
Under review as submission to TMLR

Leveraging AutoML for Sustainable Deep Learning: A Multi-
Objective HPO Approach on Deep Shift Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Deep Learning (DL) has advanced various fields by extracting complex patterns from large
datasets. However, the computational demands of DL models pose environmental and
resource challenges. Deep Shift Neural Networks (DSNNs) present a solution by leveraging
shift operations to reduce computational complexity at inference. Compared to common
DNNs, DSNNs are still less well understood and less well optimized. By leveraging AutoML
techniques, we provide valuable insights into the potential of DSNNs and how to design them
in a better way. We focus on image classification, a core task in computer vision, especially
in low-resource environments. Since we consider complementary objectives such as accuracy
and energy consumption, we combine state-of-the-art multi-fidelity (MF) hyperparameter
optimization (HPO) with multi-objective optimization to find a set of Pareto optimal trade-offs
on how to design DSNNs. Our approach led to significantly better configurations of DSNNs
regarding loss and emissions compared to default DSNNs. This includes simultaneously
increasing performance by about 20% and reducing emissions, in some cases by more than 60%.
Investigating the behavior of quantized networks in terms of both emissions and accuracy, our
experiments reveal surprising model-specific trade-offs, yielding the greatest energy savings.
For example, in contrast to common expectations, selectively quantizing smaller portions of
the network with low precision is optimal while retaining or improving performance. We
corroborated these findings across multiple backbone architectures, highlighting important
nuances in quantization strategies and offering an automated approach to balancing energy
efficiency and model performance.

1 Introduction

Deep Learning (DL) is a promising approach to extracting information from large datasets with complex
structures. This includes performing computations in IoT environments and on edge devices (Li et al., 2018;
Zhou et al., 2019), which can come with strict limitations on the energy consumption. However, with the
ever-increasing size and performance of such models due to the progress in science and industry, running
these models is not free of computational costs (Sze et al., 2017) and minimizing this cost directly affects a
model’s environmental impact (Schwartz et al., 2020). Even if resource consumption should not be considered
crucial in view of environmental impact, efficiently designed neural networks free up resources that can be
used for other tasks, e.g., edge computing or computations for advanced driver assistance systems (Howard
et al., 2017). With our approach, we contribute to DL by minimizing its environmental footprint and allow
applications in low-resource settings.

In this context, we focus on the task of image classification, which is particularly relevant for low-power
applications. Image classification remains a cornerstone task in computer vision and is widely used in
scenarios where resources are limited, such as edge computing, automated driving, and industrial production
environments. These applications require fast, accurate, and energy-efficient models that can process visual
information in real time. Because it is well-understood and broadly benchmarked, image classification also
enables reproducible evaluation and comparison of architectural and optimization strategies with minimal
confounding from task-specific variables.

1

Under review as submission to TMLR

Of particular interest to us are Deep Shift Neural Networks (DSNNs) that offer great potential in reducing
power consumption compared to traditional Deep Learning models, e.g., by reducing the inference time by a
factor of 4 (Elhoushi et al., 2021). Instead of expensive floating point arithmetic, they leverage cheap shift
operations — specifically, bit shifting — as the computational unit, which boosts efficiency by replacing costly
multiplication operations in convolutional networks. Although DSNNs offer great promise, so far, the different
design decisions, including training hyperparameters and shift architecture, have not been well-studied and
there is little knowledge about their full potential. We suspect that the configuration of DSNNs has a huge
impact on both performance and computational efficiency.

One of the key challenges with DSNNs is determining the appropriate level of precision for shift operations to
minimize quantization errors without excessively increasing the computational load. To address this challenge,
we propose to apply automated machine learning (AutoML) to DSNNs to find their optimal configuration.
This is achieved by hyperparameter optimization (HPO) (Bischl et al., 2023) and a neural architecture search
on a macro-level (Elsken et al., 2019). Integrating multi-fidelity (MF) and multi-objective optimization (MO)
techniques (Belakaria et al., 2020) facilitates an optimal exploration of the configuration space that trades
off predictive performance and energy consumption (Deb, 2014). To this end, we extended the SMAC3
approach (Lindauer et al., 2022), a state-of-the-art HPO package (Eggensperger et al., 2021), such that its MO
implementation effectively balances the trade-off between achieving high predictive accuracy and minimizing
energy consumption. Employing tools like CodeCarbon (Lacoste et al., 2019; Lottick et al., 2019) during the
training and evaluation phases provides insights into the energy consumption and carbon emissions associated
with each model configuration. The MF aspect allows for the efficient use of computational resources by
evaluating configurations at varying levels of approximation. Our work is in the spirit of Green AutoML
(Tornede et al., 2023) by considering efficient AutoML for gaining insights into the design of efficient DSNNs.

Contributions. Overall, we contribute to Green AutoML w.r.t. DSNNs by:

1. Specifying the first configuration space tailored to DSNNs which is efficiently optimized by a
combination of multi-objective and multi-fidelity AutoML approaches;

2. Empirically exploring how specific design choices in DSNNs lead to different trade-offs between
accuracy and energy efficiency, enabling stakeholders and researchers to leverage these findings to
develop energy-efficient applications that maintain high computational accuracy; and

3. Identifying specific configurations of DSNNs that surpass the baseline results in both dimensions of
the performance-efficiency optimization problem.

2 Related Work

Both multi-fidelity optimization (MF) (Bischl et al., 2023) and multi-objective optimization (MO) (Morales-
Hernández et al., 2022) for AutoML have gotten a lot of traction in recent years. The combined integration
of multi-fidelity multi-objective optimization (MFMO) has seen some advancements to enhance the efficiency
of model training while minimizing environmental impact. Belakaria et al. (2020) proposed an acquisition
function based on output space entropy search for multi-fidelity multi-objective Bayesian optimization (MFMO-
BO-OSES). Their method addresses the exploration-exploitation dilemma by prioritizing the acquisition of
data points that significantly reduce the entropy of the Pareto front. This approach enables more strategic
sampling decisions and leverages lower-fidelity evaluations to approximate the Pareto front effectively, aligning
with the sustainability goals of Green AutoML. Similarly, Schmucker et al. (2020) considered a combination
of multi-objective and multi-fidelity optimization but focused on fairness as the second objective. With our
MFMO approach, we contribute an algorithm tailored specifically for performing efficient HPO tasks using
BO, directly minimizing emissions in the process.

A well-explored technique for reducing the computational complexity of neural networks themselves is network
quantization. It involves lowering the precision of weights and activations, which decreases the model’s
memory footprint and accelerates inference. Works by Courbariaux et al. (2015) and Rastegari et al. (2016),
for example, have demonstrated that techniques such as BinaryConnect and XNOR-Net not only reduce

2

Under review as submission to TMLR

computational requirements but also maintain near-state-of-the-art performance, underscoring the potential
of quantization to balance performance with computational efficiency. This has also been transferred into the
field of LLMs, where 1-Bit transformer architectures are used to address the challenges of increasing model
size (Wang et al., 2023). Strongly related to network quantization, Deep Shift Neural Networks (DSNNs),
proposed by Elhoushi et al. (2021), represent an advancement towards quantization combined with efficient
operators. DSNNs employ bitwise shift operations instead of traditional multiplications, thus further reducing
the computational overhead and power consumption. This innovation is particularly crucial for deploying
Deep Learning models in power-sensitive or resource-constrained environments, further contributing to the
environmental sustainability of AI technologies.

DSNNs offer a more balanced trade-off between computational efficiency and accuracy compared to binary
methods like BinaryConnect and XNOR-Net by replacing multiplications with bitwise shifts, which are more
power-efficient yet maintain greater precision, reducing the accuracy loss typically associated with binary
quantization. This allows DSNNs to achieve better performance in resource-constrained environments while
still minimizing computational overhead (Elhoushi et al., 2021).

AdderNet (Chen et al., 2020a) is another approach for reducing the amount of computationally expensive
multiplications during network training and inference by using the ℓ1-norm distance between input and filter
vectors to compute activations. There are efforts in mixed-precision quantization, where different bit-widths
are assigned to different layers or channels of the network. It allows for higher precision where necessary
and lower precision where possible, optimizing the trade-off between accuracy and efficiency (Motetti et al.,
2024). Similarly, ternary quantization (TTQ) constrains the weights to three discrete values: {−1, 0, +1}. To
mitigate the accuracy loss from reduced precision, TTQ introduces learned scaling factors, allowing networks
to maintain performance comparable to their full-precision counterparts while significantly reducing memory
and power usage (Rokh et al., 2023). HPO combined with DSNNs further optimizes both performance and
resource efficiency by tailoring shift depths and quantization strategies, allowing for fine-tuned control over
energy consumption and accuracy in constrained environments, making them ideal for mixed-precision and
quantization-aware neural network applications.

3 Background

The following chapter introduces foundational concepts for our approach.

3.1 Deep Shift Neural Networks

A Deep Shift Neural Network (DSNN) is an approach to reduce the computational and energy demands of
Deep Learning (Elhoushi et al., 2021). DSNNs achieve a considerable reduction in latency time by simplifying
the network architecture such that they replace the traditional multiplication operations in neural networks
with bit-wise shift operations and sign flipping, making DSNNs suitable for computing devices with limited
resources. There are two methods for training DSNNs (Elhoushi et al., 2021): DeepShift-Q (Quantization)
and DeepShift-PS (Powers of two and Sign). DeepShift-Q involves training regular weights constrained to
powers of 2 by quantizing weights to their nearest power of two during both forward and backward passes. In
DeepShift-Q, the weights are quantized to powers of two by rounding the logarithm of the absolute weights to
the nearest integer. This process simplifies the weight representation and ensures compatibility with bitwise
shift operations. The sign is then applied to preserve the original weight polarity. DeepShift-PS directly
includes the values of the shifts and sign flips as trainable hyperparameters, offering finer control over weight
adaptation. This approach removes the need for explicit rounding during training, potentially leading to
improved precision at the cost of additional parameter updates.

The DeepShift-Q approach obtains the sign matrix S from the trained weight matrix W as S = sign(W).
The power matrix P is the base-2 logarithm of W ’s absolute values, i.e., P = log2(|W |). After rounding P to
the nearest power of two, P̃ = round(P), the quantized weights W̃q are calculated by applying the sign from
S, shown as

W̃q = flip(2P̃ , S) . (3.1)

3

Under review as submission to TMLR

The DeepShift-PS approach optimizes neural network weights by directly adapting the shift (P̃) and sign (S̃)
values. The shift matrix P̃ is obtained by rounding the base-2 logarithm of the weight values, P̃ = round(P),
and the sign flip S̃ is computed as S̃ = sign(round(S)). Weights are calculated as

W̃ps = flip(2P̃ , S̃) , (3.2)

where the sign flip operation S̃ assigns values of −1, 0, or +1 based on S.

Directly training shift and sign values could allow for more precise control in optimizing the network’s
computational efficiency by reducing mathematical imprecision. On the other hand, training the floating
point weights and only rounding them during the forward and backward pass might increase the precision
and reduce the error in training the weights.

3.2 Hyperparameter Optimization

The increasing complexity of Deep Learning algorithms enhances the need for automated hyperparameter
optimization (HPO) to increase model performance (Bischl et al., 2023). Consider a datasetD = {(xi, yi)}N

i=1 ∈
D ⊂ X × Y, where X is the instance space and Y is the target space, and a hyperparameter configuration
space Λ = {λ1, . . . , λL}, L ∈ N. In our work, M denotes the space of possible DSNN models. The dataset
D is split into disjunct training, validation, and test sets: Dtrain,Dval, and Dtest respectively. An algorithm
A : D× Λ→M trains a model M ∈ M, instantiated with a configuration of L hyperparameters sampled
from Λ, on the training data Dtrain. The performance of the algorithm is assessed via an expensive-to-evaluate
loss function L :Mλ ×D→ R, which involves both the training on Dtrain and the evaluation of the model on
Dval. The direct optimization objective of HPO is to find the configuration λ∗ ∈ Λ with minimal validation
loss L, such that:

λ∗ ∈ arg min
λ∈Λ
L

(
A(Dtrain, λ),Dval

)
. (3.3)

Finally, the model’s final performance is assessed on Dtest.

3.3 Bayesian Optimization

For a given dataset, Bayesian Optimization (BO) for HPO is a strategy for global optimization of black-box
loss functions L :Mλ × D −→ R that are expensive to evaluate (Jones et al., 1998).

BO uses a probabilistic surrogate model S to approximate the loss function, commonly given by a Gaus-
sian Process or a Random Forest (Rasmussen & Williams, 2006; Hutter et al., 2011; Shahriari et al.,
2016). An acquisition function α : Λ −→ R guides the search for the next optimal evaluation points by
balancing the exploration-exploitation trade-off, based on the set of previously evaluated configurations
{(λ1,L(λ1, ·)), ..., (λm−1,L(λm−1, ·))} at time m. Common choices for acquisition functions include expected
improvement (EI) (Jones et al., 1998) since it calculates the expected improvement in the objective function
value and guides the search towards regions where improvements are most likely.

Entropy-based methods like Entropy Search (ES) (Hennig & Schuler, 2012) and Predictive Entropy Search
(PES) (Hernández-Lobato et al., 2014) aim to reduce the entropy of the posterior distribution of the maximizer,
focusing on information-rich regions.

The Knowledge Gradient (KG) (Frazier et al., 2009) offers a strategy for maximizing the expected improvement
of the objective considering all potential outcomes, valuable in scenarios with noisy measurements. BO is
particularly well-suited for hyperparameter optimization in Deep Learning, where evaluating the performance
of a model configuration can be computationally expensive because of the training of each configuration. BO
is sample-efficient in evaluating L on only a few configurations.

3.4 Multi-Fidelity Optimization

Since it is not feasible to fully train multiple configurations of DSNNs for comparison due to computational
efficiency, we employ a multi-fidelity (MF) approach (Li et al., 2017), which is a common strategy in AutoML
to navigate the trade-off between performance and approximation error (Hutter et al., 2019). MF approaches

4

Under review as submission to TMLR

train cheap-to-evaluate proxies of black-box functions following different heuristics, e.g., allocating a small
number of epochs to many configurations in the beginning and training the best-performing ones on an
increasing number of epochs. Formally, we define a space of fidelities F and aim to minimize a function
F ∈ F (Kandasamy et al., 2019):

min
λ∈Λ

F (λ) . (3.4)

We approximate F ∈ F , using a series of lower-fidelity, i.e., less expensive approximations {f(λ)1, . . . , f(λ)j =
F (λ)}, where j denotes the total number of fidelity levels. The target function F ∈ F corresponds to the loss
function L of HPO and BO. The allocated resources for evaluating a model’s performance at various fidelities
are referred to as a budget, e.g., training a DNN for only n ∈ N epochs instead of until convergence. MF
typically assumes that the highest fidelities approximate the black-box function best. The longer a model is
trained, the more accurate its approximation of an underlying function gets.

3.5 Multi-Objective Optimization

Multi-objective optimization (MO) addresses problems involving multiple, often competing, objectives. This
approach is used in scenarios where trade-offs between two or more conflicting objectives must be navigated,
such as, in the context of DSNNs, enhancing accuracy alongside reducing energy consumption. MO aims
to identify Pareto optimal solutions (Deb, 2014). New points are added based on the current observation
dataset Dobs = {(λ1,L(λ1)), . . . , (λn,L(λn))} at time n + 1. These points augment the surface formed by the
non-dominated solution set D⋆

n, which satisfies the condition for d objective variables and a loss function
L = (L1, . . . ,Ld), where Lk corresponds to the loss regarding objective k (Wada & Hino, 2019):

∀λ, (λ,L(λ)) ∈ D⋆
n ⊂Dn, (λ′,L(λ′)) ∈ Dn (3.5)

∃k ∈ {1, . . . , d} : Lk(λ) ≤ Lk(λ′).

W.l.o.g. we assume the minimization of all objectives. The observation dataset Dobs is iteratively updated to
search for solutions that approximate the Pareto front.

4 Approach

Our goal is to provide insights into the structure of DSNNs. We want to optimize these for performance and
efficiency and show how their specific hyperparameters affect that optimization.

4.1 Configuration Space Exploration

The foundation of our approach lies in defining and exploring a robust configuration space tailored specifically
to DSNNs. This space includes a range of hyperparameters that influence the network’s performance and
energy efficiency. Key hyperparameters under consideration include:

1. Shift Depth: determines the number of network layers converted to employ shift operations, replacing
conventional floating point operations and thereby reducing computational overhead.

2. Shift Type: selects the method of shift operation, either quantization (DeepShift-Q) or direct training
of shifts (DeepShift-PS), impacting the network’s training dynamics and inference efficiency.

3. Bit Precision for Weights and Activations: influences the network’s accuracy and the granularity of
its computations, affecting both performance and power consumption.

4. Rounding Type: affects how weight adjustments are handled during training, with options for
deterministic or stochastic rounding, each offering trade-offs in terms of computational stability and
performance.

Table 1 details the configuration space for a ResNet20 model adapted for DSNNs, outlining the range and
default values of each hyperparameter considered in our study.

5

Under review as submission to TMLR

4.2 Multi-Fidelity Multi-Objective Optimization Framework

To computationally enhance Deep Shift Neural Networks (DSNN) via AutoML, we employ multi-fidelity
optimization (MF), see Section 3. A well-known MF algorithm is successive halving (Jamieson & Talwalkar,
2016), where nc configurations are trained on an initial small budget bI . It addresses the trade-off between bI

and nc, or between approximation error and exploration inherent in successive halving, using the HyperBand
algorithm for MF. HyperBand (Li et al., 2017) runs successive halving in multiple brackets, where each
bracket provides a combination of nc and a fraction of the total budget per configuration so that they sum
up to the total budget.

We extend this to multi-fidelity multi-objective optimization (MFMO). We simultaneously address the
accuracy of the model as well as its energy consumption using a two-dimensional objective function:

LMO : Λ −→ R2, LMO(λ) =
(
Lloss(λ),Lemission(λ)

)
, (4.1)

where, given a configuration λ ∈ Λ, Lloss(λ) aims to minimize the loss, enhancing the model’s accuracy, and
Lemission(λ) seeks to minimize the energy consumption during training and inference, promoting environmental
sustainability. We aim to solve the following optimization problem:

arg min
λ∈Λ
LMO(λ) . (4.2)

Table 1: Configuration search space of ResNet20. The
first half includes commonly used training

hyperparameters for DL, whereas the second half is
specific to DSNNs.

Hyperparam. Search Space Default

Batch Size [32, 128] 128
Optimizer {SGD, Adam,

Adagrad,
Adadelta,
RMSProp,
RAdam,
Ranger}

SGD

Learning Rate [0.001, 0.1] 0.1
Momentum [0.0, 0.9] 0.9
Weight Decay [1e-6, 1e-2] 0.0001

Weight Bits [2, 8] 5
Activation Inte-
ger Bits

[2, 32] 16

Activation Frac-
tion Bits

[2, 32] 16

Shift Depth [0, 20] 20
Shift Type {Q, PS} PS
Rounding {deterministic,

stochastic}
deterministic

Our approach utilizes the MFMO framework to effi-
ciently navigate the defined configuration space with
less computationally expensive proxies of the full
training regimen that enable a broader exploration
of the hyperparameter space within feasible compu-
tational limits.

Our approach is inherently architecture- and task-
agnostic, and can be applied to other models
or datasets without requiring any changes to the
methodology, other than adjusting the quantization
mechanism via the DSNN to match the target archi-
tecture and task at hand.

4.3 Algorithmic Implementation of MFMO

We use the ParEGO algorithm (Knowles, 2006) to
compute Pareto optimal configurations. It trans-
forms the multi-objective problem into a series of
single-objective problems by introducing varying
weight hyperparameters for the objectives in each
iteration of HyperBand. Thus optimizing a differ-
ent scalarization per evaluation to approximate the
Pareto front. The resulting single-objective optimiza-
tion function can then be evaluated in an MF setting.
All configurations having survived a successive halv-
ing bracket are checked against the current Pareto
front approximation and the Pareto set is updated
if necessary. The computational strategy initially
involves computing a broad array of configurations
and leveraging the successive halving method to effi-
ciently narrow down the field to the most promising
candidates. We specifically target solutions that rep-
resent both extremes of the Pareto front—those that excel in one objective at the potential expense of

6

Under review as submission to TMLR

the other—and configurations that provide a balanced compromise between the two objectives. For easier
understanding of our approach, we included pseudocode of our algorithmic implementation in Algorithm 1 in
the appendix.

5 Experiments

In the following section, we detail the setup and methodology used to evaluate our approach discussed in
Section 4, focusing on optimizing Deep Shift Neural Networks (DSNNs) through multi-fidelity, multi-objective
optimization (MFMO), and extending the DSNN objective function to multi-objective to compute a Pareto
front for optimality regarding performance and efficiency. We discuss how our approach successfully navigates
the model performance and environmental impact trade-offs. From this, we gain insights into DSNNs and
how specific design choices might affect their performance. By identifying optimal configurations for both
or either objectives, we draw conclusions about how the DSNN-specific hyperparameters in the network
architecture interact with each other.

5.1 Evaluation Setup

We train and evaluate our models on the CIFAR10 dataset (Krizhevsky et al., 2009) and the Caltech101
dataset (Fei-Fei et al., 2004).

Our experiments are conducted on the NVIDIA A100, a widely used GPU, standard in research and industry
for some time. Its computational capabilities and availability in many high-performance clusters make it a
popular choice in the machine learning and deep learning communities. Using the A100, we ensure that our
findings are broadly applicable and relevant to real-world scenarios, aligned with hardware commonly utilized
for training and deploying advanced neural networks.

For hyperparameter optimization (HPO) with multi-fidelity optimization, we extend SMAC3 (Hutter et al.,
2011; Lindauer et al., 2022), as well-known state-of-the-art HPO package (Eggensperger et al., 2021). As a
starting point, we chose the well-known ResNet20 (He et al., 2016) architecture as used by Elhoushi et al.
(2021). Overall, this architecture is well understood and allows us to study DSNNs with few confounding
factors. Additionally, we evaluate our approach using the well-known GoogLeNet (Szegedy et al., 2015)
and MobileNetV2 architectures (Sandler et al., 2018). We follow the model implementation of Elhoushi
et al. (2021) to ensure comparability. The configuration space is given in Table 1, for which we focus on the
DSNN-specific hyperparameters (lower part of the table) and general training hyperparameters (upper part).
The fidelities are the number of epochs.

For multi-objective optimization, we aim to compute a Pareto front of optimal configurations for performance
and energy consumption. To incorporate the environmental impact into our HPO workflow, we use the
CodeCarbon emissions tracker (Lacoste et al., 2019; Lottick et al., 2019) to track carbon emissions from
computational processes, in our case inference, by monitoring energy use and regional energy mix in kgCo2eq,
grams of CO2 equivalents. We use power consumption as a proxy for CO2 emissions, acknowledging that
external factors such as energy source and grid transmission losses are not directly controlled. These emission
values are incorporated into SMAC3 alongside DSNN’s performance metric, in this case the loss is 1−
accuracy.

5.2 Results

5.2.1 Quantitative Results

We first discuss the quantitive results, then the importance of the optimized hyperparameters, and finally,
the implications for the configuration space. Note that we focus on the insights gained regarding DSNNs and
not on how efficient our (or others’) HPO approach is. In Figure 1, we present the computed Pareto fronts of
a ResNet20, MobileNetV2 and GoogLeNet architecture, optimized with our multi-fidelity multi-objective
(MFMO) framework, on the CIFAR10 and Caltech101 datasets. Shown is a diverse set of optimal configurations
that either minimize or balance the primary objectives of model accuracy and energy consumption. These
are aggregated results over three seeds. The Pareto front shown results from aggregating the three individual

7

Under review as submission to TMLR

Pareto fronts and extracting the Pareto optimal points. The default value is the mean over the loss and
emissions of the default configuration on the three seeds. The Pareto fronts in Figure 1 depict how each
configuration performs relative to the others within the defined hyperparameter space. The configurations
were evaluated regarding classification loss and emissions emitted during inference of the model instantiated
with the respective configuration. Throughout this paper, when referring to emissions, we measured emissions
at inference.

Although we expect that Elhoushi et al. (2021) optimized their hyperparameters at least manually, we can
show that our AutoML approach found even better trade-offs of the two objectives. The default configuration
for the DSNN, as designed by Elhoushi et al. (2021), is in fact not part of the Pareto front in Figure 1. This
holds for all architectures on both datasets. This means that there are better configurations that dominate the
default configuration regarding both loss and emissions on the MobileNetV2 (Figures 1a and 1b), GoogLeNet
(Figures 1c and 1d) and ResNet20 (Figures 1e and 1f) architectures on Caltech101 and CIFAR10.

0.6 0.7 0.8 0.9
Loss

0.0016

0.0017

0.0018

0.0019

0.0020

Em
iss

io
ns Aggregated Pareto Front

Uncertainty Bounds
Median Pareto Front
Average Default

Figure 2: Pareto front for EfficientNetV2 on CIFAR10 over multiple seeds.
We show the loss in % and the emissions in kgCO2eq. The plots include

median Pareto fronts with uncertainty bars, as well as an aggregated Pareto
front of Pareto-optimal solutions across all runs. The star denotes the

averaged performance of the default DSNN configuration.

Having a closer look at Figure
1f, the underlying goal of our
MFMO optimization remains
to balance performance and ef-
ficiency. Hence, the configu-
rations at the bottom left of
the Pareto front are especially
relevant since they minimize
both objectives simultaneously
instead of heavily prioritizing
either. There is an absolute re-
duction in loss of up to 20% in
these configurations compared
to the defaults. At the same
time, relative emission reduc-
tion ranges from approx. 10%
to more than 60% in Figures
1b and 1e. Additionally, we
achieved a maximum loss re-
duction of about 20% for the
ResNet20 on CIFAR10. This
validates the need for proper HPO tuning since we found better configurations that take the energy-efficient
DSNNs a significant step further by improving their accuracy and energy consumption.

Additionally, we optimized an EfficientNetV2-based DSNN on CIFAR-10 to evaluate whether our method can
yield further improvements when applied to an architecture already optimized for efficiency, thereby testing
its robustness and generalizability. The results are shown in Figure 2 with the corresponding Pareto-optimal
solutions in Table 10 in the appendix. Again, we were able to identify multiple configurations that surpass
the default DSNN w.r.t. prediciton performance and emissions at inferece, using our MOMF approach. While
EfficientNetV2 (Tan & Le, 2021) is inherently designed for optmizing for performance and efficiency, using
compound scaling, the need for carefully tuning the quantization hyperparameters is apparent. Compared to
the default EfficientNetV2, we were able to reduce emissions by more than 20%.

5.2.2 Hyperparameter Importances

Another crucial aspect is the analysis of hyperparameter importance to learn their influence on a model
and lay the foundation of our DSNN design insights in the next subsection. We use DeepCAVE (Sass et al.,
2022) for analyzing the Pareto front of our MFMO analysis in Figure 1f, and computing the hyperparameter
importance using fANOVA (Hutter et al., 2014). fANOVA fits a random forest surrogate model to the
hyperparameter optimization landscape and decomposes the model’s variance into components corresponding
to hyperparameters. This allows fANOVA to estimate the marginal impact of individual hyperparameters or
pairs of hyperparameters. For an extension to MO optimization, fANOVA can be applied to each objective’s

8

Under review as submission to TMLR

0.4 0.6 0.8
Loss

0.00045

0.00050

0.00055

0.00060

0.00065

Em
iss

io
ns

Aggregated Pareto Front
Average Default
Uncertainty Bounds
Median Pareto Front

(a) MobileNet on Caltech101

0.2 0.4 0.6 0.8
Loss

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Em
iss

io
ns

(b) MobileNet on CIFAR10

0.4 0.5 0.6 0.7 0.8 0.9
Loss

0.0020

0.0022

0.0024

0.0026

Em
iss

io
ns

(c) GoogLeNet on Caltech101

0.14 0.15 0.16 0.17 0.18
Loss

0.0009

0.0010

0.0011

0.0012

0.0013

0.0014

Em
iss

io
ns

(d) GoogLeNet on CIFAR10

0.5 0.6 0.7 0.8
Loss

0.0004

0.0006

0.0008

0.0010

0.0012

Em
iss

io
ns

(e) ResNet20 on Caltech101

0.15 0.20 0.25 0.30 0.35
Loss

0.00068

0.00070

0.00072

0.00074

0.00076

0.00078

0.00080

Em
iss

io
ns

(f) ResNet20 on CIFAR10

Figure 1: Comparison of Pareto fronts for MobileNet, GoogLeNet, and ResNet20 on Caltech101 and
CIFAR10 datasets over multiple seeds. We show the loss in % and the emissions in kgCO2eq. The plots

include median Pareto fronts with uncertainty bars, as well as an aggregated Pareto front of Pareto-optimal
solutions across all runs. The star denotes the averaged performance of the default DSNN configuration.

9

Under review as submission to TMLR

performance surface separately. The hyperparameter importances are then computed for different weightings
of the objectives.

(a) Hyperparameter importance with respect to loss.

(b) Hyperparameter importance with respect to emissions.

Figure 3: Hyperparameter importance according to fANOVA for ResNet20 on CIFAR10. (a) Importance
with respect to loss. (b) Importance with respect to emissions.

Figures 3a and 3b show the hyperparameter importances of a ResNet20 on Cifar10 w.r.t. loss and emissions,
respectively. The MO-fANOVA analysis for different weightings of the objectives loss and emissions can be
found in Figure 11 in the appendix. The most important DSNN-specific hyperparameters for emissions in
Figure 3b include activation integer and fraction bits. This hints at the precision of the activation quantization
being the most controlling factor for energy efficiency. Naturally, precision is a key factor since it controls the
amount of operations in the network. Regarding loss in Figure 3a, the shift depth is the most important
hyperparameter. The proportion of the network converted to perform shift operations naturally controls the
amount of information retained in the network. This is crucial for the overall performance of the network.

Notably, the shift type has a low importance value in Figure 3a and is not among the most important
hyperparameters in Figure 3b. This could indicate that the shift type is marginally relevant for both
objectives. In practice, this insight could aid in model training by allocating fewer resources to tuning this
hyperparameter, allocating resources tailored to the use case. This is further supported by looking at Tables
4 to 10. About 50% of the Pareto optimal configurations use either shift type, meaning they are not leaning
toward either to maximize either objective.

10

Under review as submission to TMLR

With the analysis of hyperparameter importance in our study, we offer a baseline of hyperparameters to
include for future training and inference purposes. Including only the significant ones is a promising way of
further boosting the energy efficiency of the DSNNs and the optimization process (Probst et al., 2019).

Additional plots showing the hyperparameter importance for each architecture we examined can be found in
Appendix A.2. The DSNN-specific hyperparameters consistently remain among the most important across
different models, together with weight decay and learning rate, supporting the relevance of our analysis to
present insights into DSNNs.

5.2.3 Insights into the Design of DSNNs

When looking at the specific configurations of the ResNet20 architecture on CIFAR10 in Table 4 (see Appendix
for similar tables for the other architectures and datasets), most solutions have a surprisingly small shift
depth s ∈ {1, 3}, compared to 20 as the maximal value and the setting of the default. Hence, the Pareto
optimal solutions are consistent with a very low shift depth. At the same time, the number of activation
fraction bits is often rather high. This leads to the assumption that the bulk of information to be retained
is in the fraction part of the activation value. A valid expectation since we used batch normalization in
the ResNet20, same as Elhoushi et al. (2021). In batch normalization, the layer inputs are re-scaled and
re-centered using the mean and variance of the corresponding dimension (Ioffe & Szegedy, 2015). This usually
leads to small weights, highlighting the importance of activation fraction precision, which is higher in Pareto
optimal configurations ranging from 8 to 32. This is still likely to be a contributing factor to the emission
reduction.

Intuitively, we assumed that the shift depth is proportionate to the savings in emissions. The interaction
between shift layers and other hyperparameters, such as the bit precision in weights and activations, adds
another layer of complexity. However, these hyperparameters interact in a non-linear manner, influencing
the model’s overall energy consumption and performance in ways that are not immediately apparent. These
results of the Pareto front analysis suggest that the relationship between the configuration of shift layers

— a hyperparameter anticipated to be directly proportional to performance improvements and inversely
proportional to loss — is not as straightforward as we initially hypothesized. We must recognize the intricate
relationships among architectural decisions, hyperparameter configurations, and their consequent effects on
model emissions and energy efficiency. Meaning, an increase in the number of shift layers does not uniformly
lead to enhanced energy savings.

Another contributing factor to emission reduction is the precision of weight representation. However, here
there is no clear trend visible in the ResNet20 configurations examined before. This suggests that this is a
model-specific intricacy that needs to be tuned individually for each dataset.

These insights are corroborated by looking at the additional experiments in the appendix. Additionally to
the Resnet20 on CIFAR10, we computed the Pareto fronts of our MOMF analysis on MobileNetV2 and
GoogLeNet on CIFAR10. The corresponding results are shown in Figures 1b and 1d. The overall Pareto
optimal configurations from multiple seeds can be found Appendix A.1 in Tables 5 and 6. Again, the shift
depths are generally very low, either one or three, with two exceptions of seven and fourteen. The number of
activation fraction bits is usually close to the upper bound of 32 bits.

We have also computed Pareto fronts of our MFMO approach on the Caltech101 dataset, using three
architectures: ResNet20, MobileNetV2 and GoogLeNet. The results can be seen in Figures 1a, 1c and
1e. The configurations on the Pareto fronts are detailed in Tables 7, 8 and 9. Again, the vast majority of
configurations have a low shift depth in the range of s ∈ {1, 2, 3, 4, 5, 6}. Only two GoogLeNet configurations
have a shift depth of eight and 9. This is still relatively low, given that GoogLeNet is a complex architecture
with 22 layers in total.

The number of weight bits ranges from two to eight. As with the previously discussed results, this contributes
to the reduction of emissions while not impacting the performance. Generally, the number of activation
fraction and integer bits increases with lower shift depth and vice versa. This confirms our previous findings
from the thoroughly discussed Resnet20 on CIFAR10.

11

Under review as submission to TMLR

Random LR Fixed LR0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Em
iss

io
n

Va
lu

es

Figure 4: Emissions from different learning rates.

In Figures 3a and 3b, the learning rate is surprisingly identified as an important hyperparameter both for
loss and emissions. To shed light on how the learning rate is related to emissions, we investigated this further.
To this end, we instantiated a ResNet20 on CIFAR10 with the default configuration, but varied the learning
by 100 values randomly sampled from the configuration search space. Analyzing the resulting emissions
leads to a mean value of 0.00106 kgCo2eq, which exceeds the range of our Pareto fronts. The standard
deviation is 0.00156, which is itself close to the mean value. This shows, indeed, that randomizing the learning
rate introduced great variability in the energy measurements. As a control measurement to rule out other
confounding factors, we measured the energy required for inference for a model instantiated with the default
learning rate 100 times over. As expected, this leads to a mean of 0.00076 kgCo2eq, matching the evaluation
of the default configuration in Figure 1f, and a very low standard deviation of about 0.00006 (see Figure 4).

This leads to the conclusion that the learning rate is indeed an influential HP on the emissions data since
it can drastically lead to an increase in emissions when chosen suboptimally. Our AutoML approach offers
a solution to exactly this problem, since we aim to automate both the identification and optimal choice of
hyperparameters.

5.3 Transferability of Configurations

Understanding whether optimal configurations found in one setting remain effective in others is critical for
practical and sustainable AutoML. In particular, the ability to transfer configurations across datasets can lead
to substantial reductions in computational cost and associated emissions. If previously optimized configurations
remain near-optimal despite changes in the data, users can avoid restarting the entire optimization process,
thus saving both time and resources.

To investigate this, we evaluated the Pareto-optimal configurations identified for a ResNet20 model on
CIFAR-10 trained on ImageNet100, a subset of ImageNet Tian et al. (2020). We measure loss and emissions
at inference. The results, shown in Figure 5 demonstrate that several of the original Pareto configurations
remain competitive on Imagenet100, continuing to outperform the default configuration. Notably, the default
remains Pareto-dominated while the transferred configurations yield improvements in both loss and emissions.
This suggests a degree of robustness and transferability, which could be leveraged in practice to reduce the
frequency of full re-optimization runs.

6 Conclusion

In this work, we presented our Green AutoML approach towards the sustainable optimization of DSNNs
through a multi-fidelity, multi-objective (MFMO) HPO framework. Our approach effectively addressed the
critical intersection between advancing the capabilities of Deep Learning and environmental sustainability.

12

Under review as submission to TMLR

0.70 0.75 0.80 0.85 0.90 0.95
Loss

0.0035

0.0036

0.0037

0.0038

0.0039

0.0040

Em
iss

io
ns

Config 124
Config 116

Config 71

Config 38

Config 82

Config 28

Config 49

DefaultConfigurations
Pareto Front

Figure 5: ResNet20 trained on Imagenet100, instantiated with Pareto-optimal configurations from CIFAR10
(see Table 4). We show the loss in % and the emissions in kgCO2eq.

By leveraging AutoML tools and integrating the environmental impact as an objective, we adeptly navigated
the trade-off between model performance and efficient resource utilization.

Our experimental results focused on a better understanding of DSNNs. We successfully optimized DSNNs
to achieve higher accuracy while minimizing energy consumption, surpassing the default configuration
settings in both aspects. Through systematic experimentation, we identified key hyperparameters that
significantly influence performance and emissions, such as shift depth and number of weight bits. By
optimizing these hyperparameters, our MFMO approach did not just improve one dimension of the problem –
it concurrently enhanced both model loss and energy efficiency, showcasing a balanced improvement across
essential performance metrics. We have thoroughly explored the configuration space for DSNNs, introduced
a Green AutoML approach for efficiency-driven model development (Tornede et al., 2023), and provided
valuable insights into the design decisions impacting DSNN performance.

The generalizable insights from our work extend beyond the need to carefully select bitwidths for quantization.
Our results reveal that optimal configurations for DSNNs are often counterintuitive and highly dependent on
the intricate relations between hyperparameters. For example, we found that low shift depths often achieve
superior trade-offs between accuracy and energy efficiency, challenging assumptions about full quantization
of networks. Additionally, our analysis highlights the importance of prioritizing specific hyperparameters
for different objectives, providing a targeted approach to DSNN optimization. These findings are consistent
across multiple architectures and datasets, demonstrating their broader applicability. Overall, our study
shows the need for a systematic, automated approach to detecting these insights, which are relevant not only
for DSNNs but also for other quantized and resource-efficient neural networks.

Limitations While our use of CodeCarbon provides valuable insights into the emissions impact of training
and inference for DSNNs, it is important to acknowledge the limitations and assumptions inherent in these
measurements. CodeCarbon relies on real-time power draw metrics from tools like nvidia-smi. However, these
estimates assume a steady power draw during computation and do not account for fluctuations in hardware
utilization or dynamic changes in the energy grid. We consider CodeCarbon a reasonable approximation for
measuring energy consumption. This is also reflected in recent literature, where studies have been conducted
comparing CodeCarbon measurements to wattmeters that directly measure power consumption on machines
(Bouza et al., 2023).

We acknowledge that energy consumption varies significantly based on regional energy mixes and the
infrastructure of data centers. Emissions are typically calculated by multiplying the energy consumed by a
carbon intensity factor. For a given energy mix, this factor remains constant. As a result, emissions scale
linearly with energy consumption when the energy mix is fixed. Thus, once we compute a Pareto front

13

Under review as submission to TMLR

based on energy consumption, the emission axis can be scaled accordingly to reflect the specific carbon
intensity of the region. In dynamic scenarios where energy mixes change over time, our approach enables
rapid recalculation of Pareto fronts to reflect these variations so that stakeholders can accommodate real-time
or regional changes in energy conditions. While data centers may often rely on carbon-neutral energy sources,
the broader applicability of our method extends to embedded devices, such as those used in automobiles
or IoT systems. These devices operate in highly varied environments, with energy sources dependent on
local conditions. Our approach enables stakeholders to determine location-specific or even time-sensitive
Pareto fronts, providing a tailored basis for decision-making. This empowers users to balance trade-offs
between accuracy and emissions based on financial, ecological, or operational considerations. While testing on
hardware such as low-power chips or alternative GPUs could offer additional insights into hardware-specific
performance trade-offs, we maximize the potential impact and accessibility of our research by training on
NVIDIA A100 GPUs, which is commonly-used hardware in academia and industry.

We do not focus on transformer-based architectures in this work. While transformers have become prominent
in computer vision, particularly Vision Transformers (ViTs), they typically require substantial computational
resources and are less common in highly constrained environments. In scenarios such as edge computing and
embedded systems for image classification, smaller convolutional architectures remain a predominant choice
due to their lower memory footprint, faster inference, and mature optimization toolchains (Maurício et al.,
2023). Although there are emerging quantization strategies for transformers (Scherer et al., 2024), our goal is
not to replicate or extend the DSNN framework to support these architectures. In line with the principles
of AutoML, we are conscious of the compute budget required for large-scale search and deliberately avoid
high-cost models like transformers to ensure that our pipeline remains practical, efficient, and aligned with
low-resource deployment scenarios.

Weighing the additional cost of employing AutoML with the savings achieved as a result is vital to assessing
the impact of our approach. We argue that we offset the additional cost of the AutoML training process,
namely the generation of the Pareto front for each model, through our savings in inference cost in a negligible
amount of time. We target an application environment like automated driving or automated production,
where inference needs to happen at near real-time or real-time.

To provide sufficient evidence, we provide an upper bound calculation based on the experiments we ran. Our
longest AutoML optimization run—GoogLeNet on Caltech101—took approximately 48 hours to determine
an approximated Pareto front, which is by far the longest; most other runs were completed in about half that
time. Assuming a maximum 300W power draw on an A100 GPU according to NVIDIA and a local carbon
intensity factor of 0.475 kgCO2/kWh, this results in an estimated emission of about 6.84 kgCO2eq, based on
the CodeCarbon formula:

Emissions (kgCO2eq) = 0.3 kW ∗ 48 h ∗ 0.475 kgCO2/kWh ≈ 6.84 kgCO2eq. (6.1)

For GoogLeNet, our optimized model reduces inference emissions by approximately 0.0004 kgCo2eq per
inference—meaning the optimization overhead is amortized after around 17,100 inferences, or about 4.75
hours assuming a conservative real-time inference rate of one image per second (which is much slower than
actual rates in automated driving or production contexts, which is what we are targeting). For other models
in our study, the emission savings per inference are considerably higher, meaning the break-even point is
reached even sooner.

In this work, we focus exclusively on image classification tasks. Other vision tasks, such as object detection,
semantic segmentation, or visual tracking, are relevant for energy-efficient computing in real-world applications,
particularly in our intended domains like automated driving and industrial monitoring. However, extending
our methodology to these more complex tasks is beyond the scope of this study.

Future Work could focus on revisiting the multi-fidelity-multi-objective implementation to find a more
efficient way for ParEGO and HyperBand to intertwine, such as by finding a more effective way to assign
budgets and weights of objectives. Further investigations could include exploring more DSNN-specific fidelity
types and multi-objective algorithms to achieve even greater reductions in model emissions. We consider it
especially interesting to use the number of weight bits as a fidelity type. By controlling the precision of the

14

Under review as submission to TMLR

weight quantization, training can be sped up in the earlier fidelity while regaining as much information as
possible, to use this for full training of the most promising configurations at maximum precision. Through
these future initiatives, the underlying optimization methodology and the environmental benefits of our
optimized DSNNs can be further improved, thereby contributing significantly to sustainable AI.

References
S. Belakaria, A. Deshwal, and J. Doppa. Multi-Fidelity Multi-Objective bayesian optimization: An output

space entropy search approach. AAAI, 34(06):10035–10043, 2020.

B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker, A.-L.
Boulesteix, D. Deng, and M. Lindauer. Hyperparameter optimization: Foundations, algorithms, best
practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
pp. e1484, 2023.

L. Bouza, A. Bugeau, and L. Lannelongue. How to estimate carbon footprint when training deep learning
models? a guide and review. Environmental Research Communications, 5(11):115014, 2023.

H. Chen, Y. Wang, C. Xu, B. Shi, C. Xu, Q. Tian, and C. Xu. AdderNet: Do we really need multiplications
in deep learning? In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pp. 1465–1474, 2020a.

T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised models are strong
semi-supervised learners. arXiv:2006.10029v2 [cs.LG], 2020b.

M. Courbariaux, Y. Bengio, and J. David. Binaryconnect: Training deep neural networks with binary weights
during propagations. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Proceedings
of the 29th International Conference on Advances in Neural Information Processing Systems (NeurIPS’15),
volume 28. Curran Associates, 2015.

K. Deb. Multi-objective Optimization, pp. 403–449. 2014.

K. Eggensperger, P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N. Awad, M. Lindauer, and F. Hutter.
HPOBench: A collection of reproducible multi-fidelity benchmark problems for HPO. In J. Vanschoren
and S. Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks. Curran Associates, 2021.

M. Elhoushi, Z. Chen, F. Shafiq, Y. Henry Tian, and J. Yiwei Li. DeepShift: Towards multiplication-less
neural networks. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR
Workshops 2021, virtual, June 19-25, 2021, pp. 2359–2368, 2021.

T. Elsken, J. Metzen, and F. Hutter. Neural Architecture Search: A survey. Journal of Machine Learning
Research, 20(55):1–21, 2019.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An
incremental bayesian approach tested on 101 object categories. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, CVPR Workshops 2004, Washington, DC, USA, June 27 - July 2,
2004, pp. 178, 2004.

P. Frazier, W. Powell, and S. Dayanik. The knowledge-gradient policy for correlated normal beliefs. Journal
on Computing, 21(4):599–613, 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp.
770–778, 2016.

P. Hennig and C. Schuler. Entropy search for information-efficient global optimization. Journal of Machine
Learning Research, 98888(1):1809–1837, 2012.

15

Under review as submission to TMLR

J. Hernández-Lobato, M. Hoffman, and Z. Ghahramani. Predictive entropy search for efficient global
optimization of black-box functions. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Weinberger (eds.), Proceedings of the 28th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’14). Curran Associates, 2014.

A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.
MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861, 2017.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In C. Coello (ed.), Proceedings of the Fifth International Conference on Learning and
Intelligent Optimization (LION’11), volume 6683 of Lecture Notes in Computer Science, pp. 507–523.
Springer, 2011.

F. Hutter, H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparameter importance.
In E. Xing and T. Jebara (eds.), Proceedings of the 31th International Conference on Machine Learning,
(ICML’14), pp. 754–762. Omnipress, 2014.

F. Hutter, L. Kotthoff, and J. Vanschoren (eds.). Automated Machine Learning - Methods, Systems, Challenges.
2019.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In F. Bach and D. Blei (eds.), Proceedings of the 32nd International Conference on Machine
Learning (ICML’15), volume 37. Omnipress, 2015.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and Hyperparameter Optimization. In
A. Gretton and C. Robert (eds.), Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics (AISTATS’16), volume 51. Proceedings of Machine Learning Research, 2016.

D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions. J.
Glob. Optim., 13(4):455–492, 1998.

K. Kandasamy, G. Dasarathy, J. Oliva, J. Schneider, and B. Póczos. Multi-fidelity gaussian process bandit
optimisation. J. Artif. Intell. Res., 66:151–196, 2019.

J. Knowles. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective
optimization problems. IEEE Trans. Evol. Comput., 10(1):50–66, 2006.

A. Krizhevsky, G. Hinton, and o. Learning multiple layers of features from tiny images. University of Toronto,
2009.

A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres. Quantifying the carbon emissions of machine learning.
arXiv:1910.09700, 2019.

H. Li, K. Ota, and M. Dong. Learning IoT in edge: Deep learning for the internet of things with edge
computing. IEEE Netw., 32(1):96–101, 2018.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel bandit-based
approach to hyperparameter optimization. J. Mach. Learn. Res., 18:185:1–185:52, 2017.

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf, R. Sass, and
F. Hutter. SMAC3: A versatile bayesian optimization package for Hyperparameter Optimization. Journal
of Machine Learning Research, 23(54):1–9, 2022.

K. Lottick, S. Susai, S. Friedler, and J. Wilson. Energy usage reports: Environmental awareness as part of
algorithmic accountability. arXiv:1911.08354, 2019.

J. Maurício, I. Domingues, and J. Bernardino. Comparing vision transformers and convolutional neural
networks for image classification: A literature review. Applied Sciences, 13(9):5521, 2023.

16

Under review as submission to TMLR

A. Morales-Hernández, I. Van Nieuwenhuyse, and S. Gonzalez. A survey on multi-objective hyperparameter
optimization algorithms for machine learning. Artificial Intelligence Review, 56:8043––8093, 2022.

B. Alessandra Motetti, M. Risso, A. Burrello, E. Macii, M. Poncino, and D. Jahier Pagliari. Joint pruning
and channel-wise mixed-precision quantization for efficient deep neural networks. arXiv:2407.01054, 2024.

P. Probst, A. Boulesteix, and B. Bischl. Tunability: Importance of hyperparameters of machine learning
algorithms. Journal of Machine Learning Research, 20(53):1–32, 2019.

C. Edward Rasmussen and C. Williams. Gaussian Processes for Machine Learning. 2006.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: ImageNet classification using binary
convolutional neural networks. arXiv:1603.05279, 2016.

B. Rokh, A. Azarpeyvand, and A. Khanteymoori. A comprehensive survey on model quantization for deep
neural networks in image classification. ACM Trans. Intell. Syst. Technol., 14(6):97:1–97:50, 2023.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR’18). Computer Vision Foundation and IEEE Computer Society, IEEE, 2018.

R. Sass, E. Bergman, A. Biedenkapp, F. Hutter, and M. Lindauer. Deepcave: An interactive analysis tool
for automated machine learning. In M. Mutny, I. Bogunovic, W. Neiswanger, S. Ermon, Y. Yue, and
A. Krause (eds.), ICML Adaptive Experimental Design and Active Learning in the Real World (ReALML
Workshop 2022), 2022.

M. Scherer, C. Cioflan, M. Magno, and L. Benini. Work in progress: Linear transformers for TinyML. In
Design, Automation & Test in Europe Conference & Exhibition, DATE 2024, Valencia, Spain, March
25-27, 2024, pp. 1–2, 2024.

R. Schmucker, M. Donini, V. Perrone, M. Zafar, and C. Archambeau. Multi-objective multi-fidelity hyper-
parameter optimization with application to fairness. In R. Calandra, J. Clune, E. Grant, J. Schwarz,
J. Vanschoren, F. Visin, and J. Wang (eds.), NeurIPS 2020 Workshop on Meta-Learning, 2020.

R. Schwartz, J. Dodge, N. Smith, and O. Etzioni. Green AI. Commun. ACM, 63(12):54–63, 2020.

B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the human out of the loop: A
review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556 [cs.CV], 2014.

V. Sze, Y. Chen, T. Yang, and J. Emer. Efficient processing of deep neural networks: A tutorial and survey.
Proc. IEEE, 105(12):2295–2329, 2017.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pp. 1–9, 2015.

M. Tan and Q. Le. EfficientNetV2: Smaller models and faster training. In M. Meila and T. Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139, pp. 10096–10106, 2021.

Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. In A. Vedaldi, H. Bischof, T. Brox, and
J. Frahm (eds.), Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XI, volume 12356, pp. 776–794, 2020.

T. Tornede, A. Tornede, J. Hanselle, F. Mohr, M. Wever, and E. Hüllermeier. Towards green automated
machine learning: Status quo and future directions. Journal of Artificial Intelligence Research, 77:427–457,
2023.

17

Under review as submission to TMLR

T. Wada and H. Hino. Bayesian optimization for multi-objective optimization and multi-point search.
arXiv:1905.02370, 2019.

H. Wang, S. Ma, L. Dong, S. Huang, H. Wang, L. Ma, F. Yang, R. Wang, Y. Wu, and F. Wei. BitNet:
Scaling 1-bit transformers for large language models. arXiv:2310.11453, 2023.

H. You, X. Chen, Y. Zhang, C. Li, S. Li, Z. Liu, Z. Wang, and Y. Lin. Shiftaddnet: A hardware-inspired
deep network. Advances in Neural Information Processing Systems, 33:2771–2783, 2020.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. Edge intelligence: Paving the last mile of artificial
intelligence with edge computing. Proc. IEEE, 107(8):1738–1762, 2019.

18

Under review as submission to TMLR

A Appendix

A.1 Optimization Results

We provide tables that list the Pareto-optimal configurations obtained for ResNet20, MobileNet, GoogLeNet
and EfficientNetV2 on CIFAR-10 and Caltech101 (Tables 4 to 10). For each model and dataset, we report the
mean and standard deviation across multiple seeds. These results include both the Pareto-optimal solutions
and the performance of the default configurations in terms of loss and emissions, offering a comprehensive
overview of the trade-offs achieved.

A.2 Hyperparameter Importances

We further analyzed the hyperparameter importance for the additional architectures we examined, as shown
in Figures 6a to 10b. Across all models, the DSNN-specific hyperparameters consistently remain among
the most important ones, alongside weight decay and learning rate. This highlights the relevance of our
approach: focusing on the DSNN-specific parameters and allocating computational resources toward tuning
them optimally for the given task appears to be a promising and effective strategy.

A.3 Additional Baselines for Comparison

To demonstrate the effectiveness and relevance of our approach, we compare against the same baselines as
the original DSNN paper by Elhoushi et al. (2021). Since our work builds on a multi-objective optimization
framework targeting both accuracy and emissions, but the original DSNN paper provides only single-objective
baselines (focused solely on accuracy), we restricted our evaluation to the accuracy objective for fair comparison.
Specifically, we focus on the VGG19 architecture (Simonyan & Zisserman, 2014), as this is the network for
which Elhoushi et al. (2021) published baseline results.

From our Pareto front resulting from MOMF optimization of the VGG19 architecture, we selected a
configuration that was identified as Pareto-optimal, achieving higher accuracy than the default configuration,
while maintaining comparable emissions. As shown in Table 2, the final accuracy of this configuration
outperforms not only the original unquantized VGG19 but also the quantized network baselines such as the
DeepShift-PS baseline from Elhoushi et al. (2021), AdderNet (Chen et al., 2020b) and ShiftAddNet (You
et al., 2020).

Model Accuracy

VGG19

AutoDSNN 93.45%
Original* 92%
DeepShift-PS* 91.57%
AdderNet* (Chen et al., 2020b) 93.02%
ShiftAddNet* (You et al., 2020) 90%

Table 2: Accuracy comparison of VGG19 model variants. Baseline results from Elhoushi et al. (2021) are
marked with an asterisk.

Looking at the configuration details in Table 3, we can see that the Pareto optimal configuration that beats
the aforementioned baselines has 11 shift layers, meaning that little more than half of the VGG19 layers are
quantized. This is in line with our analysis of optimal DSNN configurations in Section 5.2.3. Again, it is not
optimal to simply quantize the whole architecture. More so, since with our MOMF approach we can beat both
the original unquantized architecture, the default DSNN, as well as both quantization baselines. These results
highlight the relevance of our approach to discovering well-performing DeepShift configurations tailored to
both accuracy and emissions. In particular, our optimal configuration, which outperforms all considered
baselines, is only partially quantized, demonstrating that effective configurations are not straightforward
or easily designed by hand. This underscores the importance of our method for systematically identifying
efficient DSNNs beyond standard quantization heuristics, which are competitive with relevant baselines.

19

Under review as submission to TMLR

Table 3: Configuration 32 for VGG19 on CIFAR10, selected from the Pareto front. This configuration
achieves a significant improvement over the default unquantized VGG19 in terms of accuracy.

Hyperparameter Config 32

Batch Size 127
Optimizer Adam
Learning Rate 0.0107
Momentum 0.1474
Weight Decay 0.0032

Weight Bits 5
Act. Int. Bits 20
Act. Frac. Bits 11
Shift Depth 11
Shift Type Q
Rounding Stochastic

Table 4: Pareto optimal configurations and default DSNN initiation of ResNet 20 on CIFAR10.Pareto
optimal solutions on the aggregated Pareto front of the ResNet20 architecture on CIFAR10 on three seeds,

including the mean aggregated loss and emissions of the default configuration.

Hyperpar. Config 124 Config 116 Config 71 Config 38 Config 82 Config 28 Config 49 Default

Batch Size 127 127 127 128 127 128 128 128
Optimizer Ranger Ranger Ranger Ranger Ranger Adagrad Adagrad SGD
Learning
Rate

0.0130 0.0327 0.0150 0.0542 0.0129 0.0548 0.0929 0.1

Momentum 0.7489 0.7718 0.1529 0.4983 0.6838 0.6783 0.4825 0.9
Weight De-
cay

0.0001 0.00005 0.0038 0.0001 0.0001 0.0002 0.0003 0.0001

Weight Bits 2 8 5 2 2 5 5 5
Act. Int.
Bits

11 13 2 9 11 22 24 16

Act. Frac.
Bits

32 30 32 11 27 11 8 16

Shift Depth 1 1 3 1 1 1 1 20
Shift Type PS PS Q PS PS PS PS PS
Rounding Det. Det. Det. Stochastic Det. Stochastic Stochastic Det.

Loss 0.1127 0.1142 0.1161 0.1172 0.1176 0.1352 0.1443 0.3518
Emissions
(e-4)

7.9802 7.9214 7.5967 7.0880 6.9903 6.8248 6.7444 7.5162

20

Under review as submission to TMLR

Table 5: Pareto optimal configurations and default DSNN instantiation of MobileNetV2 on CIFAR10

Hyperparameter Config 15 Config 68 Config 66 Config 21 Default

Optimizer Adadelta Adadelta Adadelta SGD SGD
Learning Rate 0.182188 0.186665 0.197817 0.183219 0.1
Momentum 0.726835 0.689596 0.1837 0.76337 0.9
Weight Decay 0.002727 0.003048 0.00306 0.002277 0.0001

Weight Bits 5 5 5 4 5
Activation Integer
Bits

21 19 21 23 16

Activation Fraction
Bits

31 31 32 16 16

Shift Depth 14 7 1 1 53
Shift Type PS PS PS PS PS
Rounding Deterministic Deterministic Deterministic Deterministic Deterministic

Loss 0.1683 0.1756 0.1797 0.9016 0.3017
Emissions 0.000755 0.000655 0.000552 0.000549 0.001656

Table 6: Pareto optimal configurations and default DSNN instantiation of GoogLeNet on CIFAR10

Hyperpar. Config 65 Config 33 Config 28 Config 14 Config 32 Default

Optimizer Adadelta Adadelta Ranger Ranger Adadelta SGD
Learning Rate 0.028997 0.023838 0.020002 0.058610 0.115941 0.1
Momentum 0.209328 0.494258 0.250184 0.673880 0.372339 0.9
Weight Decay 0.008487 0.006737 0.006691 0.002313 0.009464 0.0001

Weight Bits 2 3 2 4 2 5
Activation Inte-
ger Bits

21 24 29 26 29 16

Activation Frac-
tion Bits

4 5 4 8 7 16

Shift Depth 1 1 1 1 1 22
Shift Type Q Q Q PS PS PS
Rounding Stochastic Deterministic Deterministic Deterministic Deterministic Deterministic

Loss 0.1347 0.1409 0.1636 0.1748 0.1850 0.1810
Emissions 0.000916 0.000912 0.000876 0.000840 0.000835 0.001388

Table 7: Pareto optimal configurations and default DSNN instantiation of ResNet20 on Caltech101

Hyperparameter Config 26 Config 66 Config 32 Config 76 Default

Activation Fraction
Bits

17 27 13 21 16

Activation Integer
Bits

24 21 22 25 16

Learning Rate (lr) 0.023 0.039 0.076 0.015 0.1
Momentum 0.559 0.333 0.344 0.551 0.9
Optimizer Ranger Ranger Ranger RMSProp SGD
Rounding Deterministic Stochastic Stochastic Deterministic Deterministic
Shift Depth 2 2 1 1 20
Shift Type PS PS PS Q PS
Weight Bits 2 5 2 5 5
Weight Decay 0.0033 0.0027 0.0029 0.0069 0.0001

Loss 0.456 0.532 0.636 0.874 0.679
Emissions 0.00046 0.00044 0.00044 0.00044 0.00109

21

Under review as submission to TMLR

Table 8: Pareto optimal configurations and default DSNN instantiation of MobileNetV2 on Caltech101

Hyperparameter Config 9 Config 65 Config 33 Config 74 Default

Activation Fraction
Bits

26 30 7 6 16

Activation Integer
Bits

8 12 11 32 16

Learning Rate (lr) 0.192 0.199 0.004 0.006 0.1
Momentum 0.510 0.545 0.016 0.012 0.9
Optimizer Adadelta Adadelta SGD Adam SGD
Rounding Deterministic Deterministic Deterministic Stochastic Deterministic
Shift Depth 6 3 1 1 53
Shift Type PS PS Q Q PS
Weight Bits 3 2 5 4 5
Weight Decay 0.009 0.004 0.004 0.004 0.0001

Loss 0.274 0.276 0.459 0.870 0.337
Emissions 0.00053 0.00049 0.00046 0.00046 0.00066

Table 9: Pareto optimal configurations and default DSNN instantiation of GoogLeNet on Caltech101

Hyperpar. Config 66 Config 25 Config 44 Config 63 Config 33 Config 21 Config 20 Default

Activation
Fraction Bits

5 8 19 7 20 4 30 16

Activation In-
teger Bits

25 26 9 10 7 30 7 16

Learning
Rate (lr)

0.058 0.059 0.052 0.13 0.199 0.187 0.017 0.1

Momentum 0.185 0.642 0.194 0.889 0.647 0.367 0.248 0.9
Optimizer Adadelta Adadelta Adadelta Adagrad Radam Adagrad Adam SGD
Rounding Det. Det. Det. Det. Det. Stochastic Stochastic Det.
Shift Depth 8 1 9 1 2 2 2 22
Shift Type Q PS PS PS PS Q Q PS
Weight Bits 3 4 3 2 4 3 2 5
Weight De-
cay

0.0004 0.0019 0.0029 0.0006 0.0027 0.0048 0.0059 0.0001

Loss 0.356 0.362 0.376 0.563 0.778 0.793 0.922 0.466
Emissions 0.0026 0.0026 0.0023 0.0022 0.0021 0.0021 0.0020 0.0027

22

Under review as submission to TMLR

Table 10: Pareto optimal configurations and default DSNN instantiation of EfficientNetV2 on CIFAR10

Hyperpar. Config 61 Config 75 Config 31 Config 71 Config 39 Default

Optimizer RMSprop RMSprop Adadelta Adam Ranger SGD
Learning Rate 0.01737 0.03561 0.03508 0.17490 0.12583 0.1
Momentum 0.8861 0.6085 0.4682 0.3632 0.7668 0.9
Weight Decay 0.0000381 0.007015 0.003031 0.009879 0.007242 0.0001

Weight Bits 5 2 3 4 2 5
Activation Inte-
ger Bits

8 15 22 16 9 16

Activation Frac-
tion Bits

11 21 22 18 10 16

Shift Depth 1 51 48 28 42 342
Shift Type Q PS Q PS PS PS
Rounding Stochastic Deterministic Stochastic Deterministic Stochastic Deterministic

Loss 0.1521 0.1539 0.1555 0.1653 0.1657 0.8283
Emissions 0.000973 0.000934 0.000926 0.000880 0.000870 0.002074

(a) Hyperparameter importance with respect to loss.

(b) Hyperparameter importance with respect to emissions.

Figure 6: Hyperparameter importance according to fANOVA for MobileNet on Caltech101. (a) Importance
with respect to loss. (b) Importance with respect to emissions.

23

Under review as submission to TMLR

(a) Hyperparameter importance with respect to loss.

(b) Hyperparameter importance with respect to emissions.

Figure 7: Hyperparameter importance according to fANOVA for GoogLeNet on Caltech101. (a) Importance
with respect to loss. (b) Importance with respect to emissions.

24

Under review as submission to TMLR

(a) Hyperparameter importance with respect to loss.

(b) Hyperparameter importance with respect to emissions.

Figure 8: Hyperparameter importance according to fANOVA for ResNet20 on Caltech101. (a) Importance
with respect to loss. (b) Importance with respect to emissions.

25

Under review as submission to TMLR

(a) Hyperparameter importance with respect to loss.

(b) Hyperparameter importance with respect to emissions.

Figure 9: Hyperparameter importance according to fANOVA for MobileNet on CIFAR10. (a) Importance
with respect to loss. (b) Importance with respect to emissions.

26

Under review as submission to TMLR

(a) Hyperparameter importance with respect to loss.

(b) Hyperparameter importance with respect to emissions.

Figure 10: Hyperparameter importance according to fANOVA for GoogLeNet on CIFAR10. (a) Importance
with respect to loss. (b) Importance with respect to emissions.

Figure 11: MO analysis of hyperparameter importance of a ResNet20 on CIFAR10 w.r.t. loss and emissions
using the fANOVA method. The x-axis shows wl, the weight of the objective loss, ranging from 0 to 1. The

weight of the objective emissions is thus we = 1− wl. The y-axis shows the importance of each
hyperparameter in the legend.

27

Under review as submission to TMLR

Algorithm 1 Multi-Fidelity Optimization with Parego for DSNNs

Require: Configuration space C, objectives L = [Lloss,Lemissions], budget range [Bmin, Bmax], number of
trials N , DSNN architecture A.

Ensure: Pareto optimal configurations PN .
1: Initialize scenario S with C, L, (Bmin, Bmax), and N .
2: Generate initial observation dataset Dinit by sampling k random configurations {λi}k

i=1 ⊂ C.
3: Define intensifier H as Hyperband for budget allocation.
4: Initialize optimizer O using Parego and H.
5: for each trial t ∈ {1, . . . , N} do
6: Select a configuration λt ∈ C using Parego.
7: Allocate budget bt ∈ (Bmin, Bmax) using H.
8: Perform evaluation of λt with budget bt:

1. Convert DSNN A to a shift-based architecture A′:

A′ = convert_to_shift(A, λt[shift_depth], λt[shift_type])
w′ = round(w, λt[rounding]), ∀w ∈ A′,

where convert_to_shift replaces standard operations with shift operations, and round applies
deterministic or stochastic rounding.

2. Train A′ for bt epochs and compute the objective values:

Lloss(λt) = 1
|Dtest|

∑
(x,y)∈Dtest

ℓ(fA′(x), y),

Lemissions(λt) = measure_emissions(A′, bt),

where Dtest is the test dataset, ℓ is the cross-entropy loss, and measure_emissions computes the
energy consumption.

3. Update observation dataset:

Dt ← Dt−1 ∪ {(λt, [Lloss(λt),Lemissions(λt)])}.

9: Update the Pareto front:

Pt = {(λ,L(λ)) ∈ Dt | ∄λ′ ∈ Dt : L(λ′) ≻ L(λ)},

where L(λ′) ≻ L(λ) denotes that λ′ dominates λ.
10: end for
11: return PN

28

	Introduction
	Related Work
	Background
	Deep Shift Neural Networks
	Hyperparameter Optimization
	Bayesian Optimization
	Multi-Fidelity Optimization
	Multi-Objective Optimization

	Approach
	Configuration Space Exploration
	Multi-Fidelity Multi-Objective Optimization Framework
	Algorithmic Implementation of MFMO

	Experiments
	Evaluation Setup
	Results
	Quantitative Results
	Hyperparameter Importances
	Insights into the Design of DSNNs

	Transferability of Configurations

	Conclusion
	Appendix
	Optimization Results
	Hyperparameter Importances
	Additional Baselines for Comparison

