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Abstract

Conversation agents powered by large language001
models are revolutionizing the way we inter-002
act with visual data. Recently, large vision-003
language models (LVLMs) have been exten-004
sively studied for both images and videos. How-005
ever, these studies typically focus on common006
scenarios. In this work, we introduce an LVLM007
specifically designed for surgical scenarios. We008
integrate visual representations of surgical im-009
ages and videos into the language feature space.010
Consequently, we establish a LVLM model,011
Surgical-LLaVA, fine-tuned on instruction fol-012
lowing data of surgical scenarios. Our ex-013
periments demonstrate that Surgical-LLaVA014
exhibits impressive multi-modal chat abilities015
in surgical contexts, occasionally displaying016
multi-modal behaviors on unseen instructions.017
We conduct a quantitative evaluation of visual018
question-answering datasets for surgical sce-019
narios. The results show superior performance020
compared to previous works, indicating the po-021
tential of our model to tackle more complex022
surgery scenarios.023

1 Introduction024

The rapid advancements in AI have increasingly025

focused on developing versatile assistants that can026

effectively understand and interact with the world027

through multiple sensory modalities, such as vi-028

sion (Li et al., 2022) and language (Brown et al.,029

2020). This multi-modal approach harnesses the030

unique strengths of each channel, enhancing the031

AI’s ability to perform a wide range of real-world032

tasks more accurately and efficiently (Askell et al.,033

2021; Li et al., 2024a). Despite significant progress034

with large language models (LLMs) like GPT-3035

(Liu et al., 2021), GPT-4 (Achiam et al., 2023), and036

open-source alternatives such as LLaMA (Touvron037

et al., 2023) and Vicuna (Chiang et al., 2023), these038

models typically handle language tasks in isolation,039

limiting their potential in applications that require040

a comprehensive understanding of multimodal data.041

Recent efforts have attempted to bridge this gap by 042

integrating visual comprehension within a single 043

model, aiming to create a unified representation 044

that captures both visual and linguistic information. 045

For example, models such as LLaVA (Liu et al., 046

2024) and Video-LLaMA ((Zhang et al., 2023)) 047

utilize shared visual encoders to process images 048

and videos. 049

In the surgical applications, the ability to under- 050

stand and process both images and videos is of 051

paramount importance (Saab et al., 2024; Li et al., 052

2024b). Surgical procedures generate a wealth of 053

visual data, including static images and dynamic 054

videos. While general-domain vision-language 055

models have been successful, they are less effec- 056

tive in surgical contexts because surgical visual-text 057

pairs differ significantly from typical web content. 058

This discrepancy can cause general-domain visual 059

assistants to act like laypersons, either avoiding sur- 060

gical questions or providing incorrect or completely 061

fabricated responses. Despite significant advances 062

in surgery visual question answering (VQA), prior 063

methods often treat the problem as a classification 064

task (e.g., choosing among specific answers from 065

the training set) (Kirtac et al., 2022; Valderrama 066

et al., 2022). As a result, conversational generative 067

AI for surgical applications is often restricted to 068

specific tasks. 069

In this paper, we present Surgical-LLaVA, a first 070

attempt to extent multimodal instruction-tuning to 071

the surgical domain for multimodal conversational 072

assistant. Inspired by recent work in instruction- 073

tuning, Surgical LLaVA uses GPT-3.5 to generate 074

diverse surgical multimodal instruction-following 075

data using image/video-pairs, and fine-tune a sur- 076

gical domain vision-langauge model using LoRA 077

method. Specifically, our paper contributed follows 078

as: 079

• We propose Surgical-LLaVA, a multimodal 080

model capable of engaging in meaningful con- 081
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versations about surgical scenarios. It com-082

bines the language understanding capabilities083

of LLMs with a pretrained visual encoder tai-084

lored for spatiotemporal representations of085

surgical procedures.086

• We present datasets consisting of high-quality087

surgical visual instruction pairs, generated088

through a scalable and diverse annotation089

framework specifically designed for the surgi-090

cal scenarios.091

• We achieved superior performance compared092

to existing instruction-following agents in093

video reasoning for surgery scenario and vi-094

sual question-answering.095

2 Related Work096

Large Langauge Models The emergence of large-097

scale language models (LLMs) such as GPT ,098

LLaMA and OPT (Zhang et al., 2022) has led to099

a paradigm shift in the field of natural language100

processing. These models excel in language gen-101

eration and in-context learning, and demonstrate102

the ability to understand complex tasks. The high103

adaptability and generalisability of LLMs has led104

researchers to fine-tune these models for optimal105

performance.106

One of the key strategies in such research is107

instructional tuning. This approach focuses on im-108

proving the model’s alignment with user intent and109

optimising the quality of its output. For example,110

InstructGPT (Ouyang et al., 2022) and ChatGPT111

use this technique to improve their ability to inter-112

act with a variety of dialogues and answer complex113

questions. This effective approach has recently114

been applied to open source models such as Al-115

paca (Peng et al., 2023) and Vicuna, resulting in116

performance improvements.117

Leveraging LLMs for Multimodal Under-118

standing The recent advancements in multimodal119

understanding have been primarily driven by the in-120

tegration of image-based vision models with large121

language models (LLMs). Pioneering contribu-122

tions, such as Flamingo (Alayrac et al., 2022) and123

BLIP-2 (Li et al., 2023), have demonstrated the124

power of leveraging web-scale image-text data and125

cross-modal alignment techniques to exhibit im-126

pressive capabilities in conversational and few-shot127

learning settings. Equally noteworthy is the emer-128

gence of Large Language and Vision Assistant129

(LLaVA) (Liu et al., 2024), a model derived from130

the LLaMa architecture, which capitalizes on GPT- 131

4’s language proficiency to generate multimodal 132

instruction-following data. Through instruction 133

tuning on the derived data, LLaVA has showcased 134

promising multimodal chat capabilities, hinting at 135

the scalability potential of such an approach. Fur- 136

thermore, the InstructBLIP (Dai et al., 2024) model 137

has demonstrated strong image-based dialogue ca- 138

pabilities through vision-language instruction tun- 139

ing and innovative instruction-aware visual fea- 140

ture extraction. Inspired by these success, several 141

medical vision-language model have been studied 142

(Shu et al., 2023; Yunxiang et al., 2023; Wu et al., 143

2023). LLaVA-Med (Liu et al., 2024) fine-tuned 144

from biomedical data to instruction-following data 145

and achieved superior performance on a variety of 146

prompts. 147

Surgical Scenario Visual Question Answering 148

Early surgery video datasets primarily consisted 149

of images and their corresponding annotations, fo- 150

cusing on tasks such as instrument detection, seg- 151

mentation, and procedural step recognition. The 152

Cholec80 dataset (Twinanda et al., 2016) and the 153

EndoVis18 dataset (Allan et al., 2020) were pio- 154

neering efforts in this domain, providing annotated 155

laparoscopic videos and surgical scenes for instru- 156

ment recognition and segmentation, respectively. 157

However, the creation and annotation processes 158

for these datasets were labor-intensive and time- 159

consuming, limiting their scalability and diversity. 160

To address these limitations, researchers shifted 161

their focus towards leveraging the abundance of 162

visual-text resources available in the medical do- 163

main. (Seenivasan et al., 2022) and (Seenivasan 164

et al., 2023) pioneered the integration of visual 165

and textual information by constructing datasets 166

tailored for visual-question answering tasks in sur- 167

gical settings. These datasets aim to capture the 168

rich multimodal information present during surgi- 169

cal procedures, enabling the development of mod- 170

els capable of simultaneously understanding and 171

reasoning about complex visual and textual cues, 172

thereby opening new avenues for research and al- 173

lowing the exploration of novel tasks and appli- 174

cations that leverage the synergy between visual 175

and textual information. Surgical-LLaVA aimed to 176

develop an effective vision-language assistant for 177

various complex prompts by generating multimodal 178

instruction-following data for surgical scenarios by 179

utilizing the language capabilities of LLMs such as 180

GPT. 181
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Figure 1: An example to illustrate the instruction-following data. We utilized the original caption to create an
annotation that follows instructions with various prompts. The video and caption were acquired from Cholec80
dataset (Hong et al., 2020). The instruction-following data generated by GPT-3.5 using the text only (captions).

3 Surgical Visual Instruction Data182

Generation183

This section describes a data-driven approach for184

multimodal directive follow-up data collection us-185

ing LLMs using a novel framework specifically186

tailored to the surgical scenarios. Inspired by the187

recent success of visual language models in text188

annotation tasks, our approach is based on widely189

available image pair data, but with one important190

difference: medical data requires a specific and191

specialized context, so creating instructions using192

LLMs trained only on general data may result in193

the loss of important medical information. To ad-194

dress these issues, we adopted the LLaVA approach195

(Peng et al., 2023) for data generation and incorpo-196

rated annotation information as input to facilitate197

the generation of instructional data tailored to the198

surgical scenario. Specifically, our framework is199

the basis for generating a variety of contextualized200

instructions using expert-annotated surgical image201

data.202

Recognizing the lack of comprehensive informa-203

tion in the original annotations, we attempted to204

leverage LLM’s medical and background knowl-205

edge, such as GPT-3.5. We leveraged the original206

annotations to create instruction-following anno-207

tations with various prompts and instructions, as208

shown in Figure 1. By leveraging LLM’s powerful209

language understanding and generation capabilities,210

it plays a key role in expanding the original anno-211

tations and incorporating relevant medical knowl-212

edge, procedural details, and contextual cues to213

create comprehensive and informative guideline- 214

following annotations. To achieve this, we cre- 215

ate a test set based on the ActivityNet-200 dataset 216

(Caba Heilbron et al., 2015), which contains videos 217

accompanied by detailed descriptive captions and 218

human-annotated question-answer pairs. Moreover, 219

we construct an evaluation pipeline utilizing the 220

GPT-3.5 model. This approach not only allows us 221

to generate high-quality, multimodal guidance data 222

specific to the surgical scenarios, but also effec- 223

tively utilizes existing annotation resources. 224

4 Surgical-LLaVA 225

Surgical-LLaVA is a vision-language model that 226

enhances surgical scenario analysis and conversa- 227

tion capabilities by aligning visual representations 228

with a LLM. To achieve this, we leverage exist- 229

ing approaches used in the development of vision- 230

language (VL) models for visual tasks. Given the 231

scarcity of visual-caption pairs and the significant 232

resources required for training from scratch, our 233

strategy involves adapting pretrained image-based 234

VL models for visual applications, as seen in pre- 235

vious works (Rasheed et al., 2023; Ni et al., 2022). 236

We specifically build upon the LLaVA, an Large 237

Multimodal Model (LMM) that combines the vi- 238

sual encoder of CLIP (Radford et al., 2021) with 239

the Vicuna language decoder (Chiang et al., 2023), 240

and is fine-tuned end-to-end on generated instruc- 241

tional vision-language data. We further fine-tune 242

LLaVA with our visual-instruction data to tailor it 243

for conversation tasks. 244
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Figure 2: Architecture of Surgical-LLaVA. We adopted llava as the baseline, which vicuna as the LLM model and
the pre-trained CLIP visual encoder ViT-L/14 as the visual model. The training involves encoding these inputs into
token representations, followed by joint contrastive learning to align modalities within the semantic space. LoRA
fine-tuning is applied to enhance the model’s efficiency and performance.

4.1 Architecture245

The primary goal is to effectively apply the capa-246

bilities of the pre-trained LLM and visual model to247

surgical scenarios. The architecture is illustrated248

in Figure 2. We adopted LLaVA as the baseline,249

which vicuna as the LLM model and the pre-trained250

CLIP visual encoder ViT-L/14 as the visual model.251

Our visual encoder, originally designed for im-252

age processing, is extended to handle video inputs.253

Given a video sample Vi ∈ RT×H×W×C with T254

frames, the encoder generates both temporal and255

spatial features. To derive video-level features, we256

perform average pooling on the frame-level embed-257

dings along the temporal dimension, resulting in258

video-level temporal representations ti ∈ RN×D.259

Similarly, average pooling along the spatial dimen-260

sion produces video-level spatial representations261

zi ∈ RT×D. By concatenating the temporal and262

spatial features, we obtain comprehensive video-263

level features.264

4.2 Visual Understanding Training265

The overall training process for Surgical-LLaVA266

follows a similar approach to LLM models like267

GPT. The model takes as input a text seqeunce XT268

and visual data XV (image or videos). These inputs269

are encoded into a token representation according270

to Eq 1. The training objective is to maximize the 271

likelihood probability in Eq 2. 272

ZT = fT (XT ), ZV = fP (fV (XV )) (1) 273

p(XA | XV ,XT ) =
L∏
i=1

pθ

(
X

[i]
A | ZV ,Z

[1:i−1]
T

)
(2) 274

where L represents the length of the generated se- 275

quence, and θ denotes the trainable model param- 276

eters. This phase focuses on enabling the model 277

to interpret visual representation from an extensive 278

dataset comprising image/video-text pairs. Each 279

visual sample corresponds to a single round of con- 280

versation data (Xq, Xa), where XT = Xq and Xa 281

serves as the ground truth. 282

Joint Contrastive Learning In our approach, we 283

employ a dynamic joint training that includes both 284

image and video samples within each batch. We 285

employ a transformer model for our language en- 286

coder. The language encoder transforms these to- 287

kens into a text logit y ∈ RL×C , where L is the 288

length of the sequence. To align different modal- 289

ities, we leverage contrastive learning techniques 290

(Chen et al., 2020). This approach aims to increase 291

the similarity between paired data, bringing them 292
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into closer proximity within the semantic space,293

while decreasing the similarity between unpaired294

data. By using contrastive learning, we can asso-295

ciate each modality with the language component.296

297

LM2T = − 1

K

K∑
i=1

log
exp(x⊤i yi/τ)∑K
j=1 exp(x

⊤
i yj/τ)

(3)298

In this context, xi refers to the i-th modality data299

(image and video) and yj to the j-th text, with300

both their features being normalized. K stands for301

the batch size, and τ is the temperature parame-302

ter. By aligning each modality M directly with303

language T , we achieve significant improvements.304

This ensures a stronger alignment than a one-way305

alignment.306

4.3 Visual Instruction Tuning307

We employ instruction-tuning of the LLM on308

the prediction tokens, utilizing its original auto-309

regressive training objective. The pretrained model310

is finetuned with curated, high-quality visual-text311

pairs. During the fine-tuning phase, we use pre-312

defined prompts based on the following template:313

314

USER: <Instruction>315

<Visual-tokens> Assistant:316

In this framework, the <Instruction> signifies317

a query related to the visual content, randomly318

selected from a dataset of visual-question-answer319

pairs. The predicted <Answer> corresponds specif-320

ically to the query posed. During training, the321

weights for both the visual encoder and the lan-322

guage model remain fixed, and the model aims to323

maximize the likelihood of predicting the tokens324

that form the answer by adjusting the linear layer.325

LoRA fine-tuning We apply the LoRA (Hu et al.,326

2021) technique to expedite the fine-tuning process.327

For an encoder with a weight matrix W0 ∈ Rd×k,328

we keep the weight matrix W0 fixed while learning329

an additional weight matrix BA. Specifically, for330

a modality-agnostic encoder h(·) and input x, the331

forward pass is defined as follows:332

h(x) = W0x+BAx333

Here, B ∈ Rd×r and A ∈ Rr×k, where r is the334

minimum of d and k. It is crucial to note that335

both W0 and BA share the same input and output336

dimensions, allowing their outputs to be summed337

to produce the final result.338

5 Experiments 339

Implementation Details We use LLaVA as our 340

baseline model. We finetune the model for 3 epochs 341

using a learning rate of 1e-5 and overall batch size 342

of 16. The training of our 7B model took around 343

16 hours on 4 RTX3090 24GB GPUs. During in- 344

ference, for memory efficiency, we load the model 345

in FP16 mode. The data in each batch is random 346

combination of images and videos. 347

Data Description We utilized three datasets as vi- 348

sual datasets for our surgical scenario. 349

• Cholec80-VQA (Twinanda et al., 2016) con- 350

tains Q&A pairs for 80 video sequences of the 351

Cholec80 dataset. The videos are configured 352

at 25 frames per second (fps), while the an- 353

notations are provided at 1 fps. To align with 354

the annotation frame rate, we extracted frames 355

from the videos at 1 fps. 356

• EndoVis-18-VQA (Allan et al., 2020) con- 357

sist of Q&A pairs for 18 robotic nephrectomy 358

procedure video sequences from the MICCAI 359

Endoscopic Vision Challenge 2018 dataset. 360

For this dataset, we utilized 2,600 images and 361

leveraged multiple annotations per single im- 362

age. 363

• PSI-AVA-VQA (Valderrama et al., 2022) con- 364

sists of 10291 Q&A pairs with 35 answer 365

classes of holistic surgical scenario. They are 366

constructed based on the surgical phase, step 367

and location annotation provided in the PSI- 368

AVA dataset. 369

5.1 Surgical Video Understanding 370

To evaluate the performance of Surgical-LLaVA on 371

surgical scenario conversation, we present a bench- 372

mark designed to assess the text generation capa- 373

bilities of visual models. The evaluation pipeline 374

for video understanding follows Video-ChatGPT 375

(Maaz et al., 2023). This pipeline evaluates the 376

model’s performance and assigns relative scores to 377

the generated responses on a scale of 1-5, in the 378

following three dimensions: 379

(i) Conversation: We assesses the accuracy and 380

relevance of the model’s responses during 381

the visual dialogue, ensuring it accurately 382

reflects the video content without any misin- 383

terpretations or false information. 384
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Table 1: Comparison between different large visual language models on video reasoning benchmarks.

Methods LLM size Conversation Detail description Complex reasoning

Accuracy Score Accuracy Score Accuracy Score

Video-ChatGPT (Maaz et al., 2023) 7B 42.7 3.1 38.0 2.6 39.8 2.5
Video-LLaVA (Lin et al., 2023) 7B 51.4 3.3 40.3 2.7 41.1 2.6
Surgical-LLAVA 7B 58.3 3.9 47.1 3.2 46.5 3.1

Figure 3: Example comparison of surgical visual chat and reasoning capabilities. Compared to Video-LLaVA (Lin
et al., 2023), Surgical-LLaVA offers specific and accurate answers to surgical scenarios.

(ii) Detail description: We evaluate the thor-385

oughness of the model’s responses, check-386

ing for completeness by ensuring all major387

points from the video are covered, and for388

specificity by including precise details rather389

than generic statements.390

(iii) Complex reasoning: We assess the model’s391

ability to engage in complex reasoning, en-392

suring its responses demonstrate an under-393

standing of the video’s context and logical394

connections between the content points.395

Among the models evaluated, Surgical-LLaVA396

stands out with the highest scores across all three397

dimensions as shown in Table 1. The Surgical-398

LLaVA model not only demonstrates superior con-399

versation and detailed descriptions but also excels400

in complex reasoning, particularly in understand-401

ing and articulating intricate surgical scenarios .402

This ability to grasp and reason through complex403

medical content is critical, showcasing its poten-404

tial for applications in surgical environments where405

accurate and nuanced interpretation of video con-406

tent is paramount. In Figure 3, we illustrate exam- 407

ple of surgical visual conversations using different 408

representative chatbot on image. Surgical-LLaVA 409

responds to questions accurately, leveraging medi- 410

cal knowledge, whereas Vidoe-LLaVA (Lin et al., 411

2023) responds more like a layperson, often pro- 412

ducing commonsense-based hallucinations. 413

5.2 Evaluation on Visual Question-Answering 414

Benchmarks 415

In this evaluation, we assess the performance of var- 416

ious models on visual question-answering (VQA) 417

tasks, particularly focusing on the Cholec80-VQA, 418

EndoVis18-VQA, and PSI-AVA-VQA datasets. Ta- 419

ble 2 provides a comparative analysis of different 420

models based on their performance metrics. Table 421

2 shows that Surgical-LLaVA significantly outper- 422

forms existing models, achieving the highest ac- 423

curacy rates in all three datasets. The ability to 424

maintain high accuracy across different datasets 425

highlights the versatility and reliability of Surgical- 426

LLaVA in handling various types of visual and 427

contextual information in surgical videos. Its con- 428
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Table 2: Comparison of various models on visual question-answering.

Methods Cholec80-VQA EndoVis18-VQA PSI-AVA-VQA

VisualBert (Li et al., 2019) 89.7 61.4 58.5
Block (Peng et al., 2020) 89.5 60.1 59.9
MFH (Yu et al., 2018) 87.5 58.8 47.8
Surgical-VQA (Seenivasan et al., 2022) 89.8 63.2 65.6
Surgical-LLaVA 92.2 68.7 67.1

Figure 4: Examples from Surgical-LLaVA’s demonstration of video reasoning. It shows conversation, detail
description and complex reasoning cases.

sistent performance across multiple benchmarks429

signifies a major leap forward in interaction with430

visual surgery data.431

5.3 Qualitative Evaluation 432

To comprehensively assess the capabilities of our 433

proposed Surgical-LLaVA model, we conducted an 434

extensive qualitative evaluation spanning a diverse 435
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array of open-ended video question-answering436

tasks.437

Conversation We confirmed whether the model ac-438

curately reflects the content of the surgical videos439

without introducing any hallucinations or misinter-440

pretations. This involves verifying that the gener-441

ated text stays true to the visual information pre-442

sented and is contextually appropriate as illustrated443

in top of Figure 4.444

Detail Description We evaluated the model’s ca-445

pacity to generate detailed and descriptions of the446

surgical scenes. Surgical-LLaVAs describe the447

tools, steps, and even a description of the surround-448

ing tissues in a surgery as illustrated in middle of449

Figure 4.450

Complex Reasoning These tasks focused on the451

model’s capability to perform complex reasoning452

based on the visual information and contextual453

knowledge, . Surgical-LLaVA identified the current454

phase from the visual data and effectively suggest455

things to watch out for at that stage, as exemplified456

in bottom of Figure 4.457

Throughout the evaluation, our Surgical-LLaVA458

model demonstrated remarkable proficiency in459

comprehending the visual content of the surgical460

videos and generating accurate, informative, and461

contextually relevant responses across the various462

tasks. The model effectively leveraged the visual463

information present in the videos to provide pre-464

cise answers, detailed descriptions, and reasoned465

insights, showcasing its capability in understanding466

and reasoning about complex surgical procedures.467

5.4 Ablation Study468

We conducted an ablation study on joint contrastive469

learning. As shown in Table 3, we compared the470

performance of Surgical-LLaVA* without image471

training. The model trained with both images and472

videos shows significant improvements across all473

metrics. These findings indicate that combining im-474

age and video training enhances the LLM’s ability475

to comprehend visual representations in surgical476

scenarios.477

Table 3: Effect of joint training. We evaluate on three
visual question-answering datasets. * denotes that we
utilized only video data in both the first and second
stages.

Methods Conversatoin Detail description Complex reasoning

Surgicla-LLaVA* 57.5 44.5 42.0
Joint with image 58.3 47.1 46.5
∆ Acc. +0.8% +2.6% 3.5%

6 Conclusion 478

In this work, we introduced Surgical-LLaVA, a 479

multimodal model designed for engaging in mean- 480

ingful conversations and reasoning about surgical 481

scos. By integrating the language understanding ca- 482

pabilities of LLMs with pretrained visual encoders 483

tailored for spatiotemporal representations of sur- 484

gical procedures, Surgical-LLaVA exhibits impres- 485

sive multi-modal chat abilities in surgical contexts. 486

A contribution of our work is the introduction of 487

a novel dataset consisting of high-quality surgical 488

visual instruction pairs, generated through a scal- 489

able and diverse annotation framework specifically 490

designed for the medical domain. Through quanti- 491

tative and qualitative evaluations, we demonstrated 492

Surgical-LLaVA’s superior performance compared 493

to existing state-of-the-art models in various tasks, 494

including visual question-answering, video reason- 495

ing about surgical scenarios. 496

Limitations 497

The success of Surgical-LLaVA underscores the 498

potential of combining large language models with 499

specialized visual encoders for domain-specific 500

applications. However, current public surgical 501

datasets have limitations in providing limited in- 502

formation such as phase, tool, etc. The ability to 503

include specific and diverse information in surgi- 504

cal datasets will greatly improve scalability. In 505

addition, the study should actually be reviewed by 506

clinicians for its utility. This work is anticipated 507

to provide valuable insights into multi-modal ap- 508

proaches for surgical scenarios within the LLM 509

framework, paving the way for advancements in 510

AI-assisted surgical training, decision-making pro- 511

cesses, and patient care. 512

References 513

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 514
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 515
Diogo Almeida, Janko Altenschmidt, Sam Altman, 516
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 517
arXiv preprint arXiv:2303.08774. 518

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, 519
Antoine Miech, Iain Barr, Yana Hasson, Karel 520
Lenc, Arthur Mensch, Katherine Millican, Malcolm 521
Reynolds, et al. 2022. Flamingo: a visual language 522
model for few-shot learning. Advances in neural 523
information processing systems, 35:23716–23736. 524

Max Allan, Satoshi Kondo, Sebastian Bodenstedt, Ste- 525
fan Leger, Rahim Kadkhodamohammadi, Imanol 526

8



Luengo, Felix Fuentes, Evangello Flouty, Ahmed527
Mohammed, Marius Pedersen, et al. 2020. 2018528
robotic scene segmentation challenge. arXiv preprint529
arXiv:2001.11190.530

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,531
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas532
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A533
general language assistant as a laboratory for align-534
ment. arXiv preprint arXiv:2112.00861.535

Tom Brown, Benjamin Mann, Nick Ryder, Melanie536
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind537
Neelakantan, Pranav Shyam, Girish Sastry, Amanda538
Askell, et al. 2020. Language models are few-shot539
learners. Advances in neural information processing540
systems, 33:1877–1901.541

Fabian Caba Heilbron, Victor Escorcia, Bernard542
Ghanem, and Juan Carlos Niebles. 2015. Activitynet:543
A large-scale video benchmark for human activity544
understanding. In Proceedings of the ieee conference545
on computer vision and pattern recognition, pages546
961–970.547

Ting Chen, Simon Kornblith, Mohammad Norouzi, and548
Geoffrey Hinton. 2020. A simple framework for549
contrastive learning of visual representations. In In-550
ternational conference on machine learning, pages551
1597–1607. PMLR.552

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,553
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan554
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.555
2023. Vicuna: An open-source chatbot impressing556
gpt-4 with 90%* chatgpt quality. See https://vicuna.557
lmsys. org (accessed 14 April 2023), 2(3):6.558

Wenliang Dai, Junnan Li, Dongxu Li, Anthony559
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,560
Boyang Li, Pascale N Fung, and Steven Hoi.561
2024. Instructblip: Towards general-purpose vision-562
language models with instruction tuning. Advances563
in Neural Information Processing Systems, 36.564

W-Y Hong, C-L Kao, Y-H Kuo, J-R Wang, W-L565
Chang, and C-S Shih. 2020. Cholecseg8k: a se-566
mantic segmentation dataset for laparoscopic chole-567
cystectomy based on cholec80. arXiv preprint568
arXiv:2012.12453.569

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan570
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,571
and Weizhu Chen. 2021. Lora: Low-rank adap-572
tation of large language models. arXiv preprint573
arXiv:2106.09685.574

Kadir Kirtac, Nizamettin Aydin, Joël L Lavanchy, Guido575
Beldi, Marco Smit, Michael S Woods, and Florian576
Aspart. 2022. Surgical phase recognition: From pub-577
lic datasets to real-world data. Applied Sciences,578
12(17):8746.579

Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei580
Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al.581

2024a. Multimodal foundation models: From spe- 582
cialists to general-purpose assistants. Foundations 583
and Trends® in Computer Graphics and Vision, 16(1- 584
2):1–214. 585

Chunyuan Li, Haotian Liu, Liunian Li, Pengchuan 586
Zhang, Jyoti Aneja, Jianwei Yang, Ping Jin, Houdong 587
Hu, Zicheng Liu, Yong Jae Lee, et al. 2022. Elevater: 588
A benchmark and toolkit for evaluating language- 589
augmented visual models. Advances in Neural Infor- 590
mation Processing Systems, 35:9287–9301. 591

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto 592
Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau- 593
mann, Hoifung Poon, and Jianfeng Gao. 2024b. 594
Llava-med: Training a large language-and-vision 595
assistant for biomedicine in one day. Advances in 596
Neural Information Processing Systems, 36. 597

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 598
2023. Blip-2: Bootstrapping language-image pre- 599
training with frozen image encoders and large lan- 600
guage models. In International conference on ma- 601
chine learning, pages 19730–19742. PMLR. 602

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui 603
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A sim- 604
ple and performant baseline for vision and language. 605
arXiv preprint arXiv:1908.03557. 606

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and 607
Li Yuan. 2023. Video-llava: Learning united visual 608
representation by alignment before projection. arXiv 609
preprint arXiv:2311.10122. 610

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 611
Lee. 2024. Visual instruction tuning. Advances in 612
neural information processing systems, 36. 613

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, 614
Lawrence Carin, and Weizhu Chen. 2021. What 615
makes good in-context examples for gpt-3? arXiv 616
preprint arXiv:2101.06804. 617

Muhammad Maaz, Hanoona Rasheed, Salman Khan, 618
and Fahad Shahbaz Khan. 2023. Video-chatgpt: 619
Towards detailed video understanding via large 620
vision and language models. arXiv preprint 621
arXiv:2306.05424. 622

Bolin Ni, Houwen Peng, Minghao Chen, Songyang 623
Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, 624
and Haibin Ling. 2022. Expanding language-image 625
pretrained models for general video recognition. In 626
European Conference on Computer Vision, pages 1– 627
18. Springer. 628

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 629
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 630
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 631
2022. Training language models to follow instruc- 632
tions with human feedback. Advances in neural in- 633
formation processing systems, 35:27730–27744. 634

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal- 635
ley, and Jianfeng Gao. 2023. Instruction tuning with 636
gpt-4. arXiv preprint arXiv:2304.03277. 637

9



Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-638
deh, Lars Liden, and Jianfeng Gao. 2020. Soloist:639
Few-shot task-oriented dialog with a single pre-640
trained auto-regressive model. arXiv preprint641
arXiv:2005.05298, 3.642

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya643
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-644
try, Amanda Askell, Pamela Mishkin, Jack Clark,645
et al. 2021. Learning transferable visual models from646
natural language supervision. In International confer-647
ence on machine learning, pages 8748–8763. PMLR.648

Hanoona Rasheed, Muhammad Uzair Khattak, Muham-649
mad Maaz, Salman Khan, and Fahad Shahbaz Khan.650
2023. Fine-tuned clip models are efficient video651
learners. In Proceedings of the IEEE/CVF Confer-652
ence on Computer Vision and Pattern Recognition,653
pages 6545–6554.654

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno,655
David Stutz, Ellery Wulczyn, Fan Zhang, Tim656
Strother, Chunjong Park, Elahe Vedadi, et al. 2024.657
Capabilities of gemini models in medicine. arXiv658
preprint arXiv:2404.18416.659

Lalithkumar Seenivasan, Mobarakol Islam, Gokul Kan-660
nan, and Hongliang Ren. 2023. Surgicalgpt: End-661
to-end language-vision gpt for visual question an-662
swering in surgery. In International Conference on663
Medical Image Computing and Computer-Assisted664
Intervention, pages 281–290. Springer.665

Lalithkumar Seenivasan, Mobarakol Islam, Adithya K666
Krishna, and Hongliang Ren. 2022. Surgical-vqa:667
Visual question answering in surgical scenes using668
transformer. In International Conference on Medical669
Image Computing and Computer-Assisted Interven-670
tion, pages 33–43. Springer.671

Chang Shu, Baian Chen, Fangyu Liu, Zihao Fu, Ehsan672
Shareghi, and Nigel Collier. 2023. Visual med-673
alpaca: A parameter-efficient biomedical llm with674
visual capabilities.675

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier676
Martinet, Marie-Anne Lachaux, Timothée Lacroix,677
Baptiste Rozière, Naman Goyal, Eric Hambro,678
Faisal Azhar, et al. 2023. Llama: Open and effi-679
cient foundation language models. arXiv preprint680
arXiv:2302.13971.681

Andru P Twinanda, Sherif Shehata, Didier Mutter,682
Jacques Marescaux, Michel De Mathelin, and Nico-683
las Padoy. 2016. Endonet: a deep architecture for684
recognition tasks on laparoscopic videos. IEEE trans-685
actions on medical imaging, 36(1):86–97.686

Natalia Valderrama, Paola Ruiz Puentes, Isabela Hernán-687
dez, Nicolás Ayobi, Mathilde Verlyck, Jessica San-688
tander, Juan Caicedo, Nicolás Fernández, and Pablo689
Arbeláez. 2022. Towards holistic surgical scene un-690
derstanding. In International conference on medical691
image computing and computer-assisted intervention,692
pages 442–452. Springer.693

Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, 694
and Weidi Xie. 2023. Pmc-llama: Further fine- 695
tuning llama on medical papers. arXiv preprint 696
arXiv:2304.14454. 697

Zhou Yu, Jun Yu, Chenchao Xiang, Jianping Fan, and 698
Dacheng Tao. 2018. Beyond bilinear: Generalized 699
multimodal factorized high-order pooling for visual 700
question answering. IEEE transactions on neural 701
networks and learning systems, 29(12):5947–5959. 702

Li Yunxiang, Li Zihan, Zhang Kai, Dan Ruilong, and 703
Zhang You. 2023. Chatdoctor: A medical chat model 704
fine-tuned on llama model using medical domain 705
knowledge. arXiv preprint arXiv:2303.14070. 706

Hang Zhang, Xin Li, and Lidong Bing. 2023. Video- 707
llama: An instruction-tuned audio-visual language 708
model for video understanding. arXiv preprint 709
arXiv:2306.02858. 710

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 711
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 712
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 713
Opt: Open pre-trained transformer language models. 714
arXiv preprint arXiv:2205.01068. 715

10


	Introduction
	Related Work
	Surgical Visual Instruction Data Generation
	Surgical-LLaVA
	Architecture
	Visual Understanding Training
	Visual Instruction Tuning

	Experiments
	Surgical Video Understanding
	Evaluation on Visual Question-Answering Benchmarks
	Qualitative Evaluation
	Ablation Study

	Conclusion

