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Abstract
We establish several convexity properties for the entropy
and Fisher information of mixtures of centred Gaussian
distributions. Firstly, we prove that if 𝑋1, 𝑋2 are inde-
pendent scalar Gaussian mixtures, then the entropy of√

𝑡𝑋1 +
√

1 − 𝑡𝑋2 is concave in 𝑡 ∈ [0, 1], thus confirm-
ing a conjecture of Ball, Nayar and Tkocz (2016) for this
class of random variables. In fact, we prove a generalisa-
tion of this assertion which also strengthens a result of
Eskenazis, Nayar and Tkocz (2018). For the Fisher infor-
mation, we extend a convexity result of Bobkov (2022) by
showing that the Fisher information matrix is operator
convex as a matrix-valued function acting on densities
of mixtures in ℝ𝑑. As an application, we establish rates
for the convergence of the Fisher information matrix of
the sum of weighted i.i.d. Gaussianmixtures in the oper-
ator norm along the central limit theorem under mild
moment assumptions.
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1 INTRODUCTION

1.1 Entropy

Let 𝑋 be a continuous random vector in ℝ𝑑 with density 𝑓 ∶ ℝ𝑑 → ℝ+. The (differential) entropy
of 𝑋 is the quantity

ℎ(𝑋)
def
= −∫ℝ𝑑

𝑓(𝑥) log 𝑓(𝑥) d𝑥 = 𝔼[− log 𝑓(𝑋)], (1)

where log always denotes the natural logarithm. The celebrated entropy power inequality of Shan-
non and Stam [30, 31] (see also [25]) implies that for every independent continuous randomvectors
𝑋1, 𝑋2 in ℝ𝑑, we have

∀ 𝑡 ∈ [0, 1], ℎ
(√

𝑡𝑋1 +
√

1 − 𝑡𝑋2

)
⩾ 𝑡ℎ(𝑋1) + (1 − 𝑡)ℎ(𝑋2). (2)

In general, the entropy power inequality cannot be reversed (see, e.g the construction of
[10, Proposition 4]). However, reverse entropy power inequalities have been considered under
different assumptions on the random vectors, such as log-concavity [3, 14, 15, 26].
It follows directly from (2) that if 𝑋1, 𝑋2 are i.i.d. random vectors, then the entropy function

𝑡 ↦ ℎ(
√

𝑡𝑋1 +
√

1 − 𝑡𝑋2) is minimised at 𝑡 = 0 and 𝑡 = 1. In the spirit of reversing the entropy
power inequality, Ball, Nayar and Tkocz [3] raised the question of maximising this function. In
particular, they gave an example of a random variable 𝑋1 for which the maximum is not attained
at 𝑡 = 1

2
but conjectured that for i.i.d. log-concave random variables this functionmust be concave

in 𝑡 ∈ [0, 1], in which case it is, in particular, maximised at 𝑡 = 1

2
. It is worth noting that the con-

jectured concavity would also be a strengthening of the entropy power inequality for i.i.d. random
variables, as (2) amounts to the concavity condition for the points 0, 𝑡, 1. So far, no special case of
the conjecture of [3] seems to be known.
In this work, we consider (centred) Gaussian mixtures, that is, random variables of the form

𝑋 = 𝑌𝑍, (3)

where 𝑌 is an almost surely positive random variable and 𝑍 is a standard Gaussian random
variable, independent of 𝑌. The resulting random variable has density of the form

∀ 𝑥 ∈ ℝ, 𝑓𝑋(𝑥) = 𝔼

[
1√

2𝜋𝑌2
𝑒
− 𝑥2

2𝑌2

]
. (4)

In particular, as observed in [18], (4) combined with Bernstein’s theorem readily implies that a
symmetric random variable 𝑋 is a Gaussian mixture if and only if 𝑥 ↦ 𝑓𝑋(

√
𝑥) is completely

monotonic on (0,∞). Therefore, distributions with density proportional to 𝑒−|𝑥|𝑝 , symmetric 𝑝-
stable random variables, where 𝑝 ∈ (0, 2], and the Cauchy distribution are Gaussianmixtures. Let
us mention that Costa [16] also considered symmetric stable laws to prove a strengthened version
of the entropy power inequality that fails in general.
Our first result proves the concavity of entropy conjectured in [3] for Gaussian mixtures.
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ON THE ENTROPY AND INFORMATION OF GAUSSIANMIXTURES 3 of 19

Theorem 1. Let 𝑋1, 𝑋2 be independent Gaussian mixtures. Then, the function

𝑡 ⟼ ℎ
(√

𝑡𝑋1 +
√

1 − 𝑡𝑋2

)
(5)

is concave on the interval [0,1].

Theorem 1 will be a straightforward consequence of amore general result for the Rényi entropy
of a weighted sum of 𝑛 Gaussian mixtures. Let△𝑛−1 be the standard simplex in ℝ𝑛,

△𝑛−1 def
=

{
(𝜋1, … , 𝜋𝑛) ∈ [0, 1]𝑛 ∶ 𝜋1 + ⋯ + 𝜋𝑛 = 1

}
. (6)

The Rényi entropy of order 𝛼 ≠ 1 of a random vector 𝑋 with density 𝑓 is given by

ℎ𝛼(𝑋)
def
=

1

1 − 𝛼
log

(
∫ℝ𝑑

𝑓𝛼(𝑥) d𝑥

)
, (7)

and ℎ1(𝑋) is simply the Shannon entropy ℎ(𝑋). We will prove the following general concavity.

Theorem 2. Let 𝑋1,… , 𝑋𝑛 be independent Gaussian mixtures. Then, the function

△𝑛−1 ∋ (𝑎2
1, … , 𝑎2

𝑛) ⟼ ℎ𝛼

(
𝑛∑

𝑖=1

𝑎𝑖𝑋𝑖

)
(8)

is concave on△𝑛−1 for every 𝛼 ⩾ 1.

When 𝑛 = 2 and 𝛼 = 1, Theorem 2 reduces exactly to Theorem 1.
In [18, Theorem8], itwas shown that if𝑋1,… , 𝑋𝑛 are i.i.d., then the function (8) isSchur concave,

namely that if (𝑎1, … , 𝑎𝑛) and (𝑏1, … , 𝑏𝑛) are two unit vectors in ℝ𝑛, then

(𝑎2
1, … , 𝑎2

𝑛) ⪯m (𝑏2
1, … , 𝑏2

𝑛) ⟹ ℎ𝛼

(
𝑛∑

𝑖=1

𝑎𝑖𝑋𝑖

)
⩾ ℎ𝛼

(
𝑛∑

𝑖=1

𝑏𝑖𝑋𝑖

)
, (9)

for any 𝛼 ⩾ 1, where ⪯m is the majorisation ordering of vectors (see [18]). As the unit vector with
all coordinates equal to 1

𝑛
is majorised by any other vector in△𝑛−1, (9) implies that the function

(8) achieves its maximum on the main diagonal for Gaussian mixtures.
As any permutationally invariant concave function is Schur concave (see [28, p. 97]), (9) follows

from Theorem 2. On the other hand, the function 𝑥1 ⋯𝑥𝑛 is permutationally invariant and Schur
concave onℝ𝑛

+ (see [28, p. 115]) but it is evidently not concave on the hyperplane 𝑥1 + ⋯ + 𝑥𝑛 = 1

when 𝑛 ⩾ 3. Therefore, Theorem 2 is a strict refinement of [18, Theorem 8].
We note in passing that, while the conclusion of Theorem 1 has been conjectured in [3] to hold

for every i.i.d. log-concave random variables 𝑋1, 𝑋2, the conclusion of Theorem 2 cannot hold for
this class of variables. In [27], Madiman, Nayar and Tkocz constructed a symmetric log-concave
random variable 𝑋 for which the Schur concavity (9) does not hold for i.i.d. copies of 𝑋, and thus,
as a consequence of [28, p. 97], the concavity of Theorem 2 must also fail.
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4 of 19 ESKENAZIS and GAVALAKIS

1.2 Fisher information

Let 𝑋 be a continuous random vector in ℝ𝑑 with smooth density 𝑓 ∶ ℝ𝑑 → ℝ+. The Fisher
information of 𝑋 is the quantity

𝐼(𝑋)
def
= ∫ℝ𝑑

|∇𝑓(𝑥)|2
𝑓(𝑥)

d𝑥 = 𝔼
[||𝜌(𝑋)||2], (10)

where 𝜌(𝑥)
def
=

∇𝑓(𝑥)

𝑓(𝑥)
is the score function of 𝑋. Fisher information and entropy are connected by

the classical de Bruijn identity (see, e.g. [31]), due to which most results for Fisher information
are formally stronger than their entropic counterparts. In particular, the inequality

∀ 𝑡 ∈ [0, 1],
1

𝐼(
√

𝑡𝑋1 +
√

1 − 𝑡𝑋2)
⩾

𝑡

𝐼(𝑋1)
+

1 − 𝑡

𝐼(𝑋2)
(11)

of Blachman and Stam [8, 31], which holds for all independent random vectors 𝑋1, 𝑋2 in ℝ𝑑,
implies the entropy power inequality (2). In the spirit of the question of Ball, Nayar and Tkocz
[3] and of the result of [18], we raise the following problem.

Question 3. Let 𝑋1,… , 𝑋𝑛 be i.i.d. Gaussian mixtures. For which unit vectors (𝑎1, … , 𝑎𝑛) in ℝ𝑛 is
the Fisher information of

∑𝑛
𝑖=1 𝑎𝑖𝑋𝑖 minimised?

While Question 3 still remains elusive, we shall now explain how to obtain some useful bounds
for the Fisher information of mixtures. In order to state our results in the greatest possible gen-
erality, we consider random vectors which are mixtures of centred multivariate Gaussians. Recall
that the Fisher information matrix of a random vector 𝑋 in ℝ𝑑 is given by

(𝑋)𝑖𝑗
def
= ∫ℝ𝑑

𝜕𝑖𝑓(𝑥)𝜕𝑗𝑓(𝑥)

𝑓(𝑥)
d𝑥, (12)

where 𝑓 ∶ ℝ𝑑 → ℝ+ is the smooth density of 𝑋, so that 𝐼(𝑋) = tr(𝑋).
Let 𝑑 ⊂ 𝐿1(ℝ

𝑑) be the space of smooth probability densities on ℝ𝑑. By abuse of notation, we
will also write 𝐼(𝑓) and (𝑓) to denote the Fisher information and Fisher information matrix,
respectively, of a random vector with smooth density 𝑓 on ℝ𝑑. In his recent treatise on estimates
for the Fisher information, Bobkov made crucial use of the convexity of the Fisher information
functional 𝐼(𝑋) as a function of the density of the random variable𝑋, see [9, Proposition 15.2]. For
our purposes, we shall need the following matricial extension of this.

Proposition 4. Fix 𝑑 ∈ ℕ. If 𝜋 is a Borel probability measure on 𝑑, then


(
∫𝑑

g d𝜋(g)

)
⪯ ∫𝑑

(g) d𝜋(g), (13)

provided that ∫𝑑
‖(g)‖op d𝜋(g) < ∞. Here, ⪯ denotes the positive semi-definite ordering of

matrices.

We propose the following definition of Gaussian mixtures in arbitrary dimension.
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ON THE ENTROPY AND INFORMATION OF GAUSSIANMIXTURES 5 of 19

Definition 5. A random vector 𝑋 in ℝ𝑑 is a (centred) Gaussian mixture if 𝑋 has the same dis-
tribution as 𝐘𝑍, where 𝐘 is a random 𝑑 × 𝑑 matrix which is almost surely positive definite (and
thus symmetric) and 𝑍 is a standard Gaussian random vector in ℝ𝑑, independent of 𝐘.†

As in the scalar case, a Gaussian mixture 𝑋 in ℝ𝑑 has density of the form

∀ 𝑥 ∈ ℝ𝑑, 𝑓𝑋(𝑥) = 𝔼

[
1

det(
√

2𝜋𝐘)
𝑒−|𝐘−𝟏𝑥|2∕2]. (14)

Employing Proposition 4 for Gaussian mixtures, we deduce the following bound.

Corollary 6. Fix 𝑑 ∈ ℕ and let 𝑋 be a random vector in ℝ𝑑 admitting a Gaussian mixture
representation 𝐘𝑍. Then, we have

(𝑋) ⪯ 𝔼
[
(𝐘𝐘𝑇)−1

]
. (15)

This upper bound should be contrasted with the general lower bound

(𝑋) ⪰ Cov(𝑋)−1 =
(
𝔼𝐘𝐘𝑇

)−1
, (16)

where the first inequality is the multivariate Crámer–Rao bound [7, Theorem 3.4.4].

1.2.1 Quantitative Central Limit Theorem (CLT) for the Fisher information
matrix of Gaussian mixtures

Equality in the Cramér–Rao bound (16) is attained if and only if 𝑋 is Gaussian. The deficit in
the scalar version of this inequality is the relative Fisher information 𝐼(𝑋‖𝑍) between 𝑋 and 𝑍

and may be interpreted as a strong measure of distance of 𝑋 from Gaussianity. In particular, in
view of Gross’ logarithmic Sobolev inequality [21] and Pinsker’s inequality [17, 23, 29], closeness
in relative Fisher information implies closeness in relative entropy and a fortiori in total variation
distance. Therefore, a very natural question is under which conditions and with what rate the
relative Fisher information of a weighted sum tends to zero along the central limit theorem, thus
offering a strengthening of the entropic central limit theorem [4]. As an application of Corollary 6,
we obtain a bound for a matrix analogue of the relative Fisher information of Gaussian mixtures.
Here and throughout, ‖ ⋅ ‖op denotes the operator norm of a square matrix.

Theorem 7. Fix 𝑑 ∈ ℕ, 𝛿 ∈ (0, 1] and let 𝑋1,… , 𝑋𝑛 be i.i.d. random vectors in ℝ𝑑, each admitting
a Gaussian mixture representation 𝐘𝑍 as above. Assume also that

𝔼‖‖𝐘𝐘𝑇‖‖1+𝛿
op < ∞ and 𝔼‖‖(𝐘𝐘𝑇

)−1‖‖1+𝛿
op < ∞. (17)

† In view of the polar decomposition of 𝐘 as 𝐘 = (𝐘𝑇𝐘)1∕2𝑈, where 𝑈 is an orthogonal matrix, and the rotational invari-
ance of the Gaussian measure, the definition above could be rephrased with 𝐘 assumed to be almost surely non-singular.
The non-singularity assumption is imposed to ensure that 𝑋 has a density.
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6 of 19 ESKENAZIS and GAVALAKIS

Then, for every unit vector 𝑎 = (𝑎1, … , 𝑎𝑛) in ℝ𝑛, the weighted sum 𝑆𝑛 =
∑𝑛

𝑖=1 𝑎𝑖𝑋𝑖 satisfies

‖‖Cov(𝑆𝑛)
1
2(𝑆𝑛)Cov(𝑆𝑛)

1
2 − I𝑑‖‖op ⩽ 𝐶(𝐘) log𝛿(𝑑 + 1)‖𝑎‖ 2𝛿

1+𝛿

2+2𝛿
, (18)

where 𝐶(𝐘) is a constant that depends only on the moments of ‖𝐘𝐘𝑇‖op.

There is a vast literature on quantitative versions of the central limit theorem. The first to
obtain efficient bounds for the relative Fisher information of weighted sums were Artstein, Ball,
Barthe and Naor [1] (see also the work [22] of Johnson and Barron) who obtained a 𝑂(‖𝑎‖4

4
)

upper bound on 𝐼(𝑆𝑛‖𝑋), where 𝑆𝑛 =
∑𝑛

𝑖=1 𝑎𝑖𝑋𝑖 for 𝑋1,… , 𝑋𝑛 i.i.d. random variables satisfying a
Poincaré inequality. In particular, this bound reduces to the sharp rate𝑂( 1

𝑛
) on themain diagonal.

Following a series of works on the relative entropy of weighted sums [11, 12], Bobkov, Chistyakov
and Götze investigated in [13] upper bounds for the relative Fisher information along the main
diagonal under finite moment assumptions. More specifically, their main result asserts that if
𝔼|𝑋1|𝑠 < ∞ for some 𝑠 ∈ (2, 4), then

𝐼

(
1√
𝑛

𝑛∑
𝑖=1

𝑋𝑖
‖‖‖𝑍

)
= 𝑂

(
1

𝑛
𝑠−2
2

+𝑜(1)

)
, (19)

where the𝑛𝑜(1) term is a power of log 𝑛, provided that the Fisher information of the sum is finite for
some 𝑛. The exponent 𝑠−2

2
is sharp in this estimate. Moreover, it is also shown in [13] that if 𝔼𝑋4

1
<

∞, then the relative Fisher information decays with the optimal 𝑂( 1

𝑛
) rate of convergence. This is

a far-reaching extension of the results of [1, 22] on the main diagonal as the Poincaré inequality
assumption in particular implies finiteness of all moments.
The scalar version of Theorem 7 (corresponding to 𝑑 = 1) is in various ways weaker than the

results of [13]. Firstly, it applies only within the class of Gaussian mixtures and it requires the
finiteness of a negative moment of the random variable besides a positive one. Moreover, even if
these assumptions are satisfied, the bound (18) yields the rate 𝑂( 1

𝑛𝑐𝛿
) with 𝑐𝛿 = 𝛿2

(1+𝛿)2
along the

main diagonal if 𝑋 has a finite 2 + 2𝛿 moment. This is weaker than the sharp 𝑂( 1

𝑛𝛿+𝑜(1) ) which
follows from [13]. On the other hand, Theorem 7 applies to general coefficients beyond the main
diagonal and, in contrast to [1, 22], does not require the finiteness of all positive moments. More
importantly though, (18) is multi-dimensional bound with a subpolynomial dependence on the
dimension 𝑑. To the best of our knowledge, this is the first such bound for the relative Fisher
informationmatrix of aweighted sum, and it would be very interesting to extend it tomore general
classes of random vectors and to obtain sharper rates.
The logarithmic dependence on the dimension in Theorem 7 is a consequence of a classical

result of Tomczak–Jaegermann [32] on the uniform smoothness of Schatten classes. While The-
orem 7 is stated in terms of the operator norm, the proof yields an upper bound for any operator
monotone matrix norm (see Remark 13) in terms of its Rademacher-type constants.

2 CONCAVITY OF ENTROPY

This section is devoted to the proof of Theorem 2. We shall make use of the standard variational
formula for entropy which asserts that if 𝑋 is a continuous random variable, then

ℎ(𝑋) = min
{
𝔼[− log g(𝑋)] ∶ g ∶ ℝ → ℝ+ is a density function

}
. (20)
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ON THE ENTROPY AND INFORMATION OF GAUSSIANMIXTURES 7 of 19

Proof of Theorem 2. We start with the Shannon entropy, which corresponds to 𝛼 = 1. Fix two unit
vectors (𝑎1, … , 𝑎𝑛) and (𝑏1, … , 𝑏𝑛) in ℝ𝑛. For 𝑡 ∈ [0, 1], consider

𝑋𝑡

def
=

𝑛∑
𝑖=1

√
𝑡𝑎2

𝑖
+ (1 − 𝑡)𝑏2

𝑖
𝑋𝑖 and 𝑓(𝑡)

def
= ℎ(𝑋𝑡), (21)

and denote by g𝑡 ∶ ℝ → ℝ+ the density of 𝑋𝑡. The statement of the theorem is equivalent to the
concavity of the function 𝑓 on the interval [0,1].
Let 𝜆, 𝑡1, 𝑡2 ∈ [0, 1] and set 𝑡 = 𝜆𝑡1 + (1 − 𝜆)𝑡2. By the variational formula for entropy, we have

𝜆𝑓(𝑡1) + (1 − 𝜆)𝑓(𝑡2) = 𝜆𝔼[− log g𝑡1 (𝑋𝑡1
)] + (1 − 𝜆)𝔼[− log g𝑡2 (𝑋𝑡2

)]

⩽ 𝜆𝔼[− log g𝑡(𝑋𝑡1
)] + (1 − 𝜆)𝔼[− log g𝑡(𝑋𝑡2

)].
(22)

Moreover, since 𝑋𝑖 has the same distribution as the independent product 𝑌𝑖𝑍𝑖 , the stability of
Gaussian measure implies the equality in distribution

𝑋𝑡

(d)
=

√√√√ 𝑛∑
𝑖=1

(
𝑡𝑎2

𝑖
+ (1 − 𝑡)𝑏2

𝑖

)
𝑌2

𝑖
𝑍. (23)

Therefore,𝑋𝑡 is itself a Gaussianmixture. By the characterisation of [18, Theorem 2], this is equiv-
alent to the complete monotonicity of the function g𝑡(

√
⋅). Thus, by Bernstein’s theorem, g𝑡(

√
⋅)

is the Laplace transform of a non-negative Borel measure on (0,∞) and therefore the function
𝜑𝑡

def
= − log g𝑡(

√
⋅) is concave on (0,∞). Hence, by (22) and (23), we have

𝜆𝑓(𝑡1) + (1 − 𝜆)𝑓(𝑡2)

⩽ 𝜆𝔼

[
𝜑𝑡

(
𝑛∑

𝑖=1

(
𝑡1𝑎

2
𝑖 + (1 − 𝑡1)𝑏

2
𝑖

)
𝑌2

𝑖 𝑍
2

)]
+ (1 − 𝜆)𝔼

[
𝜑𝑡

(
𝑛∑

𝑖=1

(
𝑡2𝑎

2
𝑖 + (1 − 𝑡2)𝑏

2
𝑖

)
𝑌2

𝑖 𝑍
2

)]

⩽ 𝔼

[
𝜑𝑡

(
𝑛∑

𝑖=1

(
𝜆
(
𝑡1𝑎

2
𝑖 + (1 − 𝑡1)𝑏

2
𝑖

)
+ (1 − 𝜆)

(
𝑡2𝑎

2
𝑖 + (1 − 𝑡2)𝑏

2
𝑖

))
𝑌2

𝑖 𝑍
2

)]

= 𝔼

[
𝜑𝑡

(
𝑛∑

𝑖=1

(
𝑡𝑎2

𝑖 + (1 − 𝑡)𝑏2
𝑖

)
𝑌2

𝑖 𝑍
2

)]
= 𝔼

[
− log g𝑡

(
𝑛∑

𝑖=1

√
𝑡𝑎2

𝑖
+ (1 − 𝑡)𝑏2

𝑖
𝑋𝑖

)]
= 𝑓(𝑡).

(24)

This completes the proof of the concavity of Shannon entropy.
Next, let 𝛼 > 1 and consider again 𝑡 = 𝜆𝑡1 + (1 − 𝜆)𝑡2. Denoting by𝜓𝑡 = g𝛼−1

𝑡 (
√
⋅) and applying

the same reasoning, we get

∫ℝ

g𝛼
𝑡 (𝑥) d𝑥 = ∫ℝ

g𝑡(𝑥)g𝛼−1
𝑡 (𝑥) d𝑥 = 𝔼g𝛼−1

𝑡 (𝑋𝑡)

= 𝔼

[
𝜓𝑡

(
𝑛∑

𝑖=1

(
𝜆
(
𝑡1𝑎

2
𝑖 + (1 − 𝑡1)𝑏

2
𝑖

)
+ (1 − 𝜆)

(
𝑡2𝑎

2
𝑖 + (1 − 𝑡2)𝑏

2
𝑖

))
𝑌2

𝑖 𝑍
2

)]
.

(25)
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8 of 19 ESKENAZIS and GAVALAKIS

Now 𝜓𝑡 = 𝑒−(𝛼−1)𝜑𝑡 is log-convex and thus

∫ℝ

g𝛼
𝑡 (𝑥) d𝑥 ⩽ 𝔼

[
𝜓𝜆

𝑡

(
𝑛∑

𝑖=1

(
𝑡1𝑎

2
𝑖 + (1 − 𝑡1)𝑏

2
𝑖

)
𝑌2

𝑖 𝑍
2

)
𝜓1−𝜆

𝑡

(
𝑛∑

𝑖=1

(
𝑡2𝑎

2
𝑖 + (1 − 𝑡22)𝑏

2
𝑖

)
𝑌2

𝑖 𝑍
2

)]

⩽ 𝔼
[
g𝛼−1
𝑡 (𝑋𝑡1

)
]𝜆

𝔼
[
g𝛼−1
𝑡 (𝑋𝑡2

)
]1−𝜆

(26)

by Hölder’s inequality and (23). By two more applications of Hölder’s inequality, we get

∫ℝ

g𝑡1 (𝑥)g𝑡(𝑥)𝛼−1 d𝑥 ⩽

(
∫ℝ

g𝛼
𝑡1
(𝑥) d𝑥

) 1
𝛼
(
∫ℝ

g𝛼
𝑡 (𝑥) d𝑥

) 𝛼−1
𝛼

(27)

and

∫ℝ

g𝑡2 (𝑥)g𝑡(𝑥)𝛼−1 d𝑥 ⩽

(
∫ℝ

g𝛼
𝑡2
(𝑥) d𝑥

) 1
𝛼
(
∫ℝ

g𝛼
𝑡 (𝑥) d𝑥

) 𝛼−1
𝛼

. (28)

Combining (26), (27) and (28), we thus obtain

(
∫ℝ

g𝛼
𝑡 (𝑥) d𝑥

) 1
𝛼

⩽

(
∫ℝ

g𝛼
𝑡1
(𝑥) d𝑥

) 𝜆
𝛼
(
∫ℝ

g𝛼
𝑡2
(𝑥) d𝑥

) 1−𝜆
𝛼

, (29)

which is exactly the claimed concavity of Rényi entropy. □

Remark 8. One may wonder whether Theorem 2 can be extended to Gaussian mixtures on ℝ𝑑 in
the sense ofDefinition 5.Denoting by

√
𝑀 the positive semi-definite square root of a positive semi-

definite matrix𝑀 and repeating the above argument, we would need the validity of the inequality

∀ 𝜆 ∈ (0, 1), g
(√

𝜆𝐴 + (1 − 𝜆)𝐵𝑧
)

⩽ g
(√

𝐴𝑧
)𝜆

g
(√

𝐵𝑧
)1−𝜆

, (30)

where g ∶ ℝ𝑑 → ℝ+ is the density of a Gaussian mixture, A and B are positive semi-definite
𝑑 × 𝑑 matrices and 𝑧 is a vector in ℝ𝑑. The validity of (30) for a Gaussian density with arbitrary
covariance is equivalent to the operator concavity of the matrix function

𝑓(𝑋)
def
=

√
𝑋𝑌

√
𝑋 (31)

for an arbitrary positive semi-definite matrix 𝑌. The following counterexample to this state-
ment was communicated to us by Léonard Cadilhac. As the function 𝑓 takes values in the
cone of positive semi-definite matrices, operator concavity is equivalent to operator monotonic-
ity (see the proof of [6, Theorem V.2.5]). Take two non-negative matrices 𝐴,𝑌 such that 𝑌 ⪯

𝐴 but 𝑌2  𝐴2. Then, the corresponding function 𝑓(𝑋) =
√

𝑋𝑌
√

𝑋 satisfies 𝑓(𝑌) = 𝑌2 and
𝑓(𝐴) =

√
𝐴𝑌

√
𝐴 ⪯ 𝐴2 since𝑌 ⪯ 𝐴. Therefore,𝑓(𝑌)  𝑓(𝐴) and thus𝑓 is not operatormonotone

or concave.
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ON THE ENTROPY AND INFORMATION OF GAUSSIANMIXTURES 9 of 19

3 CONVEXITY OF FISHER INFORMATION

3.1 Warm-up: the Fisher information of independent products

Before showing the general argumentwhich leads to Proposition 4,we present a short proof for the
case of mixtures of dilates of a fixed distribution which corresponds exactly to the Fisher infor-
mation of a product of independent random variables. As this is a special case of Bobkov’s [13,
Proposition 15.2], we shall disregard rigourous integrability assumptions for the sake of simplicity
of exposition.

Theorem 9. Let𝑊 be a random variable with zero mean and smooth-enough density and let 𝑌 be
an independent positive random variable. Then,

1

𝔼𝑌2Var(𝑊)
⩽ 𝐼(𝑌𝑊) ⩽ 𝔼

[
𝐼(𝑊)

𝑌2

]
. (32)

Proof. The first inequality is the Cramér–Rao lower bound. Suppose that𝑊 has density 𝑒−𝑉 with
𝑉 nice enough. Then, 𝑌𝑊 has density

𝑓(𝑥)
def
= 𝔼

[
1

𝑌
𝑒
−𝑉

(
𝑥
𝑌

)]
, (33)

and thus, differentiating under the expectation and using Cauchy–Schwarz, we get

𝑓′(𝑥)2 = 𝔼

[
𝑉′( 𝑥

𝑌
)

𝑌2
𝑒
−𝑉

(
𝑥
𝑌

)]2

⩽ 𝔼

[
1

𝑌
𝑒
−𝑉

(
𝑥
𝑌

)]
𝔼

[
𝑉′( 𝑥

𝑌
)2

𝑌3
𝑒
−𝑉

(
𝑥
𝑌

)]
= 𝑓(𝑥) 𝔼

[
𝑉′( 𝑥

𝑌
)2

𝑌3
𝑒
−𝑉

(
𝑥
𝑌

)]
.

(34)

Thus,

𝐼(𝑋) = ∫ℝ

𝑓′(𝑥)2

𝑓(𝑥)
d𝑥 ⩽ ∫ℝ

𝔼

[
𝑉′( 𝑥

𝑌
)2

𝑌3
𝑒
−𝑉

(
𝑥
𝑌

)]
d𝑥 = 𝔼

[
1

𝑌2 ∫ℝ

𝑉′( 𝑥

𝑌
)2

𝑌
𝑒
−𝑉

(
𝑥
𝑌

)
d𝑥

]

= 𝔼
[

1

𝑌2

]
𝔼
[
𝑉′(𝑊)2

]
= 𝔼

[
𝐼(𝑊)

𝑌2

]
.

□

3.2 Proof of Proposition 4

We start by proving the two-point convexity of .
Proposition 10. The Fisher information matrix is operator convex on 𝑑, that is, for 𝑓1, 𝑓2 ∈ 𝑑,

∀ 𝜃 ∈ [0, 1], (𝜃𝑓1 + (1 − 𝜃)𝑓2) ⪯ 𝜃(𝑓1) + (1 − 𝜃)(𝑓2). (35)
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10 of 19 ESKENAZIS and GAVALAKIS

Proof. Firstly, we claim that the function 𝑅 ∶ ℝ𝑑 × ℝ+ → ℝ𝑑×𝑑, given by 𝑅(𝑥, 𝜆) = 𝑥𝑥𝑇

𝜆
is jointly

operator convex. To prove this, we need to show that for every 𝜃 ∈ (0, 1), 𝑥, 𝑦 ∈ ℝ𝑑 and 𝜆, 𝜇 > 0,

𝑅(𝜃𝑥 + (1 − 𝜃)𝑦, 𝜃𝜆 + (1 − 𝜃)𝜇) ⪯ 𝜃𝑅(𝑥, 𝜆) + (1 − 𝜃)𝑅(𝑦, 𝜇). (36)

After rearranging, this can be rewritten as

𝜃(1 − 𝜃)
(
𝜆2𝑥𝑥𝑇 + 𝜇2𝑦𝑦𝑇 − 𝜆𝜇𝑥𝑦𝑇 − 𝜆𝜇𝑦𝑥𝑇

)
⪰ 0, (37)

which is true since it is equivalent to (𝜆𝑥 − 𝜇𝑦)(𝜆𝑥 − 𝜇𝑦)𝑇 ⪰ 0.
Since the Fisher information matrix can be written as

(𝑓) = ∫ℝ𝑑
𝑅(∇𝑓(𝑥), 𝑓(𝑥)) d𝑥, (38)

the conclusion follows by the convexity of 𝑅 and the linearity of ∇ and ∫ . □

In order to derive the general Jensen inequality of Proposition 4 from Proposition 10, we will
use a somewhat involved compactness argument that was invoked in [9, 13]. We point out that
these intricacies arise since the space 𝑑 of smooth densities inℝ𝑑 is infinite-dimensional. As our
argument shares similarities with Bobkov’s, we shall only point out the necessary modifications
which need to be implemented. We stand by proving the following technical lemma.

Lemma 11. Let 𝑋, {𝑋𝑘}𝑘⩾1 be random vectors in ℝ𝑑 such that 𝑋𝑘 ⇒ 𝑋 weakly.

(i) If sup𝑘
‖‖(𝑋𝑘)‖‖op < ∞, then for every 𝑥 ∈ 𝕊𝑑−1,

⟨(𝑋)𝑥, 𝑥⟩ ⩽ lim inf
𝑘→∞

⟨(𝑋𝑘)𝑥, 𝑥⟩. (39)

(ii) Moreover, we always have

‖‖(𝑋)‖‖op ⩽ lim inf
𝑘→∞

‖‖(𝑋𝑘)‖‖op. (40)

Proof. We start with (39). It clearly suffices to show that any subsequence of {𝑋𝑘} has a further
subsequence for which the conclusion holds. If ‖‖(𝑋𝑘)‖‖op ⩽ 𝐼 < ∞ for all 𝑘 ⩾ 1, then

𝐼(𝑋𝑘) = tr((𝑋𝑘)) ⩽ 𝑑‖‖(𝑋𝑘)‖‖op ⩽ 𝑑𝐼 < ∞. (41)

Write 𝑓𝑘 and 𝑓 for the densities of 𝑋𝑘 and 𝑋, respectively. Choose and fix any subsequence of
{𝑓𝑘}. By the proof of [9, Proposition 14.2], using the boundedness of Fisher information, there is a
further subsequence, say 𝑓𝑘𝑗

, for which 𝑓𝑘𝑗
→ 𝑓 and ∇𝑓𝑘𝑗

→ ∇𝑓 a.e. as 𝑗 → ∞. Therefore,

lim
𝑗→∞

⟨
∇𝑓𝑘𝑗

(𝑢)∇𝑓𝑘𝑗
(𝑢)𝑇

𝑓𝑘𝑗
(𝑢)

𝑥, 𝑥

⟩
𝕀{𝑓𝑘𝑗

(𝑢)>0} =

⟨
∇𝑓(𝑢)∇𝑓(𝑢)𝑇

𝑓(𝑢)
𝑥, 𝑥

⟩
𝕀{𝑓(𝑢)>0} (42)

for almost every 𝑢. Integration with respect to 𝑢, linearity and Fatou’s lemma yield (39).
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ON THE ENTROPY AND INFORMATION OF GAUSSIANMIXTURES 11 of 19

To prove (40), fix a subsequence𝑋𝑘𝑗
for which the lim inf in (40) is attained and without loss of

generality assume that it is finite. Then, the subsequence satisfies sup𝑗 ‖(𝑋𝑘𝑗
)‖op < ∞ and thus

by (39) for every 𝑥 ∈ 𝕊𝑑−1, we have

⟨(𝑋)𝑥, 𝑥⟩ ⩽ lim inf
𝑗→∞

⟨(𝑋𝑘𝑗
)𝑥, 𝑥⟩ ⩽ lim inf

𝑗→∞
‖‖(𝑋𝑘𝑗

)‖‖op = lim inf
𝑘→∞

‖‖(𝑋𝑘)‖‖op. (43)

Taking a supremum over 𝑥 ∈ 𝕊𝑑−1 concludes the proof as (𝑋) is positive semi-definite. □

Equipped with the lower semi-continuity of , we proceed to the main part of the proof.
Proof of Proposition 4. Inequality (35) may be extended to arbitrary finite mixtures by induction,
that is, if 𝑝1, … , 𝑝𝑁 ⩾ 0 satisfy

∑𝑁
𝑖=1 𝑝𝑖 = 1, then


(

𝑁∑
𝑖=1

𝑝𝑖𝑓𝑖

)
⪯

𝑁∑
𝑖=1

𝑝𝑖(𝑓𝑖). (44)

We need to extend (44) to arbitrary mixtures. We write 𝑑(𝐼) = {𝑓 ∈ 𝑑 ∶ ‖‖(𝑓)‖‖op ⩽ 𝐼} and
𝑑(∞) = ∪𝐼𝑑(𝐼). By the assumption ∫𝑑

‖(g)‖op d𝜋(g) < ∞, we deduce that the measure 𝜋

is supported on 𝑑(∞). We shall prove that

∀𝑥 ∈ 𝕊𝑑−1,

⟨

(
∫𝑑

g d𝜋(g)

)
𝑥, 𝑥

⟩
⩽ ∫𝑑

⟨(g)𝑥, 𝑥⟩ d𝜋(g). (45)

Fix 𝑥 ∈ 𝕊𝑑−1 and 𝐼 ∈ ℕ. By the operator convexity of the Fisher information matrix (Proposi-
tion 10), the functional

𝑓 → ⟨(𝑓)𝑥, 𝑥⟩ (46)

is convex and by Lemma 11 lower semi-continuous on 𝑑(𝐼). Again, by operator convexity, the set𝑑(𝐼) is convex and by Lemma 11 it is closed. Now we may repeat exactly the same proof as in
[9, Proposition 15.1, Steps 1-2], but working with the functional ⟨(𝑓)𝑥, 𝑥⟩ instead of the Fisher
information 𝐼(𝑓), to obtain (45) if the measure 𝜋 is supported on 𝑑(𝐼).
To derive inequality (45) in general, fix 𝐼0 large enough such that 𝜋(𝑑(𝐼0)) > 1

2
and for 𝐼 ⩾ 𝐼0

write the inequality (45) for the restriction of 𝜋 to 𝑑(𝐼), namely⟨

(

1

𝜋(𝑑(𝐼)) ∫𝑑(𝐼)
g d𝜋(g)

)
𝑥, 𝑥

⟩
⩽

1

𝜋(𝑑(𝐼)) ∫𝑑(𝐼)
⟨(g)𝑥, 𝑥⟩ d𝜋(g). (47)

Denoting by 𝑓𝐼 the density on the left-hand side of the inequality, we have that 𝑓𝐼 converges
weakly to the density ∫ℱ𝑑

g d𝜋(g) as 𝐼 → ∞, and moreover, (47) yields

∀ 𝐼 ⩾ 𝐼0, ‖‖(𝑓𝐼)‖‖op ⩽
1

𝜋(𝑑(𝐼)) ∫𝑑(𝐼)

‖‖(g)‖‖op d𝜋(g) ⩽ 2∫𝑑

‖‖(g)‖‖op d𝜋(g) < ∞. (48)
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12 of 19 ESKENAZIS and GAVALAKIS

Therefore, the assumptions of (39) are satisfied for {𝑓𝐼}𝐼⩾𝐼0
, and thus,⟨


(
∫𝑑

g d𝜋(g)

)
𝑥, 𝑥

⟩
⩽ lim inf

𝐼→∞

⟨

(

1

𝜋(𝑑(𝐼)) ∫𝑑(𝐼)
g d𝜋(g)

)
𝑥, 𝑥

⟩
(47)
⩽ lim inf

𝐼→∞

1

𝜋(𝑑(𝐼)) ∫𝑑(𝐼)
⟨(g)𝑥, 𝑥⟩ d𝜋(g) = ∫𝑑

⟨(g)𝑥, 𝑥⟩ d𝜋(g),

(49)

and this concludes the proof. □

Proof of Corollary 6. In view of (14) and Proposition 4, we have

(𝐘𝑍) = 
(

𝔼𝐘

[
1

det(
√

2𝜋𝐘)
𝑒−|𝐘−𝟏⋅ |2∕2])

⪯ 𝔼𝐘[(𝐘𝑍)] = 𝔼
[
(𝐘𝐘𝑇)−1

]
, (50)

since the Fisher information matrix of a Gaussian vector with covariance matrix Σ is Σ−1. □

4 CLT FOR THE FISHER INFORMATIONMATRIX

Before delving into the proof of Theorem 7, we shall discuss some geometric preliminaries. Recall
that a normed space (𝑉, ‖ ⋅ ‖𝑉) has Rademacher type 𝑝 ∈ [1, 2] with constant 𝑇 ∈ (0,∞) if for
every 𝑛 ∈ ℕ and every 𝑣1, … , 𝑣𝑛 ∈ 𝑉, we have

1

2𝑛

∑
𝜀∈{−1,1}𝑛

‖‖‖‖‖
𝑛∑

𝑖=1

𝜀𝑖𝑣𝑖

‖‖‖‖‖
𝑝

𝑉

⩽ 𝑇𝑝
𝑛∑

𝑖=1

‖𝑣𝑖‖𝑝
𝑉
. (51)

The least constant 𝑇 for which this inequality holds will be denoted by 𝖳𝑝(𝑉). A standard sym-
metrisation argument (see, e.g. [24, Proposition 9.11]) shows that for any 𝑛 ∈ ℕ and any 𝑉-valued
random vectors 𝑉1,… , 𝑉𝑛 with 𝔼[𝑉𝑖] = 0, we have

𝔼
‖‖‖‖‖

𝑛∑
𝑖=1

𝑉𝑖

‖‖‖‖‖
𝑝

𝑉

⩽
(
2𝖳𝑝(𝑉)

)𝑝
𝑛∑

𝑖=1

𝔼‖𝑉𝑖‖𝑝
𝑉
. (52)

We denote by 𝖬𝑑(ℝ) the vector space of all 𝑑 × 𝑑 matrices with real entries. We shall consider
the 𝑝-Schatten trace class 𝖲𝑑

𝑝 of 𝑑 × 𝑑 matrices. This is the normed space 𝖲𝑑
𝑝 = (𝖬𝑑(ℝ), ‖ ⋅ ‖𝖲𝑝

),
where for a 𝑑 × 𝑑 real matrix 𝐴, we denote

‖𝐴‖𝖲𝑝

def
=

(
𝑑∑

𝑖=1

𝜎𝑖(𝐴)𝑝

)1∕𝑝

(53)

and by 𝜎1(𝐴) ⩾ ⋯ ⩾ 𝜎𝑑(𝐴) the singular values of𝐴. Evidently, ‖ ⋅ ‖op = ‖ ⋅ ‖𝖲∞
. A classical result

of Tomczak–Jaegermann [32] (see also [2] for the exact values of the constants) asserts that if 𝑝 ∈
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ON THE ENTROPY AND INFORMATION OF GAUSSIANMIXTURES 13 of 19

[1, 2], then 𝖲𝑑
𝑝 has Rademacher type𝑝 constant𝑇𝑝

(
𝖲𝑑
𝑝

)
= 1 and if𝑝 ⩾ 2, then 𝖲𝑑

𝑝 has Rademacher

type 2 constant 𝖳2

(
𝖲𝑑
𝑝

)
⩽

√
𝑝 − 1. We shall use the following consequence of this.

Lemma 12. Fix 𝑛, 𝑑 ∈ ℕ and let 𝑊1,… ,𝑊𝑛 be i.i.d. random 𝑑 × 𝑑 matrices with 𝔼[𝑊𝑖] = 0. For
any 𝛿 ∈ (0, 1] and any vector 𝑏 = (𝑏1, … , 𝑏𝑛) ∈ ℝ𝑛, we have

𝑝 ∈ [2,∞) ⟹ 𝔼
‖‖‖ 𝑛∑

𝑖=1

𝑏𝑖𝑊𝑖
‖‖‖1+𝛿

𝖲𝑝

⩽ 21+𝛿(𝑝 − 1)𝛿𝔼
[‖𝑊1‖1+𝛿

𝖲𝑝

] ‖𝑏‖1+𝛿
1+𝛿

(54)

and

𝑝 ∈ [1 + 𝛿, 2] ⟹ 𝔼
‖‖‖ 𝑛∑

𝑖=1

𝑏𝑖𝑊𝑖
‖‖‖1+𝛿

𝖲𝑝

⩽ 21+𝛿𝔼
[‖𝑊1‖1+𝛿

𝖲𝑝

] ‖𝑏‖1+𝛿
1+𝛿

. (55)

Moreover,

𝔼
‖‖‖ 𝑛∑

𝑖=1

𝑏𝑖𝑊𝑖
‖‖‖1+𝛿

op
⩽ (2𝑒)1+𝛿 log𝛿(𝑑 + 1)𝔼

[‖𝑊1‖1+𝛿
op

] ‖𝑏‖1+𝛿
1+𝛿

. (56)

Proof. We first prove (54). In view of inequality (52), it suffices to prove that the Rademacher-
type (1 + 𝛿)-constant of 𝖲𝑑

𝑝 satisfies 𝖳1+𝛿(𝖲
𝑑
𝑝) ⩽ (𝑝 − 1)

𝛿
1+𝛿 . Given a normed space (𝑋, ‖ ⋅ ‖𝑋) and

𝑛 ∈ ℕ, consider the linear operator 𝑇𝑛 ∶ 𝓁𝑛
𝑝(𝑋) → 𝐿𝑝({−1, 1}𝑛; 𝑋) given by

∀ 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝓁𝑛
𝑝(𝑋), [𝑇𝑛𝑥](𝜀) =

𝑛∑
𝑖=1

𝜀𝑖𝑥𝑖, (57)

where 𝜀 = (𝜀1, … , 𝜀𝑛) ∈ {−1, 1}𝑛. Then, it follows from (51) that

𝑇𝑝(𝑋) = sup
𝑛∈ℕ

‖‖𝑇𝑛
‖‖𝓁𝑛

𝑝(𝑋)→𝐿𝑝({−1,1}𝑛;𝑋). (58)

In fact, if 𝑋 is finite-dimensional (like 𝖲𝑑
𝑝), then it was shown in [20, Lemma 6.1] that the supre-

mum is attained for some 𝑛 ⩽ dim(𝑋)(dim(𝑋) + 1)∕2. Either way, by complex interpolation of
vector-valued 𝐿𝑝 spaces (see [5, Section 5.6]), we thus deduce that

𝖳1+𝛿

(
𝖲𝑑
𝑝

)
⩽ 𝖳1

(
𝖲𝑑
𝑝

)𝜃
𝖳2

(
𝖲𝑑
𝑝

)1−𝜃
, (59)

where 𝜃

1
+ 1−𝜃

2
= 1

1+𝛿
. The conclusion of (54) follows by plugging-in the value of 𝜃 and the result

of [2, 32]. The proof of inequality (55) is similar, interpolating between 1 and 𝑝.
Finally, to deduce (56), note that for any 𝐴 ∈ 𝖬𝑑(ℝ),

‖𝐴‖op ⩽ ‖𝐴‖𝖲𝑝
⩽ 𝑑1∕𝑝‖𝐴‖op, (60)

and thus, plugging 𝑝 = log(𝑑 + 1) + 1 in (54), we derive the desired inequality. □
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14 of 19 ESKENAZIS and GAVALAKIS

Equipped with these inequalities, we can now proceed to the main part of the proof.

Proof of Theorem 7. Since 𝔼𝑆𝑛 = 0 and Cov(𝑆𝑛) = 𝔼𝐘𝐘𝑇 , we have

‖‖Cov(𝑆𝑛)
1
2(𝑆𝑛)Cov(𝑆𝑛)

1
2 − I𝑑‖‖op ⩽ ‖‖𝔼𝐘𝐘𝑇‖‖op

‖‖(𝑆𝑛) −
(
𝔼𝐘𝐘𝑇

)−1 ‖‖op, (61)

using that for any PSD matrices 𝐴, 𝐵, ‖‖𝐴𝐵‖‖op ⩽ ‖‖𝐴‖‖op
‖‖𝐵‖‖op and ‖‖𝐴1

2 ‖‖op = ‖‖𝐴‖‖ 1
2
op. Now, 𝑆𝑛 is a

Gaussian mixture itself and it satisfies

𝑆𝑛 =

𝑛∑
𝑖=1

𝑎𝑖𝐘𝑖𝑍𝑖

(d)
=

(
𝑛∑

𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)1∕2

𝑍, (62)

Corollary 6 yields the estimate

(𝑆𝑛) ⪯ 𝔼

(
𝑛∑

𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

. (63)

Moreover, by the multivariate Cramér–Rao lower bound [7, Theorem 3.4.4], we have

(𝑆𝑛) ⪰
(
𝔼𝐘𝐘𝑇

)−1
, (64)

and thus, the matrix in the right-hand side of (61) is positive semi-definite. Therefore, since‖ ⋅ ‖op is increasing with respect to the matrix ordering on positive matrices, (63) and (64)
yield

‖‖(𝑆𝑛) −
(
𝔼𝐘𝐘𝑇

)−1 ‖‖op ⩽

‖‖‖‖‖‖𝔼
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

−
(
𝔼𝐘𝐘𝑇

)−1
‖‖‖‖‖‖op

. (65)

For 𝑖 = 1, … , 𝑛, consider the i.i.d. random matrices 𝑊𝑖

def
= 𝐘𝑖𝐘

𝑇
𝑖

− 𝔼𝐘𝐘𝑇 and denote the event

𝐸𝜀

def
=

{‖‖∑𝑛
𝑖=1 𝑎2

𝑖
𝑊𝑖

‖‖op ⩽ 𝜀
}
. To bound the probability of the complement of 𝐸𝜀, notice that

ℙ{𝐸c
𝜀 } = ℙ

⎧⎪⎨⎪⎩
‖‖‖‖‖

𝑛∑
𝑖=1

𝑎2
𝑖 𝑊𝑖

‖‖‖‖‖
1+𝛿

op

> 𝜀1+𝛿

⎫⎪⎬⎪⎭ ⩽
1

𝜀1+𝛿
𝔼
‖‖‖ 𝑛∑

𝑖=1

𝑎2
𝑖 𝑊𝑖

‖‖‖1+𝛿

op

(56)
⩽

(
2𝑒

𝜀

)1+𝛿

log𝛿(𝑑 + 1)𝔼
[‖𝑊1‖1+𝛿

op

] ‖‖𝑎‖‖2+2𝛿
2+2𝛿.

(66)

Moreover, since 𝔼‖𝑊1‖1+𝛿
op ⩽ 21+𝛿𝔼‖𝐘𝐘𝑇‖1+𝛿

op , we get the bound

ℙ{𝐸c
𝜀 } ⩽

(
4𝑒

𝜀

)1+𝛿

log𝛿(𝑑 + 1)𝔼
[‖𝐘𝐘𝐓‖1+𝛿

op

] ‖‖𝑎‖‖2+2𝛿
2+2𝛿. (67)
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ON THE ENTROPY AND INFORMATION OF GAUSSIANMIXTURES 15 of 19

Next, we write

𝔼

(
𝑛∑

𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

= 𝔼

⎡⎢⎢⎣
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

𝕀𝐸𝜀

⎤⎥⎥⎦ + 𝔼

⎡⎢⎢⎣
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

𝕀𝐸c
𝜀

⎤⎥⎥⎦ (68)

and use the triangle inequality to get‖‖‖‖‖‖𝔼
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

−
(
𝔼𝐘𝐘𝑇

)−1
‖‖‖‖‖‖op

⩽

‖‖‖‖‖‖‖𝔼
⎡⎢⎢⎣
⎛⎜⎜⎝
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

−
(
𝔼𝐘𝐘𝑇

)−1
⎞⎟⎟⎠𝕀𝐸𝜀

⎤⎥⎥⎦
‖‖‖‖‖‖‖op

+ ℙ{𝐸c
𝜀 }

‖‖(𝔼𝐘𝐘𝑇
)−1‖‖op +

‖‖‖‖‖‖‖𝔼
⎡⎢⎢⎣
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

𝕀𝐸c
𝜀

⎤⎥⎥⎦
‖‖‖‖‖‖‖op

.

(69)

To control the first term in (69), we use Jensen’s inequality for ‖ ⋅ ‖op to get

‖‖‖‖‖𝔼
⎡⎢⎢⎣
⎛⎜⎜⎝
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

−
(
𝔼𝐘𝐘𝑇

)−1
⎞⎟⎟⎠𝕀𝐸𝜀

⎤⎥⎥⎦
‖‖‖‖‖op

⩽ 𝔼

⎡⎢⎢⎣
‖‖‖‖
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

−
(
𝔼𝐘𝐘𝑇

)−1‖‖‖‖op
𝕀𝐸𝜀

⎤⎥⎥⎦
⩽ ‖‖(𝔼𝐘𝐘𝑇

)−1‖‖op𝔼

⎡⎢⎢⎣
‖‖‖‖
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1‖‖‖‖op

‖‖‖‖
𝑛∑

𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖 − 𝔼𝐘𝐘𝑇

‖‖‖‖op
𝕀𝐸𝜀

⎤⎥⎥⎦
= ‖‖(𝔼𝐘𝐘𝑇

)−1‖‖op𝔼

⎡⎢⎢⎣
‖‖‖‖
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1‖‖‖‖op

‖‖‖‖
𝑛∑

𝑖=1

𝑎2
𝑖 𝑊𝑖

‖‖‖‖op
𝕀𝐸𝜀

⎤⎥⎥⎦, (70)

where the second line follows from the identity 𝑋−1 − 𝑌−1 = 𝑋−1(𝑌 − 𝑋)𝑌−1 which yields the
inequality ‖𝑋−1 − 𝑌−1‖op ⩽ ‖𝑋−1‖op‖𝑌−1‖op‖𝑋 − 𝑌‖op for positive matrices 𝑋,𝑌. Now, by the
definition of the event 𝐸𝜀, the last factor is at most 𝜀, and thus, we derive the bound

‖‖‖‖‖𝔼
⎡⎢⎢⎣
⎛⎜⎜⎝
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

−
(
𝔼𝐘𝐘𝑇

)−1
⎞⎟⎟⎠𝕀𝐸𝜀

⎤⎥⎥⎦
‖‖‖‖‖op

⩽ ‖‖(𝔼𝐘𝐘𝑇
)−1‖‖op𝔼

⎡⎢⎢⎣
‖‖‖‖
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1‖‖‖‖op

⎤⎥⎥⎦ 𝜀. (71)

Finally, the function 𝐴 ↦ 𝐴−1 is operator convex on positive matrices (see [6, p. 117]), thus(
𝑛∑

𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

⪯

𝑛∑
𝑖=1

𝑎2
𝑖

(
𝐘𝑖𝐘

𝑇
𝑖

)−1 and
(
𝔼𝐘𝐘𝑇

)−1
⪯ 𝔼

(
𝐘𝐘𝑇

)−1
. (72)

Applying the operator norm on both sides, plugging this in (71) and using the triangle inequality
after taking the expectation, we conclude that

‖‖‖‖‖𝔼
⎡⎢⎢⎣
⎛⎜⎜⎝
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

−
(
𝔼𝐘𝐘𝑇

)−1
⎞⎟⎟⎠𝕀𝐸𝜀

⎤⎥⎥⎦
‖‖‖‖‖op

⩽
(
𝔼‖‖(𝐘𝐘𝑇

)−1‖‖op

)2
𝜀. (73)
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16 of 19 ESKENAZIS and GAVALAKIS

In view of (67) and (72), the second term in (69) is bounded by

ℙ{𝐸c
𝜀 }

‖‖(𝔼𝐘𝐘𝑇
)−1‖‖op ⩽

(
4𝑒

𝜀

)1+𝛿

log𝛿(𝑑 + 1)𝔼‖‖𝐘𝐘𝐓‖‖1+𝛿
op 𝔼‖‖(𝐘𝐘𝑇

)−1‖‖op
‖‖𝑎‖‖2+2𝛿

2+2𝛿. (74)

To bound the third term in (69), we use Jensen’s inequality and (72) to get

‖‖‖‖‖𝔼
⎡⎢⎢⎣
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

𝕀𝐸c
𝜀

⎤⎥⎥⎦
‖‖‖‖‖op

⩽ 𝔼

⎡⎢⎢⎣
‖‖‖‖
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1‖‖‖‖op
𝕀𝐸c

𝜀

⎤⎥⎥⎦
(72)
⩽ 𝔼

[‖‖‖‖
𝑛∑

𝑖=1

𝑎2
𝑖

(
𝐘𝑖𝐘

𝑇
𝑖

)−1‖‖‖‖op
𝕀𝐸c

𝜀

]
⩽ 𝔼

[(
𝑛∑

𝑖=1

𝑎2
𝑖
‖‖(𝐘𝑖𝐘

𝑇
𝑖

)−1‖‖op

)
𝕀𝐸c

𝜀

]
,

(75)

where the last estimate follows from the triangle inequality. Now, by Hölder’s inequality,

𝔼

[(
𝑛∑

𝑖=1

𝑎2
𝑖
‖‖(𝐘𝑖𝐘

𝑇
𝑖

)−1‖‖op

)
𝕀𝐸c

𝜀

]
⩽ 𝔼

⎡⎢⎢⎣
(

𝑛∑
𝑖=1

𝑎2
𝑖
‖‖(𝐘𝑖𝐘

𝑇
𝑖

)−1‖‖op

)1+𝛿⎤⎥⎥⎦
1

1+𝛿

ℙ{𝐸c
𝜀 }

𝛿
1+𝛿

⩽
(
𝔼‖‖(𝐘𝐘𝑇

)−1‖‖1+𝛿
op

) 1
1+𝛿

ℙ{𝐸c
𝜀 }

𝛿
1+𝛿 ,

(76)

where the last line follows from the triangle inequality in 𝐿1+𝛿. Combining this with (75) and (67),
we thus conclude that

‖‖‖‖‖𝔼
⎡⎢⎢⎣
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

𝕀𝐸c
𝜀

⎤⎥⎥⎦
‖‖‖‖‖op

⩽
(
4𝑒

𝜀

)𝛿

log
𝛿2

1+𝛿 (𝑑 + 1)
(
𝔼‖‖𝐘𝐘𝐓‖‖1+𝛿

op

) 𝛿
1+𝛿

(
𝔼‖‖(𝐘𝐘𝑇

)−1‖‖1+𝛿
op

) 1
1+𝛿 ‖‖𝑎‖‖2𝛿

2+2𝛿.

Plugging this bound along with (73) and (74) in (69), we get that for every 𝜀 > 0,

‖‖‖‖𝔼
(

𝑛∑
𝑖=1

𝑎2
𝑖 𝐘𝑖𝐘

𝑇
𝑖

)−1

−
(
𝔼𝐘𝐘𝑇

)−1 ‖‖‖‖op
≲𝐘 𝜀 +

log𝛿(𝑑 + 1)‖𝑎‖2+2𝛿
2+2𝛿

𝜀1+𝛿
+

log
𝛿2

1+𝛿 (𝑑 + 1)‖𝑎‖2𝛿
2+2𝛿

𝜀𝛿
,

(77)
where the implicit constant depends only on the moments of ‖𝐘𝐘𝑇‖op. Finally, the (almost)

optimal choice 𝜀 = ‖𝑎‖ 2𝛿
1+𝛿

2+2𝛿
yields the desired bound. □

Remark 13. We insisted on stating Theorem 7 as a bound for the operator norm of the (normalised)
Fisher information matrix of 𝑆𝑛 but this is not necessary. An inspection of the proof reveals that
given any norm ‖ ⋅ ‖ on𝖬𝑑(ℝ) which is operator monotone, that is,

0 ⪯ 𝐴 ⪯ 𝐵 ⟹ ‖𝐴‖ ⩽ ‖𝐵‖ (78)

and satisfies the ideal property

∀ 𝐴, 𝐵 ∈ 𝖬𝑑(ℝ), ‖𝐴𝐵‖ ⩽ ‖𝐴‖op‖𝐵‖, (79)
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we can derive a bound of the form

‖‖Cov(𝑆𝑛)
1
2(𝑆𝑛)Cov(𝑆𝑛)

1
2 − I𝑑‖‖ ⩽ 𝐶(𝐘, ‖ ⋅ ‖) ‖𝑎‖ 2𝛿

1+𝛿

2+2𝛿
(80)

for random matrices 𝐘 satisfying (17). The implicit constant depends on moments of ‖𝐘𝐘𝑇‖ and‖𝐘𝐘𝑇‖op and on the Rademacher-type (1 + 𝛿)-constant of ‖ ⋅ ‖. These conditions are, in partic-
ular, satisfied for all 𝖲𝑑

𝑝 norms and the corresponding type constant is subpolynomial in 𝑑 for
𝑝 ⩾ 1 + 𝛿.

Remark 14. As was already mentioned in the introduction, bounding the relative Fisher infor-
mation of a random vector automatically implies bounds for the relative entropy in view of
the Gaussian logarithmic Sobolev inequality [21]. However, bounds for the Fisher information
matrix allow one to get better bounds for the relative entropy using more sophisticated functional
inequalities which capture the whole spectrum of (𝑋). We refer to [19] for more on this kind
of inequalities.

Finally, we present some examples of Gaussian mixtures related to conditions (17).

Examples.

1. Fix 𝑝 ∈ (0, 2) and consider the random variable 𝑋𝑝 with density 𝑐𝑝𝑒
−|𝑥|𝑝 , where 𝑥 ∈ ℝ. It was

shown in [18, Lemma 23] that 𝑋 can be expressed as

𝑋𝑝

(d)
= (2𝑉𝑝

2
)−

1
2 𝑍, (81)

where 𝑉𝑝
2
has density proportional to 𝑡−

1
2 g 𝑝

2
(𝑡) and g𝑎 is the density of the standard positive

𝑎-stable law. The moments of 𝑌𝑝 = 𝑉
−1∕2
𝑝
2

then satisfy

∀𝛼 ∈ ℝ, 𝔼𝑌𝛼
𝑝 = 𝔼𝑉

−𝛼∕2
𝑝
2

= 𝜅𝑝 ∫
∞

0
𝑡−

𝛼+1
2 g 𝑝

2
(𝑡) d𝑡, (82)

for some 𝜅𝑝 > 0. Since positive 𝑝

2
-stable random variables have finite 𝛽-moments for all powers

𝛽 ∈
(
−∞,

𝑝

2

)
, the assumptions (17) are satisfied when

min{2𝛿 + 2,−2𝛿 − 2} > −𝑝 − 1 (83)

or, equivalently, 𝛿 <
𝑝−1

2
. Therefore, Theorem 7 applies for these variables when 𝑝 ∈ (1, 2).

2. It is well known (see, e.g. [18, Lemma 23]) that for 𝑝 ∈ (0, 2), the standard symmetric 𝑝-stable
random variable 𝑋𝑝 can be written as

𝑋𝑝

(d)
= (2𝐺𝑝

2
)

1
2 𝑍, (84)

where 𝐺𝑝∕2 is a standard positive
𝑝

2
stable random variable. In this setting, the factor 𝐺

1
2
𝑝
2

does

not have a finite 2 + 2𝛿 moment for any value of 𝑝, so Theorem 7 does not apply.
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