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Abstract

We propose PRISM to enable users of machine translation systems to preserve the privacy
of data on their own initiative. There is a growing demand to apply machine transla-
tion systems to data that require privacy protection. While several machine translation
engines claim to prioritize privacy, the extent and specifics of such protection are largely
ambiguous. First, there is often a lack of clarity on how and to what degree the data is
protected. Even if service providers believe they have sufficient safeguards in place, sophisti-
cated adversaries might still extract sensitive information. Second, vulnerabilities may exist
outside of these protective measures, such as within communication channels, potentially
leading to data leakage. As a result, users are hesitant to utilize machine translation engines
for data demanding high levels of privacy protection, thereby missing out on their benefits.
PRISM resolves this problem. Instead of relying on the translation service to keep data safe,
PRISM provides the means to protect data on the user’s side. This approach ensures that
even machine translation engines with inadequate privacy measures can be used securely.
For platforms already equipped with privacy safeguards, PRISM acts as an additional pro-
tection layer, reinforcing their security furthermore. PRISM adds these privacy features
without significantly compromising translation accuracy. Our experiments demonstrate the
effectiveness of PRISM using real-world translators, T5 and ChatGPT (GPT-3.5-turbo),
and the datasets with two languages. PRISM effectively balances privacy protection with
translation accuracy.

1 Introduction

Machine translation systems are now essential in sectors including business and government for translating
materials such as e-mails and documents [8, 41, 42]. Their rise in popularity can be attributed to recent
advancements in language models [4, 31, 40] that have significantly improved translation accuracy, enhancing
their overall utility. There is a growing demand to use these tools for private and sensitive information. For
instance, office workers often need to translate e-mails from clients in other countries, but they want to
keep these e-mails secret. Many are worried about using machine translation because there’s a chance the
information might get leaked. This means that, even with these helpful tools around, people often end up
translating documents by themselves to keep the information safe.

Although many machine translation platforms claim they value privacy, the details and depth of this pro-
tection are not always clear. First, it’s often uncertain how and to what level the data is kept safe. The
details of the system are often an industrial secret of the service provider, and the source code is rarely
disclosed. Even if providers are confident in their security, sophisticated attackers might still access private
information. Also, there could be risks outside of these safeguards, including during data transfer, leading
to potential leaks. Because of these concerns, users are cautious about using translation tools for sensitive
data, missing out on their benefits.

In response to the prevalent concerns regarding data security in machine translation, we present PRISM
(PRIvacy Self Management), which empowers users to actively manage and ensure the protection of their
data. Instead of placing complete trust in the inherent security protocols of translation platforms, PRISM
provides users with mechanisms for personal data safeguarding. This proactive strategy allows users to
confidently use even translation engines that may not offer privacy measures. For platforms already equipped
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with privacy safeguards, PRISM acts as an additional protection layer, reinforcing their security mechanisms.
PRISM adds these privacy features without much degradation of translation accuracy.

We propose two variants of PRISM. PRISM-R is a simple method with a theoretical guarantee of differential
privacy. PRISM* (PRISM-Star) is a more sophisticated method that can achieve better translation accuracy
than PRISM-R at the price of losing the theoretical guarantee. In practice, we recommend using PRISM*
for most use cases and PRISM-R for cases where the theoretical guarantee is required.

In the experiments, we use real-world translators, namely T5 [32] and ChatGPT (GPT-3.5-turbo) [18, 30],
and the English → French and English → German translation. We confirm that PRISM can effectively
balance privacy protection with translation accuracy.

The contributions of this paper are as follows:

• We formulate the problem of user-side realization of data privacy for machine translation systems.

• We propose PRISM, which enables users to preserve the privacy of data on their own initiative.

• We formally show that PRISM can preserve the privacy of data in terms of differential privacy.

• We propose an evaluation protocol for user-side privacy protection for machine translation systems.

• We confirm that PRISM can effectively balance privacy protection with translation accuracy using
the real-world ChatGPT translator.

Reproducibility: Our code and trained dictionaries are available at https://github.com/xxxxxx/
prism (to be filled in the camera-ready).

2 Problem Formulation

We assume that we have access to a black-box machine translation system T that takes a source text x and
outputs a target text y. In practice, T can be ChatGPT[30], DeepL[10], or Google Translate[16]. We assume
that the quality of the translation T (x) is satisfactory, but T may leak information or be unreliable in terms
of privacy protection. Therefore, it is crucial to avoid feeding sensitive text x directly into T . We have a
sensitive source text xpri, and our goal is to safely translate xpri. We also assume that we have a dataset of
non-sensitive source texts D = {x1, . . . , xn}. D is unlabeled and need not be relevant to xpri. Therefore, it
is cheap to collect D. In practice, D can be public news texts, and xpri can be an e-mail.

When considering user-side realization, the method should be simple enough to be executed on the user’s
side. For example, it is difficult for users to run a large language model or to train a machine learning model
on their own because it requires a lot of computing resources and advanced programming skills. Therefore,
we stick to simple and accessible methods.

In summary, our goal is to safely translate xpri using T and D, and the desiderata of the method are
summarized as follows:

Accurate The final output should be a good translation of the input text xpri.

Secure The information passed to T should not contain much information of the input text xpri.

Simple The method should be lightweight enough for end-users to use.

3 Proposed Method (PRISM)

3.1 Overview

PRISM has four steps as shown in Figure 1. (i) PRISM creates a word translation dictionary using T and
D. This step should be done only once, and the dictionary can be used for other texts and users. (ii) PRISM

2

https://github.com/xxxxxx/prism
https://github.com/xxxxxx/prism


Under review as submission to TMLR

D L

T
xpri

xpub ypub

H

unsupervised
corpus

word
dictionary

input text

ypri

output

translator

Internet
user's side

replacement
history

query to the
translator T response

Figure 1: Overview of PRISM. The blue boxes indicate information kept on the user’s side, the purple boxes
indicate information exposed to the Internet, and the red region indicates the Internet. The purple boxes
should not contain much information about the input text xpri.

converts the source text xpri to a non-sensitive text xpub. (iii) PRISM translates xpub to ypub using T . (iv)
PRISM converts ypub to ypri using the replacement history H. We explain each step in detail in the following.

Let us first illustrate the behavior of PRISM with an example. let xpri be “Alice is heading to the hideout.”
and T be a machine translation system from English to French. PRISM converts xpri to xpub = “Bob is
heading to the store,” which is not sensitive and can be translated with T . PRISM temporarily stores the
substitutions (Alice→ Bob) and (base→ restaurant). Note that this substitution information is kept on the
user’s side and is not passed to T . Then, PRISM translates xpub to ypub = “Bob se dirige vers la boutique.”
using the translator T . Finally, PRISM converts ypub to ypri = “Alice se dirige vers la cachette.” using the
word translation dictionary, Alice (En) → Alice (Fr), Bob (En) → Bob (Fr), store (En) → boutique (Fr),
and hideout (En) → cachette (Fr). The final output ypri is the translation of xpri, and PRISM did not pass
the information that Alice is heading to the hideout to T .

3.2 Word Translation Dictionary

We assume that a user does not have a word translation dictionary for the target language. We propose
to create a word translation dictionary using the unsupervised text dataset D. The desideratum is that
the dictionary should be robust. Some words have multiple meanings, and we want to avoid incorrect
substitutions in PRISM. Let V be the vocabulary of the source language. Let S be a random variable that
takes a random sentence from D, and let Sw be the result of replacing a random word in S with w ∈ V. We
translate S to the target language and obtain R and translate Sw to obtain Rw. Let

pw,v
def= Pr[v ∈ Rw]

Pr[v ∈ R] (1)

be the ratio of the probability of v appearing in Rw to the probability of v appearing in R. The higher pw,v

is, the more likely v is the correct translation of w since v appears in the translation if and only if w appears
in the source sentence. Note that if we used only the numerator, article words such as “la” and “le” would
have high scores, and therefore we use the ratio instead. Let L(w) be the list of words in the decreasing
order of pw,v. L(w, 1) is the most likely translation of w, and L(w, 2) is the second most likely translation
of w, and so on.

It should be noted that the translation engine used here is not necessarily the same as the one T we use in
the test phase. As we need to translate many texts here, we can use a cheaper translation engine. We also
note that once we create the word translation dictionary, we can use it for other texts and users. We will
distribute the word translation dictionaries for English → French and English → German, and users can
skip this step if they use these dictionaries.
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Algorithm 1: PRISM-R
Input: Source text xpri; Word translation dictionary L; Ratio r ∈ (0, 1).
Output: Translated text ypri.

1 t1, . . . , tn ← Tokenize(xpri) // Tokenize xpri
2 H ← ∅ // The history of substitutions
3 for i← 1 to n do
4 p ∼ Unif(0, 1)
5 if p < r then
6 ui ← a random source word in L // Choose a substitution word
7 H ← H∪ {(ti, ui)} // Update the history
8 ti ← ui

9 xpub ← Detokenize(t1, . . . , tn) // Detokenize t1, . . . , tn

10 ypub ← T (xpub) // Translate xpub
11 ypri ← ypub // Copy ypub
12 for (w, u) ∈ H do
13 for v ∈ L(u) do
14 if v ∈ ypri then
15 ypri ← replace v with L(w, 1) in ypri break

16 return ypri

3.3 PRISM-R

PRISM-R is a simple method to protect data privacy on the user’s side. PRISM-R randomly selects words
w1, . . . , wk in the source text xpri and randomly selects substitution words u1, . . . , uk from the word trans-
lation dictionary. xpub is the result of replacing w1 with u1, . . . , and wk with uk. PRISM-R then translates
xpub to ypub using T . Finally, PRISM-R converts ypub to ypri as follows. Possible translation words of ui

are L(ui). PRISM-R first searches for L(ui, 1), the most likely translation of ui, in ypub. There should be
L(ui, 1) in ypub if T translated ui to L(ui, 1). If L(ui, 1) is found, PRISM-R replaces L(ui, 1) with L(wi, 1).
However, if ui has many translation candidates, T may not have translated ui to L(ui, 1). If L(ui, 1) is not
found, it proceeds to L(ui, 2), the second most likely translation of ui, and replaces L(ui, 2) with L(wi, 1),
and so on.

The pseudo code is shown in Algorithm 1.

3.4 Differential Privacy of PRISM-R

Differential privacy [11] provides a formal guarantee of data privacy. We show that PRISM-R satisfies
differential privacy. This result not only provides a privacy guarantee but also shows PRISM-R can be com-
bined with other mechanisms due to the inherent composability and post-processing resilience of differential
privacy [24].

We first define differential privacy. We say texts x = w1, . . . , wn and x′ = w′
1, . . . , w′

n are neighbors if wi = w′
i

for all i ∈ {1, . . . , n} except for one i ∈ {1, . . . , n}. Let x ∼ x′ denote that x and x′ are neighbors. Let A be
a randomized mechanism that takes a text x and outputs a text y. Differential privacy is defined as follows.
Definition 3.1 (Differential Privacy). A satisfies ϵ-differential privacy if for all x ∼ x′ and S ⊆ Im(A),

Pr[A(x) ∈ S]
Pr[A(x′) ∈ S] ≤ eϵ. (2)

We show that the encoder of PRISM-R APRISM-R : xpri 7→ xpub is differential private, and therefore, xpri
cannot be inferred from xpub, which is the only information that T can access.
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Theorem 3.2. APRISM-R is ln
(

r+|V|(1−r)
r

)
-differential private.

We emphasize that the additive constant δ is zero, i.e., PRISM-R is (ϵ, 0)-differential private, which provides
a strong guarantee of data privacy.

Proof. Let x = w1, . . . , wn and x′ = w′
1, . . . , w′

n be any two neighboring texts. Without loss of generality, we
assume that w1 = w′

1, . . . , wn−1 = w′
n−1 and wn ̸= w′

n. Let s = s1, . . . , sn be any text, and let

c
def=

n∑
i=1

1[si ̸= wi] (3)

be the number of different words in x and s. The probability that PRISM-R convert x to s is

Pr[APRISM-R(x) = s] =
n∑

i=c

(
n− c

i− c

)
ri(1− r)n−i

(
1
|V|

)i

, (4)

where i is the number of replaced words because all of the different words must be replaced, and the number
of ways to choose the remaining words is

(
n−c
i−c

)
. This probability can be simplified as follows:

Pr[APRISM-R(x) = s] =
n∑

i=c

(
n− c

i− c

)
ri(1− r)n−i

(
1
|V|

)i

(5)

=
n−c∑
i=0

(
n− c

i

)
ri+c(1− r)n−c−i

(
1
|V|

)i+c

(6)

= rc(1− r)n−c

(
1
|V|

)c n−c∑
i=0

(
n− c

i

) (
r

|V|(1− r)

)i

(7)

= rc(1− r)n−c

(
1
|V|

)c (
1 + r

|V|(1− r)

)n−c

, (8)

where we used the binomial theorem in the last equality. Similarly, let

c′ def=
n∑

i=1
1[si ̸= w′

i] (9)

=


c if 1[sn ̸= wn] = 1[sn ̸= w′

n] = 1
c + 1 if 1[sn ̸= wn] = 0 and 1[sn ̸= w′

n] = 1
c− 1 if 1[sn ̸= wn] = 1 and 1[sn ̸= w′

n] = 0
. (10)

be the number of different words in x′ and s. Then,

Pr[APRISM-R(x′) = s] = rc′
(1− r)n−c′

(
1
|V|

)c′ (
1 + r

|V|(1− r)

)n−c′

. (11)

Combining Eqs. (8) and (11),

Pr[APRISM-R(x) = s]
Pr[APRISM-R(x′) = s] =


1 if 1[sn ̸= wn] = 1[sn ̸= w′

n] = 1
r+|V|(1−r)

r if 1[sn ̸= wn] = 0 and 1[sn ̸= w′
n] = 1

r
r+|V|(1−r) if 1[sn ̸= wn] = 1 and 1[sn ̸= w′

n] = 0
(12)

≤ r + |V|(1− r)
r

. (13)
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Algorithm 2: PRISM*
Input: Source text xpri; Word translation dictionary L; Confidence Scores c, Ratio r ∈ (0, 1).
Output: Translated text ypri.

1 t1, . . . , tn ← Tokenize(xpri) // Tokenize xpri
2 s1, . . . , sn ← Part-of-Speech(t1, . . . , tn)
3 k ← 0 // The number of substitutions
4 H ← ∅ // The history of substitutions
5 for i ∈ {1, . . . , n} in the decreasing order of c(ti, si) do
6 ui ← the unused source word ui with the highest confidence score c(ui, si) in L // Choose a

substitution word
7 H ← H∪ {(ti, ui, si)} // Update the history
8 ti ← ui

9 k ← k + 1
10 if k ≥ rn then
11 break

12 xpub ← Detokenize(t1, . . . , tn) // Detokenize t1, . . . , tn

13 ypub ← T (xpub) // Translate xpub
14 ypri ← ypub // Copy ypub
15 for (w, u, s) ∈ H do
16 for v ∈ L(u, s) do
17 if v ∈ ypri then
18 ypri ← replace v with L(w, s, 1) in ypri break

19 return ypri

An interesting part of PRISM is that PRISM is resilient against the purturbation due to the final substitution
step. Many of differential private algorithms add purturbation to the data [1, 3, 7, 13, 43] and therefore,
their final output becomes unreliable when the privacy constraint is severe. By contrast, PRISM enjoys
both of the privacy guarantee and the reliability of the final output thanks to the purturbation step and
the recovery step. The information xpub passed to T has little information due ot the purturbation step.
This, however, makes the intermediate result ypub an unreliable translation of xpri. PRISM recovers a good
translation ypri by the final substitution step.

3.5 PRISM*

PRISM* is a more sophisticated method and achieves better accuracy than PRISM-R. PRISM* chooses words
w1, . . . , wk in the source text xpri and substitution words u1, . . . , uk from the word translation dictionary
more carefully while PRISM-R chooses them randomly to achieve differential privacy. PRISM* has two
mechanisms to choose words. The first mechanism is to choose words so that the part-of-speech tags match.
The second mechanism is to choose words that can be translated accurately by the word dictionary. We
explain each mechanism in detail in the following.

PRISM* creates a word translation dictionary with a part of speech tag. The procedure is the same as
Section 3.2 except that we use the part-of-speech tag of the source word as the key of the dictionary. Let
(w, s) be a pair of a source word w and its part-of-speech tag s. PRISM* replaces a random word with
part-of-speech tag s with w to create Sw,s, obtains Rw,s by translating Sw,s, and defines

pw,s,v
def= Pr[v ∈ Rw,s]

Pr[v ∈ R] . (14)

L(w, s) is the list of words v in the decreasing order of pw,s,v.
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Figure 2: Overview of the evaluation protocol.

In the test time, PRISM* chooses substitute words so that the part-of-speech tags match, and use the word
translation dictionary with part-of-speech tags to determine the translated word.

PRISM* also uses the confidence score

c(w, s) def= max
v

pw,s,v, (15)

which indicates the reliability of word translation w → L(w, 1), to choose words. Multiple-meaning words
should not be substituted in PRISM because a word-to-word translation may fail. PRISM* chooses words to
be substituted in the decreasing order of the confidence score, which results in selecting single-meaning and
reliable words that can be translated accurately by the word dictionary. If a word (w, s) has two possible
translations v1 and v2 that are equally likely, Pr[v ∈ Rw,s] is lower than 0.5 for any v, even for v = v1 and
v = v2, the confidence score c(w, s) tends to be low, and PRISM* avoids selecting such (w, s). The selected
words w can be reliably translated by L(w, s, 1). PRISM* also chooses substitute words with high confidence
scores so that PRISM* can robustly find the corresponding word L(w, s, 1) in the translated text ypub in the
final substitution step.

The pseudo code of PRISM* is shown in Algorithm 2.

Note that PRISM* does not enjoy the differential privacy guarantee of PRISM-R as (i) PRISM* replaces
words with the same part-of-speech tag so that two texts with different part-of-speech templates have zero
probability of transition, and (ii) PRISM* chooses words with high confidence scores so that the probability
of transition is biased. Nevertheless, PRISM* empirically strikes a better trade-off between privacy and
accuracy than PRISM-R as we will show in the experiments. Note that PRISM* can be combined with
PRISM-R to guarantee differential privacy. For example, one can apply PRISM-R and PRISM* in a nested
manner, which guarantees differential privacy due to the differential privacy of PRISM-R (Theorem 3.2)
and the post processing resilience of differential privacy [24]. One can also apply PRISM-R with probability
(1 − β) and PRISM* with probability β, which also guarantees differential privacy because the minimum
probability of transition is bounded from below due to the PRISM-R component.

4 Experiments

We confirm the effectiveness of our proposed methods through experiments.
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Algorithm 3: AUPQC

1 P ← the set of the trade-off parameters in the increasing order of the privacy-preserving score.
2 s← 0 // The area under the curve
3 (PPSprev, QSprev)← (None, None)
4 for α← P do
5 (PPS, QS)← Evaluate(α) // Evaluate the privacy-preserving score and the quality

score
6 if PPSprev is None then
7 s← s + PPS×QS // Add the area of the first rectangle

8 else
9 s← s + (PPS− PPSprev)× (QSprev + QS)/2 // Add the area of the trapezoid

10 (PPSprev, QSprev)← (PPS, QS)
11 return s

4.1 Evaluation Protocol

As our problem setting is novel, we first propose an evaluation protocol for the user-side realization of
privacy-aware machine translation systems. We evaluate the translation accuracy and privacy protection as
follows.

Let X = {x1, x2, . . . , xN} be a set of test documents to be translated. Our aim is to read X in the target
language without leaking information of X .

For evaluation purposes, we introduce a question-answering (QA) dataset Q = {(qij , aij)}, where qij and aij

are a multiple-choice question and answer regarding the document xi, respectively. Q is shown only to the
evaluator, and not to the translation algorithm.

Privacy-preserving Score. The idea of our privacy score is based on an adversarial evaluation where
adversaries try to extract information from the query sent by the user. Let xpub

i be the query sent to
the translator T . An evaluator is given xpub

i and qij , and asked to answer the question. The privacy-
preserving score of the translation algorithm is defined as PPS = (1− acc), where acc is the accuracy of the
evaluator. The higher the privacy-preserving score is, the better the privacy protection is. Intuitively, if the
accuracy is low, the evaluator cannot draw any information from xpub

i to answer the question. Conversely,
if the accuracy is high, the evaluator can infer the answer solely from xpub

i , which means that xpub
i leaks

information. We note that the translation algorithm does not know the question qij , and therefore, the
translation algorithm needs to protect all information to achieve a high privacy-preserving score so that any
answer on the document cannot be drawn from xpub

i . The rationale behind this score is that we cannot
predict what form information leaks will take in advance. Even if xpub does not look like xpri at a glance,
sophisticated adversaries might extract information that can be used to infer xpri. Therefore, we employ an
outside evaluator and adopt an adversarial evaluation.

Quality Score. Let ypri
i be the final output of the translation algorithm. We use the same QA dataset

and ask an evaluator to answer the question qij using ypri
i . The quality score of the translation algorithm is

defined as QS = acc, where acc is the accuracy of the evaluator. The higher the quality score is, the better
the translation quality is. Intuitively, if the accuracy is high, the evaluator can answer the question correctly
using ypri

i , which means that ypri
i contains sufficient information on xi. We note again that the translation

algorithm does not know the question qij , and therefore, the translation algorithm needs to preserve all
information to achieve a high quality score so that any answer on the document can be drawn from ypri

i .

The protocol is illustrated in Figure 2.

We introduce the area-under-privacy-quality curve (AUPQC) to measure the effectiveness of methods. The
privacy-preserving score and the quality score are in a trade-off relationship. Most methods, including
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PRISM-R and PRISM*, have a parameter to control the trade-off. An effective method should have a high
privacy-preserving score and a high quality score at the same time. We use the AUPQC to measure the
trade-off. Specifically, we scan the trade-off parameter and plot the privacy-preserving score and the quality
score in the two-dimensional space. The AUPQC is the area under the curve. The larger the AUPQC is,
the better the method is. The pseudo code is shown in Algorithm 3.

We also introduce QS@p, a metric indicating the quality score at a specific privacy-preserving score. The
higher QS@p is, the better the method is. In realistic scenarios, we may have a severe security budget p
which represents the threshold of information leakage we can tolerate. QS@p is particularly useful under
such constraints as it provides a direct measure of the quality we can enjoy under the security budget. It is
noteworthy that the privacy-preserving score can be evaluated before we send information to the translator
T . Therefore, we can tune the trade-off parameter and ensure that we enjoy the privacy-preserving score =
p and the quality score = QS@p.

4.2 Experimental Setups

We use the MCTest dataset [33] for the documents xi, question qij , and answer aij . Each document in the
MCTest dataset is a short story with four questions and answers. The reason behind this choice is that
the documents of the MCTest dataset were original ones created by crowdworkers. This is in contrast to
other reading comprehension datasets such as NarrativeQA [19] and CBT [17] datasets, which are based on
existing books and stories, where the evaluator can infer the answers without relying on the input document
xpub

i .

We use T5 [32] and GPT-3.5-turbo [30] as the translation algorithm T . We use the prompt “Directly translate
English to [Language]: [Source Text]” to use GPT-3.5-turbo for translation.

We also use GPT-3.5-turbo as the evaluator. Specifically, the prompt is composed of four parts. The first
part of the prompt is the instruction “Read the following message and solve the following four questions.” The
second part is the document to be evaluated, which is the query document xpub

i for the privacy-preserving
score and the final output ypri

i for the quality score. The third part is the four questions. The last part is
the instruction “Output only four characters representing the answers, e.g.,\n1. A\n2. B\n3. A\n4. D.” We
parse the output of GPT-3.5-turbo to extract the answers and evaluate the accuracy.

We use the following four methods.

Privacy- and Utility-Preserving Textual Analysis (PUP) [13] is a differential private algorithm to
convert a document to a non-sensitive document without changing the meaning of x. PUP has a trade-off
parameter λ for privacy and utility. We convert the source text xpri to xpub using PUP and translate xpub
to obtain the final output ypri.

NoDecode translates the encoded text xpub of PRISM* to obtain the final output ypri. NoDecode does not
decode the output of the translator T . This method has the same privacy-preserving property as PRISM*
but the accuracy should be lower. The improvements from NoDecode are the contribution of our framework.

PRISM-R is our method proposed in Section 3.3.

PRISM* is our method proposed in Section 3.5.

We change the ratio r of NoDecode, PRISM-R, and PRISM* and the parameter λ of PUP to control the
trade-off between privacy-preserving score and the quality score.

4.3 Results

Figure 3 shows the trade-off, where the x-axis is the privacy-preserving score and the y-axis is the quality
score. PRISM* clearly strikes the best trade-off, and the results of PRISM-R are also better than those of
NoDecode and PUP, especially when the privacy-preserving score is high.

The maximum privacy-preserving score is around 0.5 for all methods, even though there are four choices
in each question. Intuitively, the accuracy of the evaluator should be 0.25 when the reference document is
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Figure 3: Trade-off between the privacy-preserving score and the quality score. The x-axis is the privacy-
preserving score and the y-axis is the quality score.

Table 1: Quantitative Results. The best results are shown in bold, and the second best results are shown
in underline.

En → Fr (T5) En → De (T5) En → Fr (ChatGPT) En → De (ChatGPT)
AUPQC ↑ QS@0.5 ↑ AUPQC ↑ QS@0.5 ↑ AUPQC ↑ QS@0.5 ↑ AUPQC ↑ QS@0.5 ↑

NoDecode 0.355 0.493 0.373 0.524 0.376 0.495 0.370 0.480
PUP 0.363 0.439 0.363 0.505 0.415 0.487 0.391 0.511
PRISM-R 0.431 0.613 0.396 0.557 0.399 0.611 0.432 0.629
PRISM* 0.454 0.803 0.473 0.789 0.482 0.799 0.445 0.769

random, so the maximum PPR should be 0.75. We found that this is because some questions can be inferred
solely from the question text. For example, there is a question “How did the girl hurt her knee? (a) she was
in the street (b) she had no friends (c) she fell down, and (d) the old lady’s bike hit her.” We can infer the
answer is (c) or (d) as (a) and (b) do not make sense (the answer is (c)). To verify this hypothesis, we had
GPT-3.5-turbo answer the questions using only the question text. The accuracy was 0.492. Therefore, PPS
≈ 0.5 indicates that the query has no more information than the empty text. This experiment also shows
that the GPT-3.5-turbo evaluator is so powerful that it can infer the answer from the question text only,
and it is an effective adversarial evaluator.

Table 1 shows the quantitative results. We report QS@0.5, i.e., the quality score when PPS is 0.5, which
roughly means the quality we can enjoy when no information is leaked based on the above analysis. PRISM*
consistently achieves the best scores across all the metrics and settings, and PRISM-R achieves the second-
best results in most of the metrics and settings. Notably, PRISM* achieves QS ≈ 0.8 when no information
is leaked. This result shows that PRISM* can accurately translate the texts while protecting the privacy of
the texts.

Table 2 shows sample translations of PRISM*. The leaked information xpub does not make sense and reveals
little about the secret text xpri. Although it contains some grammatical errors, the output ypri is generally
a correct translation of the input text xpri, which is useful for native speakers to grasp the content.

5 Related Work

Privacy Protection of Texts. There is a growing demand for privacy protection measures for text data
and many methods have been proposed. The U.S. Health Insurance Portability and Accountability Act
(HIPAA), which requires that the personal information of patients should be protected, is one of the triggers
of heightening concerns on privacy protection of data [5, 20, 29]. One of the challenges to following HIPAA is
to protect information hidden in medical records written in free texts [25]. The rule-based method proposed
by Neamatullah et al. [28] is one of the early attempts to delete sensitive information from free texts. Li
et al. [22] claimed that hiding only the sensitive information is not enough to protect privacy because side
information may also leak information and proposed a robust method. Many other methods [12, 23, 26] aim
at anonymizing texts so that the authors or the attributions of the authors [39] cannot be inferred. Some
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Table 2: Examples of PRISM* translations. The query xpub to the translator does not make sense and
provides little information on the secret text xpri. Although it contains some grammatical errors, the output
ypri of PRISM* is generally a correct translation of the input text xpri.

xpri xpub ypri

Jimmy didn’t eat breakfast. Be-
cause he didn’t eat breakfast he
was very hungry and could not
stop thinking about food. He
was thinking about all of the
things that he liked to eat the
most. He was thinking about
breakfast foods like bacon and
eggs but he was also thinking
about lunch and dinner foods like
pizza and macaroni and cheese.

Logan didn’t eat hamster. Be-
cause he didn’t eat circus he was
very fishing and could not stop
thinking about smile. He was
thinking about all of the things
that he screamed to eat the most.
He was thinking about zoo foods
like bacon and grandparents but
he was also thinking about guitar
and hamburger foods like pizza
and lettuce and jungle.

Jimmy n’a pas mangé de déje-
uner. Parce qu’il n’a pas mangé
de déjeuner, il était très faim et
ne pouvait pas arrêter de penser
au nourriture. Il pensait à toutes
les choses qu’il aimé de vouloir
manger le plus. Il pensait aux
aliments du déjeuner comme le
bacon et les ufs, mais il pensait
aussi à des aliments de déjeuner
et de dîner comme la pizza et la
macaroni et la fromage.

A boy was trying to pick out
what instrument that he wanted
to play. His parents wanted him
to pick a good one because play-
ing an instrument was very im-
portant to them. So, the boy
went to a music store with his
parents.

A dragon was trying to pick out
what zoo that he wanted to play.
His grandchildren wanted herself
to pick a good one because play-
ing an Hey was very important
to them. Shelly, the bacon went
to a mud store with his ants.

Un garçon essayait de choisir
quelle instrument il travaillé
jouer. Parents parents voulaient
eux-mêmes en choisir un bon car
jouer avec un Instrument était
très important pour eux. So, le
garçon est allé dans un magasin
de musique avec parents fourmis.

methods ensure the rigorous privacy guarantee of differential privacy [7, 43]. The most relevant work to
ours is the work by Feyisetan et al. [13], which aims at protecting the privacy of texts while preserving the
utility of the texts. Their proposed method is simple enough to implement on the user’s side. However, their
definition of privacy is different from ours. They aim at protecting the privacy of the author of the text,
while we aim at protecting the content. Their method leaks much information on the content of the text.
We confirmed this in the experiments. Many of the other methods also aim at protecting the author of the
text and keeping the content of the text intact even after the anonymization [7, 12].

Homomorphic encryption. Homomorphic encryption [14, 15, 21] enables to compute on encrypted data
without decrypting them. The service provider can carry out the computation without knowing the content
of the data with this technology [2, 6]. However, users cannot enjoy the benefit of secure computing unless
the service provider implements the technology. Homomorphic encryption is notoriously slow [27] and can
degrade the performance, and therefore, the service provider may be reluctant to implement it. To the best
of our knowledge, no commercial translators use homomorphic encryption. PRISM does not require the
service provider to implement it. Rather, PRISM applies homomorphic-like (but much lighter) encryption
on the user’s side. PRISM can be seen as a combination of client-side encryption, which has been adopted
in cloud storage services [9, 44], and homomorphic encryption.

User-side Realization. Users are dissatisfied with services. Since the service is not tailor-made for a
user, it is natural for dissatisfaction to arise. However, even if users are dissatisfied, they often do not have
the means to resolve their dissatisfaction. The user cannot alter the source code of the service, nor can
they force the service to change. In this case, the user has no choice but to remain dissatisfied or quit the
service. User-side realization provides a solution to this problem. User-side realization [34, 35] provides a
general algorithm to deal with common problems on the user’s side. Many user-side algorithms for various
problems have been proposed. Consul [37] turns unfair recommender systems into fair ones on the user’s
side. Tiara [36] realizes a customed search engine the results of which are tailored to the user’s preference
on the user’s side. WebShop [45] enables automated shopping in ordinary e-commerce sites on the user’s
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side by using an agent driven by a large language model. WebArena [46] is a general environment to test
agents realizing rich functionalities on the user’s side. EasyMark [38] realizes large language models with
text watermarks on the user’s side. Overall, there are many works on user-side realization, but most of them
are on recommender systems and search engines. Our work is the first to protect the privacy of texts on the
user’s side.

6 Conclusion

We proposed a novel problem setting of user-side privacy protection for machine translation systems. We
proposed two methods, PRISM-R and PRISM*, to turn external machine translation systems into privacy-
preserving ones on the user’s side. We showed that PRISM-R is differential private and PRISM* striked a
better trade-off between privacy and accuracy. We also proposed an evaluation protocol for user-side privacy
protection for machine translation systems, which is valuable for facilitating future research in this area.
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