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Abstract
The advent of 3D Gaussian Splatting has revolutionized
graphics rendering by delivering high visual quality and fast
rendering speeds. However, training large-scale scenes at
high quality remains challenging due to the substantial mem-
ory demands required to store parameters, gradients, and
optimizer states, which can quickly overwhelm GPU mem-
ory. To address these limitations, we propose GS-Scale, a fast
and memory-efficient training system for 3D Gaussian Splat-
ting. GS-Scale stores all Gaussians in host memory, transfer-
ring only a subset to the GPU on demand for each forward
and backward pass. While this dramatically reduces GPU
memory usage, it requires frustum culling and optimizer
updates to be executed on the CPU, introducing slowdowns
due to CPU’s limited compute and memory bandwidth. To
mitigate this, GS-Scale employs three system-level optimiza-
tions: (1) selective offloading of geometric parameters for fast
frustum culling, (2) parameter forwarding to pipeline CPU
optimizer updates with GPU computation, and (3) deferred
optimizer update to minimize unnecessary memory accesses
for Gaussians with zero gradients. Our extensive evaluations
on large-scale datasets demonstrate that GS-Scale signif-
icantly lowers GPU memory demands by 3.3-5.6×, while
achieving training speeds comparable to GPU without host
offloading. This enables large-scale 3D Gaussian Splatting
training on consumer-grade GPUs; for instance, GS-Scale
can scale the number of Gaussians from 4 million to 18 mil-
lion on an RTX 4070 Mobile GPU, leading to 23-35% LPIPS
(learned perceptual image patch similarity) improvement.

1 Introduction
Differentiable rendering methods [22, 37, 38, 51] have sig-
nificantly improved the quality and efficiency of novel view
synthesis. Among these innovations, 3D Gaussian Splatting
(3DGS) [22] has emerged as a state-of-the-art technique, of-
fering high visual quality and fast rendering by representing
a 3D scene with millions of trainable 3D Gaussian primitives.

However, the increasing demand for reconstructing larger
and more visually detailed 3D scenes has led to a significant
surge in the number of Gaussians required during train-
ing [26, 31, 33, 34, 44, 53], pushing the limit of GPU memory.
For example, in Rubble [46] scene, reaching the highest vi-
sual quality requires about 40 million Gaussians resulting
in 53 GB of GPU memory, far exceeding the capacity of any

Figure 1. Comparison of the maximum rendering quality
achievable in 3DGS training using a GPU-only system and
GS-Scale. Training is conducted on RTX 4070 Mobile GPU
with Rubble scene. Higher is better for PSNR and SSIM, lower
is better for LPIPS.

single consumer-grade GPU. These high memory demands
present a major obstacle to scaling the number of Gaussians
in 3DGS training, leading to reduced scene expressiveness
and, consequently, degraded rendering quality.

Recent works [26, 31, 53] have addressed these challenges
through distributed training across multiple GPUs. Such
multi-GPU setups entail high hardware costs and consider-
able maintenance complexity, making them impractical for
most users. This limitation is particularly critical in personal
or small-scale professional settings, where 3DGS is often ap-
plied to reconstruct scenes from user-provided images, such
as VR hobbyists modeling personal spaces [2, 3, 6], interior
designers designing 3D virtual rooms [1, 42], and real estate
professionals supporting 3D virtual tours [5]. Thus, enabling
high-quality 3DGS training on a single consumer-grade GPU
is essential for accessible deployment.
We present GS-Scale, a fast, memory-efficient, and scal-

able 3D Gaussian Splatting training system built upon host
(CPU) offloading. Our key observation is that in each training
iteration, only a small subset of Gaussian parameters par-
ticipates in forward and backward passes. Leveraging this
property, GS-Scale stores all Gaussian parameters and opti-
mizer states in host memory, transferring only the necessary
subset to the GPU on demand. While this approach dramati-
cally reduces GPU memory usage, it forces computationally
intensive frustum culling and memory intensive optimizer
updates onto the CPU, leading to significant slowdowns due
to limited compute power and memory bandwidth of CPU.
To address these challenges, GS-Scale incorporates three
system-level optimizations:
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• Selective Offloading: Only geometric attributes of pa-
rameters are kept on GPU for fast frustum culling,
while the rest are offloaded to host memory.

• Parameter Forwarding: By pre-updating only neces-
sary parameters, this optimization breaks the depen-
dency between CPU optimizer updates and GPU for-
ward & backward passes, enabling pipelining.

• Deferred Optimizer Update: By deferring updates for
Gaussians with zero gradients, the amount of mem-
ory accesses is substantially reduced while achieving
identical training results.

Through extensive evaluations across various datasets
and platforms, we demonstrate that GS-Scale can train much
larger scenes on consumer-grade GPUs while maintaining
training speeds comparable to GPU without host offloading.
For example, GS-Scale can scale the number of Gaussians
from 4 million to 18 million on an RTX 4070 Mobile GPU,
yielding a 35.3% improvement in LPIPS for the Rubble scene
(Figure 1).

Our contributions are summarized as follows.

• We empirically observe a sparse workload characteris-
tic: during each training iteration, only a small subset
of Gaussian parameters is involved in the forward and
backward passes.

• We analyze GPU memory bottlenecks in 3DGS train-
ing and identify host-offloading opportunities based
on this sparse workload characteristics.

• We propose GS-Scale, a fast, memory efficient, and
scalable training system for 3DGS. To the best of our
knowledge, GS-Scale is the first host offloading based
training system for 3DGS.

• We implement GS-Scale on top of gsplat [49] library
and comprehensively evaluate the performance on
various datasets and GPU platforms. GS-Scale demon-
strates substantial GPUmemory savings and compara-
ble training speed with GPU without host offloading,
unlocking large-scale 3DGS training.

2 Background
2.1 Novel View Synthesis
Novel view synthesis generates photorealistic 3D scene im-
ages from previously unseen viewpoints using a set of 2D
images captured frommultiple viewpoints. It has broad appli-
cations in diverse fields such as virtual reality (VR) [9, 15, 21],
augmented reality (AR) [8, 52], and digital twins [17]. Tra-
ditional explicit 3D reconstruction methods using meshes,
voxels, or point clouds often struggle with complex visual
phenomena and suffer quality degradation from incomplete
or inaccurate reconstructions. Differentiable rendering meth-
ods have recently emerged, offering substantial improve-
ments in reconstruction fidelity and rendering quality. The
following sections describe them.

2.2 Neural Radiance Fields (NeRF)
Neural Radiance Fields (NeRF) [37] has revolutionized the
field of novel view synthesis by adopting an implicit neural
representation of 3D scenes as continuous volumetric func-
tions, overcoming limitations of explicit 3D methods. NeRF
represents each 3D point with 5D coordinates (𝑥,𝑦, 𝑧, 𝜃, 𝜙),
where (𝑥,𝑦, 𝑧) denotes the 3D position and (𝜃, 𝜙) repre-
sents the viewing direction. Multi-Layer Perceptrons (MLPs)
map these coordinates to a volume density 𝜎 and a view-
dependent color 𝑐 , simultaneously modeling both the geo-
metric structure and appearance of the scene. Rendering
involves casting rays from the camera into the scene, taking
multiple sample points along each ray, predicting the color 𝑐𝑖
and density 𝜎 for each point with the MLP, and accumulating
them to compute the final pixel color via a classical volume
rendering. Training optimizes MLP-based 3D scene represen-
tations by minimizing the difference between the rendered
images and the corresponding ground-truth images.

NeRF and its variants [7, 16, 38, 46] has achieved a signifi-
cant breakthrough in novel view synthesis, demonstrating
superior quality. However, its dependence on MLP leads
to high computational cost in both training and rendering,
limiting its deployment in latency-sensitive applications.

2.3 3D Gaussian Splatting
3D Gaussian Splatting [22] is state-of-the-art differentiable
rendering method representing 3D scenes with trainable 3D
Gaussian primitives. Each 3D Gaussian has 59 parameters:
center position𝑚𝑒𝑎𝑛 ∈ R3, 𝑠𝑐𝑎𝑙𝑒 ∈ R3 controlling its spatial
extent, rotation represented by 𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 ∈ R4, 𝑜𝑝𝑎𝑐𝑖𝑡𝑦
that determines transparency, and 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠 (SH)
coefficients which encodes view-dependent color. The SH
models how a point’s color changes with viewing direction;
A common degree of 𝐿 = 3 yields 16 coefficients per color
channel and 48 parameters in total for RGB.
3DGS renders images by projecting 3D Gaussians onto

a 2D plane and accumulating colors in depth order. The
training process minimizes the difference between rendered
images and ground-truth images via backpropagation (refer
to Section 2.4). Unlike NeRF, 3DGS uses an explicit repre-
sentation, eliminating the need for MLP computation during
rendering and training, leading to faster speeds and higher
visual quality. However, this explicit representation signifi-
cantly increases the number of required parameters, leading
to a much higher memory footprint for both rendering and
training. The number of Gaussians directly determines the
parameter count. More Gaussians are necessary for higher
rendering quality, increasing memory pressure.

2.4 Training Pipeline of 3D Gaussian Splatting
The 3D Gaussian Splatting pipeline, illustrated in Figure 2,
begins with 3D Gaussians that are initialized based on a 3D
point cloud obtained from Structure-from-Motion (SfM) [43].
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Figure 2. Overview of 3D Gaussian Splatting Training Pipeline.

Training iteratively performs following seven key steps.
1 3D Gaussians (ellipsoids) are projected onto the image
plane, producing 2D Gaussians (ellipses). Gaussians outside
the near and far planes of the viewing frustum are excluded
from projection (frustum culling). Projection of 3D Gaus-
sians consists of two steps. First, the geometric parameters
of each 3D Gaussian (i.e., 3D𝑚𝑒𝑎𝑛, 𝑠𝑐𝑎𝑙𝑒 , 𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛) are
transformed into its 2D counterparts (2D𝑚𝑒𝑎𝑛 and covari-
ance matrix). Second, the RGB color of each 2D Gaussian
is computed from the spherical harmonics coefficients and
the current view direction. After the projection, frustum
culling is performed again, excluding 2D Gaussians outside
the image boundaries from subsequent processing. 2 The
resulting 2D Gaussians are sorted by depth to ensure cor-
rect occlusion ordering. 3 The color of depth sorted 2D
Gaussians are blended to produce the final rendered image
by using the same classical volume rendering equation as
NeRF. 4 The difference between the rendered image and
the corresponding ground-truth image is computed to pro-
duce the loss value. 5 The gradients of this loss are back-
propagated. 6 The backpropagated gradients are used to
update the 3D Gaussian parameters. 7 Periodically (e.g., ev-
ery 100 iterations), 3DGS performs densification, adaptively
controlling Gaussian density to improve scene representa-
tion quality. Gaussians with large accumulated gradients are
split or cloned to capture fine details, while insignificant,
low-opacity Gaussians are pruned. This step stops after a
predefined iteration threshold.

3 Motivation
3.1 Scaling Challenges in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) demands significantly more
memory than NeRF-based methods due to its explicit scene
representation.

This memory pressure intensifies during training, consum-
ing over four times the memory of the Gaussian parameters
due to the need to store gradients, two optimizer states per
parameter (momentum and variance in case of Adam opti-
mizer), and additional activation memory. As demonstrated
in Figure 3a, increasing the number of Gaussians improves
rendering quality, but the GPU memory limit restricts 3DGS
scalability. A single RTX 4080 Super GPU can train about
9 million Gaussians, limiting the PSNR to 26.67 on Rubble
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Figure 3. Scaling Challenges and Memory Bottleneck Anal-
ysis on 3D Gaussian Splatting Training.

scene. This limitation is critical given that 3D Gaussian Splat-
ting is frequently used to train user-captured personalized
3D scenes, which often relies on consumer-grade GPUs with
limited memory capacity.

3.2 Memory Bottleneck Analysis in Training
Figure 3b shows a detailed breakdown of GPUmemory usage
with varying image resolutions measured on Building [46]
scene. We observe that Gaussian parameters, gradients, and
optimizer states account for around 90% of the total mem-
ory usage, while activations, used during forward and back-
ward propagation, only comprise around 10%. This trend
becomes even more pronounced when lower image resolu-
tions are used because activation size scales with the number
of rendered pixels. Considering that 1K to 4K resolutions
are commonly used in 3DGS [33, 34, 44, 46, 53], reducing
GPU memory usage requires targeting the Gaussian-related
components rather than activations.

3.3 Opportunities of Host Offloading
A unique characteristic of 3D Gaussian Splatting training
pipeline is that only Gaussians within the viewing frustum
are used for rendering (forward propagation), loss compu-
tation, and backward propagation. Our profiling results in
Figure 4 show that each training iteration utilizes only 8.28%
of total Gaussians on average in large-scale scenes. Most

3



Lee, et al.

Rubble Building LFLS SZIIT SZTU Aerial
0

20.0M

40.0M

N
um

be
r o

f
G

au
ss

ia
ns

12.6% 10.6% 6.4% 8.9% 8.9% 2.3%

Total Gaussians Active Gaussians
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Compared to Total Gaussians.

training stages operate on a small subset of Gaussians, ex-
cept for frustum culling, which needs access to all Gaussians,
and optimizer updates, which update all parameters and
optimizer states. This insight suggests offloading all Gauss-
ian parameters and optimizer states to host (CPU) memory,
transferring only necessary data to GPUmemory on demand
to significantly save GPU memory.

3.4 Challenges in Host Offloading
While conceptually simple, offloading Gaussian parameters
and optimizer states to host memory introduces several sig-
nificant challenges as described below.

Challenge 1: Frustum culling is slow on the CPU . Iden-
tifying Gaussians within the viewing frustum requires pro-
cessing the entire set of Gaussians. Accurate frustum culling
requires projecting each 3D Gaussian onto the 2D image
plane to determine whether it lies within the image bound-
aries. Performing this compute-intensive operation on the
CPU, with its significantly lower FLOPS compared to a GPU,
introduces substantial overhead.

Challenge 2: Slow optimizer updates on CPU due to low
CPUmemory bandwidth and inefficient nature of Adam
optimizer. Adam [24], which is the most widely used op-
timizer in 3DGS [22, 49, 53], updates all parameters and
optimizer states including those with zero gradients since
its momentum terms remain nonzero even when the gra-
dients are zero (refer to Equation 1). Thus, all parameters
and optimizer states must be updated by CPU, regardless of
whether the corresponding Gaussians were involved in for-
ward/backward propagation since GPU memory cannot hold
them all. Given that optimizer updates are memory-bound
and CPU memory bandwidth is typically much lower than
GPU memory, this leads to considerable training slowdown.

Challenge 3: Peak memory usage is bound by the most
demanding training image. Although only the Gaussians
within the viewing frustum of each training image are fetched
on demand, the peak memory usage is determined by the
image that requires the largest number of Gaussians. Even if
most training images activate a small subset of Gaussians, a
single image with an exceptionally large coverage (i.e., image
seen from a far viewpoint) can dominate the peak memory
requirement, limiting the effectiveness of host offloading.

GPU Memory
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Host Memory CPU GPUPCIe

Optimizer
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Figure 5. Baseline GS-Scale with Host Offloading.

4 GS-Scale Design
This section introduces GS-Scale, our novel system designed
to overcome the three challenges in the host offloading. GS-
Scale leverages strategic host offloading combined with sev-
eral system-level optimizations to enable efficient and scal-
able 3D Gaussian Splatting training on commodity GPUs.

4.1 Baseline GS-Scale with Host Offloading
To the best of our knowledge, no prior work has explored
host (CPU) offloading to reduce GPU memory usage in 3D
Gaussian Splatting training. Thus, we first implement a base-
line training system that offloads Gaussians to host memory
without specific optimizations proposed in Section 4.2. Fig-
ure 5 illustrates the system. All Gaussian parameters and
optimizer states reside in host memory. Only the necessary
Gaussians are transferred to GPU memory via a PCIe inter-
connect for forward and backward passes, with gradients
then sent back to the CPU for optimizer updates.

Training Process: Figure 6 illustrates the training iteration
of the baseline GS-Scale, and Figure 9b shows the correspond-
ing execution timeline. The memory state at each timestamp
(i.e., 𝑇0, 𝑇1, 𝑇2) in Figure 6 is a snapshot of the system at the
corresponding point in time shown in Figure 9b. 1 Training
begins with CPU-based frustum culling identifying Gaus-
sians within the training image’s viewing frustum (Gaussian
#1 and #3). This step relies solely on spatial relationships,
thus only geometric parameters, i.e., mean, scale, quaternion,
are used (refer to the hatched area). 2 The IDs of the selected
Gaussians are stored in valid_ids, and the corresponding
parameters (i.e., W1, W3) are transferred to GPU memory
via PCIe. (𝑡 =𝑇0). 3 Forward and backward passes are per-
formed on the GPU (𝑡 =𝑇1). 4 The gradients (i.e., G1, G3)
are transferred back to the CPU. 5 Adam optimizer updates
all Gaussian parameters and states on the CPU (𝑡 =𝑇2). Note
that Adam optimizer also updates Gaussian parameters that
do not receive gradients (i.e., W2, W4) because their corre-
sponding optimizer states (i.e., O2, O4) can remain nonzero.
As shown in Figure 6, updated weights and optimizer states
are highlighted for clarity.

Performance Challenges: Despite reducing GPU memory,
this baseline system incurs significant training time over-
head, making around 4× slower than GPU-only training.
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Figure 6. Training Iteration in Baseline GS-Scale.

Figure 7 presents its training time breakdown, measured on
a laptop with an RTX 4070 Mobile GPU. As discussed in
Section 3.4, the primary bottlenecks are frustum culling and
optimizer updates, both executed on the host CPU.

• Slow Frustum Culling on CPU ( 1 ): The CPU has sig-
nificantly lower compute capability (52× less peak
FLOPS on ASUS TUF Gaming F17 laptop) compared
to the GPU, making the compute-intensive frustum
culling a major bottleneck when performed on CPU.

• Slow Optimizer Updates on CPU ( 5 ): The CPU’s mem-
ory bandwidth is 3× slower than the GPU’s, which
turns memory-intensive optimizer updates into a ma-
jor bottleneck when executed on the CPU.

• GPU Idle Time Due to Dependency ( 3 , 5 ): A depen-
dency exists between GPU-based forward/backward
propagation and CPU-based optimizer updates, caus-
ing the GPU to remain idle for a significant amount
of time during CPU execution.

4.2 GS-Scale Optimizations
To address these bottlenecks, we will explore various system-
level optimization opportunities in the subsequent sections.
These optimizations leverage the unique characteristics of
the 3D Gaussian Splatting training pipeline (Section 3.3).

4.2.1 Selective Offloading. To mitigate the CPU-based
frustum culling bottleneck, we propose selective offloading,

0 20 40 60 80 100
Training Time Breakdown (%)

Rubble

Building

CPU Frustum Culling
Device to Host

Host to Device
CPU Optimizer Update

GPU Fwd/Bwd
Misc

Figure 7. Training Time Breakdown of Baseline GS-Scale
Measured on RTX 4070 Mobile GPU.

moving this operation to the GPU. Since only the position
and the size of Gaussians (i.e., mean, scale, quaternion) are
needed to determine visibility within the viewing frustum,
only the geometric attributes of all parameters are kept on
the GPU for fast frustum culling. The geometric attributes
comprise only 10 out of 59 Gaussian parameters, resulting
in a modest 17% GPU memory overhead. This is a worth-
while trade-off for significantly faster GPU-based frustum
culling and reduced training time. Also, the non-geometric
attributes (83%) are offloaded to host memory, still achieving
considerable memory saving.

4.2.2 Breaking Data Dependency via Parameter For-
warding. Optimizer updates become the primary bottleneck
after selective offloading. To mitigate this overhead, we in-
troduce a pipelined training scheme, enabling concurrent
execution of forward/backward passes on GPU and CPU
optimizer updates. Typically, such pipelining is not feasible
due to the data dependency since updated parameters are
needed for the the next training iteration’s forward pass.

We identify a unique opportunity offered by 3D Gaussian
Splatting training workloads. Each training iteration requires
only a small subset of parameters corresponding to Gaus-
sians within the viewing frustum of the next training image.
We exploit this with parameter forwarding, which performs
early updates of only the parameters needed for the next it-
eration on the CPU and forwards the updated parameters to
the GPU. Remaining parameters are updated asynchronously
on the CPU in a lazy manner, enabling pipelining with for-
ward/backward passes on GPU.

Figure 8 demonstrates the detailed working example of
GS-Scale with both selective offloading and parameter for-
warding. The memory state snapshot of Figure 8 (𝑇 ′

0 , 𝑇 ′
1 , 𝑇 ′

2 ,
and 𝑇 ′

3 ) corresponds to timestamps on the execution time-
line of Figure 9c. We assume that the forward and backward
propagation for visible Gaussians #1 and #3 are complete as
a part of the (𝑁 − 1)𝑡ℎ training iteration. Their gradients (G1
and G3) have been generated and stored in host memory at
𝑇 ′
0 . The frustum culling operation for the 𝑁 𝑡ℎ training itera-
tion is also complete, identifying visible Gaussians #1 and #2
and assigning 1 and 2 to valid_ids. These valid_ids are
used for the forward and backward propagation of the 𝑁 𝑡ℎ

training iteration.
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1 Parameter forwarding updates only the parameters re-
quired for the current iteration (W1 andW2) by using the cor-
responding gradient (G1) from the previous iteration; G2 is
zero at this point. 2 The updated parameters are transferred
to the GPU via PCIe; CPU-side copies of the parameters and
optimizer states remain unchanged (𝑡 = 𝑇 ′

0 ). To mitigate
the transfer overhead, parameters are partitioned into 32MB
chunks, enabling pipelined execution between CPU-side op-
timizer updates and host-to-device transfers. The execution
timeline in Figure 9c illustrates this scheme. 3 Once trans-
ferred, the GPU executes forward/backward passes using
these parameters and geometric parameters (mean, scale,
quaternion of Gaussian #1 and #2) already on the GPU via
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Host to Device transfers, M.S.Q. is mean/scale/quaternion.

selective offloading. 4 Since geometric parameters and the
corresponding optimizer states always reside in the GPU,
they are immediately updated after the forward/backward
pass (𝑡 = 𝑇 ′

1 ). 5 Concurrently (𝑡 = 𝑇 ′
1 ), remaining param-

eters and their optimizer states, including non forwarded
ones to the GPU, are lazily updated on the CPU, minimizing
GPU idle time. Note that this optimizer process is a part of
the (𝑁 − 1)𝑡ℎ training iteration. 6 Once the GPU-side geo-
metric parameters are updated, frustum culling is performed
using the updated parameters and the next training image,
identifying the visible Gaussians for the (𝑁 + 1)𝑡ℎ iteration.
7 Finally, gradients of non-geometric parameters are trans-
ferred back to CPU and held until the CPU completes its
optimizer updates (𝑡 =𝑇 ′

3 ).

4.3 Deferred Optimizer Update
While parameter forwarding enables pipelining between
CPU and GPU, a slow CPU-based optimizer can still domi-
nate overall execution, as shown in Figure 9c. This is mostly
due to low CPU memory bandwidth and Adam optimizer’s
inefficiency (updating all states and parameters, even those
with zero gradients). To further accelerate the CPU-based
Adam optimizer without algorithmic changes, we propose
deferred optimizer update. Although we use Adam as an ex-
ample, deferred optimizer update can be extended to most
momentum-based optimizers, such as SGD (stochastic gradi-
ent descent) with momentum and AdamW [35].

4.3.1 OptimizationOpportunities. We can defer updates
for parameters and optimizer states with zero gradients be-
cause their values can be precisely reconstructed by tracking

6
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deferred iterations. This is due to momentum based opti-
mizer’s deterministic behavior when gradients are zero, as
shown in Adam’s example (Equation 1). If gradient 𝑔𝑡 is zero,
momentum and variance𝑚𝑡 and 𝑣𝑡 are simply scaled by 𝛽1
and 𝛽2, respectively.

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 , 𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽𝑡1

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 , 𝑣𝑡 =
𝑣𝑡

1 − 𝛽𝑡2

𝑤𝑡+1 =𝑤𝑡 −
𝜂

√
𝑣𝑡 + 𝜖

𝑚̂𝑡

(1)

This property enables us to restore current optimizer
states (𝑚𝑡 and 𝑣𝑡 ) from deferred optimizer states (𝑚𝑡−𝑑−1 and
𝑣𝑡−𝑑−1, 𝑡 > 𝑑) and the defer count 𝑑 . If the gradient remains
zero for 𝑑 consecutive iterations and becomes non-zero at
iteration 𝑡 , momentum and variance can be reconstructed
by simply multiplying scaling factors as follows:

𝑚𝑡 = 𝛽𝑑+11︸︷︷︸
m_scale

𝑚𝑡−𝑑−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽𝑑+12︸︷︷︸
v_scale

𝑣𝑡−𝑑−1 + (1 − 𝛽2)𝑔2𝑡
(2)

Parameter𝑤𝑡 can also be restored from deferred parameter
𝑤𝑡−𝑑 , momentum𝑚𝑡−𝑑−1, and variance 𝑣𝑡−𝑑−1 by repeatedly
applying the weight update 𝑑 times:

𝑤𝑡 =𝑤𝑡−𝑑 −
𝑑−1∑︁
𝑙=0

𝜂
√
𝑣𝑡−𝑑+𝑙 + 𝜖

𝑚̂𝑡−𝑑+𝑙

=𝑤𝑡−𝑑 −
𝑑−1∑︁
𝑙=0

𝜂√︂
𝛽𝑙+12 𝑣𝑡−𝑑−1
1−𝛽𝑡−𝑑+𝑙2

+ 𝜖

·
𝛽𝑙+11 𝑚𝑡−𝑑−1

1 − 𝛽𝑡−𝑑+𝑙1

≈ 𝑤𝑡−𝑑 − 𝑚𝑡−𝑑−1√
𝑣𝑡−𝑑−1 + 𝜖

𝑑−1∑︁
𝑙=0

𝜂√︂
𝛽𝑙+12

1−𝛽𝑡−𝑑+𝑙2

·
𝛽𝑙+11

1 − 𝛽𝑡−𝑑+𝑙1︸                              ︷︷                              ︸
w_scale

(3)

Assuming that 𝜖 is small, we can factor out𝑚𝑡−𝑑−1 and
𝑣𝑡−𝑑−1, making the remaining expression (i.e., w_scale) a
precomputable constant, which simplifies weight restoration.
Note that 𝜖 is typically a very small constant introduced to
prevent divide-by-zero errors and this approximation has
negligible effect on training, which we substantiate in Sec-
tion 5.5. Finally, the restored𝑤𝑡 ,𝑚𝑡 , and 𝑣𝑡 are used to pro-
duce final weight𝑤𝑡+1 with the original Adam rule.

4.3.2 Implementation. Wepropose the deferred optimizer
update, which defers updates for Gaussians not involved in
forward and backward propagation. Instead of immediate
updates, a 4-bit counter increments for deferred updates,
allowing up to 15 deferrals. Parameters and optimizer states
are restored only when their corresponding gradient be-
comes non-zero or the counter reaches its maximum. Even

1 // N: Number of total Gaussians
2 // D: Dimension of each parameter
3 float param[N][D], grad[N][D], mom[N][D], var[N][D];
4 char counter[N]; int MAX = 15; // MAX: Max counter value
5 float lr, b1, b2, eps; // Hyperparameters
6
7 // n: Number of Gaussians with nonzero gradient
8 def deferred_update(vector<int> valid_ids[n], int step):
9 /* Gaussian IDs that need to be restored */
10 vector<int> update_ids;
11 update_ids = union(valid_ids, where(counter == MAX));
12
13 /* Precompute scaling factor */
14 float param_lut[MAX], mom_lut[MAX], var_lut[MAX];
15 float scale = b1 / sqrt(b2);
16 param_lut[0] = 0;
17 for i = 1 to MAX:
18 param_lut[i] = scale*param_lut[i−1] +
19 (lr*b1) / (sqrt(b2/(1−pow(b2, step−i)))
20 * (1 − pow(b1, step−i)));
21 for i = 0 to MAX:
22 mom_lut[i] = pow(b1, i+1);
23 var_lut[i] = pow(b2, i+1);
24
25 /* Perform optimizer update */
26 float bias_correction = sqrt(1 − pow(b2, step));
27 float step_size = lr / (1 − pow(b1, step));
28 for id in update_ids:
29 float delay = counter[id];
30 float w_scale = param_lut[delay];
31 float m_scale = mom_lut[delay];
32 float v_scale = var_lut[delay];
33 for k = 0 to D:
34 float w = param[id][k]; float g = grad[id][k];
35 float m = mom[id][k]; float v = var[id][k];
36 float m_new = m_scale*m + (1−b1)*g;
37 float v_new = v_scale*v + (1−b2)*g*g;
38 mom[id][k] = m_new;
39 var[id][k] = v_new;
40 w −= (w_scale * m) / (sqrt(v) + eps);
41 float denom = sqrt(v) / bias_correction + eps;
42 param[id][k] = w − step_size * m_new / denom;
43
44 /* Update counter for deferred Gaussians */
45 for id = 0 to N:
46 counter[id] += 1;
47 for id in update_ids:
48 counter[id] = 0;
49 }

Figure 10. Pseudocode of Deferred Optimizer Update.

with conservative estimates, this results in only 6.7% (1/15)
unnecessary updates due to counter saturation.
Figure 10 details the pseudocode. A set of Gaussians to

be updated (update_ids) is determined as the union of those
with nonzero gradients (valid_ids) and thosewhose counter
has reached MAX (Line 11). Three scaling factors for param-
eter and optimizer state restoration are precomputed and
stored in lookup tables for each deferred step 𝑑 (Line: 14–23),
following the equations in Section 4.3.1. For each Gaussian
in update_ids, its defer count is read (Line 29), scaling fac-
tors are retrieved (Line: 30-32), parameters and states are
reconstructed (Line: 34-40), and the standard Adam update
is applied (Line: 41–42). Counters for updated Gaussians are
then reset, while deferred ones increment by 1 (Line: 45-48).
Deferred optimizer update significantly reduces memory

accesses, proportional to the ratio of used to total Gaussians,
while incurring minimal overhead. Each counter lookup/up-
date requires a single 8-bit memory access (char datatype)
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Table 1. Specifications of GPU Platforms

GPU GPU Memory PCIe
BW

Host Memory
𝑹𝒃𝒘Size BW Size BW

Laptop
RTX 4070M 8 GB 256 GB/s 16 GB/s 32 GB 83.2 GB/s 3.1

Desktop
RTX 4080S 16 GB 736 GB/s 32 GB/s 64 GB 89.6 GB/s 8.2

Server
H100 80GB 80 GB 2.04 TB/s 64 GB/s 1 TB 614.4 GB/s 3.3

per Gaussian. However, a full optimizer update requires
7𝐷 ∗ 32-bit accesses per Gaussian (4𝐷 reads and 3𝐷 writes
for parameters, gradients, and optimizer states, where 𝐷 is
parameter dimension, i.e., 59; refer to Line 33-42). Parameter
and optimizer state restoration adds some computation but
incurs no additional memory accesses (Line 40), thus having
little impact on overall execution time, as optimizer updates
are primarily memory-bound.

4.3.3 Integration toGS-Scale. Deferred optimizer update
integrates into the GS-Scale pipeline with minor adjustments
to parameter forwarding. Since forwarded parameters must
be accurate, weight restoration is performed before forward-
ing the parameters. Neither CPU-stored original parameters
nor counters are modified during this parameter forwarding
process ( 1 in Figure 8), while they are updated in the actual
CPU optimizer update process ( 5 in Figure 8).

4.4 Balance-Aware Image Splitting Training
Even with GS-Scale’s significant GPU memory savings, peak
memory usage is bound by the the maximum number of
Gaussians from the most demanding training image. To ad-
dress such cases, we propose balance-aware image splitting
training. When the ratio of active to total Gaussians exceeds a
predefined threshold mem_limit, an image is spatially parti-
tioned into two sub-regions, each processed separately. Each
sub-region undergoes independent frustum culling, followed
by separate forward and backward passes to compute indi-
vidual losses and gradients. The gradients are transferred
to CPU immediately after they are computed and are later
aggregated on the CPU, mitigating GPU memory pressure.
Optimizer update is applied once for both regions using the
aggregated gradients on the CPU, ensuring mathematical
equivalence to the original training pipeline. Splitting a de-
manding image into two can halve memory usage during for-
ward/backward passes, preserving memory savings. While
more splits are possible, two sufficed in our benchmarks.

Finding an optimal split point is critical to balance Gauss-
ian counts, as naive equal-area splitting often leads to im-
balance due to varying Gaussian density. Our balance-aware
image splitting strategy, applied once before training using
the initial 3D Gaussians, addresses this. We efficiently bal-
ance counts by starting at the image midpoint, performing
frustum culling on both sides, and then iteratively adjusting

Table 2. Evaluated Benchmark Scenes

Dataset Scene Resolution Type

Mill-19 [46] Rubble 1152 × 864 Real World & OutdoorBuilding

GauU-Scene [48]
LFLS

1600 × 1064 Real World & OutdoorSZIIT
SZTU

MatrixCity [28] Aerial 1600 × 900 Synthetic

the split toward the less-populated side via a 5-step binary
search. This process adds only 0.08% overhead to total train-
ing time. Despite slight changes resulting from densifica-
tion, our benchmarks show an average split point ratio of
0.551:0.449, maintaining balance throughout training.

5 Evaluation
5.1 Methodology
Webuild GS-Scale on gsplat v1.5.0 [49], a popular PyTorch [40]
based 3D Gaussian Splatting framework, which achieves
state-of-the-art performance in terms of both training speed
and memory usage. We implement pipelined CPU–GPU exe-
cution using Python’s threading module and deferred op-
timizer update as a custom C++ PyTorch extension with
OpenMP parallelization. The source code of GS-Scale is avail-
able at https://github.com/SNU-ARC/GS-Scale.git. Experi-
ments are conducted primarily on laptop and desktop plat-
forms, with additional evaluation on a server. We use ASUS
TUF Gaming F17 laptop [4] with Intel Core i7-13620H CPU
and RTX 4070Mobile GPU, desktopwith Intel Core i9-13900K
CPU and RTX 4080 Super GPU, and server with 2×Intel Xeon
Gold 6530 CPU and H100 PCIe 80GB GPU. Table 1 shows
detailed specifications. 𝑅𝑏𝑤 [39] denotes the ratio of GPU
memory bandwidth to that of CPU. All platforms use CUDA
12.4 and PyTorch 2.2.0.

We evaluate GS-Scale on large-scale datasets (Table 2). We
use 4× downsampled images for Mill-19 dataset and 1.6k
resolution downsampled images for the other datasets fol-
lowing previous works [33, 34, 44, 46]. Following the original
3DGS recipe, we use a batch size of 1, as larger batches offer
minimal throughput gains due to limited parameter shar-
ing. We use three standard rendering quality metrics: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Learned Perceptual Image Patch Sim-
ilarity (LPIPS), where higher PSNR/SSIM and lower LPIPS
indicate better quality. GPU peak memory usage is measured
via PyTorch CUDA Memory Management APIs1.

We adjust densification settings (i.e., stop iteration, densifi-
cation threshold, and split/clone decision threshold) to scale
up or scale down Gaussian counts for each scene, following
1GPU peak memory is measured based on allocated memory. Since PyTorch
maintains reserved memory pools larger than the allocated memory to
reduce allocation/deallocation overhead, OOM errors may occur before
allocated memory reaches the GPU memory capacity.
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the Grendel’s methodology [53]. A mem_limit of 0.3 is used
for all experiments, splitting images when active Gaussians
exceed 30% of the total.

5.2 Memory Savings
We evaluate GS-Scale’s memory savings against the GPU-
Only system. Figure 12 demonstrates that GS-Scale achieves
a substantial 3.98× geomean reduction in peak memory us-
age across all datasets. The memory savings correlate with
the ratio of used to total Gaussians, explaining the great-
est improvement in the Aerial scene. Further reduction is
limited in the Aerial scene despite its low used Gaussian
ratio because 17% of parameters and optimizer states remain
resident on the GPU due to selective offloading.

5.3 Training Throughput and Memory Efficiency
Figure 11 evaluates training throughput across four systems:
(1) baseline GS-Scale, (2) GS-Scale with all optimizations
except deferred optimizer update, (3) GS-Scale with all opti-
mizations, and (4) GPU-Only system without host offloading.
Six scenes are evaluated across laptop and desktop platforms
and training speed is measured in epoch time. We make
smaller versions of each scene by adjusting densification set-
tings to enable throughput comparisons. However, we could
not create a smaller version that fits into GPU memory for
the Aerial scene, as its Gaussian count is already too large
at initialization. Since our downsizing strategy [53] relies on
limiting densification, scenes that trigger OOM errors before
densification cannot be further downsized.

GPU-only system frequently encounters OOM errors due
to limited memory, but GS-Scale’s significant memory sav-
ings enable much larger-scale 3DGS training. For instance,
the Aerial scene alone demands over 50GB of GPU mem-
ory without host offloading (Section 5.2), causing OOM on
both GPU-only systems. However, GS-Scale reduces peak
GPU memory usage by 5.5×, allowing the Aerial scene to
be trained on an RTX 4080 Super desktop. Furthermore, GS-
Scale achieves comparable training throughput to GPU-Only
systems, reaching geomean of 1.22× (laptop) and 0.84× (desk-
top) of GPU-Only performance (excluding OOM cases). A
takeaway is that GS-Scale enables much larger scene training
and consistently maintains high training throughput, even as
GPU-Only systems frequently encounter OOM errors.

5.4 Impact of Proposed Optimizations
Figure 11 shows how GS-Scale’s optimizations improve the
training throughput over the baseline GS-Scale. We see a
geomean improvement of 4.47× on laptop and 4.57× on desk-
top (excluding OOM cases), demonstrating GS-Scale’s effec-
tiveness. The performance of GS-Scale depends on two key
factors: (1) the GPU to CPU memory bandwidth ratio (𝑅𝑏𝑤)
and (2) the average ratio of used to total Gaussians (Figure 4).
PCIe bandwidth also has some effect, but its impact is limited
as it accounts for only a small portion of the overall training
time. On platforms with lower 𝑅𝑏𝑤 (like laptops), GS-Scale
can perfectly pipeline CPU optimizer updates with GPU exe-
cution, even surpassing GPU-Only speeds where operations
are executed sequentially. This is because lower GPU mem-
ory bandwidth slows down the memory bound backward
pass (i.e., gradient accumulation) on GPU, providing enough
time for CPU updates to be pipelined. Furthermore, a lower
ratio of used to total Gaussians amplifies the benefits of
the deferred optimizer update, as memory access reduction
scales with this ratio, explaining the notable speedups in
Aerial and LFLS scenes.

5.5 Training Quality Impact of GS-Scale
The only approximation in GS-Scale is ignoring the 𝜖 term
in the deferred optimizer update for factoring out momentum
and variance terms. To analyze its impact, we compare the
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Figure 13. Evaluation of GS-Scale’s Rendering Quality and Scalability Across Gaussian Scales.

Table 3. Impact of GS-Scale on Training Quality.

Scene Method PSNR↑ SSIM↑ LPIPS↓

Rubble Original 26.63 0.808 0.194
GS-Scale 26.62 0.808 0.194

Building Original 22.74 0.777 0.211
GS-Scale 22.78 0.777 0.211

LFLS Original 24.04 0.752 0.234
GS-Scale 24.08 0.752 0.233

SZIIT Original 26.28 0.797 0.213
GS-Scale 26.29 0.797 0.213

SZTU Original 24.90 0.835 0.155
GS-Scale 24.95 0.836 0.155

Aerial Original 27.69 0.873 0.127
GS-Scale 27.66 0.873 0.128

rendering quality of models trained with the original method
and with GS-Scale. Table 3 shows this approximation has
negligible impact on rendering quality, confirming that GS-
Scale maintains the rendering quality of the trained models
as in the original training pipeline.

5.6 Improved Scalability and Rendering Quality
Leveraging its memory savings discussed in Section 5.2, GS-
Scale enables training with substantially more Gaussians
under the same GPU memory budget, leading to higher ren-
dering quality.We assess this by examining rendering quality
changes with increasing Gaussian counts. Figure 13 demon-
strates that more Gaussians consistently yield higher PSNR
and SSIM and lower LPIPS, indicating better rendering and
reconstruction quality. The figure also shows GS-Scale ex-
tends the maximum Gaussians scaling across different plat-
forms and systems. On a laptop with RTX 4070 Mobile GPU,
GS-Scale scales the number of Gaussians from 4 million to
18 million, achieving geomean 2.6% PSNR and 5.1% SSIM
increases, and a 28.7% LPIPS decrease. On a desktop with
RTX 4080 Super GPU, it scales the number of Gaussians
from 9 million to 40 million, resulting in geomean 1.6% PSNR
and 3.6% SSIM increases, and 30.5% LPIPS decrease. These
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Figure 14. Training Throughput on Server Platform.

results substantiate that the scalability of GS-Scale directly
translates into higher rendering quality across platforms.

5.7 Evaluation on Server Platform
Although GS-Scale is primarily designed for laptop and desk-
top platforms, we also evaluate it on server platform with
H100 GPU to demonstrate its broader applicability. The re-
sults on server shown in Figure 14 follows a similar trend
with laptop and desktop platforms, while substantial speedup
is achieved on Aerial scene thanks to the large speedup gain
from deferred optimizer update as discussed in Section 5.3.
We also observe that the overall training throughput normal-
ized to GPU-only on the server is relatively lower than that
of laptop despite having a similar 𝑅𝑏𝑤 value. This is because
the server consists of two NUMA nodes, making it relatively
harder for deferred optimizer update with random memory
accesses to exploit the peak CPU memory bandwidth com-
pared to laptop with single node.

5.8 Sensitivity Study
Sensitivity to mem_limit. Figure 15a and b demonstrate
how GPU memory usage and training throughput changes
with varying mem_limit thresholds. We can save more GPU
memory by decreasing this threshold at the cost of slower
training throughput. Slowdown results from the additional
frustum culling and gradient accumulation required by image
splitting. In our experiments, we use mem_limit of 0.3 to
prioritize training throughput over memory savings.
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Figure 15. (a), (b) Sensitivity to mem_limit on Rubble scene.
(c) Sensitivity to GPU on LFLS scene. Desktop is used.

Sensitivity to GPU. Figure 15c shows GS-Scale’s training
throughput on additional desktop GPUs (RTX 4070 Super,
RTX 4090). Higher 𝑅𝑏𝑤 values on RTX 4090 (𝑅𝑏𝑤 = 11.3
VS. 𝑅𝑏𝑤 = 5.6 on RTX 4070 Super) with greater GPU mem-
ory bandwidth (1.01 TB/s VS. 504.2 GB/s) explains its lower
normalized throughput of GS-Scale compared to GPU-Only.

Sensitivity to Image Resolution. Figure 16 shows that
GPU memory savings slightly decrease as training image
resolution increases since growing activation memory (Fig-
ure 3b) reduces the relative portion of offloadable parameters,
optimizer states, and gradients. Conversely, relative train-
ing throughput increases. This is because higher resolutions
slow down the GPU-based forward/backward pass, provid-
ing more slack for pipelining CPU-based optimizer updates.

6 Related Work
Acceleration on 3D Gaussian Splatting Rendering. Sev-
eral works have been proposed to accelerate 3DGS rendering
through both software optimizations [12, 13, 18, 20, 30, 41,
45, 54] and specialized accelerators [14, 25, 27, 32, 47, 50].
For software-only solutions, GS-Cache [45] reduces redun-
dant computations via caching data across frames, com-
bined with an efficient scheduler and optimized GPU kernels.
FlashGS [13] eliminates unnecessary computations via a
precise intersection test and improves GPU utilization by
overlapping memory access with computation. For hardware
accelerators, GSCore [25] introduces the first dedicated accel-
erator for 3DGS, eliminating sorting and rasterization for un-
necessary Gaussians through algorithm-hardware co-design.
Lumina [14] also mitigates sorting and rasterization bottle-
necks by sharing sorting results across frames and caching
previous rendering results via hardware support. MetaSapi-
ens [32] adopts efficiency-aware pruning and foveated ren-
dering, co-designed with a specialized accelerator to enable
real-time rendering.

Acceleration on 3D Gaussian Splatting Training. 3DGS
training suffers from large amount of atomic operations
during gradient accumulation and various works [10, 11,
19, 29, 36] have been proposed to address this bottleneck.
DISTWAR [11] accelerates atomic operations by enabling
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Figure 16. Impact of Image Resolution on Memory Usage
and Throughput on Desktop for Rubble Scene.

warp-level reduction and leveraging L2 atomic units (ROP
units). ARC [10] further addresses atomic bottlenecks by
introducing specialized hardware unit for atomic operations.
GSArch [19] reduces both off-chip and on-chip memory ac-
cesses in 3DGS training through gradient pruning and on-
chip memory access rearrangement.

Scaling 3D Gaussian Splatting. Recent works have tack-
eled the challenges in large scale 3DGS training via both
algorithm level and system level solutions. Most algorithm-
level approaches [23, 26, 31, 33, 34, 44] follow a divide-and-
conquer strategy: partitioning the 3D scene into smaller
chunks, training them independently, and later merging the
results.While this avoids out-of-memory errors, it fundamen-
tally alters the original 3DGS training recipe. Grendel [53] is
the first framework to enable large-scale 3DGS training with-
out modifying the original 3DGS algorithm. By addressing
GPU load imbalance and inter-GPU communication over-
head in a distributed setting, Grendel supports efficient train-
ing with tens of millions of Gaussians. Importantly, Grendel
shows that simply supporting the original 3DGS pipeline
alone leads to substantially faster training and superior ren-
dering quality compared to divide-and-conquer methods,
highlighting the importance of system-level solutions in
3DGS training.

7 Conclusion
3D Gaussian Splatting offers high visual quality and fast ren-
dering speed, but its training demands significant GPU mem-
ory. GS-Scale resolves this by offloading Gaussians to host
memory, transferring only necessary subsets to the GPU on
demand, greatly reducing GPU memory usage. GS-Scale also
optimizes CPU-based frustum culling and optimizer updates
through selective offloading, parameter forwarding, and a
deferred optimizer update. Experiments show GS-Scale saves
GPU memory demands by 3.3×-5.6×, maintaining training
throughput comparable to GPU-only systems. This enables
GS-Scale to facilitate much larger-scale 3DGS training on
commodity GPUs, achieving geomean 28.7% and 30.5% LPIPS
improvement on an RTX 4070 Mobile GPU and RTX 4080
Super GPU respectively.
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