99.57% 79.03% 52.00% 54.80% 56.00%
Cayley-CaiT (O-VIT) 94.03% 99.68% 80.06% 55.59% 54.07% 50.24%

ExpCay-CaiT (O-VIT) 91.71% 99.76% 82.68 % 59.79% 51.69% 54.18%
MO-CaiT (O-Lin) (O-VIT) 93.67% 99.79% 83.79% 63.91% 55.59% 53.28%

1 Both “ExpCay” and “MO” belong to “MultiOrth-ViT”. “ExpCay” is the combination of “Exp” and “Cayley”. “MO” is the combination
of all of three orthogonalization strategies. “O-Lin” indicates that parameters of aggregation layer are on the orthogonal manifold,
orthogonalized by “SSTO”.
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A.3 COMPARISON BETWEEN O-VITS AND VITS CONSIDERING NOISES

Table 2, Table 3 and Table 4 show the robustness comparison between O-ViTs and ViTs considering
four different kinds of noises, respectively.

TABLE 2: COMPARISON BETWEEN O-VITS AND VITS WITH NOISES
Method SVHN CIFAR10

std = 1 std = 0.1 std = 0.08 std = 0.05 std = 1 std = 0.1 std = 0.08 std = 0.05
BaseViT 94.93% 94.98% 94.98% 94.98% 82.79% 82.75% 82.85% 82.79%

O-BaseViT 95.60% 95.96 % 96.02 % 96.04% 85.78% 85.96% 86.30 % 86.04%
DeepViT 19.50% 19.61% 19.58% 19.56% 11.09% 55.16% 57.29% 59.67%

O-DeepViT 10.38 % 74.40% 78.16% 82.31% 11.11% 56.11% 58.49% 60.65%
CaiT 86.31% 86.37% 86.28% 86.33% 74.67% 75.09% 75.04% 75.42%

O-CaiT 87.19% 87.06% 87.19% 87.33% 82.12% 82.66% 82.13 % 82.50%

Table 3: Comparison between O-ViTs and ViTs with Noises
Method CIFAR100 Caltech101

std = 1 std = 0.1 std = 0.08 std = 0.05 std = 1 std = 0.1 std = 0.08 std = 0.05
BaseViT 55.78% 56.21% 56.21% 56.29% 1.13% 36.95% 41.07% 45.42%

O-BaseViT 57.97% 58.67% 58.65% 58.61% 6.78% 33.73% 34.92% 36.84%

DeepViT 1.83% 26.72% 29.63% 33.42% 3.62% 41.92% 42.54% 43.56%
O-DeepViT 1.24 % 29.15 % 31.72% 34.09% 4.86% 51.41% 51.64% 52.09%

CaiT 48.21% 49.38% 49.52% 48.97% 16.78% 25.25% 25.37% 25.42%
O-CaiT 56.43% 56.6% 55.78% 56.43% 4.01% 53.22% 54.01% 54.46%

Table 4: Comparison between O-ViTs and ViTs with Noises
Method YALE ImageNet50

std = 1 std = 0.1 std = 0.08 std = 0.05 std = 1 std = 0.1 std = 0.08 std = 0.05
BaseViT 2.19% 65.15% 79.94% 94.88% 44.76% 45.21% 45.28% 45.92%

O-BaseViT 4.75% 74.07% 85.38% 96.37% 44.72% 45.02% 45.16% 45.64%

DeepViT 4.16% 64.30% 67.02% 70.92% 4.16% 30.72% 31.24% 31.68%
O-DeepViT 5.76 % 96.16% 97.28% 99.04% 3.72% 34.08% 35.08% 34.72%

CaiT 2.78% 3.63% 3.68% 3.74% 42.88% 43.0% 43.12% 43.28%
O-CaiT% 6.30% 98.72% 99.04% 99.31% 46.20% 50.61% 50.60% 51.35%
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