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ABSTRACT

Identifying previously unseen data is crucial for enhancing the robustness of deep
learning models in the open world. Generalized category discovery (GCD) is a
representative problem that requires clustering unlabeled data that includes known
and novel categories. Current GCD methods mostly focus on minimizing intra-
cluster variations, often at the cost of manifold capacity, thus limiting the rich-
ness of within-class representations. In this paper, we introduce a novel GCD ap-
proach that emphasizes maximizing the token manifold capacity (MTMC) within
class tokens, thereby preserving the diversity and complexity of the data’s intrinsic
structure. Specifically, MTMC’s efficacy is fundamentally rooted in its ability to
leverage the nuclear norm of the singular values as a quantitative measure of the
manifold capacity. MTMC enforces a richer and more informative representation
within the manifolds of different patches constituting the same sample. MTMC
ensures that, for each cluster, the representations of different patches of the same
sample are compact and lie in a low-dimensional space, thereby enhancing dis-
criminability. By doing so, the model could capture each class’s nuanced semantic
details and prevent the loss of critical information during the clustering process.
MTMC promotes a comprehensive, non-collapsed representation that improves
inter-class separability without adding excessive complexity.

1 INTRODUCTION

Machine learning models encounter substantial challenges when deployed in real-world settings
due to the intractability of objects in the open world (Zhou et al., 2022; Sarker, 2021; Weiss et al.,
2016). The diversity of real-world objects exceeds the scope of data collected for training (Wu et al.,
2024), and labeled data covers even fewer categories. Traditional deep learning models, trained on
predefined categories, are ill-equipped to handle new category samples. To enhance the reliability
of model deployment in real-world scenarios, open-world learning has emerged, aiming to identify
and categorize unknown samplese (Han et al., 2019; Geng et al., 2020; Vaze et al., 2022) in new
environments.

A plethora of approaches have been proposed to identify and categorize unknown samples, such as
open-set recognition (OSR) (Geng et al., 2020) and novel class discovery (NCD) (Han et al., 2019).
However, OSR treats all unknown samples as a single category. On the other hand, NCD relies
on a strong assumption that all unlabeled samples encountered come from new classes. To relax
this assumption, Generalized Category Discovery (GCD) (Vaze et al., 2022) permits the presence of
known classes within unlabeled data. GCD relies on contrastive learning (Choi et al., 2024) or pro-
totype learning (Wen et al., 2023) to reduce the distance between semantically identical samples in
the embedding space. However, current approaches face a significant challenge, i.e., the compressed
inter-class distribution may lead to the loss of useful information. This results in each cluster be-
ing unable to fully represent the semantic details within a class, leading to bias within the feature
space, which is detrimental to category discovery. The reason is that bias prevents the inter-class
decision boundaries from aligning with the boundaries between real-world categories, making it im-
possible for the model to accurately separate clusters during the discovery of categories (Figure 5
demonstrates that incomplete intra-class representations result in low clustering accuracy).
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To this premise, we challenge the status quo by raising an open question: Can deep models ac-
curately separate new semantics during the category discovery by enhancing the completeness of
intra-class representations?

The GCD aims to partition data points into distinct clusters, which are distributed on low-
dimensional manifolds (Souvenir & Pless, 2005; Wah et al., 2011) within high-dimensional spaces.
Recently, Maximum Manifold Capacity Representations (MMCR) (Yerxa et al., 2023; Schaeffer
et al., 2024; Isik et al., 2023) have sought to learn representations by examining the separability of
manifolds. In this context, manifolds containing views of the same scene are both compact and low-
dimensional, while manifolds corresponding to different scenes are maximally separated. Building
on this concept, we introduce Maximum Class Token Manifold Capacity (MTMC). Specifically,
we associate low intra-class representation completeness with low manifold capacity. Our research
narrows the focus from the entire feature space to the intra-class feature space, examining manifold
capacity at a more granular token level. We consider the representation of a sample as its manifold,
with the sample representation in GCD derived from the class token provided by Vision Transformer
(ViT) (Dosovitskiy, 2020). Under the attention mechanism, the class token refines the patch features,
thus serving as a proxy for the sample manifold. Given that a comprehensive and information-rich
class token manifold necessitates a large capacity, we measure manifold capacity using the nuclear
norm of the class token and aim to maximize this norm. MTMC enhances the completeness of sam-
ple representation, enabling clusters to capture more intra-class semantic details while preventing
dimensionality collapse, thus improving inter-class separability accuracy.

Our contributions can be summarized as follows:

• We propose a method called MTMC to enhance representation completeness, thereby em-
powering the model for generalized category discovery. We theoretically analyze the effec-
tiveness of MTMC as a means to address dimensionality collapse and enhance representa-
tion quality.

• We increase the capacity of the class token manifold by maximizing the nuclear norm of
the singular value kernel of the class token, allowing clusters to represent more intra-class
semantic details.

• MTMC is simple to implement. Experiments on coarse-grained and fine-grained datasets
prove the effectiveness of precision in category discovery and accuracy in estimating the
number of categories.

2 PRELIMINARY AND MOTIVATION

2.1 NOTATION OF GCD

For each dataset, consider a labeled subset Dl = {(xl
i, y

l
i)} ⊂ X × Yl and an unlabeled subset

Du = {(xu
i , y

u
i )} ⊂ X × Yu. Only known classes can be found in Dl, while Du encompasses

known and novel classes, translating to Yl = Cknown and Yu = Cknown ∪ Cnovel. The task of
models involves clustering on both the known and novel classes in Du. The number of novel classes
represented as Knovel can be determined beforehand (Vaze et al., 2022; Pu et al., 2023; Zhao et al.,
2023). The functions f(·) and g(·) perform as the feature extractor and projection head, respectively.
Both the feature hi = f(xi) and the projected embedding zi = g(hi) are under L-2 normalization.

2.2 OPTIMIZATION OBJECTIVE OF GCD

For compact clustering, GCD has two universally applicable components (Appendix A.xx), formally
represented as supervised and unsupervised contrastive learning Lsup+Lunsup, and prototype learning
Lproto. The goal is to pull similar samples closer in feature space strongly. Their optimization
objectives are summarized as follows: the pioneering work GCD (Vaze et al., 2022) minimizes
LGCD = Lsup + Lunsup, which conducts contrastive learning on samples within a mini-batch, and
performs semi-supervised clustering after training. LCMS = Lsup+Lunsup+Lproto, CMS (Choi et al.,
2024) incorporates mean-shift, implicitly introducing a prototype by including the feature mean of
samples into contrastive learning. SimGCD (Wen et al., 2023) constructs a prototype classifier
and performs semi-supervised learning like FixMatch and self-distillation with LSimGCD = Lproto.
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Low/High cls token manifold capacity 

GCDMaximum
Token

Manifold
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Collapse/Complete intra-class representation

Figure 1: Overview of Maximum Token Manifold Capacity.

The schemes above yield good clustering results, but they overly focus on forming individual class
clusters, neglecting the incomplete intra-class representation, which is insufficient to cover the real
distribution and represents a low manifold capacity.

2.3 MOTIVATION

Manifold capacity can be regarded as a sample-level distribution range. For low-dimensional data,
manifold capacity can be intuitively understood as a combination of manifold radius and dimen-
sion (Yerxa et al., 2023). Maximum Manifold Capacity Representation can achieve self-supervised
learning by maximizing the capacity of the manifold of samples and their augmented views, causing
samples to uniformly fill the feature space and similar samples to be closer.

Before formally introducing the details of the methodology, we briefly discuss the motivation: (1)
Since GCD already has optimization objectives like LSimGCD, LCMS that bring the embedding dis-
tances of similar samples closer, overly compact clusters represent an incomplete representation.
Therefore, we aspire to enhance the feature completeness within the intra-class, ensuring its range
is sufficient to cover the real distribution, to promote more accurate clustering, as correct and rich
clusters help shape more reasonable inter-class decision boundaries. (2) Inspired by the sample-level
MMCR, maximizing the manifold capacity of samples and their augmented views can separate sam-
ples. Since our research point is the richness of intra-class representation, maximizing the manifold
capacity at the token level after cutting samples into patches would increase the embedding distance
between different semantic patches within a cluster, enhancing the intra-class manifold capacity. (3)
Estimating token-level manifold capacity is key, we trace the formation of token embeddings for
various attributes and determine that maximizing the class token manifold capacity can reasonably
and succinctly enhance the completeness of intra-class representation.

3 METHODOLOGY

As shown in Figure 1, Maximum Token Manifold Capacity is pithy. For simplicity, we use [cls]
to represent the class token and [vis] to represent visual/patch tokens. In Subsection 3.1, we
trace the formation process of [cls] and [vis], and identify [cls] as the sample centroid, also
providing the definition of class token manifold extent, which is strongly correlated with capacity. In
Subsection 3.2, we introduce the optimization objective of maximum class token manifold capacity
and offer a concise code illustration.

3.1 EXTENT OF CLASS TOKEN MANIFOLD

We introduce the concept of “sample centroid” without imposing restrictions on network structures,
whether they are CNNs or Transformers. In the GCD task, the backbone network is ViT, and the
[cls] is treated as the ”sample centroid” refined from [vis]. Mathematically, the refined sample
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centroid can be described as the weighted average of all visual tokens using a self-attention mecha-
nism. Here, the sample centroid refers to the weighted aggregation of features from all visual tokens
by the class token through a self-attention mechanism to form the global representation of the image.
The concepts of sample centroid manifold and class token manifold are equivalent in nature.

Specifically, in the self-attention layer of the Transformer, each token (including [cls] and
[vis]) calculates attention scores with respect to all other tokens. These attention scores are
used to weight the features of each visual token for updating the class token. The self-attention
mechanism can be represented as Attention(q,k,v) = softmax

(
qk⊤
√
dk

)
v. The q,k,v represent

the query, key, and value matrices, respectively. These matrices are generated from the embedding
vectors of tokens through linear layers. dk is the square root of the dimension of the key vectors. It
is used to scale the dot products to prevent gradient vanishing or exploding.

For the class token, its update can be represented as:

[cls]′ = Attention([cls],k,v) + [cls], (1)

where [cls]′ represents the updated class token embedding, and + denotes the residual connec-
tion. In the self-attention mechanism, the update of the class token can be seen as the weighted
average of the features of all patch tokens, where the attention scores determine the weights:

[cls]′ =

H×W∑
i=1

αi[vis]i + [cls]. (2)

The αi represents the attention score of the class token to the i-th patch token and [vis]i denotes
the embedding vector of the i-th patch token. The class token can be regarded as the weighted
average of the features of all patch tokens, known as the ”sample centroid,” where the self-attention
mechanism dynamically computes the weights. This weighted average allows the class token to
capture the global features of the image, rather than just a simple arithmetic mean.

Given [vis] and [cls], the extent of the sample centroid manifold, also known as the class token
manifold extent (CTME), can be represented as:

CTME = ∥[cls]∥∗, (3)

where ∥ · ∥∗ represents the nuclear norm. The sample centroid manifold contains the magnitudes of
each individual visual/patch token manifold. If Equation 3 is considered as the optimization objec-
tive, that is, when the sample centroid manifold is maximized, it implicitly minimizes each [vis]
manifold, thereby enhancing the intra-manifold similarity. Further understanding is provided in
Subsection 3.2.

3.2 MAXIMUM CLASS TOKEN MANIFOLD CAPACITY

This subsection provides a detailed description of Maximum Class Token Manifold Capacity.
Specifically, for the labeled samples provided in the GCD task, we assume that the annotations
provided by human annotators are sufficiently accurate and unbiased. Therefore, supervised meth-
ods can effectively shape the manifold of these samples. As a result, we focus on enhancing the
manifold capacity of the unlabeled samples.

The functions f(·) and g(·) perform as the feature extractor and projection head, respectively. Both
the feature hi = f(xi) and the projected embedding zi = g(hi) are under L-2 normalization.

For the unlabeled samples in the mini-batch Bu, after the feature extractor cuts them into H × W
patches, the features are sent to the projection layer to obtain embeddings, which are the visual
tokens of unlabeled samples:

[vis]u = zui
def
= g(f(xu

i )) ∈ Z, (4)
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where, Z is commonly the D-dimensional hypersphere SD−1 def
=

{
z ∈ RD : zT z = 1

}
or RD.

Furthermore, from Equation 2, we can obtain the refined sample centroid that represents [vis]u,
which is denoted as [cls]u, and define the loss function for maximum class token manifold ca-
pacity:

LMTMC
def
= −∥[cls]u∥∗

def
= −

rank([cls]u)∑
r=1

σr([cls]
u), (5)

where σr([cls]
u) is the r-th singular value of [cls]u.

Minimizing the MTMC loss implies maximizing the nuclear norm of the class token. This means
that without MTMC, the manifold of samples within clusters has a larger range, resulting in a lower
nuclear norm of the centroid matrix. After training, in a geometric intuitive explanation, the [vis]
manifolds can be imagined as subspaces in a high-dimensional space, and each [vis] manifold
represents the possible value range of the corresponding slice feature. When maximizing CTME,
geometrically speaking, [cls] tries to find the most representative “center” position in the overall
space composed of these [vis] manifolds, so that a certain comprehensive distance (reflected in
the nuclear norm) from all [vis] to this “center” is minimized. As a result, the centroid matrix
has a larger nuclear norm, and the representation within the cluster becomes more complete as the
collapsed representations unravel.

As shown in the following code, the implementation of MTMC is extremely concise. The core code
consists of only three lines. After calculating the loss LGCD of any GCD scheme, the class token is
obtained and singular value decomposition is performed, and the sum of singular values is added to
the backward propagation of the loss LGCD + λLMTMC.

1 def forward(self, x_unlabel, loss):
2 f_unlabel = self.featurizer(x_unlabel) # get class and visual tokens
3 f_cls_unlabel = f_unlabel[:,0] # get class token
4 z_cls_unlabel = self.projector(f_cls_unlabel) # get feature embedding
5 _,s,_ = torch.svd(z_cls_unlabel) # singular value decomposition
6 loss += self.lambda * torch.sum(s) # MTMC
7 return loss

3.3 MAXIMUM CLASS TOKEN MANIFOLD CAPACITY INCREASES VON NEUMANN ENTROPY

The autocorrelation matrix of the test sample class token manifold is denoted as A ≜∑N
i=1

1
N [cls]i[cls]

⊤
i = CLS⊤CLS/N . We employ von Neumann entropy (Petz, 2001; Boes

et al., 2019) to measure manifold capacity. This gives the advantage of focusing exclusively on
the eigenvalues obtained after decomposition, allowing for graceful handling of eigenvalues that are
extremely close to zero. The von Neumann entropy can be expressed as Ĥ (A) ≜ −

∑
j λj log λj ,

representing the Shannon entropy of the eigenvalues of A, with values ranging between 0 and log d.
A larger Ĥ(A) indicates a greater manifold capacity of the features.

Von Neumann entropy is an effective measure for assessing the uniformity of distributions and
managing extreme values. As illustrated in Figure 2, the incorporation of MTMC results in a von
Neumann entropy for the feature embeddings that is significantly higher than that of the original
scheme. Furthermore, it is possible to relate von Neumann entropy to the rank of the [cls]. When
A possesses uniformly distributed eigenvalues with full rank, the entropy is maximized, which can
be explicitly expressed as below.

Theorem 1 For a given [cls] autocorrelation A = CLS⊤CLS/N ∈ Rd×d of rank k (≤ d),

log (rank (A)) ≥ Ĥ (A) (6)

where equality holds if the eigenvalues of A are uniformly distributed with ∀kj=1λj = 1/k and
∀dj=k+1λj = 0.
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Figure 2: Comparison between log(rank(A)) and Ĥ(A). The count of the largest eigenvalues
necessary to account for 99% of the total eigenvalue energy serves as a surrogate for the rank.

A higher von Neumann entropy generally implies a larger manifold capacity. We provide a compar-
ison of the von Neumann entropy for different schemes in Figure 2, and it can be clearly observed
that MTMC has a higher value, indicating the high-rank nature of the features and the uniformity of
neuron activation in each dimension of representation.

4 EXPERIMENTS

4.1 SETUP

Benchmarks. MTMC is evaluated on a total of six image recognition benchmarks. These include
two conventional datasets, CIFAR100 (Krizhevsky et al., 2009) and ImageNet100 (Geirhos et al.,
2019), and four fine-grained datasets, CUB-200-2011 (Wah et al., 2011), Stanford Cars (Krause
et al., 2013), FGVC Aircraft (Maji et al., 2013), and Herbarium19 (Tan et al., 2019). To segregate
target classes into sets of known and unknown, we adhere to the splits defined by the Semantic
Shift Benchmark (SSB) (Vaze et al., 2021) when working with CUB, Stanford Cars, and FGVC
Aircraft. The splits from the previous study (Vaze et al., 2022) is employed for the remaining
datasets, we designate 80% of the classes as known under the CIFAR100 benchmark. For the rest
of the benchmarks, the proportion of known classes stands at 50%. Our labeled set, known as Dl,
comprises 50% images from the known classes for all benchmarks.

Evaluation Protocols. We assess MTMC’s effectiveness via a two-step process. First, we cluster the
complete collection of images defined as D. Then, we measure the accuracy on the set Du. In line
with previous research (Vaze et al., 2022), accuracy is determined by comparing the assignments
to the actual labels using the Hungarian optimal matching (Kuhn, 1955). This method bases the
match on the number of instances that intersect between each pair of classes. Instances that do
not belong to any pair, i.e., unpaired classes, are viewed as incorrect predictions. On the other
hand, instances belonging to the most abundant class within each ground-truth cluster are taken as
correct for accuracy calculations. We present the accuracy for all unlabeled data, and the accuracy
is classified as old/known and new/novel, respectively. The accuracy using the estimated number
of classes and the ground-truth K are reported. This allows us to compare MTMC with previous
studies that have assumed the availability of the K during the evaluation phase.

Implementation Details. The purpose of MTMC is to empower existing GCD schemes to improve
the completeness of representation. We closely adhere to their initial implementation details for an
effective comparison. We use a pre-trained DINO ViT-B/16 (Caron et al., 2021; Dosovitskiy, 2020),
utilizing it as our image encoder along with a projection head, an approach consistent with existing
methods (Vaze et al., 2022; Zhang et al., 2023; Pu et al., 2023). The projection head consists of three
2,048-dimensional linear layers succeeded by GeLU activation. Only the parameters of the last layer
of DINO and the projection head undergo training, while others are frozen. The dimension D of
the projection head is 768. All of our experiments are performed with a single NVIDIA RTX4090.
The SGD optimizer (Ruder, 2016) is used with a batch size of 128 and a weight decay of 5e-5. The
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Table 1: Comparison with the SOTAs on GCD, evaluated with or without the K for clustering.

Method
CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

All Old New All Old New All Old New All Old New All Old New All Old New

(a) Clustering with the ground-truth number of classes K given († denotes reproduced results)

Agglomerative (Ward Jr, 1963) 56.9 56.6 57.5 73.1 77.9 70.6 37.0 36.2 37.3 12.5 14.1 11.7 15.5 12.9 16.9 14.4 14.6 14.4
RankStats+ (Han et al., 2020) 58.2 77.6 19.3 37.1 61.6 24.8 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 27.9 55.8 12.8
UNO+ (Fini et al., 2021) 69.5 80.6 47.2 70.3 95.0 57.9 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 28.3 53.7 14.7
ORCA (Cao et al., 2022) 69.0 77.4 52.0 73.5 92.6 63.9 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 20.9 30.9 15.5
GCD (Vaze et al., 2022) 73.0 76.2 66.5 74.1 89.8 66.3 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 35.4 51.0 27.0
DCCL (Pu et al., 2023) 75.3 76.8 70.2 80.5 90.5 76.2 63.5 60.8 64.9 43.1 55.7 36.2 - - - - - -
PrCAL (Zhang et al., 2023) 81.2 84.2 75.3 83.1 92.7 78.3 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 37.0 52.0 28.9
GPC (Zhao et al., 2023) 77.9 85.0 63.0 76.9 94.3 71.0 55.4 58.2 53.1 42.8 59.2 32.8 46.3 42.5 47.9 - - -
PIM (Chiaroni et al., 2023) 78.3 84.2 66.5 83.1 95.3 77.0 62.7 75.7 56.2 43.1 66.9 31.6 - - - 42.3 56.1 34.8

SimGCD (Wen et al., 2023)† 80.1 81.5 77.2 83.3 92.1 78.9 60.7 65.6 57.7 51.2 69.4 42.4 51.2 56.5 48.6 44.7 57.4 37.9
+ Ours 80.2 81.5 77.5 86.7 93.1 83.6 62.1 65.8 60.3 52.3 70.0 43.7 55.1 58.9 53.1 45.6 57.8 39.0
△ +0.1 +0.0 +0.3 +3.4 +1.0 +4.7 +1.4 +0.2 +2.6 +1.1 +0.6 +1.3 +3.9 +2.4 +4.5 +0.9 +0.4 +1.1

CMS (Choi et al., 2024)† 79.5 85.4 67.7 83.0 95.6 76.6 67.1 74.9 63.2 51.1 75.1 39.5 51.8 62.5 46.5 36.5 55.4 26.4
+ Ours 79.0 85.5 66.1 84.8 95.6 79.5 71.1 74.1 66.9 52.5 73.9 42.1 52.0 61.8 47.0 36.3 56.5 25.4
△ -0.5 +0.1 -1.6 +1.8 +0.0 +2.9 +4.0 -0.8 +3.7 +1.4 -1.2 +2.6 +0.2 -0.7 +0.5 -0.2 +1.1 -1.0

(b) Clustering without the ground-truth number of classes K given

Agglomerative (Ward Jr, 1963) 56.9 56.6 57.5 72.2 77.8 69.4 35.7 33.3 36.9 10.8 10.6 10.9 14.1 10.3 16.0 13.9 13.6 14.1
GCD (Vaze et al., 2022) 70.8 77.6 57.0 77.9 91.1 71.3 51.1 56.4 48.4 39.1 58.6 29.7 - - - 37.2 51.7 29.4
GPC (Zhao et al., 2023) 75.4 84.6 60.1 75.3 93.4 66.7 52.0 55.5 47.5 38.2 58.9 27.4 43.3 40.7 44.8 36.5 51.7 27.9
PIM (Chiaroni et al., 2023) 75.6 81.6 63.6 83.0 95.3 76.9 62.0 75.7 55.1 42.4 65.3 31.3 - - - 42.0 55.5 34.7
CMS (Choi et al., 2024)† 77.8 84.0 65.3 83.4 95.6 77.3 66.2 69.7 64.4 47.2 67.6 37.3 50.8 60.0 46.2 38.5 57.3 28.4

+ Ours 79.5 84.7 69.1 84.3 95.7 78.8 68.7 74.1 66.0 50.6 70.3 41.0 51.1 57.7 47.7 38.0 56.9 27.9
△ +1.7 +0.7 +3.8 +0.9 +0.1 +1.5 +2.5 +4.4 +1.6 +3.4 +2.7 +3.7 +0.3 -2.3 +1.5 -0.5 -0.4 -0.5

Table 2: Estimated number and error rate of K.

Method
CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

K Err(%) K Err(%) K Err(%) K Err(%) K Err(%) K Err(%)

Ground truth 100 - 100 - 200 - 196 - 100 - 683 -

GCD (Vaze et al., 2022) 100 0 109 9 231 15.5 230 17.3 - - 520 23.8
DCCL (Pu et al., 2023) 146 46 129 29 172 9 192 0.02 - - - -
PIM (Chiaroni et al., 2023) 95 5 102 2 227 13.5 169 13.8 - - 563 17.6
GPC (Zhao et al., 2023) 100 0 103 3 212 6 201 0.03 - - - -

CMS (Choi et al., 2024)† 94 6 98 2 176 12 149 23.9 88 12 503 26.4
+ Ours 96 4 100 0 180 10 159 18.9 89 11 508 25.6

count of the largest eigenvalues necessary to account for 99% of the total eigenvalue energy serves
as a surrogate for the rank in Equation 5.

4.2 MAIN RESULTS

Evaluation on GCD. Table 1 presents a comprehensive comparison of the results of GCD that can
and cannot be obtained for the number of categories K on coarse-grained and fine-grained datasets.
The summary is as follows: (1) We conducted experiments with LSimGCD +LMTMC. A notable result
is that although SimGCD has already achieved high accuracy, MTMC can still significantly enhance
its performance ceiling, especially in the perception of novel classes. On ImageNet100, MTMC
improved by 4.7%, advancing the model towards the real world. Even on challenging datasets like
Herbarium19, there is a comprehensive improvement. (2) Under the optimization target of LCMS +
LMTMC, MTMC has increased the accuracy rate for all categories, indicating that it has improved
the representation quality of unknown classes without compressing the embedding space of known
classes as much as possible. (3) A point worth noting is that the clustering effect of CMS+MTMC is
better when without K than with K. Known classes on the CUB and novel classes on CIFAR100 and
Stanford Cars datasets have achieved nearly a 4% performance gain, which confirms the viewpoint
of this paper that human intelligence-imparted category attributes are biased. When without K,
MTMC stimulates the model’s potential for perceiving the open world without the intervention of
human-defined biased definitions.

Estimated number of clusters. We present the gap between MTMC and SOTAs in estimating
the number of clusters in Table 2. Leveraging the CMS, which does not require specific hyper-
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(a) CUB (b) Stanford Cars (c) FGVC Aircraft

Figure 3: Hyperparameter sensitivity of the degree of MTMC λ and features dimensionality D.

parameters to estimate K, our optimization target is LCMS + LMTMC. The results show marked
improvement when MTMC is incorporated into the CMS framework. This enhancement is signif-
icant and consistent across various datasets, showcasing the model’s ability to separate different
classes more accurately. Notably, on the ImageNet100 dataset, which is known for its complexity
and diversity, our method achieves a remarkable 100% correct estimation rate. It symbolizes the
model’s advanced capability to discern fine-grained distinctions between classes, suggesting a high
degree of alignment between the learned decision boundaries and the intrinsic structure of the data.
The enhancement in correctly estimating the number of clusters underscores the importance of rep-
resentation completeness. A richer and more complete representation within each class allows the
model to capture better the nuances and variability that are characteristic of that class. This, in turn,
sharpens the distinctions between different classes, leading to more precise and reliable inter-class
separation. Moreover, an accurate estimation of K indicates a model that is not only performing
well in terms of clustering accuracy but is also aligned with the principles of real-world catego-
rization. When the decision boundaries set by the model reflect the actual divisions in the data, it
implies a deeper understanding of the underlying structure of the dataset. This alignment is crucial
for applications where the number of potential categories is unknown or could change over time,
such as in open-world learning scenarios.

Ablation study. The only hyperparameter of MTMC is the coefficient λ of the loss. To gain a
deeper understanding of the correlation between the degree of maximum token manifold capacity
and the dimensionality D of the features, we conducted an ablation experiment on it, as shown
in Figure 3. It can be clearly observed that MTMC is not sensitive to hyperparameters and can
uniformly enhance clustering accuracy. A more thought-provoking finding is that directly reducing
D to avoid dimensionality collapse is suboptimal. The reason is that each dimension of the manifold
contributes to the representation, and a reduction in D will directly lead to a loss of information.
Even with MTMC, it is impossible to make the representation complete. An appropriate number
of dimensions enriches the representation while using MTMC to prevent dimensionality collapse,
which can maximize the model’s performance enhancement.

4.3 ANALYTICAL RESULTS

Impact of embedding quality. In Table 1, the accuracy gains on the CIFAR100 and Herbarium19
datasets are insignificant. We use this as a starting point to analyze the conflict between enhancing
feature completeness and low embedding quality in GCD. DINO, through self-supervision, already
has a good feature representation capability, but due to the distribution of data, its embedding qual-
ity still be low. One source of low quality is the data size, and the other is data semantics. (1)
Specifically, when the small-sized CIFAR10 images are interpolated and input into ViT, the high-
frequency information is lost. For example, when identifying animal categories, the low-frequency
features such as the outline of the animal may be captured relatively well, but the detailed fea-
tures such as the texture and eyes of the animal (high-frequency features) are difficult to accurately
extract. In this case, the model can only cluster through some shortcut information, rather than ac-
curately clustering based on the complete intra-class features. Since the manifold dimension of the
low-frequency features is relatively low, it is unable to fully capture the diversity and complexity
within the class. Therefore, enhancing the completeness of the intra-class representation on small-
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sized data is challenging. (2) Herbarium19 is a large-scale herbal plant recognition dataset, which
is not in the model’s training data and inherently cannot provide highly discriminative representa-
tions. Additionally, the large number of categories makes the decision boundary more chaotic, and
existing GCD schemes cannot cluster well. Therefore, enhancing the completeness of intra-class
representation on overly low-quality embeddings is not feasible, as the overlap of feature spaces
across categories is too large, and samples within a cluster come from multiple categories.

(a) CUB (b) Stanford Cars (c) FGVC Aircraft(a) CUB (b) Stanford Cars (c) FGVC Aircraft

Figure 4: The Frobenius norm ∥A − c · Id∥2F on three fine-grained benchmarks.

MTMC homogenizes eigenvalue distribution and reduces Frobenius norm. The autocorrelation
matrix of the test sample class token manifold is denoted as A. Given that ∥[cls]i∥2 = 1 and
A ≥ 0, it can be easily verified that

∑
j λj = 1 and ∀jλj ≥ 0 (Parkhi et al., 2015; Liu et al., 2017;

Mettes et al., 2019), where {λj} is the eigenvalues of A. Under the ideal condition where A →
c · Id, which represents the maximum manifold capacity, the eigenvalue distribution of A becomes
completely uniform, z becomes uncorrelated (Cogswell et al., 2015), full-rank (Hua et al., 2021),
and isotropic (Vershynin, 2018). It can be seen that A is closely related to various characteristics
of representation. Furthermore, the Frobenius norm (Ma et al., 1994; Peng et al., 2016), extensively
studied in self-supervised learning methods (Cogswell et al., 2015; Xiong et al., 2016; Choi & Rhee,
2019; Zbontar et al., 2021), serves as a measure of whether the model output representation relies
predominantly on a few neurons or dimensions (The Frobenius norm calculates the square root of
the sum of the squares of all elements of the matrix, and it measures the “size” or “energy” of the
matrix as a whole. When the Frobenius norm is small, it means that the overall “energy” of the
matrix elements is relatively low. From the perspective of feature representation, this may indicate
that the model does not overly rely on certain specific dimensions or feature combinations when
extracting features). It also reflects the size of the manifold capacity. A smaller Frobenius Norm
indicates a larger manifold capacity. We conducted singular value decomposition (SVD) (Golub &
Reinsch, 1971) on the autocorrelation matrix of the feature embeddings derived from the test set,
subsequently plotting the first 200 singular values in descending order, as shown in Figure 5 and We
visualize the Frobenius norm ∥A − c · Id∥2F in Figure 4. Compared to the original SimGCD and
CMS, MTMC effectively achieves a more uniform eigenvalue distribution and significantly reduces
the Frobenius norm.

MTMC unravels dimensional collapse. The completeness of features profoundly influences the
richness of intra-class representations, thereby impacting clustering accuracy (Figure 5). Features
characterized by high completeness also exhibit a substantial manifold capacity. It is evident that
MTMC, which offers a greater manifold capacity, yields a higher mean of singular values. This
observation implies that the tail singular values contribute significantly to the representation of sam-
ples. A richer representation facilitates clusters approximating the true uncompressed distribution,
thereby enhancing clustering accuracy. Conversely, while CMS and SimGCD contribute to cluster-
ing, they operate within a lower-dimensional space, where only a limited number of singular values
hold significance. This limitation reduces the manifold capacity, and the incomplete representation
constrains the model’s potential performance. The theory of dimension collapse (Caron et al., 2020;
Shi et al., 2023) posits that the singular values of the covariance matrix of feature embeddings serve
as critical indicators for assessing the severity of dimension collapse. While strong unconstrained
contrastive learning facilitates compact clustering, it simultaneously leads to dimension collapse, re-
sulting in a low-dimensional feature embedding space where an increasing number of singular values
approach zero. From a modeling perspective, dimension collapse embodies a form of oversimpli-
fication, representing a shortcut that suggests the space has not been fully leveraged to distinguish
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(a) CUB (b) Stanford Cars (c) FGVC Aircraft

Figure 5: MTMC effectively mitigates dimensional collapse by providing a more uniform eigenvalue
distribution and improves the clustering accuracy.

diverse samples within the same category. Unlike traditional methods, MTMC prioritizes maximiz-
ing the completeness of intra-class distributions rather than inter-class separation, thereby providing
more precise decision boundaries.

5 RELATED WORKS

5.1 GENERALIZED CATEGORY DISCOVERY

Generalized category discovery (Vaze et al., 2022; Zhao et al., 2023; Wen et al., 2023; Choi et al.,
2024) is crucial for identifying and classifying both known and new categories in a dataset, expand-
ing beyond traditional supervised learning to recognize new classes not seen during training. The
pioneering work (Vaze et al., 2022) establishes a framework that employs semi-supervised k-means
clustering. Following this initial proposition, SimGCD (Wen et al., 2023) is introduced as a para-
metric classification approach that utilizes entropy regularization and self-distillation. Expanding
on these concepts, CMS (Choi et al., 2024) is proposed, enhancing representation learning through
mean-shift based clustering. Moreover, a deep clustering approach (Zhao et al., 2023) emerges that
dynamically adjusts the number of prototypes during inference, facilitating an adaptive discovery
of new categories. Most recently, ActiveGCD (Ma et al., 2024) actively selects samples from unla-
beled data to query for labels, with the aim of enhancing the discovery of new categories through
an adaptive sampling strategy. Each of these contributions addresses the multifaceted challenges of
representation learning, category number estimation, and label assignment, redefining the frontiers
of open-world learning. Regardless of the flourishing development of GCD, their focus remains on
compact clustering, neglecting the integrity of intra-class representation. Our goal is to empower
any GCD scheme with concise means to promote the non-collapse representation of each sample,
thus shaping more accurate decision boundaries.

5.2 DIMENSIONAL COLLAPSE

This Dimensional collapse (Grill et al., 2020; Caron et al., 2020; Shi et al., 2023; Jing et al., 2021)
occurs when the learned embeddings tend to concentrate within a lower-dimensional subspace rather
than dispersing throughout the entire embedding space, thereby limiting the representations’ capac-
ity for diversity and expressiveness. DirectCLR (Jing et al., 2021) presents a direct optimization
of the representation space, sidestepping the need for a trainable projector, which inherently miti-
gates the risk of dimensional collapse by promoting a more even distribution of embeddings across
the space. Complementing this, the whitening approach (Tao et al., 2024) standardizes covariance
matrices through whitening techniques, ensuring that each dimension contributes equally to the rep-
resentation, thus preventing any subset of dimensions from dominating the learning process. Simi-
larly, the non-contrastive learning objective (Chen et al., 2024) for collaborative filtering avoids data
augmentation and negative sampling, focusing on alignment and compactness within the embedding
space to prevent dimensional collapse. The Bregman matrix divergence (Zhang et al., 2024) further
fortifies the fight against dimensional collapse by minimizing the distance between covariance ma-
trices and the identity matrix, ensuring a uniform distribution of embeddings and directly countering
the concentration of information along certain dimensions. Moreover, random orthogonal projec-
tion image modeling (Haghighat et al., 2023) provides a preventative measure against dimensional
collapse by modeling images with random orthogonal projections, which promotes the exploration
of a wide range of features and discourages the concentration on a limited subset of dimensions.
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Rather than directly addressing the issue of dimensional collapse, we focus on maximizing token
manifold capacity to align the radius and dimensions of the manifold with the rich distribution of
the real world. This approach also unravels the sample-level dimensional collapse.

6 CONCLUSION

The paper introduces a straightforward approach to enhancing Generalized Category Discovery by
Maximum Token Manifold Capacity. Our method counters the traditional focus on compact clus-
ters, which can lead to low manifold capacity and incomplete representations. Emphasizing the
integrity of intra-class representations, MTMC leverages the nuclear norm to ensure manifolds are
both compact and informative. Through extensive experiments, we demonstrated that our proposal
significantly improves clustering accuracy and the estimation of category numbers. Theoretically,
MTMC prevents dimensional collapse, leading to a more uniform eigenvalue distribution and higher
entropy, indicative of richer representations. Our method’s effectiveness in GCD lies in its promo-
tion of complete and non-collapsed representations, paving the way for more robust and adaptable
machine learning models in open-world scenarios.
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