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Abstract—Thanks to the efficacy of Symmetric Positive Def-
inite (SPD) manifold in characterizing video sequences (image
sets), image set-based visual classification has made remarkable
progress. However, the issue of large intra-class diversity and
inter-class similarity is still an open challenge for the research
community. Although several recent studies have alleviated the
above issue by constructing Riemannian neural networks for
SPD matrix nonlinear processing, the degradation of structural
information during multi-stage feature transformation impedes
them from going deeper. Besides, a single cross-entropy loss
is insufficient for discriminative learning as it neglects the
peculiarities of data distribution. To this end, this paper develops
a novel framework for image set classification. Specifically, we
first choose a mainstream neural network built on the SPD
manifold (SPDNet) [25] as the backbone with a stacked SPD
manifold autoencoder (SSMAE) built on the tail to enrich the
structured representations. Due to the associated reconstruction
error terms, the embedding mechanism of both SSMAE and
each SPD manifold autoencoder (SMAE) forms an approximate
identity mapping, simplifying the training of the suggested
deeper network. Then, the ReCov layer is introduced with a
nonlinear function for the constructed architecture to narrow the
discrepancy of the intra-class distributions from the perspective
of regularizing the local statistical information of the SPD
data. Afterward, two progressive metric learning stages are
coupled with the proposed SSMAE to explicitly capture, encode,
and analyze the geometric distributions of the generated deep
representations during training. In consequence, not only a more
powerful Riemannian network embedding but also effective clas-
sifiers can be obtained. Finally, a simple maximum voting strategy
is applied to the outputs of the learned multiple classifiers for
classification. The proposed model is evaluated on three typical
visual classification tasks using widely adopted benchmarking
datasets. Extensive experiments show its superiority over the state
of the arts.

Index Terms—SPD Manifold, Image Set Classification, Rie-
mannian Neural Network, Stacked SPD Manifold Autoencoder
(SSMAE), Metric Learning.

I. INTRODUCTION

THE covariance matrices are ubiquitous in any statistical-
related field, but it is less common for them to be
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used as a representation of the data for computer vision
and pattern recognition (CV&PR). In spite of this, their
usefulness has been proved in a variety of applications. In
medical imaging, covariance matrices are exploited to analyze
magnetic resonance imaging (MRI) [16], [34] and classify
time-series for Brain-Computer Interfaces (BCI) [17]. In visual
classification, since they have the capacity to globally capture
and characterize the spatiotemporal fluctuations of image
sets (video clips) of different lengths as fixed-dimensional
second-order representations, covariance features have gained
great popularity in the tasks of face recognition [11], [20],
[27], dynamic scene classification [8], [9], [44], and action
recognition [25], [26], [31], etc.

Given the convenience of covariance matrix, we select it
as the feature descriptor for image set data in this paper.
However, the essential difficulty of processing and classifying
these matrices, which are actually SPD, is that they can not be
viewed as Euclidean points, as the topological space spanned
by a family of SPD matrices of the same dimensionality is
not a vector space, but a curved Riemannian manifold, i.e.,
SPD manifold [46]. Therefore, it is inappropriate to perform
a direct Euclidean computation on the SPD manifold-valued
data. To overcome this limitation, [34], [46] advocate the usage
of Riemannian metrics to capture and encode the Riemannian
geometry of SPD matrices, including Log-Euclidean metric
(LEM) [46] and Affine-Invariant Riemannian metric (AIRM)
[34]. By utilizing these well-studied Riemannian metrics, the
Euclidean tools can be generalized to the SPD manifold by
either mapping it into an associated flat space via tangent
approximation [2]–[4] or embedding it into the Reproducing
Kernel Hilbert space (RKHS) via Riemannian kernel functions
[5]–[7], [9], [23], [36]. However, the representation learning
and classification process of these two types of approaches is
basically carried out in the Euclidean vector space, which will
inevitably distort the geometrical structure of the original data
manifold. To tackle this issue, several SPD matrix discrimi-
nant analysis algorithms [8], [11], [12], [20] concerned with
dimensionality reduction (DR) have recently been suggested as
a means of geometry-aware feature selection. The philosophy
of this type of approach is to generate a lower-dimensional
feature manifold with maximum discriminatory power by
jointly learning a manifold-to-manifold embedding mapping
and a similarity metric on the original SPD manifold. As a
consequence, the Riemannian geometry of the input SPD data
points could be well preserved in the resulting space.

However, image set data usually cover a wide range of intra-
class diversity and inter-class ambiguity, caused by changes in
several natural conditions along with the data capturing pro-
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cess, such as pose, morphology, illumination, and background
characterizing each instance, etc. This characteristic increases
the difficulty of image set classification, which aims to identify
an object of interest from a group of image instances of the
same visual content, rather than from a single instance [5],
[8]–[10], [13], [19]–[21], [28], [29], [31], [38]. Regrettably,
although the above-mentioned image set classification methods
based on SPD manifold learning are fruitful, the intrinsic
shallow learning mechanism impedes them from extracting
powerful geometric features for improved classification, es-
pecially for complicated data scenarios. In such a case, how
to effectively mine discriminative patterns from encoded SPD
matrix-based representations still remains a key challenge.

It is widely acknowledged that deep neural networks [50],
[51], [69] have achieved remarkable progress in the CV&PR
community. Their advantages stem both from the ability to
learn powerful semantic information, and from the simplicity
and scalability of the gradient-descent training procedure used
in backpropagation. Accordingly, some researchers embarked
on generalizing the paradigm of Euclidean deep learning to
the context of Riemannian manifolds to inject new vitality into
image set classification. Recently, several Riemannian neural
networks (RiemNets) [25]–[27], [42] comprised of a stack
of feature transformation and activation layers have been put
forward for SPD matrix learning. The fundamental reasons for
their successful applications in some computer vision tasks lie
in two factors: 1) the Riemannian geometry of the input data
manifold can be preserved through all the layers during train-
ing; 2) the deep and nonlinear data embedding mechanism.
Therefore, this kind of approach is qualified to learn fine-
grained geometric representations for improved classification
in comparison with the methods introduced above.

However, exploring the potential of deep learning tech-
niques in the field of Riemannian manifolds is still in the
primary stage. One of the main limitations confronted by
RiemNets is the degradation problem, i.e., with the increase
of network depth, classification accuracy will be degraded,
as illustrated in Fig. 1. This phenomenon demonstrates that
simply stacking more layers on top of each other does not
mean that a better RiemNet can be delivered. Besides, most
of the existing studies directly utilize a single cross-entropy
loss to supervise the whole network, while neglecting the pe-
culiarities of the data distribution. Consequently, the intra- and
inter-class variability information conveyed by the generated
deep representations can not be explicitly encoded and learned
during training, suppressing the capacity of the obtained
geometric features. In this context, learning a discriminative
deep Riemannian network embedding for the original image
set data to achieve better inter-class separability and smaller
intra-class diversity is an interesting proposition.

To address the issues mentioned above, this paper presents a
novel SPD matrix learning method for image set classification.
Its overall framework is illustrated in Fig. 2. The main purpose
of designing such architecture is to probe a deeper manifold-
to-manifold embedding mapping to transform the input SPD
matrices from the original Riemannian manifold to a new
space that not only has the same Riemannian geometry but also
possess better discriminatory power. To achieve this objective,
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Fig. 1. The classification error of 8-layer and 18-layer SPDNets versus the
number of epochs on the AFEW dataset. The deeper Riemannian network
exhibits higher test error than that of the shallower one.

there are two pivotal challenges need to be tackled: 1) how to
design a deeper SPD manifold neural network to effectively
deal with the degradation of structural information during
multi-stage data compressed sensing; 2) how to boost the
discriminability of the learned geometric representations. For
the first challenge, we first select SPDNet [25] as the backbone
of our model, considering its merits in nonlinear feature extrac-
tion and Riemannian geometry maintaining of SPD matrices.
Motivated by the fact that the depth of representations is of
crucial importance for many computer vision tasks, we then
construct a stacked SPD manifold autoencoder (SSMAE) at
the end of the backbone to enrich the ’levels’ of structured
features. With the aid of the associated reconstruction error
terms, the network embedding scheme of both SSMAE and
each SPD manifold autoencoder (SMAE) will gradually ap-
proximate an identity mapping, being qualified to simplify
the training of the built deeper network. Furthermore, with
the identity mapping, the norm of the Riemannian gradient
will not approach zero, thus avoiding vanishing gradients. In
theory, this solution allows the suggested deeper architecture to
not incur higher classification error than that of the shallower
backbone.

Regarding the second challenge, considering the potential
negative impact of the variations of deep representations on
the model capacity and the used single cross-entropy loss is
incapable of explicitly capturing and encoding the geometric
distributions of such data, we develop two progressive metric
learning stages for the SSMAE module to facilitate the learn-
ing of a discriminative Riemannian network embedding. In the
first stage, we append a novel metric learning regularization
term to the hidden layer of each SMAE for the sake of learning
discriminative SPD representations with higher intra-class sim-
ilarity and lower inter-class ambiguity. Since the reconstruction
error term of each SMAE enables the network to maintain a
higher sensitivity against the data variations in the generated
new feature space, the metric learning terms could be able to
capture, encode, and process such relevant information in an
efficient way during training. We can also obtain a series of
effective classifiers in parallel by minimizing the classification
terms. Due to the high-level structured features contain richer
semantic information, at the second stage, we optimize another
objective function consisting of a metric learning regularizer
and a classification term on top of this network, which can not
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only train a new classifier but also fine-tune the whole model.
As the correlation values of the SPD matrix represent the

intra-subject data variations, they are crucial for pattern anal-
ysis in image set classification. However, most of the existing
Riemannian learning approaches reduce the discrepancy of
the intra-class data distributions by treating each SPD matrix
as a Riemannian element and utilizing the metric learning-
or deep learning-related holistic computing tactics, ignoring
the importance of the local statistical information within each
element. Therefore, in this article, we endow the network
with the ReCov operation [27] to achieve local feature nodes
regularization by magnifying the selected negative values of
the SPD matrix in the negative orientation using a nonlinear
activation function. As a result, the statistical relevance of the
local feature regions in the original image set data can be
enhanced, enabling the learning system to parse the geometry
of within-subject data variations better.

To improve the visual classification performance, tradi-
tional single-still image-based methods using discriminative
learning- or deep learning-based philosophy to relieve the
problem of intra-class ambiguity and inter-class similarity. To
name a few, [14] proposes a novel discriminative projection
learning method to make the features in the generated low-
dimensional subspace can not only fit SRC [18] well, but
also capture the pivotal structural information embedded in
the original data points. To adapt the learning systems to
the complex visual scenarios better, [15] comes up with a
novel framework for cross-resolution person re-ID task. In
this architecture, with the extracted fine-grained details from
cross-resolution person images using the modules of VDSR-
CA and HRNet-ReID, a multi-task learning-based pseudo-
siamese framework is then designed to narrow the discrepancy
of the distributions between low-resolution and high-resolution
images. It is evident that compared with [14], [15], the
SPD manifold learning-based image set classification approach
represents the intra-class data variations using structured SPD
matrices, and conducts manifold-to-manifold discriminative
learning to mitigate the inter-class similarity. Besides, the pa-
rameter optimization is also implemented on the Riemannian
manifolds, rather than the Euclidean space. These operations
are beneficial to preserve and characterize the Riemannian
geometry of SPD data points.

In summary, the main contributions of the proposed method
contain the following four aspects:
• To cope with the degradation problem, a stacked SPD

manifold autoencoder (SSMAE) is constructed on the
tail of the backbone network [25], with a series of
reconstruction error terms to train. As this design could
make the suggested SSMAE architecture approach an
identity mapping, it can theoretically render an effective
deeper model with lower classification error compared
with the shallower counterpart.

• To boost the discriminability of the designed SPD net-
work, two progressive metric learning stages are devel-
oped for the SSMAE module to explicitly inject the
encoding and learning of the intra- and inter-class data
variability information into the network training process.
In this scenario, we could expect that a more powerful

manifold-to-manifold Riemannian network embedding
can be delivered.

• The ReCov layer [27] is generalized from the lightweight
feedforward SPD network to the proposed deeper model
to mitigate the intra-class diversity by performing local
statistics regularization within SPD matrix. We demon-
strate through experiments that the ReCov operation is
still effective for end-to-end SPD matrix learning.

• Based on the learned geometric features and classifiers,
the maximum voting method is applied for the final
decision. Extensive experiments show that our method
achieves the state-of-the-art accuracy on four benchmark-
ing datasets.

II. BACKGROUND THEORY

In this section, we first present a brief introduction to the
Riemannian manifold of SPD matrices and the Log-Euclidean
metric on the SPD manifold, which provides the fundamental
theory for the proposed approach. Then, the relationship
between our method and some previous works is discussed.

A. Riemannian Manifold of SPD Matrices and the Corre-
sponding Log-Euclidean Metric

For all non-zero E ∈ R3 , a real valued SPD matrix
� ∈ R3×3 has an intrinsic property, which is E)�E > 0. The
space spanned by a set of 3-by-3 SPD matrices is the interior
of a convex cone in the 3(3 + 1)/2−dimensional Euclidean
space, denoted as (H<+

3
. As well-studied in [34], [46], a

specific Riemannian manifold can be generated, i.e., SPD man-
ifold, when endowing (H<+

3
with an appropriate Riemannian

metric. Due to the topological space of SPD manifold locally
conforming to the Euclidean properties and with globally
defined differential structure, the derivatives of the curves at
point �8 (�8 ∈ (H<+

3
) on the SPD manifold can be expressed

under the matrix logarithm map: log�8 : (H<+
3
→ )�8(H<

+
3

,
where )�8(H<

+
3

represents the tangent space of (H<+
3

at point
�8 . The group of inner products 〈 , 〉�8 on all the tangent spaces
is known as the Riemannian metric.

As studied in [46], the space of SPD matrices is a commu-
tative Lie group structure. Since any bi-invariant metric 〈 , 〉
on the Lie group of SPD matrices corresponds to an Euclidean
metric in the SPD matrix logarithmic domain (the tangent
space at identity matrix, )� (H<+

3
), it is also called the Log-

Euclidean Metric. To be specific, for any two tangent elements
)8 , )9 , their scalar product in )�(H<+

3
is given as:

〈)8 , )9〉� = 〈�� log·)8 , �� log·)9〉� , (1)

where �� log·) is the directional derivative of the matrix
logarithm at � along ) . The logarithm map associated to the
Riemannian metric is defined in terms of matrix logarithm:

log�8 (� 9 ) = �log(�8)exp·(log(� 9 ) − log(�8)). (2)

Due to the differentiation of the equality log ◦ exp = �,
�log(�)exp· = (�� log·)−1. Similarly, the matrix exponential
map can be expressed as:

exp�8 ()9 ) = exp(log(�8) + ��8 log·)9 ). (3)
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Fig. 2. A schematic diagram of the proposed SPD manifold deep metric learning framework. This framework consists of two parts. The first part is the
backbone network for SPD matrix encoding, which has the same structure as SPDNet [25]. The second subsystem is the stacked SPD manifold autoencoder
(SSMAE), designed to generate deep representations without structural information degradation. The 4-th (4 = 1→ �) SPD manifold autoencoder (SMAE)
is comprised of two branches: 1) the first branch contains the layers of input, nonlinear activation, hidden, and reconstruction for feature transformation and
reconstruction; 2) the second branch is the classification module, consisting of the LogMap, FC, and softmax layers to generate Euclidean representations
for image set classificaition. To make better use of the variability information conveyed by the network inputs, the SSMAE architecture is endowed with
two-stage metric learning to supervise a powerful Riemannian network embedding. Besides, we introduce the ReCov layer for the proposed SPD network to
inject nonlinearity, chiefly to perform local statistical information regularization of SPD data.

According to Eq. (1), Eq. (2), and Eq. (3), the LEM on the
SPD manifold can be formulated as:

D = 〈log�8 (� 9 ), log�8 (� 9 )〉�8 = | |log(�8) − log(� 9 )| |2F. (4)

Compared to AIRM, LEM works directly in the domain of
SPD matrices logarithms, resulting in higher computational
efficiency. Accordingly, it is selected as the similarity mea-
surement in this paper. For more detailed information, please
kindly refer to [40], [46].

B. Relation with the Previous Works

In this paper, we propose modifications over the origi-
nal SPD manifold neural network [25] in terms of deeper
architecture and comprehensive loss. As mentioned above,
SPDNet [25] serves as the backbone of our model, which can
yield compact and efficient data representations for the input
SPD matrices. Then, a stacked SPD manifold autoencoder
(SSMAE), trained by a series of reconstruction error terms,
is incorporated at the end of the backbone network. Since this
design is qualified to enable the embedding mechanism of the
SSMAE network to be an approximate identity mapping, more
informative deep features could be obtained. In addition, as far
as we know, our SSMAE is the first architecture to generalize
the paradigm of Euclidean autoencoder to the domain of SPD
manifolds, while the reconstruction error terms can make the
suggested network remain sensitive to the data variations in
the generated new feature spaces. Thereby, the designed two
successive metric learning stages are able to capture, encode,
and learn more comprehensive data structures with complex
variability information. In this way, a discriminative manifold-
to-manifold transforming network could be trained, so that the
produced geometric features have lower intra-class diversity
and better inter-class separability.

Considering the correlation values of SPD matrix charac-
terize the intra-subject variations of the original image set

data, in this article, we further inject the ReCov module
into the designed SPD network to narrow the discrepancy
of the intra-class feature distributions by performing local
statistics regularization within SPD data points. Since the
ReEig layer can be regarded as a holistic manifold-valued
regularization strategy, their integration is eligible to improve
the discriminability of the learned representations. Although
the ReCov layer was originally designed by [27], the main
contributions of this paper on the ReCov operation can be
summarized into the following three aspects: 1) the validity
of the ReCov layer shown in [27] is only confined to the
lightweight Riemannian networks without backpropagation.
This article demonstrates through experiments that the ReCov
regularization is still effective for end-to-end Riemannian
network; 2) this article utilizes Lemma 1 and Remark 1 to
prove that when the value of n is small enough, the impact
of the ReCov operation on the eigenvalues of the input SPD
matrices is negligible. In addition, Theorem 1 also serves as a
theoretical guide for the selection of n . However, [27] does not
make such discussions; 3) in addition to the aforementioned
Eq. (7), another activation function, i.e., the following Eq. (29),
has also been studied for the ReCov layer in this paper. The
classification results further confirm the effectiveness of Eq.
(8)-based ReCov regularization.

To the best of our knowledge, solving the problem of
image set classification using the ideology of deep metric
learning in the context of SPD manifolds is the first attempt
in the research community. Compared with the existing SPD
manifold neural networks [25], [27], the advantage of our
method stems from the integration of deeper RiemNet and
Riemannian metric learning, which can not only overcome
the degradation problem when increasing the network depth,
but also mitigate the influence of the intra- and inter-class
data variations on the model capacity. Besides, compared
with the conventional image set classification methods [11],
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[20], [28], [29], [31], the innovation of our work is reflected
in the methodology. The methods of [28], [29] dedicate to
learn a discriminative and robust distance measure using a
shallow metric learning framework. However, the image set
(video) data is usually distributed on a nonlinear manifold,
resulting in that the learned Euclidean metric may be sub-
optimal. Since the Riemannian geometry can effectively and
naturally characterize the global spatiotemporal fluctuations
of a sequence of data, the works of [11], [20], [31] try to
improve the accuracy of correct matching between image
sets by pursuing an effective manifold-to-manifold embedding
mapping. However, the data transformation scheme realized
on the nonlinear SPD manifolds in [11], [20], [31] is shallow
and linear, which may impact the capacity of the generated
features. The strength of the proposed method lies in the
generalization of image set encoding and learning to the
context of RiemNets, which is instrumental to capturing fine-
grained geometric representations.

Inspired by the effectiveness of Euclidean deep metric learn-
ing in fully exploiting the nonlinearity of samples to supervise
a powerful embedding space [38], the metric learning mech-
anism is introduced to the proposed SPD network to better
address the issue of large intra-class ambiguity and inter-class
similarity of deep representations. It is clear that our method
mainly focuses on learning a holistic, discriminative deep
Riemannian metric from the input SPD matrices, while the
methods in [38], [51] aim to mine local discriminative patterns
from different video frames in the Euclidean space. Besides,
the parameter optimization of the our network is realized by
exploiting the stochastic gradient descent (SGD) setting on the
Stiefel manifolds with the Riemannian matrix backpropagation
for characterizing and preserving the Riemannian geometry
of SPD data, while the conventional SGD-based Euclidean
backpropagation is used in [38], [51].

III. PROPOSED ALGORITHM

As stated above, compared to the existing SPD manifold
DR methods, updating the shallow linear feature embedding
mechanism to the deep nonlinear function is the central merit
of designing neural networks in the context of SPD mani-
folds, as more effective geometric features can be extracted,
especifically for the complex data scenarios. However, the
following two issues restrict the learning capacity of existing
SPD networks: 1) the degradation (of structural information)
problem prevents them from acquiring affluent semantic in-
formation by going deeper; 2) the used single cross-entropy
loss cannot encode and analyze the intra- and inter-class
geometric distributions conveyed by the input data, explicitly
and adequately.

We address these two problems using the proposed SPD ma-
trix deep learning architecture, which is detailedly introduced
in this section. In Section III-A, we review how to perform
image set modeling with the second-order statistics. Section
III-B discusses the process of SPD matrix nonlinear encoding.
The two progressive metric learning stages incorporated with
the suggested SSMAE module are elaborated in Section III-C
and Section III-D, respectively. This is followed by the pre-

TABLE I
COMPARISON (%) ON THE AFEW, MDSD, AND FPHA DATASETS.

Methods AFEW MDSD FPHA
backbone, i.e., SPDNet [25] 34.23 32.05 84.23
backbone-Eq. (7) 27.22 23.08 74.09

sentation of image set classification based on the maximum
voting strategy in Section III-E.

A. Set Modeling with Second-Order Statistics

Let - = [G1, G2, ..., G=] ∈ R3×= be a given image set (video
sequence) with = instances, where G: ∈ R3×1 denotes the :-th
vectorized video frame of dimension 3. For the image set - ,
its corresponding covariance matrix can be computed by:

� =
1

= − 1

=∑
:=1

(G: − <)(G: − <)) , (5)

where < is the mean of - , expressed as: < = 1
=

∑=
:=1 G: .

Due to the SPD manifold is spanned by a set of nonsingular
covariance matrices, we maintain the positive definite property
of � by exploiting the following trick: � ← � + D�3 , where
�3 is an identity matrix of size 3 × 3, and the perturbation
parameter D is configured as CA024(�) × 10−3 in this paper.

B. SPD Matrix Nonlinear Encoding

To generate more appropriate SPD manifold-valued feature
representations for the original image set data, as mentioned
above, a prevailing neural network for SPD matrix nonlinear
learning (SPDNet) [25] is chosen as the backbone of our
model. As illustrated in Fig. 2, this backbone is comprised of
a heap of BiMap and ReEig layers for data transformation and
nonlinear activation. Besides, we also inject the ReCov module
into each block to enhance the nonlinear learning capacity of
the backbone network. These three basic layers are introduced
as below.

BiMap Layer: This layer corresponds to the usual dense
layer, exploited to transform the input SPD matrices into
new ones with lower dimensionality via a bilinear mapping
operator 51 , expressed as [25]:

�: = 5
(:)
1

(�:−1;,: ) = ,)
: �:−1,: , (6)

where �:−1 is the input SPD matrix of the :-th layer, �: ∈
R3:×3: is the corresponding output, and ,: ∈ R3:−1×3: (3: ≤
3:−1) represents the projection matrix (connection weights) to
be learnt. To ensure that �: resides on the SPD manifold, ,:

is required to be a column full-rank matrix. In addition, ,: is
also assumed to be a semi-orthogonal matrix [25], [27], such
that optimizing ,: over the compact Stiefel manifold [40],
[41] prompts the potential to obtain optimal solutions.

ReCov Layer: In the context of Euclidean deep learning,
rectified linear units (ReLUs) are verified to be effective
activation function in improving the nonlinear learning ability
of the models. In this article, we propose to popularize
this philosophy to the domain of Riemannian neural net-
works by directly imposing nonlinear sparseness on each
input SPD matrix via the ReLU operation 5A; , expressed
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as: �̂: = 5
(:)
A;

(�̂:−1) = max(0, �̂:−1). Wherein, �̂:−1 and
�̂: are the input and the corresponding output of this layer,
0 ∈ R3:−1×3:−1 is a matrix of all zeros, and max(0, �̂:−1) is
defined as:

max(0, �̂:−1)8 9 =
{
0, if 8 6= 9 and �̂:−1(8, 9) ≤ 0,
�̂:−1(8, 9), otherwise.

(7)

However, as the correlation values of SPD matrix reflect the
intra-subject data distributions, the above Eq. (7), which sets
all the negative elements of �̂:−1 to zero, may cause some
useful statistical information of the input data to be lost. From
Table I, it is evident that backbone-Eq. (7) obtains significantly
lower classification scores on the AFEW, FPHA, and MDSD
datasets (these three datasets will be detailedly described in
Section IV-C), demonstrating that utilizing Eq. (7) for feature
regularization is counterproductive. Accordingly, we introduce
the ReCov layer [27] to just regularize the points of each input
SPD matrix in the (−n, 0] interval using a nonlinear function
5A2 , i.e., �̂: = 5

(:)
A2 (�̂:−1,−n1). Here, n is a small activation

threshold determined by cross-validation and 1 ∈ R3:−1×3:−1

is a matrix of all elements being ones. The mathematical form
of this ReCov operation for an SPD matrix in the :-th layer
is formulated as:

�̂: (8, 9) =
{
−n, if 8 6= 9 and �̂:−1(8, 9) ∈ (−n, 0],
�̂:−1(8, 9), otherwise.

(8)

It can be intuitively found that Eq. (8) amplifies the ele-
ments in the scope of (−n, 0] towards the negative direction,
enhancing the statistical negative correlation of the local
feature regions in the corresponding original video scenario.
In consequence, the inconspicuous yet useful data variability
information distributed in the (−n, 0] scope can be intensified,
enabling the subsequent metric learning modules to capture,
encode, and process the intra-subject feature variations better.

To demonstrate that the ReCov operation will only bring
about minor distortion to the main structural information of
the input feature matrix, an implicit mapping q(·) : M ↦→
`,∀M ∈ (H<+

3
is defined, where ` is an eigenvalue of M.

Then, the following conclusion can be made.
Theorem 1: Given any M0 ∈ (H<+

3
, q( 5A2(M0, n)) is

continuous on n ∈ [0, +∞).
Proof 1: According to Eq. (8), the following in-

equation can be derived: ‖ 5A2(M0, n
′) − 5A2(M0, n)‖F≤

[∑3
8, 9=1,8 6= 9 (n

′ − n)2] 1
2 < 3 |n ′ − n |. Then, given M0 ∈ (H<+

3
,

∀n ∈ [0, +∞), ∀Y > 0, there exists an upper-bound of X ∈ R+,
i.e., X < Y

3
, such that ∀n ′ ∈ [0, +∞) : |n ′ − n |< X ⇒

‖ 5A2(M0, n
′)− 5A2(M0, n)‖F< Y. According to the algebra and

complex analysis theories, the mapping q(·) is continuous. As
the continuity of 5A2(M0, n) is proved above, the composition
function q( 5A2(M0, n)) is continuous accordingly. �

Remark 1: Based on Theorem 1, in the case of n = 0,
the following statement can be obtained: given M0 ∈ (H<+

3
,

∀Y > 0, ∃X > 0,∀n ′ ∈ [0, +∞) : |n ′ − n |< X ⇒ |`′ − `0 |< Y,
where `′ = q( 5A2(M0, n

′)) and `0 = q( 5A2(M0, 0)). Here,
n = 0 means that the ReCov operation does not work. In this
scenario, we could expect that with a sufficiently small n ′,
the ReCov layer will perturb the eigenvalue space of each
input SPD matrix only in a minor way. Thereby, the main

structural information of the data could be well-maintained.
The following experimental results indicate that the ReCov
operation can improve the classification performance of the
designed network, thus verifying the previous expectation
experimentally. This in turn reveals that Eq. (7) distorts the
geometry of the input feature manifold severely, thus deliver-
ing poor performance of backbone-Eq. (7). Besides, the above
theorem also provides theoretical guidance for the selection of
n . More discussions about this layer will be reported later.

ReEig Layer: This layer is analogous to the ReLU activa-
tion, which plays the role of eigenvalue regularization. Specifi-
cally, it is designed to adjust the small positive eigenvalues of
each input matrix �̄:−1 to the proper ones with a nonlinear
rectification function 5A4, denoted as �̄: = 5

(:)
A4 (�̄:−1) =

*max(Z �,Σ)*) . Therein, �̄:−1 = *Σ*) denotes the eigen-
value decomposition, and Z is a small rectification threshold.
Obviously, the ReEig operation can not only introduce non-
linearity but also preserve the SPD data from degeneracy.

Since the outputs of the (:-1)-th layer are the exact inputs of
the :-th layer, we can obtain that �̂:−1 = �: , �̄:−1 = �̂: , and
�:−1 = �̄: . The operations introduced in the ReCov and ReEig
layers convey the core nonlinear embedding mechanisms of
the proposed model. Hence, we bundle these two consecutive
layers together as a unit (shown in Fig. 2) to perform nonlinear
activation in this work, which ensures that the generated new
feature matrices are faithful to the Riemannian geometry of
SPD manifolds.

C. The First Stage Metric Learning

As shown in Fig. 2, the proposed SSMAE module is
constructed by multiple SMAEs, in which the outputs of each
SMAE are used as the inputs of the subsequent SMAE. The
network structure of each SMAE is made up of the input,
nonlinear activation (i.e., ReCov+ReEig), hidden, and recon-
struction layers, respectively. Moreover, each hidden layer also
connects to a head branch, consisting of the layers of LogMap,
FC, and softmax, to produce the Euclidean representations for
classification.

Let X = [-1, -2, ..., -# ] ∈ R3×N (N = ∑#
8=1 =8 , where

=8 denotes the number of instances contained in -8) and
! = [;1, ;2, ..., ;# ] ∈ R1×# be the training data and its
corresponding label vector, respectively. Here, # represents
the total number of training samples. In this article, the
modeled SPD manifold-valued data of X is expressed as
C = [�1, �2, ..., �# ] ∈ R3×3# . For a given input SPD
matrix �8 (8 = 1 → #), the corresponding low-dimensional
and compact output of the backbone network is described as
T8 = q\1 (�8), where q\1 represents the nonlinear embedding
from the original SPD manifold to the target one, implemented
by a stack of BiMap, ReCov, and ReEig layers, and \1 signifies
the set of to-be-learnt parameters of the backbone. For the 4-th
(4 = 1 → �) SMAE, we use In4 (In4(T8) = T8 ,when 4 = 1),
H4(T8), and Ĥ4(T8) to represent its input, output of the hidden
layer, and reconstruction of the input, respectivety. Actually,
In4(T8) is equivalent to Ĥ4−1(T8). In the following, we replace
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In4(T8) with Ĥ4−1(T8) for clarity. Therefore, H4(T8) and Ĥ4(T8)
can be computed by:

H4(T8) = 514 (,41, Ĥ4−1(T8)) = ,)
41c(Ĥ4−1(T8)),41, (9)

Ĥ4(T8) = 514 (,42,H4(T8)) = ,)
42H4(T8),42, (10)

where 514 , c, and ,41 ∈ RB4−1×B4 , ,42 ∈ RB4×B4−1 represent
the bilinear mapping function, nonlinear activation operation,
and to-be-learnt transformation matrices of the 4-th SMAE,
respectively.

Briefly speaking, our goal is to learn deep representations
with diminished intra-class ambiguity and enlarged inter-class
separability for the input data during training. Considering the
degradation problem caused by increasing the network depth,
we build a stack of SMAEs on the tail of the backbone with
each trained by a reconstruction error term. This design can
guide the network embedding mechanism of both SSMAE
and each SMAE to form an approximate identity mapping,
producing less classification error than the shallower backbone
in theory. Besides, minimizing the reconstruction error terms
enables SSMAE to be as sensitive as possible to the data
variations in the yielded new feature manifolds, rendering the
metric learning regularization term, imposed on the hidden
layer of each SMAE, to be more effective to encode and learn
the feature distributions. With these preparations, a discrimi-
native manifold-to-manifold Riemannian network embedding
can be supervised via the following objective function of the
4-th SMAE:
L(\2,P4, q;C) =min[_1L1(H4)+

_2L2(Ĥ4−1, Ĥ4) + _3L3(�8 , ;8)],
(11)

where _1, _2, and _3 are three trade-off parameters, \2 =
{\1,,41,,42}, and P4 represents the projection matrix of the
FC layer of the 4-th SMAE, which will be introduced later.

The first term of Eq. (11) is a metric learning regularizer
designed to explore an efficient metric space by encoding
and learning the within- and the between-class geometric
distributions of the generated representations. In such a space,
similar samples are expected to be mapped closely to each
other, while dissimilar samples could be separated by an
appropriate manifold margin. This requirement is formulated
as the following generalized logistic loss function, which
decays smoothly instead of having a hard cut-off:

L1(H4) = log
[
1 + exp

(
max(SF4 − S14 , d1)

) ]
, (12)

where d1 is a pre-difined threshold used to restrain the
manifold margin between the intra-class scatter SF4 and the
inter-class scatter S14 . Their specific forms are respectively
defined as:

SF4 =
1
#F

#∑
8=1

#F∑
9 6=8,;8=; 9

| |log(H4(T8)) − log(H4(T9 ))| |2F, (13)

S14 =
1
#1

#∑
8=1

#1∑
9=1,;8 6=; 9

| |log(H4(T8)) − log(H4(T9 ))| |2F, (14)

where #F and #1 denote the number of intra- and inter-class
nearest neighbors of H4(T8), respectively.

However, the term max(SF4 −S14 , d1) presented in Eq. (12)
focuses on maximizing the manifold margin between different

20 40 60 80 100 120 140 160 180 200
epoch

5

5.5

6

6.5

Sw
e

(a) Proposed-Eq. (12). Acc. = 36.66%
(b) Proposed-Eq. (15). Acc. = 37.74%

Fig. 3. The average intra-class scatter SF4 versus the number of training
epochs on the AFEW dataset under different metric learning functions.

classes, which does not stipulate how small SF4 should be in
the training process. As a consequence, there will be cases
where the instances belong to the same category may form a
large cluster with a relatively large SF4 in the learnt feature
space. To eliminate its potential negative impact on the image
set classification performance of the proposed model, a new
constraint term is added to the original metric loss to further
require that the intra-class scatter SF4 be less than a new
margin d2. It is suggested that d2 be smaller than |d1 |.

Hence, Eq. (12) can be rewritten as:

L1(H4) = log[1 + exp(max(SF4 − S14 , d1)
+ Vmax(SF4 , d2))],

(15)

where V is a trade-off coefficient. Fig. 3 shows the trend of
the average intra-class scatter SF4 of the proposed model as
a function of training epochs under different metric learning
terms, choosing the AFEW dataset as an example. From this
figure, it is evident that both curves show a trend of decreasing
first and then leveling off, but the red curve is distributed
below the blue curve in all the cases. From Fig. 3, we can
also observe that the blue curve has a holistic lower rate
of decline than that of the red curve. On one hand, these
experimental observations manifest that both Eq. (12) and
Eq. (15) can be used to achieve the purpose of reducing the
intra-class diversity. On the other hand, it also points out that
Eq. (12) is somewhat insufficient for learning the intra-class
discriminative information. Besides, the classification accuracy
of Proposed-Eq. (15) is 1.08% higher than that of Proposed-
Eq. (12) on the AFEW dataset (shown in Fig. 3), justifying
that placing additional constraint on SF4 is effective.

The second term of Eq. (11) is defined to measure the recon-
struction error between the input data and the corresponding
reconstructed data, expressed as:

L2(Ĥ4−1, Ĥ4) =
#∑
8=1
| |Ĥ4−1(T8) − Ĥ4(T8)| |2F. (16)

We want to emphasize that the fundamental reasons for using
the Euclidean distance (ED) to replace LEM for similarity
measurement in Eq. (16) are two-fold: 1) it can verify the
’pixel-level’ similarity between the input and the reconstructed
samples intuitively; 2) the computation of the inverse of
Ĥ4−1(T8) can be avoided during optimization.

The third term of Eq. (11) is a softmax loss function for
image set classification. It is implemented with the assistance
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of the LogMap and the FC layers, as illustrated in Fig. 2.
The LogMap layer [25] is mainly exploited to carry out
Riemannian computing on each resulting SPD matrix via the
logarithmic mapping function 5;4 , expressed as:

H4(T8) = 5;4 (H4(T8)) = log(H4(T8)) = *log(Σ)*) , (17)

such that a flat space for Euclidean computations can be gen-
erated. In Eq. (17), H4(T8) = *Σ*) represents the eigenvalue
decomposition and log(Σ) is a diagonal matrix composed of
the logarithm of the eigenvalues.

Now, the loss function L3 is given below:

L3(�8 , ;8) = −
#∑
8=1

2∑
A=1

g(;8 , A) × log
4P

A
4+4(T8)∑

> 4
P
>
4+4(T8)

, (18)

where PA4 denotes the A-th row of the projection matrix P4,
+4(T8) represents the vectorized form of H4(T8), and g(;8 , A)
is an indicator function, where g(;8 , A) = 1 if ;8 = A , and 0
otherwise.

D. The Second Stage Metric Learning

After the first metric learning stage, the discriminatory
power of the generated deep representations will be improved.
Besides, we could also obtain multiple effective classifiers
for image set classification. Due to the approximate identity
mapping scheme of the designed SSMAE, a certain amount of
pivotal data variations will be contained in the resulting feature
maps of the final reconstruction layer. To make better use of
such latent information for enhancing the discrimination of the
network further, as an exploration, we enable the network to
be supervised by the second metric learning stage. As shown
in Fig. 2, we first incorporate a nonlinear activation layer onto
the top of SSMAE, followed by a BiMap layer to reduce the
dimension of the input SPD matrices. Then, a metric learning
regularizer and a classification module (presented in Section
III-C) are coupled with the added BiMap layer to fine-tune the
whole network and train a new classifier at the same time.

We denote the 8-th output of SSMAE corresponding to its 8-
th input T8 as Ĥ� (T8) (8 = 1→ #). Since the last BiMap layer
can be regarded as the hidden layer of the (� + 1)-th SMAE,
and Ĥ� (T8) is equivalent to its 8-th input, the 8-th output of the
proposed SPD network is given by:

H�+1(T8) = 51�+1 (,�+1, Ĥ� (T8)) = ,)
�+1c(Ĥ� (T8)),�+1, (19)

where ,�+1 represents the to-be-learnt transformation matrix
of the final BiMap layer.

With these definitions, the objective function of this metric
learning term can be defined as:

J (\, ,P�+1, q;C) = _4J1(H�+1) + _5J2(�8 , ;8), (20)

where _4 and _5 are two trade-off parameters, \, =
{\2,,�+1}, and P�+1 denotes the projection matrix of the
FC layer of the (� + 1)-th SMAE.

The first term of Eq. (20) is a metric learning regularizer to
further alleviate the intra-class diversity as well as the inter-
class ambiguity by characterizing and analyzing the geometric

distribution of the produced high-level features. Similar to Eq.
(15), this term can be formulated as:

J1(H�+1) = log[1 + exp(max(SF�+1 − S1�+1 , d3)
+ [max(SF�+1 , d4))],

(21)

where d3, d4, and [ play the same role as that of d1, d2, and
V introduced in Eq. (15). The mathematical forms of SF�+1

and S1�+1 are analogous to Eq. (13) and Eq. (14), given as
follows:

SF�+1 =
1
#F

#∑
8=1

#F∑
9 6=8
;8=; 9

| |log(H�+1(T8)) − log(H�+1(T9 ))| |2F, (22)

S1�+1 =
1
#1

#∑
8=1

#1∑
9=1
;8 6=; 9

| |log(H�+1(T8)) − log(H�+1(T9 ))| |2F, (23)

The second term of Eq. (20) is the softmax loss function
to minimize the classification error with the input-target pairs
(�8 , ;8) (8 = 1→ #), which can be computed by:

J2(�8 , ;8) = −
#∑
8=1

2∑
A=1

g(;8 , A) × log
4P

A
�+1+�+1(T8)∑

> 4
P
>
�+1+�+1(T8)

, (24)

where PA
�+1 indicates the A-th row of the projection matrix

P�+1 and +�+1(T8) is the vectorized modality of the 8-th output
H�+1(T8) of the (� + 1)-th SMAE.

Due to space limitation, please kindly refer to Section I of
our supplementary material for the details of the Riemannian
matrix backpropagation algorithm used to train the proposed
network.

E. Image Set Classification
In the test phase, a given test image set -C4 is firstly

encoded as an SPD matrix �C4 using Eq. (5). Then, the well-
trained SPD network is exploited to transform �C4 into the
low-dimensional and compact representation H4(TC4) at the
LogMap layer. Afterward, the classification probability of -C4
belonging to class A can be computed by:

%A4(-C4) =
4P

A
4+4(TC4)∑

> 4
P
>
4+4(TC4) , (25)

where A = 1 → 2, 4 = 1 → (� + 1), and +4(TC4)
denotes the vectorized form ofH4(TC4). Once the classification
probabilities %A4(-C4) become available from all the (� + 1)
classifiers, we use the voting mechanism (analogous to [19])
to determine the output label of -C4. Specifically, the vote
E4(-C4) of the 4-th classifier is cast for the class with the
highest probability, i.e.:

E4(-C4) = arg max
A

%A4(-C4). (26)

The votes cast by all the classifiers of -C4 are tallied and
the class receiving the maximum number of votes is declared
as the label of -C4. This can be formulated as:

;C4 = arg max
A

∑
4

lA (E4(-C4)) with, (27)

lA (E4(-C4)) =

{
1, E4(-C4) = A,
0, otherwise.

(28)
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IV. EXPERIMENTS

In this section, we study the effectiveness of the proposed
approach1 on three typical visual classification tasks using
three different benchmarking datasets, i.e., video-based facial
emotion recognition on the AFEW dataset [43], dynamic
scene classification on the MDSD dataset [45], and skeleton-
based hand action recognition on the FPHA dataset [49],
respectively.

A. Implementation Details

To build the backbone of our model, we use seven layers:
�8 → 5

(1)
1
→ 5

(2)
A2 → 5

(3)
A4 → 5

(4)
1
→ 5

(5)
A2 → 5

(6)
A4 → 5

(7)
1

,
where 51 , 5A2 , and 5A4 denote the BiMap, ReCov, and ReEig
layers, respectively. The stacked SPD manifold autoencoder
(SSMAE) constructed on the tail of the backbone is comprised
of � SMAEs (the later experiments show that setting �

to 2 is reasonable), and each SMAE contains two branch
networks. The first branch is designed for feature encoding and
reconstruction, which is made up of five layers: 51 (input)→
5A2 → 5A4 → 51 (hidden) → 51 (reconstruction). The second
branch, consisting of three layers: 5; → 5F → 5B , is connected
to the hidden layer of each SMAE to produce Euclidean
representations for classification. Here, 5; , 5F, and 5B represent
the layers of LogMap, FC, and Softmax loss, respectively.
The recommended values of the network parameters, such as
the learning rate b, the thresholds Z , d1, d2, and the tradeoff
coefficients _1, _2, _3, V on the three used datasets are listed in
Table II. In the experiments, the values of d3, d4, _4, _5, and
[ are configured to be the same as those of d1, d2, _1, _3, and
V. To train the suggested network, an i7-9700 (3.4GHz) PC
with 16GB RAM is utilized. Besides, on the AFEW, MDSD,
and FPHA datasets, the batch size B is set to 30, 20, and 30,
respectively. This configuration respectively takes about 4.25
minutes, 0.32 minutes, and 0.78 minutes per training epoch
for the AFEW, MDSD, and FPHA datasets.

B. Comparative Methods and Settings

For the evaluation of our model, the following representative
image set classification methods are selected for comparison,
which can be grouped into three categories:
(1) SPD matrix learning-based methods: Covariance Dis-
criminative Learning (CDL) [5], Riemannian Sparse Repre-
sentation (RSR) [36], Log-Euclidean Metric Learning (LEML)
[11], SPD Manifold Learning (SPDML) Based on AIM
and Stein divergence [20], Deep Second-Order Pooling
Network (DeepO2P) [22], SPD Manifold Neural Network
(SPDNet) [25], SPDNet using Riemannian Batch Normaliza-
tion (SPDNetBN) [26], and Lightweight SPD Manifold Neural
Network (SymNet) [27].
(2) Linear subspace learning-based methods: Grassmann
Discriminant Analysis (GDA) [1], Grassmannian Graph-
Embedding Discriminant Analysis (GEDA) [33], Projection
Metric Learning (PML) [30], Graph Embedding Projection
Metric Learning (GEPML) [32], and Graph Embedding Multi-
Kernel Metric Learning (GEMKML) [10].

1The source code will be released on: https://github.com/GitWR/SMTNet

Fig. 4. Facial emotion images of the AFEW dataset

(3) Multiple Riemannian matrix learning-based methods:
Localized Multi-Kernel Metric Learning (LMKML) [37], Hy-
brid Euclidean-and-Riemannian Metric Learning (HERML)
[39], and Multiple Riemannian Manifolds Metric Learning
(MRMML) [9].

The experimental results of all the comparative methods
on the three datasets are obtained by running the source
codes provided by the original authors, except for DeepO2P.
The recognition score of DeepO2P on the AFEW dataset
is provided by [25]. For a fair comparison, we empirically
tuned the parameters of the baseline systems according to
the recommendations of the original papers. For CDL, the
perturbation parameter was set to 10−3 × CA024(�). In PML,
the trade-off coefficient U was set in line with [30]. In LEML,
we searched the values of [ and Z in the scopes of [0.1, 1, 10]
and [0.1 : 0.1 : 1], respectively. For SPDNet and SPDNetBN,
the learning rate, batch size, and sizes of the transformation
matrices were determined by cross-validation on the MDSD
and the FPHA datasets, and the settings on the AFEW dataset
were consistent with [25]. For SymNet, the sizes of the
connection weights and the values of thresholds n , [ were
configured as recommended in [27]. For RSR, the value of
_ were searched in the range of [0.0001, 0.001, 0.01, 0.1].
For SPDML, GEPML, and GEMKML, the number of intra-
and inter-class nearest neighbors of a given anchor point
were determined by cross-validation on all the datasets. In
HERML, the proper values of W and Z were selected from
the sets [0.001, 0.01, 0.1, 1, 10, 100, 100] and [0.1 : 0.1 : 1],
respectively. In LMKML, the learning rate U was set to
10−6. For MRMML, we applied cross-validation to choose
the appropriate value for 3F .

C. Datasets Description and Settings

AFEW dataset. This dataset involves 1,345 video se-
quences of natural facial expressions collected from movies.
Fig. 4 presents some examples of this dataset. For the evalua-
tion, we follow the standard protocols of [25] to first split these
training videos into 1,746 small clips for data augmentation.
Then, each video frame is shaped into a 20 × 20 gray-scale
image, such that a 400×400 SPD matrix can be computed for
video characterization. Since the groundtruth of the test set has
not been publicly available, we finally report the classification
accuracy on the validation set. The sizes of the transformation
matrices of the proposed network on this dataset are set to
400× 200, 200× 100, 100× 50, 50× 100, 100× 50, 50× 100,
and 100 × 50, respectively.

MDSD dataset. This dataset makes up of 13 different
categories of dynamic scenes, each of which containing 10
video sequences collected in unconstrained scenarios. Fig. 5
illustrates some dynamic scene images of this dataset. To be
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Fig. 5. Dynamic scene images of the MDSD dataset
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Figure 4: (a) t-SNE [32] visualization of hand pose embedding over our dataset. Each colored dot represents a full hand pose
and each trajectory an action sequence. (b) Correlation between objects, grasps, and actions. Shown poses are the average
pose over all action sequences of a certain class. One object can have multiple grasps associated depending on the action
performed (e.g., ‘juice carton’ and ‘milk bottle’) and one grasp can have multiple actions associated (e.g., lateral grasp present
at ‘sprinkle’ and ‘clean glasses’). (c) Number of action instances per hand action class. (c) Average number of frames in each
video per hand action class. Our dataset contains both atomic and more temporally complex action classes. (d) Distribution
of hand viewpoints, defined as angles between the direction of the camera and the direction of the palm of the hand.

recognition approaches [31, 56] use ConvNets to learn de-
scriptors from color and motion flow, we evaluate a recent
two-stream architecture fine-tuned on our dataset [15].

About the depth modality, we first evaluate two local
depth descriptor approaches, HOG2 [40] and HON4D [43],
that exploit gradient and surface normal information as a
feature for action recognition. As a global-scene depth de-
scriptor, we evaluate the recent approach by [47] that learns
view invariant features using ConvNets from several syn-
thesized depth views of human body pose.

We follow our evaluation with pose-based action recog-
nition methods. As our main baseline, we implemented
a recurrent neural network with long-short term memory
(LSTM) modules inspired in the architecture by [87]. We
also evaluate several state-of-the-art pose action recognition
approaches. We start with descriptor-based methods such as
Moving Pose [85] that encodes atomic motion information
and [64], which represents poses as points on a Lie group.
For methods focusing on learning temporal dependencies,
we evaluate HBRNN [12], Gram Matrix [86] and TF [17].

HBRNN consists of a bidirectional recurrent neural network
with hierarchical layers designed to learn features from the
body pose. Gram Matrix is currently the best performing
method for body pose and uses Gram matrices to learn the
dynamics of actions. TF learns both discriminative static
poses and transitions between poses using decision forests.

To conclude, we evaluate one hybrid approach that
jointly learns heterogeneous features (JOULE) [19] using
an iterative algorithm to learn features jointly taking into
account all the data channels: color, depth, and hand pose.

4.2. Hand pose estimation

To assess the state-of-the-art in hand pose estimation, we
use the same ConvNet as [84]. We choose this approach as
it is easy to interpret and it was shown to provide good per-
formance in a cross-benchmark evaluation [84]. The chosen
method is a discriminative approach operating on a frame-
by-frame basis, which does not need any initialization and
manual recovery when tracking fails [21, 41].

413

Fig. 6. Some 3D hand pose instances of the FPHA dataset

TABLE II
RECOMMENDED VALUES OF THE KEY PARAMETERS.

Datasets b Z d1 d2 _1 _2 _3 V

AFEW 0.010 1E-4 -1.0 1.0 0.1 1E-2 1.0 0.2
MDSD 0.013 1E-5 -0.1 0.1 1.0 1E-4 1.0 0.2
FPHA 0.010 1E-4 -1.0 1.0 1.0 1E-1 1.0 0.2

compatible with the previous works [9], [10], [27], we first
resize all the video frames into 20×20 intensity images. Then,
the SPD matrix of size 400×400 is computed to represent each
video clip. Finally, the seventy-thirty-ratio (STR) protocol,
which typically selects 7 videos for training and the remaining
3 for a query set per category, is applied to build the gallery
and probes. On this dataset, the network filters are configured
to be of the same sizes as those of the AFEW dataset.

FPHA dataset. This dataset is comprised of 1,175 hand
action videos representing 45 different categories, performed
by 6 actors in the first-person view. Some hand action instances
of the FPHA dataset are displayed in Fig. 6. To make a fair
comparison, we follow the standard protocol of [10] to first
transfer each hand action frame into a 63-dimensional vector
using the 3D coordinates of 21 hand joints provided, such
that a 63 × 63 SPD matrix can be computed for the modeling
of an action sequence. Then, the 1:1 setting is applied for
evaluation, i.e., 600 action clips are designated for training
and the remaining 575 are used for testing. On this dataset,
the sizes of the network weights are set to 63 × 53, 53 × 43,
43 × 33, 33 × 43, 43 × 33, 33 × 43, and 43 × 33, respectively.

D. Results and Discussions

The experimental results achieved by different methods on
the AFEW and MDSD datasets are presented in Table III.
From this table, the following interesting observations can be
made. Firstly, the classification scores of LMKML, HERML,
and MRMML are higher than most of the competitors on
these two datasets, demonstrating that the complementarity of
multiple statistics in image set characterization enables the
network to learn more powerful geometric features for effec-
tive decision making. Besides, the classification performance
of LMKML is inferior to that of HERML and MRMML.
The fundamental reason is that LMKML applies an Euclidean
kernel function to the high-order statistics (they typically
lie in the non-Euclidean spaces) to perform kernel spaces

TABLE III
ACCURACY COMPARISON (%) ON THE AFEW AND MDSD DATASETS.

Methods Year AFEW MDSD
GDA [1] 2008 29.11 30.51
GEDA [33] 2011 29.45 30.37
CDL [5] 2012 31.81 31.28
RSR [36] 2012 27.49 31.62
LMKML [37] 2013 - 32.37
HERML [39] 2015 32.14 33.59
PML [30] 2015 28.98 29.67
LEML [11] 2015 25.13 29.30
DeepO2P [22] 2015 28.54 -
SPDNet [25] 2017 34.23 32.05
SPDML-AIM [20] 2018 26.72 30.04
SPDML-Stein [20] 2018 24.55 27.69
SPDNetBN [26] 2019 36.12 35.26
GEPML [32] 2021 33.78 35.33
GEMKML [10] 2021 35.71 35.89
MRMML [9] 2022 35.71 36.67
SymNet [27] 2022 32.70 35.58
Proposed 37.74 42.05

embedding, which will distort the geometry of the original
data manifold.

Secondly, it is evident that the classification ability of
LEML and SPDML-AIM/Stein are convincingly surpassed by
SPDNet, SPDNetBN, and SymNet on the AFEW and MDSD
datasets. The primary reason is that both LEML and SPDML-
AIM/Stein exploit a shallow linear architecture to perform fea-
ture transformation, which is incapable of faithfully respecting
the Riemannian geometry of the original data manifold in the
resulting space. In contrast, SPDNet, SPDNetBN, and SymNet
generalize the shallow linear scheme for SPD matrix learning
to the nonlinear function through RiemNets, being qualified
to capture fine-grained geometric features. This is also the
fundamental reason why the classification performance of
PML and GEPML is inferior to that of GEMKML. Thirdly,
the experimental comparison between SPDNet, SPDNetBN,
and SymNet shown in Table III demonstrates that the shallow
optimization algorithm-based lightweight SPD network, i.e.,
SymNet, is more suitable for the classification tasks with
limited data, as pivotal data variations can be captured for
visual scene parsing. As can be clearly seen from Table
III, the proposed method obtains the highest classification
performance on the AFEW and MDSD datasets, confirming its
effectiveness in enhancing the within-class compactness and
boosting the between-class separability of the learned features.

Next, we compare the suggested network with some repre-
sentative hand action recognition models on the FPHA dataset,
such as the convolutional two-stream network (Two streams)
[52], Novel View [56], Lie Group [63], hierarchical recurrent
neural network (HRNN) [59], LSTM [49], jointly learning
heterogeneous features (JOULE) [62], Gram Matrix [53],
transition forests (TF) [64], temporal convolutional network
(TCN) [60], spatial-temporal graph convolutional network (ST-
GCN) [61], unified hand and object model (H+O) [66], and
temporal transformer network (TTN) [65]. The recognition
scores of different methods on the FPHA dataset are reported
in Table IV. It is evident that the methods that performing
hand action recognition in the context of Riemannian mani-
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TABLE IV
ACCURACY COMPARISON (%) ON THE FPHA DATASET.

Methods Year Color Depth Pose Acc.
Lie Group [63] 2014 7 7 3 82.69
HRNN [59] 2015 7 7 3 77.40
JOULE-pose [62] 2015 7 7 3 74.60
JOULE-all [62] 2015 3 3 3 78.78
Two streams [52] 2016 3 7 7 75.30
Novel View [56] 2016 7 3 7 69.21
Gram Matrix [53] 2016 7 7 3 85.39
SPDNet [25] 2017 7 7 3 86.26
TF [64] 2017 7 7 3 80.69
TCN [60] 2017 7 7 3 78.57
LSTM [49] 2018 7 7 3 80.14
ST-GCN [61] 2018 7 7 3 81.30
SPDML-AIM [30] 2018 7 7 3 76.52
H+O [66] 2019 3 7 7 82.43
TTN [65] 2019 7 7 3 83.10
SPDNetBN [26] 2019 7 7 3 86.83
GEMKML [10] 2021 7 7 3 81.75
MRMML [9] 2022 7 7 3 83.33
SymNet [27] 2022 7 7 3 82.96
Proposed 7 7 3 89.39

folds (e.g., Lie Group, Gram Matrix, SPDML-AIM, SPDNet,
SPDNetBN, SymNet, MRMML, and GEMKML) show com-
petitive recognition performance on this dataset. This provides
further demonstration of the merit of Riemannian geometry in
modeling the global spatiotemporal fluctuations of a sequence
of data. From Table IV, we can also note that the classification
scores of SPDNet and SPDNetBN are higher than those of
LEML, SPDML-AIM, and SymNet, further certifying that
the mechanism of end-to-end deep-embedding learning is
more effective than shallow learning scheme in SPD matrix
analysis. Table IV shows that the suggested SPD manifold
deep metric learning framework is still the best performer on
the FPHA dataset, again certifying its availability in mining
useful geometric information for visual scene description.

E. Ablation Study of the Number � of the Stacked SMAEs

As the designed SSMAE is a crucial subsystem of the pro-
posed model, in this subsection, we carry out cross-validation
experiments on the AFEW, MDSD, and FPHA datasets to
explore its suitable architecture by measuring the impact of the
number � of the stacked SMAEs on the overall performance
of our approach. The experimental results are depicted in Fig.
7, where � takes values from the set {0, 1, 2, 3}. Here,
� = 0 indicates that the proposed network does not contain
the SSMAE module and its associated two metric learning
stages, and is just trained by the classification error term J2
(its structure is equivalent to that of SPDNet embedded with
the ReCov layers). From Fig. 7, it is evident that when �

changes from 0 to 2, the classification scores of our method
are increasing on all three datasets. The underlying reasons
come from two aspects: 1) the capability of the SSMAE
architecture in generating deep representations with richly
structured semantic information; 2) the efficacy of the metric
learning terms in narrowing the intra-subject diversity and
magnifying the inter-subject dissimilarity by modeling and
learning the data distribution information. From Fig. 7, we
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Fig. 7. Comparison (%) under different number � of the stacked SMAEs.

can also observe that the classification performance of the
suggested approach is promoted slightly when increasing �

from 2 to 3. The essential reason is that with increase of
the number � of the stacked SMAEs, the reconstruction error
terms of SSMAE will gradually make the residual information
between two adjacent SMAEs tend to 0, so that the gradient
does not change significantly when transmitting between upper
layers. In addition, it is easy to know that the value of �
is proportional to the computation time (this will be studied
later). To sum up, we set � to 2 in this paper as a compromise.
In what follows, some specific discussions on the effectiveness
of each component of the designed model are carried out.

F. Ablation Study of the SSMAE Module

In this subsection, we make experiments to evaluate the
efficacy of the designed SSMAE module, choosing the AFEW
dataset as an example. The baseline architecture is the same
as the aforementioned SPDNet. From Table V and Fig. 8,
we have three major findings. Firstly, the situation is reversed
with the operation of SSMAE, i.e., P-�2 (19-layer) performs
better than P-�1 (11-layer). Here, ’P-�G’ represents that the
number � of the stacked SMAEs included in the proposed
framework is x. More importantly, the classification score of
P-�2 is somewhat higher than that of P-�1. This demonstrates
that the degradation problem can be conquered in this design,
supporting us to successfully obtain accuracy gains from
increased depth. The consistent observations can be illustrated
between P-�2 and P-�3 (27-layer).

Secondly, in this experiment, we also explore two deep mod-
els, i.e., P-�4 and P-�8, of over 30 and 65 layers respectively.
It is evident that our approach has no optimization difficulty,
and the 35/67-layer SPD networks are able to achieve fairly
good recognition scores (36.12% and 35.85%) on the AFEW
dataset. Thirdly, compared Fig. 8 with Fig. 1, we can also
observe that the convergence speed of our 11/19/27/35/67-
layer SPD networks are faster than that of the 8/18-layer
SPDNets. This demonstrates that the suggested embedding
function of SSMAE helps to train the networks that are deeper
than those used previously. The underlying reason is that the
stacked SMAEs and the associated reconstruction error terms
enable the richer gradient information of the upper layers to
be easily transmitted to the lower layers. The experimental
evidences mentioned above also manifest that setting � to 2
on the AFEW dataset is rational, considering the training time,
the number of parameters, and the convergence behavior.

However, the test result of P-�8 is 0.54% and 0.27% lower
than that of P-�3 and P-�4, respectively. We argue that the
overfitting problem is one of the reasons for the inferiority of
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TABLE V
COMPARISON UNDER DIFFERENT VALIDATION METRICS.

Methods SPDNet P-�1 P-�2 P-�3 P-�4 P-�8
Acc. (%) 34.23 35.03 35.31 36.39 36.12 35.85
s/epoch 19.82 20.97 25.63 31.17 38.53 61.20
#params 0.12M 0.13M 0.16M 0.18M 0.21M 0.32M

TABLE VI
ACCURACY COMPARISON (%) UNDER DIFFERENT

METRIC LEARNING STAGES.

Datasets AFEW MDSD FPHA
backbone-SSMAE 35.31 36.41 86.09
backbone-SSMAE-1stMLS 36.66 38.46 88.17
backbone-SSMAE-2ndMLS 35.95 37.44 86.96
backbone-SSMAE-1st&2ndMLS 37.19 39.49 89.04

P-E8, as the 67-layer network may be a bit large (0.32M) for
this dataset. For the basic reason of the inferiority of P-�4 and
P-�8 compared to P-�3, we believe that it is due to the loss
of some pivotal structural information embedded in the input
SPD matrices during multi-stage SMAE transformation. Since
the reconstruction loss is introduced as the learning objective,
the solution for the early stages of SSMAE network will tend
to diagonalise the respective SPD matrices. This follows from
the well known fact that the optimal solution to the problem of
minimising the signal (image set) approximation error using
a reduced number of basis functions are the eigenvectors
of the signal covariance matrix associated with the largest
eigenvalues. The SPD matrix reconstruction problem is a
proxy to the signal approximation problem. However, once an
off-diagonal element of an SPD matrix becomes zero, it will
never contribute to the generation of the lower-dimensional
SPD matrices. This will considerably reduce the number of
variables involved in the generation of these matrices. Due to
the nonlinear activation function (ReCov+ReEig) used in this
article plays the role of SPD matrix regularization, it allows
the off-diagonal elements to contribute to the learning process.
Nevertheless, with increasing the number � of the stacked
SMAEs, the ReCov and ReEig operations will gradually ex-
acerbate the amount of adjustment to the input SPD matrices.
In this scenario, the more transformation stages of SSMAE,
the more distortion of the original statistical information will
be. As a consequence, the classification performance of P-�4
and P-�8 is not as good as that of P-�3.

The above analysis indicates that with the network depth
increases, the potential degradation of structural information
hinders the embedding function of the proposed network from
approaching an identity mapping. Inspired by the philosophy
of ResNet [50], in the future, we plan to study how to carry out
residual learning in the context of SPD manifolds. Since the
skip connections can make the current learning stage access
the informative feature maps of the previous stages easily, the
Riemannian residual learning may open up new possibilities
for solving the degradation problem.

G. Ablation Study of the Two-Stage Metric Learning

As introduced in Section III-C and Section III-D, the pur-
pose of designing the two progressive metric learning stages
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Fig. 8. The test error of different subarchitectures of the proposed model
versus the number of training epochs on the AFEW dataset.

is to enforce the samples from the same class to be closer to
each other and those from different classes to be separated by
a large manifold margin after the network embedding. Accord-
ingly, in this section, we carry out experiments on the AFEW,
MDSD, and FPHA datasets to evaluate the impact of each met-
ric learning stage (MLS) on the classification performance of
backbone-SSMAE studied in Section IV-E. The experimental
results are reported in Table VI, where ’backbone-SSMAE-
1stMLS’ and ’backbone-SSMAE-2ndMLS’ signify that the
network only includes the first (1st) and the second (2nd) metric
learning stages, respectively. From Table VI, one can note
that both of these two MLSs can improve the classification
performance of backbone-SSMAE on all the datasets, show-
ing the effectiveness of the suggested deep metric learning
strategy in exploiting the geometry of the learned feature
manifolds for finding a more discriminative decision space.
Besides, we can also observe that the classification scores of
backbone-SSMAE-1stMLS are respectively 0.71%, 1.02%, and
1.21% higher than those of backbone-SSMAE-2ndMLS. The
fundamental reason is that the data variations conveyed by the
network inputs is inconspicuously embodied in the top-level
feature maps, which restricts the 2ndMLS from sufficiently en-
coding and analyzing the geometric distributions of the learned
deep representations. In contrast, since the 1stMLS consists of
� metric learning instances that parse the data distributions
in different hidden layers of SSMAE, thus being qualified
to produce geometric features with reinforced discrimination.
More importantly, the combination of the 1stMLS and the
2ndMLS results in a further enhancement of the classification
ability of the studied network, confirming their complementary
role in SPD matrix discriminative learning.

To intuitively measure the discriminatory power of the
features learned by the proposed approach under the 1stMLS
and the 2ndMLS respectively, we provide the 2-D visualiza-
tion results, choosing the MDSD dataset as an example. It
can be observed from Fig. 9 that the holistic between-class
separability reflected in Fig. 9(b) is better than that shown
in Fig. 9(a). All in all, these experimental evidences indicate
that injecting metric learning into the proposed network is
beneficial to magnify the inter-class diversity and shrink the
discrepancy of the intra-class distributions.
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(a) backbone-SSMAE-2ndMLS (b) backbone-SSMAE-1stMLS

Fig. 9. 2-D visualization of the learned representations on the MDSD dataset,
where colors and points denote categories and image set samples, respectively.

H. Ablation Study of the ReCov Layer

On the basis of the above-mentioned experiments, in this
subsection, we experiment on the three used datasets to verify
the effectiveness of the introduced ReCov regularization by
measuring the effect of the threshold n on the classification
performance of the proposed method. For the selection of the
value of −n in this paper, we first check the approximate
value range of the elements in the input SPD matrices. In
practice, only a few elements have relatively large negative
correlation values. According to Theorem 1, a sufficiently
large negative correlation value is then selected as an anchor
point. Afterward, the cross-validation is exploited to search a
proper value for −n around the picked anchor point. The ex-
perimental results tabulated in Table VII show that the ReCov
operation can play a part in ameliorating the discrimination
of the learned deep representations. From Table VII, we can
also find that the suggested method is less sensitive to n

when it takes values from the set {0, 1E − 6, 1E − 5, 1E − 4}.
However, when the value of n is configured as 1E − 3, the
obtained classification scores are lower than those of other
cases on the three used datasets. Based on Theorem 1, we
conjecture that the current setting (1E−3) does not meet the
condition of being sufficiently small. As a result, some of
the main structural information of the learned features will
be lost. For a new dataset, we still recommend to exploit the
procedures mentioned above for parameter selection because
of its rationality and simplicity.

Furthermore, we choose the MDSD dataset as an example
to perform 2-D visualization experiments, which enables us
to gain an intuitive feeling about the efficacy of the ReCov
operation. The final visual results, obtained via the t-SNE
technique [47], are illustrated in Fig. 10. Compared with Fig.
10(a), both the intra-subject compactness and the inter-subject
separability of the samples reflected in Fig. 10(b) are further
enhanced after integrating the ReCov layers into the proposed
architecture. In addition, the comparison between Fig. 10(a)
and Fig. 9 intuitively certifies that the integration of the
two metric learning stages helps probe a more discriminative
feature space for classification.

In this part, we design another activation function for the
ReCov layer to better verify the rationality and validity of the
Eq. (8)-based ReCov operation. This function is similar to Eq.
(8), with the only difference being that it adjusts the negative

TABLE VII
COMPARISON (%) UNDER DIFFERENT VALUES OF n .

Datasets 0 1E-6 1E-5 1E-4 1E-3
AFEW 37.19 36.66 37.47 37.74 36.39
MDSD 39.49 39.49 42.05 40.26 38.46
FPHA 89.04 88.52 89.39 88.00 87.13

(a) Without the ReCov Layers, =0 (b) With the ReCov Layers, =1E-5

Fig. 10. 2-D visualization of the learned representations on the MDSD dataset,
where colors and points denote categories and image set samples, respectively.

TABLE VIII
COMPARISON (%) UNDER DIFFERENT ACTIVATION FUNCTIONS.

Datasets Proposed-Eq. (8) Proposed-Eq. (7) Proposed-Eq. (29)
AFEW 37.74 32.88 36.39
MDSD 42.05 34.36 35.90
FPHA 89.39 74.44 88.70

elements in the interval of (−n, 0] to 0, i.e.,

�̂: (8, 9) =
{
0, if 8 6= 9 and �̂:−1(8, 9) ∈ (−n, 0],
�̂:−1(8, 9), otherwise.

(29)

The experimental results of the proposed approach achieved
on the AFEW, MDSD, and FPHA datasets under different
activation functions are given in Table VIII. It is worth noting
that the classification performance of Proposed-Eq. (7) is sig-
nificantly inferior to that of Proposed-Eq. (8) and Proposed-Eq.
(29). This further justifies that the negative correlation values
of SPD matrix play a crucial role in characterizing the intra-
subject data distributions. Imposing sparseness, i.e., Eq. (7), on
the elements of SPD matrices will lead to the loss of plenty of
structural information (inferred from Theorem 1). Table VIII
also reports that the classification results of Proposed-Eq. (29)
are lower than those of Proposed-Eq. (8) on the three datasets.
This experimentally confirms that performing local statistical
information regularization in the scope of (−n, 0] using Eq. (8)
can intensify the negative statistical relevance of some local
feature regions in the original visual scene, thus enabling the
metric learning terms to be more effective in capturing and
learning the inconspicuous yet useful data variability informa-
tion that hide in such an interval. Hence, the discrepancy of
the intra-class data distributions will be narrowed to a certain
extent. All in all, these experimental evidences certify the
effectiveness of the ReCov regularization in promoting the
discriminatory power of the structured representations learned
by the proposed SPD network.

I. Parameter Selection

To measure the impact of the trade-off parameters (i.e., _1,
_2, and _3) in Eq. (11) on the classification performance of the

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3190450

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jiangnan University. Downloaded on September 19,2022 at 05:32:30 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES. 14

TABLE IX
STUDY THE INFLUENCE OF THE TRADE-OFF PARAMETERS _1 AND _2 ON

THE CLASSIFICATION PERFORMANCE OF THE PROPOSED
METHOD ON THE AFEW DATASET

_1=10
_2=1E-4 _2=1E-3 _2=1E-2 _2=1E-1

Acc. (%) 33.69 35.58 35.85 35.31

_1=1.0
_2=1E-4 _2=1E-3 _2=1E-2 _2=1E-1

Acc. (%) 35.58 35.85 36.93 36.39

_1=0.1
_2=1E-4 _2=1E-3 _2=1E-2 _2=1E-1

Acc. (%) 36.93 37.20 37.74 37.47

_1=0.01
_2=1E-4 _2=1E-3 _2=1E-2 _2=1E-1

Acc. (%) 36.66 37.74 37.20 37.47

proposed approach, we make cross-validation experiments on
the AFEW dataset as an example. The purpose of introducing
these three trade-off parameters to Eq. (11) is to balance the
magnitude of the classification term, metric learning term, and
reconstruction error term, so as to train effective classifiers for
improved classification. Accordingly, we fix the value of _3
to 1 and assign a relatively small value to _1 and _2 to fine-
tune the classification performance in this paper. To study the
efficacy of _1 and _2 in regulating the model capacity, the can-
didate sets of them are respectively set to {10, 1.0, 0.1, 0.01}
and {1E − 1, 1E − 2, 1E − 3, 1E − 4} in the experiments. From
Table IX, we have some interesting observations. Firstly, when
the value of _1 is fixed, our model generally shows a first
increasing trend and then a decreasing trend as the value
of _2 changes. The fundamental reason is that when _2 is
assigned to a smaller value, the degradation problem will
impact the classification ability of our method. In contrast,
a larger value of _2 makes the learning system focus on deep
reconstruction learning, which is also disadvantageous for
training discriminative classifiers. Another important finding in
Table IX is that when _1 takes values from the set {0.1, 0.01},
the classification accuracy of our method is higher than that
of _1 whose values are configured as 10 and 1.0, respectively.
This is mainly attributed to that assigning a comparatively
larger value to _1 results in a higher order of magnitude of
the metric learning term, compared to the classification term.
In this case, the softmax classifier may not be able to fit the
probability distribution of different categories learned by the
suggested SPD network well, thus causing misclassification.
Finally, Table IX delivers that the proposed method is less
sensitive to these two trade-off parameters, supporting our
assertion that the reconstruction and metric learning terms help
to fine-tune the classification performance.

All in all, these experimental observations confirm the
complementarity of these two terms in guiding our model to
learn more informative features for better decision making.
As studied above, our guideline for choosing their values on
the four used datasets is to ensure that the metric learning
regularizer and the reconstruction error term are at least an
order of magnitude lower than the classification term. With this
criterion, the softmax classifier can better integrate the gradient

information of the metric learning and reconstruction terms
to learn a hypersphere with a more reasonable probability
distribution for different categories. On the AFEW dataset,
the eligible values of _1 and _2 are set to 0.1 and 0.01,
respectively. Table II shows their values on the remaining two
datasets. For a new dataset, based on the values of the cross-
entropy loss, the aforementioned principle can help the readers
quickly determine the initial value ranges of _1 and _2.

For other ablation studies, please kindly refer to Section II,
Section III, Section IV, and Section V of our supplementary
material.

J. Discussion

Since the SPD matrix encodes the statistical information
between different feature dimensions (attributes) in the original
image set data, the multi-stage data compressed sensing will
inevitably lead to the loss of some main structural information
of the input feature matrices, thus preventing the existing
SPD neural networks from going deeper. As stated above,
the column full-rank transformation matrices ,: are imposed
on the semi-orthogonality, such that optimizing ,: over
a compact Stiefel manifold could render optimal solutions.
Since ,)

:
,: = �, inspired by the paradigm of Euclidean

autoencoder, if one can design an autoencoder network in
the domain of SPD manifolds, the function composition of
successive SPD matrix upsampling and downsampling layers
would be able to asymptotically approach an identity mapping
(IM) theoretically. Therefore, we build a stacked SPD manifold
autoencoder (SSMAE) on the tail of the backbone network
with a series of reconstruction error terms (RTs) to train.
For simplicity, we denote M2 = ,)

2 c(,1M1,
)
1 ),2 as the

resulting SPD matrix after one upsampling and downsampling
operation. As the ReCov and ReEig operations bring about
minor perturbations to the eigenvalue space, the nonlinear
activation function c (ReEig+ReCov) could preserve the main
structural information of the input data. In addition, under
the supervision of RTs, ,1 and ,2 may close to each other,
resulting in that | |M2 | |F→ ||M1 | |F. These factors make it pos-
sible to create an IM on the SPD manifolds. The experimental
results listed in Fig. 8 and Table V demonstrate that our design
can speed up the training of deep networks and solve the
degradation problem to a certain extent. Besides, the following
Table X reports the average F-norm of the feature matrices in
the hidden layer of each SMAE on the AFEW dataset. From
this table, we can compute that the variance between the three
values is 1.15E-09, which is negligible, further supporting our
speculation experimentally.

In the Euclidean deep networks, the information degrada-
tion during multi-level data transformation is also inevitable.
Besides, the ReLU operation that sets all the negative values
to 0 also leads to irreversible information loss. As studied
in ResNet [50], to make a deeper model produce no higher
training error than its shallower counterpart, an ideal solution
is to enable the added layers to be constructed as IMs.
However, the following two challenges make it difficult to
approximate an IM for the underlying mapping �(E): 1)
information degradation mentioned above; 2) different from
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TABLE X
THE AVERAGE F-NORM OF THE FEATURE MATRICES IN THE HIDDEN

LAYER OF EACH SMAE ON THE AFEW DATASET.

Layers 6th layer 14th layer 22th layer
F-norm 1.66E−4 1.21E−4 9.94E−5

SPD networks, it is impossible for the plain network studied
in [50] to drive the weights of the multiple nonlinear layers
toward (semi-) orthogonal. Hence, instead of approximating a
desired �(E), the authors equivalently let these stacked layers
learn a residual function: F (E) := H (E) − E. In this case, if
the optimal function is closer to an IM than to a zero mapping,
it would be easier for the solver to seek the perturbations
with reference to IM, than to learn the function as a new one.
The experimental results illustrated in Fig. 7 of [50] support
the authors’ hypothesis that the residual functions might be
generally close to zero.

In short, the designed SPD network tends to approach the
IM more easily, while for the residual learning framework, it
seems to be easier for the residual function to fit an approx-
imate zero mapping. Other differences between the proposed
SPD network and ResNet include: 1) both the inputs and the
outputs of our model are structured SPD matrices, rather than
the image features of ResNet. In other words, the suggested
model is strictly defined on the Riemannian manifolds, other
than the Euclidean vector space; 2) the parameter optimization
of the designed network is realized by exploiting the stochastic
gradient descent (SGD) setting on the Stiefel manifolds with
the Riemannian matrix backpropagation for characterizing and
preserving the Riemannian geometry of SPD data points, while
the conventional SGD-based Euclidean backpropagation is
used in ResNet.

V. APPLICATION TO SKELETON-BASED HUMAN ACTION
RECOGNITION WITH UNMANNED AERIAL VEHICLES

Due to the rapid motion and the constantly changing at-
titudes and altitudes of the UAVs during flight, the video
sequences captured by UAVs exhibit large variations in view-
point, resolution, illumination, background information, and
geometrical morphology of the object. These factors make the
UAV-based computer vision tasks, e.g., person re-identification
and pose estimation, rather challenging and gaining increasing
attention. In this section, we experiment on the large-scale
UAV-Human dataset [68] to further examine the effectiveness
of the designed SPD network for the task of skeleton-based
human pose recognition.

This dataset consists of 67,428 annotated video sequences
for human behavior understanding. Among them, 22,476
videos belonging to 155 action categories are specified for the
task of human pose estimation. For the evaluation, we follow
the practice introduced in [67] to first convert each action
frame into a 51-dimensional feature vector, as each person is
marked by 17 body joints with 3D coordinates (illustrated in
Fig. 11). Furthermore, a number of 305 action frames in each
video clip were selected, resulting in that each video sequence
can be represented by an image set matrix of size 51 × 305.
Since some of the action categories in the UAV-Human dataset

are performed interactively by two persons, for simplicity, the
PCA technique is utilized to transform the 102-dimensional
(17 × 3 × 2) feature vectors into 51-dimensional ones with
preserving 99% energy of the data. In this scenario, a total of
22,476 SPD matrices of size 51×51 can be computed for image
set modeling. Then, the training and test sets were constructed
from the randomly singled out 16,723 SPD matrices using the
seventy-thirty-ratio (STR) protocol. On this dataset, the sizes
of the network filters are respectively configured as 51 × 43,
43×37, 37×31, 31×37, 37×31, 31×37, and 37×31. In addition,
the learning rate b, batch size B, rectification thresholds (n and
Z), margin thresholds (d1 and d2), and trade-off parameters (V,
_1, _2, and _3) are configured to be 0.01 (attenuate by a factor
of 0.8 every 50 epochs), 30, (1E-5 and 1E-5), (-1.0 and 1.0),
and (0.2, 1.0, 0.1, and 1.0), respectively.

Table XI reports the recognition scores of the different meth-
ods on the UAV-Human dataset. Note that we run the open-
source codes of these reference methods on this dataset, with
parameter tuning to obtain optimal classification results cur-
rently. According to Table XI, the following observations can
be drawn. Firstly, the classification performance of HRGEML
and HERML are superior to most of the single geometric
model-based classification methods on this dataset. This again
certifies that performing image set encoding and learning from
a multi-geometric perspective is beneficial to generate a more
discriminative subspace for classification. Secondly, the clas-
sification scores of PML, LEML, and SPDML-AIM are lower
than those of SymNet and GEMKML, further demonstrating
that compared with shallow linear learning scheme, deep
nonlinear metric learning is more effective in alleviating intra-
class diversity and inter-class ambiguity of input data. Another
meaningful finding from Table XI is that the learning capacity
of GEMKML and SymNet is inferior to that of GrNet and
SPDNet on this dataset, respectively. This further illustrates
that compared with the lightweight Riemannian networks that
do not require optimization by matrix backpropagation, the
end-to-end Riemannian deep learning mechanism is equipped
to mine fine-grained geometric features with better discrim-
inability for the original image set data, especially on the
large-scale datasets.

Finally, the proposed method achieves an accuracy of
45.54% on the UAV-Human dataset, which is 3.23% higher
than that of SPDNet. Besides, when the two metric learning
stages are removed from the proposed SSMAE module, the
classification score obtained by the simplified network (called
Proposed-nMLS) on this dataset is 44.73%, still outperforming
SPDNet and other competitors. These experimental evidences
not only confirm that the designed SPD matrix learning
method can also learn useful geometric information for im-
proved classification on large-scale dataset, but also further
verify that the complementary role of the designed SSMAE
and metric learning modules is an important factor to enhance
the learning capacity of the baseline network.

VI. CONCLUSION

This paper carries out a basic exploration of the com-
bination of deeper neural networks and Riemannian metric
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Fig. 11. Some instances of the UAV-Human dataset.

TABLE XI
ACCURACY COMPARISON (%) ON THE UAV-HUMAN DATASET.

Methods CDL [5] PML [30] LEML [11] HERML [39]
Acc. 31.11 10.66 21.83 34.18
Methods SPDNet [25] SPDML-AIM [20] GrNet [24] SPDNetBN [26]
Acc. 42.31 22.69 35.23 43.28
Methods GEMKML [10] HRGEML [67] SymNet [27] Proposed
Acc. 34.67 36.10 35.89 45.54

learning on the SPD manifolds to improve the image set
classification performance by addressing the issues of intra-
class diversity and inter-class similarity. Specifically, we first
build a stacked SPD manifold autoencoder (SSMAE) on
the tail of the SPD backbone to explore a feasible way to
increase the depth of representations without causing model
degradation. Whereafter, the SSMAE module is equipped with
two successive metric learning stages to learn the intra- and
inter-class variations of deep representations generated by
the proposed network. This not only facilitates supervising
a powerful manifold-to-manifold transforming network, but
also helps to train effective classifiers. In this article, we also
introduce the ReCov layer for the designed architecture to
perform local statistics nonlinear regularization of SPD data.
Extensive experiments show that compared with the SOTA
methods, the propsoed approach is an effective candidate in
improving the image set classification performance, even with
limited data. Besides, a series of ablation studies justify the
significance of each component of our model in promoting the
learning capacity of the baseline network.

Since the designed metric learning terms need to traverse all
the neighboring points within a batch of samples and compute
the intra- and inter-class scatter matrices, the computational
burden of the propsoed model is inevitably higher than that
of the baseline network. Therefore, in the future, more efforts
will be made to introduce new metric learning frameworks
with comparatively higher computational efficiency. Consid-
ering that the temporal information is an important factor
in describing video data, another possible future work is to
integrate a spatial-temporal SPD aggregation module into the
designed network to perform coarse-to-fine temporal model-
ing. In addition, we plan to generalize the proposed method
to other computer vision tasks, such as visual object tracking
and person re-identification, to support wide applications.
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