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Abstract

This paper empirically studies commonly observed training difficulties of Physics-Informed
Neural Networks (PINNs) on dynamical systems. Our results indicate that fixed points
which are inherent to these systems play a key role in the optimization of the in PINNs em-
bedded physics loss function. We observe that the loss landscape exhibits local optima that
are shaped by the presence of fixed points. We find that these local optima contribute to the
complexity of the physics loss optimization which can explain common training difficulties
and the resulting nonphysical predictions. Under certain settings, e.g., initial conditions
close to fixed points or long simulations times, we show that those optima can even become
better than that of the desired solution.

1 Introduction

Dynamical systems are governed by differential equations and are ubiquitous in many scientific disciplines
such as economics, biology, physics and engineering. The upsurge in scientific machine learning has led to the
development of deep learning approaches that are applicable to those systems and often superior to classical
methods. State-of-the-art methods incorporate (at least) some part of the underlying physics, e.g., learned
through data or embedded by design (Brunton et al., 2016; Sanchez-Gonzalez et al., 2020). Among those
methods are physics-informed neural networks (PINNs) which are the prime paradigm of physics-informed
machine learning (Raissi et al., 2019; Karniadakis et al., 2021). Their seamless integration of data and
physical constraints has pushed PINNs into a vast number of applications on dynamical systems, including
system identification (Raissi, 2018), hidden state inference (Raissi et al., 2020) and surrogate modeling (Sun
et al., 2020).

Since PINNs are capable of solving differential equations in a fully mesh-free and time-continuous manner,
one promising field of application is the numerical simulation of dynamical systems. In those applications,
labeled training data is scarce and typically only used to specify the corresponding initial and boundary
conditions (IC/BC). For a complete and unique definition of the forward problem, the IC/BC are either
included in the loss function or explicitly enforced using specific network architectures. Both variants,
however, rely on the optimization of the embedded physics loss function, i.e., on minimizing residuals on
the governing differential equations, evaluated at collocation points which are randomly sampled inside the
computational domain. Optimization success and accuracy thus particularly depend on the complexity of
the studied dynamical system and the corresponding physics loss function.

1.1 Training Difficulties of Physics-Informed Neural Networks

In general, issues in the optimization of PINNs are manifold and often cause incorrectly predicted system
dynamics. A complete description of all reported issues is exhaustive, hence we focus our discussion on
relevant issues and proposed remedies that frequently appear in the numerical simulation of dynamical
systems using PINNs.
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Conflicting Objectives.

Several ongoing discussions address conflicts in the optimization of multiple objectives as one root cause
of convergence issues in PINNs (Wang et al., 2021a). It has been shown that different weighting of the
objectives, bound to physical, IC/BC and data constraints, is effective for PINNs and can accomplish a
successful training. The weighting is conducted either by hand-tuned loss weights or with adaptive weighting
schemes that adjust the weights during network training, such as in Maddu et al. (2021) or Jin et al. (2021).
With a focus on coping with imbalanced gradients, those methods are generally used to improve the PINN’s
performance and to select an optimum point on the Pareto front (Rohrhofer et al., 2021). Furthermore,
specially-designed network architectures enable hard encoding of IC/BC and physical constraints (Lu et al.,
2021; Raissi et al., 2019). These approaches circumvent conflicts by reducing the overall number of competing
objectives.

Propagation Failure.

Most relevant for our discussion are recent works that focus on a purported failure mode of PINNs in which
the learned system dynamics does not represent the solution that is specified by the IC/BC. A reason
for this, it has been argued, is that propagation of the solution from the enforced conditions to interior
points is disrupted for a certain region in the computational domain, which often yields the trivial (zero)
solution (Daw et al., 2022). To mitigate this issue, several remedies have been proposed. One focus lies
in improving network initializations to reduce the bias towards flat output functions, e.g., by learning in
sinusoidal space (Wong et al., 2021). Another type of methods propose reweighting (Wang et al., 2022) or
resampling (Leiteritz & Pflüger, 2021) of collocation points. In those methods, importance or density of
collocation points propagates from the enforced conditions to interior points during network training which,
in a causality-respecting manner, promises to mitigate the propagation failure. Since it is generally argued
that with an increasing domain size the physics loss optimization becomes more complex (Krishnapriyan
et al., 2021), other methods focus on the extent of the computational domain. Often referred to as sequence-
to-sequence learning or domain decomposition, those methods comprise approaches that divide the original
spatio-temporal domain into smaller subdomains which are easier to solve (Jagtap & Karniadakis, 2021).
Furthermore, approximation issues of PINNs in the presence of high-frequency or multi-scale features have
been explained by the spectral bias of PINNs with proposed remedies found in Wang et al. (2021b).

1.2 Our Contribution

As shown in the last section, the literature is abound with techniques that try to mitigate commonly observed
training difficulties of PINNs – but explanations why training on dynamical systems often fails seems incom-
plete to us: We suspect that not only the trivial zero solution, but also fundamental properties, e.g., fixed
points of dynamical systems play a key role in training (failures) of PINNs. Based on this, our contribution
in this paper will be as follows.

• We illustrate training difficulties of PINNs on a complex dynamical system, namely the Navier-
Stokes equations, and hypothesize that the observed nonphysical prediction is affected by a fixed
point inherent to the system. (Section 3).

• We then show on two simple dynamical systems that stable and unstable fixed points contribute to
the optimization complexity of the physics loss function and influence the rate of training success.
(Section 4.1)

• We empirically demonstrate that under certain settings, e.g., IC close to fixed points and long
simulation times, nonphysical predictions become economical with better minima than that of the
desired solution. (Section 4.2)

• We further show that even when the IC is far from fixed points, the physics loss landscape is still
being shaped by these points which form local optima/saddle points that might prevent a successful
training. (Section 4.3)
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2 Background

2.1 Dynamical Systems

The state u of a dynamical system can be described by a differential equation of the form:

ut = F [u], (1)

where u = u(t, x) in general depends on time t ∈ [0, T ] and space x ∈ Ω ⊆ Rn, ut denotes the (partial)
derivative of u w.r.t. time, and F is an arbitrary, potentially nonlinear differential operator dictating the
system dynamics.

In the numerical simulation of dynamical systems, IC are imposed to define the initial state of the system
through

u(t0 = 0, x) = u0(x), ∀x ∈ Ω. (2)
If F contains spatial derivatives, additional BC are required to guarantee the uniqueness of the solution:

B[u] = g(x, t), ∀x ∈ ∂Ω, (3)

where B denotes a boundary operator.

2.2 Physics-Informed Neural Networks

Fully-connected neural networks (FC-NNs) are most common among PINNs due to their good trade-off
between simplicity and expressive power. Thus, we use FC-NNs to approximate the unknown solution
function of (1) with u(t, x) ≈ u(t, x; θ) =: uθ(t, x), where θ ∈ Rnθ are the weights and bias terms of the
network. Common activation functions are the hyperbolic tangent (tanh) or Sigmoid linear unit (SiLU,
swish), which render the approximated solution function and derivatives smooth1.

PINNs use automatic differentiation (AD) (Baydin et al., 2018) to obtain (partial) derivatives of the network’s
output with respect to its inputs. In order to retrieve the derivatives of the network solution, AD requires to
pass discrete evaluation points, called collocation points, through the network in a feed-forward operation.
The collocation points define the data set for penalizing residuals of the differential equation. The physics
loss residual for a dynamical system (1) is given by:

f(t, x) := uθ,t(t, x) − F [uθ(t, x)]. (4)

Following the standard PINN formulation, the sum of squared residuals at all collocation points yields the
physics loss function:

Lf (θ) = 1
Nf

Nf∑
i=1

∣∣f(ti, xi)
∣∣2
, (5)

with the collocation points {ti, xi}Nf

i=1 sampled from the entire computational domain (t, x) ∈ [0, T ] ⊗ Ω.
These points do not need any label and can be either fixed during PINN training or re-sampled before each
training epoch. In the initial formulation of PINNs, additional data constraints are used to enforce the
IC/BC by

Lu(θ) = 1
Nu

Nu∑
i=1

∣∣uθ(ti, xi) − u(ti, xi)
∣∣2
, (6)

where u is given by the r.h.s. of (2) and (3). Both losses (5) and (6) are combined by scalarization of a
multi-objective optimization through

L(θ) = λLu(θ) + Lf (θ), (7)
where λ represents a weighting factor, which here by default is set to λ = 1, unless explicitly stated otherwise.
As an alternative to this (vanilla) formulation of PINNs, special network architectures have been proposed
that ensure IC/BC are satisfied explicitly. We refer to these PINNs as being hard constrained.

1Thus mesh-free and time-continuous in the context of differential equations.
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2.3 Stability and Fixed Points

Fixed points u∗ of a dynamical system are given by the roots of the nonlinear function F in equation (1):

F [u∗] = 0. (8)

In general, they can be either stable, asymptotically stable or unstable. For a stable fixed point, any
trajectory close to it will stay close, whereas for an asymptotically stable fixed point close trajectories will
further converge to it as t → ∞. In contrast, an unstable fixed point is repulsive and even the smallest
deviation will cause any close trajectory move away from it as t → ∞.

Some fixed points of dynamical systems are trivial, e.g., the zero solution u∗ = 0 is a fixed point for many
dynamical systems, such as for harmonic oscillators or pendulums. For dynamical systems governed by partial
differential equations, such as in fluid flow, fixed points are non trivial but generally given by steady-state
solutions that do not change over time and thus for which equation (8) holds true.

3 Motivation: Complex Fluid Dynamics

We use this motivation example to show commonly observed training difficulties and nonphysical behavior
of PINNs when simulating complex fluid flow. In particular, we select a well-known benchmark setting,
known as vortex shedding, and demonstrate that the PINN prediction uθ resembles a steady-state behavior,
although the true system dynamics is given by transient, here periodic, fluid motion.

Navier-Stokes Equations.

The Navier-Stokes equations govern fluid flow and build a coupled system of nonlinear partial differential
equations (PDEs). For the two-dimensional case, the unknown solution functions are u(t, x⃗), v(t, x⃗) and
p(t, x⃗), representing the fluid velocity in x- and y-direction and pressure, respectively. The system equations
for transient fluid flow are given by

ut = −(uux + vuy) − px + Re−1(uxx + uyy), (9a)
vt = −(uvx + vvy) − py + Re−1(vxx + vyy), (9b)

where we set the Reynolds number Re to 100.

Experimental Setup.

We introduce a stream function ψ(t, x⃗) with u = ψy and v = −ψx to enforce continuity, i.e., conservation
of mass for an incompressible fluid. A single 8x100 neural network with tanh activation functions is used to
approximate ψθ(t, x⃗) and pθ(t, x⃗). Software and hardware specifications in use are found in Appendix A.

We use a publicly available database of direct numerical simulation data, found in Boudina (2021). This
labeled dataset is used as reference solution and to impose the initial sequence of the fluid motion in the time
domain t ∈ [0, 3] representing 50% of a vortex shedding period. Collocation points, however, are sampled in
the time domain t ∈ [0, 18], i.e., the PINN should continue the simulation beyond the domain of reference
data and capture the system dynamics by minimizing residuals of (9). Further details on optimization and
data settings, as well as the computational domain and BC in use, can be found in Appendix B.

PINN Approaches Steady State.

Results to this experiment are presented in Figure 3. We observe that outside the domain of reference data,
the PINN’s prediction (b) starts to substantially deviate from the reference solution (a). Evaluating the PINN
prediction at the depicted spatial coordinate (c) further shows that the solution approaches a nonphysical
steady state. This is interesting as the symmetrical steady-state solution to this problem resembles an
unstable fixed point. The fixed point is unstable for this Reynolds number because any perturbation (typically
caused by numerical instabilities in classical methods) will lead to the development of the periodic motion,
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Figure 1: Fluid Dynamics. Substantial difference in velocity magnitudes |u⃗| given by (a) reference data
and predicted by the (b) PINN after two consecutive periods (vertical dashed line). (c) The time evolution
of |u⃗| at a spatial point (red rectangle) indicates that the PINN approaches a steady-state solution. Labeled
training data was used for 50% of the first vortex shedding period (green shaded area).

known as vortex shedding. Similar PINN behavior has been reported in Chuang & Barba (2022) and similar
issues can be resolved using truncated Fourier decomposition presented in Raynaud et al. (2022).

We note that evaluating the physics loss for the depicted PINN prediction and for a solution obtained by
training a PINN on data from the entire computational domain, i.e., on t ∈ [0, 18], shows that the nonphysical
steady-state prediction achieves a lower physics loss than that capturing the correct system dynamics (see
Appendix B.4). This behavior suggests that the PINN training is affected by the underlying fixed point,
and we hypothesize that this partly explains the commonly observed slow convergence or attraction to
nonphysical predictions.

4 On the Role of Fixed Points in Training Physics-Informed Neural Networks

We now perform experiments to test the hypothesis that fixed points play a key role in the training of
PINNs. For the sake of simplicity and tractability, we consider two simple ordinary differential equations
(ODEs): the undamped pendulum dynamics and a simple toy example. These examples are chosen because
they exhibit stable (pendulum), asymptotically stable (toy example), and unstable (both) fixed points. We
further try to solve these systems using either vanilla (i.e., multi-objective, for the pendulum) and hard
constrained (for the toy example) PINNs. For both examples we now stick to the convention of ODEs and
denote the unknown solution function by y(t).

Undamped Pendulum Equation.

The undamped pendulum dynamics are given by a second-order ODE

ÿ = −g

l
sin (y) , (10)

with l and g representing the length of the rod and magnitude of the gravitational field, respectively. Here
l = 1 and g = 9.81. This system exhibits two fixed points, a stable fixed point y∗ = 0◦ at the pendulum’s
natural rest position, and an unstable fixed point y∗ = 180◦ at the upright position. For comparison in our
experiments, we create reference solutions using a Runge-Kutta fourth-order method.

Toy Example Equation.

The toy example is defined as a one-dimensional system with a single ODE given by

ẏ = y
(
1 − y2)

. (11)
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Table 1: Undamped Pendulum. Rate of training success across different system settings (T and y0) and
network architectures (size and activation function). Triplets in the main table represent in percentage (%)
and in the respective order, cases of successful training, attracted by stable fixed point, and unstable fixed
point. Bold triplets represent a low (< 5%) success rate.

T 2.5 5 7.5
y0 25◦ 100◦ 175◦ 25◦ 100◦ 175◦ 25◦ 100◦ 175◦

4x50
tanh 98/2/0 100/0/0 100/0/0 0/100/0 90/10/0 0/100/0 0/100/0 0/100/0 0/61/39
swish 100/0/0 100/0/0 98/0/2 56/44/0 80/20/0 0/100/0 0/100/0 1/99/0 0/91/9
sin 100/0/0 100/0/0 100/0/0 65/35/0 93/7/0 0/93/7 2/98/0 24/75/1 0/94/6

8x100
tanh 100/0/0 100/0/0 99/0/1 100/0/0 97/0/3 92/0/8 49/31/20 84/0/16 1/29/70
swish 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 57/42/1 100/0/0 100/0/0 1/92/7
sin 100/0/0 100/0/0 98/0/2 55/0/45 60/0/40 39/15/46 32/0/68 29/0/71 0/26/74

This system exhibits three fixed points, two of which located at y∗ = ±1 are asymptotically stable, and one
at y∗ = 0 which is unstable (see Figure 3). For this system, the analytical solution exists and is given in
Appendix D.1. The simplicity of this toy example further allows for hard constraining the IC by setting

ŷ(t) = y0 + t · yθ(t), (12)

with yθ denoting the network’s output.

4.1 Rate of Training Success in the Presence of Fixed Points

We now study the success rate of training PINNs on the above mentioned systems. We declare training
successful if the L2 relative error ∥yθ(t) − y(t)∥2/∥y(t)∥2 is below 15%, which allows a clear separation of
training outcomes2. For the toy example nonphysical predictions are exclusively influenced by the unstable
fixed point at y∗ = 0 (see Figure 3(c)). For the undamped pendulum, however, we further classify whether an
unsuccessful training, subsequently the nonphysical prediction, violates the physics by either being attracted
by the stable (y∗ = 0◦) or the unstable fixed point (y∗ = 180◦). Examples for those cases are found in
Figure 2 which also visually demonstrates the attraction in phase space.

For both systems, we train 100 randomly initialized PINNs with a different IC y0 and simulation time T .
The IC for the undamped pendulum are enforced using the multi-objective loss (7) (vanilla PINN) with a
zero initial angular velocity, i.e., ẏ0 = 0. Training is performed for 50k epochs using the Adam optimizer
with default settings for the moment estimates. We repeat training for different setups, including network
architectures and optimizer settings (see Appendix C.1 for details). Software and hardware specifications in
use are found in Appendix A.

Table 1 shows the rate of training success across different network architectures for the experiments on the
undamped pendulum and an initial learning rate of α = 0.001. The outcome of experiments using different
optimization settings and for the toy example can be found in Appendix C.1 and D.2. In general, we observe
severe training difficulties across all experiments with only a minor number of cases leading to a success rate
of 100%.

Influence of Initial Condition y0.

From the results it is apparent that PINNs are sensitive to the choice of initial conditions. We observe that,
in general, IC close to fixed points lead to a lower rate of training success compared to those that start far.
For the undamped pendulum this is evident by comparing in Table 1 the rates for y0 = 100◦ with that of
y0 = 25◦ and y0 = 175◦. We made similar observations for the toy example that also shows a lower rate of
success for IC close to the unstable fixed point (see Appendix D.2).

2Results for further thresholds are provided in Appendix C.2 and suggest similar qualitative conclusions.
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Figure 2: Undamped Pendulum. Representative examples of training cases from Table 1. Training
outcomes are classified as either (a) successful training, (b) attracted by stable fixed point, or (c) unstable
fixed point. Left: predicted trajectories as function of physical time. Right: predicted trajectories in phase
space. Green and red lines/circles represent stable and unstable fixed points, respectively.

Influence of Simulation Time T .

Across different settings and for both systems, we observe that training becomes more difficult as the sim-
ulation time is increased. Likewise it can be seen that reducing the simulation time accounts for a higher
success rate. The influence of the simulation time in terms of the physics loss complexity will be further
analyzed in Section 4.3.

Influence of Network and Optimization Settings.

We observe a slight improvement in terms of a higher success rate as the network size is increased. Still,
none of the tested network architectures could resolve the training issues at long simulation times and IC
close to the (unstable) fixed point. Thus, we conclude that the observed training difficulties are bound
to the optimization complexity, rather than insufficient expressive power of the network. As reported in
Appendix C.1, we also perform an ablation study using different optimization settings in terms of the
learning rate, number of collocation points, loss weighting and network initialization. In comparison to the
baseline model (4x50, tanh, from Table 1) no optimization setting yields notable changes to the rate of
training success.

4.2 Fixed Points Becoming Economical Solutions

Next, we demonstrate that, when the IC is very close to a fixed point, training may result in PINN predictions
that approach these fixed points, even if the resulting behavior is nonphysical. Furthermore, we show that
those nonphysical predictions can even become better minima than that of the desired optimum. The
latter further renders convergence to the true solution unfeasible. To rule out effects from multi-objective
optimization, we focus in this and the following subsection on the toy example implemented by a PINN with
hard constraints. Similar observations on the undamped pendulum can be found in Appendix C.3.

For this experiment, we use a 4x50 network architecture with tanh activation and choose a simulation
time of T = 10. To show that our chosen PINN architecture has sufficient expressive power to learn the
true solution, we implemented the following, data-guided PINN as control: First, 10 labeled data points
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Figure 3: Toy Example. (a),(b) Data-guided PINN: predicted trajectories and learning curves with green
shaded area representing the support of labeled training examples through (7). (c),(d) Physics-driven PINN:
predicted trajectories and learning curves. (e) Minimal physics loss across all epochs vs. absolute distance
between IC and the unstable fixed point. Five PINN instances were trained for each initial value (sequential
color code) and approach (crosses and pluses). In the figure, markers were randomly shifted horizontally to
reduce overlap.

are sampled from the analytical solution, equidistantly from the computational domain. In the first 25k
epochs of training, these 10 points support training via (7), while in the remaining 25k epochs, the PINN
is trained using the physics loss only. The first training phase thus guides the gradient-based optimization
into the basin of attraction of the analytical solution, while the second training phase ensures that the
physics loss is minimized. Indeed, as shown in Figure 3(b), the data-guided strategy successfully learns the
analytical solution. We compare this approach to training with the physics loss only, i.e., without the use of
labeled data, which we refer to as the physics-driven PINN. For each approach and IC we train five uniquely
initialized PINN instances with the same optimization settings found in 4.1.

Influence of Initial Condition y0.

For the toy example, Figure 3(c)-(e) show that the PINN predictions impacted by the unstable fixed point
(y∗ = 0) achieve lower physics losses as the IC gets closer to it. Indeed, for small values of y0, the physics loss
can become even smaller than the physics loss achieved by the data-guided PINN (see Figure 3(e)), i.e., the
prediction impacted by the unstable fixed point seems to become a better minimum for PINN optimization
than the true solution. This renders finding the true solution unfeasible, even for optimization methods that
are not based on gradients (e.g., PSO-PINNs as in Davi & Braga-Neto (2022) or else).

4.3 Fixed Points Affect the Optimization Landscape and Slow Down Convergence.

Finally, we investigate the effect of fixed points on the physics loss landscape, and argue that our observations
can partly explain commonly observed slow convergence. In Figure 3(d) we observe that most PINN instances
suffer from slow convergence, indicated by the presence of plateaus in the learning curves. Only a few
examples show a successful escape from those undesired optima which is evident by a distinct drop in the
learning curves. Those cases are primarily reported at IC that are comparably far from the unstable fixed
point at y∗ = 0. To obtain a better understanding of this phenomenon, we plot the physics loss landscape
and PINN prediction for a instance that barely manages to escape from its suboptimal location.
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Figure 4: Toy Example. (a) PINN prediction and (b) corresponding learning curves for a training example
that barely manages to escape from its suboptimal location. (c)-(f) Physics loss landscape for different T .
Crosses denote (blue) initial, (red) intermediate, and (green) final step of the network training.

Influence of Simulation Time T .

Figure 4 shows the loss landscape for two directions θ1 and θ2 for an IC that is far from the unstable fixed
point (visualization details are given in Appendix E). Additionally, in panel (a) and (b) a prediction and
training sequence is given for T = 8 where the gradient-based optimization first gets trapped in a local
optimum. After approximately 42,000 epochs, the gradient-based optimization manages to converge to the
correct solution. We clearly detect the global minimum which corresponds to this true solution in the upper
right region (green cross).

We further observe that for long simulation times, i.e. in panel (c)-(e), a local minimum or saddle point (red
cross) forms, which seems to be attractive to the gradient-based optimization (cf. Figure 3) and apparently
conforms to a nonphysical prediction. With decreasing T , this local optimum gradually vanishes and the
global optimum becomes easier to reach due to the better (in terms of optimization) shape of the loss
landscape. Thus, we argue that (I) fixed points have a large impact on the shape of the physics loss
landscape, even when the IC is far from the (unstable) fixed point, and (II) simulating for a longer time,
i.e., being further away from (possibly) enforced IC, results in a higher chance that the optimization gets
trapped in local optima which conform to nonphysical predictions.

5 Discussion and Limitations

Our study and results suggest that fixed points of dynamical systems, irrespective of whether they are stable
or unstable, lead to the formation of attractive optima in the physics loss landscape. This was demonstrated
on a series of experiments using two dynamical systems described by ODEs, and we believe that some of our
results also carry over to more complicated systems described by PDEs (Section 3).
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On the Role of Fixed Points.

As discussed in Section 2.3, fixed points of dynamical systems are given by the roots of the nonlinear function
F in Equation (1). Physics loss residuals (4) are thus small by definition since F [u], and thus ut, is close
to zero in the vicinity of fixed points. These properties seem to affect training of PINNs: True fixed point
solutions, i.e., solutions that are constant or steady-state, trivially fulfill the physics loss function and, thus,
the fixed points yield local minima in the physics loss landscape which are attractive to the gradient descent
optimization, as we could show in our experiments. Additionally, the fact that residuals are small in the
vicinity of fixed points may make it more economical for the PINN to violate prescribed system dynamics
locally, for the sake of settling at a “simpler” solution. Effectively, fixed points, together with the L2 losses
in (7), allow PINNs to trade between severely violating physics locally or approximating it inaccurately on
the entire computational domain.

Limitations and Further Work.

One may argue that the trade-off inherent in PINNs, or the multi-objective nature of their vanilla formula-
tion (7), should be vacuous, as the true solution satisfies both physics and the IC/BC. Thus, nonphysical
predictions should never represent a better optimum than the desired, physical solution. This is true, how-
ever, only for PINNs with unlimited expressive power. In practice, the expressivity of a neural network is
always limited by its (necessarily) finite size. Therefore, the mentioned trade-off is effective, and we have
reason to believe that there are settings where the desired solution does not correspond to a global optimum
(cf. Figure 3). Future work shall investigate this aspect from a more theoretical perspective, instantiating
approximation theorems for neural networks for PINNs.

Further, one may argue that some of the observed nonphysical predictions simply appear because the PINN
has not sufficiently converged. In other words, training was not long enough to depart from the (flat) IC,
which may correspond to a trivial solution of the differential equation (Wong et al., 2021; Leiteritz & Pflüger,
2021). A large part of the literature on propagation failures (see Section 1.1) points in this direction. Further,
such a statement is supported by the fact that the physics loss of, e.g., the solution approaching the stable
fixed point in Figure 2 is high, and by the late transition to the correct solution in Figure 4. Indeed, we do
not claim that minima of the physics loss formed by the presence of fixed points always correspond to (good)
minima of the full loss (7) – these minima may disappear entirely (e.g., for small computational domains),
turn into saddle points that slow down convergence, or achieve a wider basin of attraction and/or smaller
loss than the minimum corresponding to the true solution, in the extreme case where ICs are very close to
unstable fixed points.

Finally, our investigations are based on two simple ODEs, with additional evidence by a benchmark PDE
problem. We chose these systems because they are intuitive to understand, yet still exhibit nontrivial
dynamics. Moreover, the simplicity of these systems allowed us to separate the effect of different types of
fixed points and to at least partly exclude other explanations for the training difficulties of PINNs. Future
work shall be devoted to studying fixed points and steady-state solutions, and to the wider spectrum of
asymptotic properties of solutions to dynamical systems.

6 Conclusion

In this paper, we studied the physics loss optimization in PINNs when applied to dynamical systems governed
by differential equations. Our results revealed that nonphysical predictions appear as attractive optima in
the physics loss landscape and seem to stem from the presence of fixed points inherent to dynamical systems.
These minima or saddle points potentially disrupt and trap the gradient descent optimization, leading to
commonly observed convergence issues in PINNs. Reducing the computational domain yielded a greater rate
of training success and, in general, reduced the complexity of the physics loss optimization. In the future,
we believe that interdisciplinary research that includes advances in deep learning, stability theory and/or a
further understanding of the underlying physics may improve physics-informed machine learning or benefit
from it.
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A Software and Hardware Specifications

All code in our experiments is implemented in Python version 3.8 and TensorFlow version 2.9.1. Computa-
tions are performed on a Nvidia Tesla T4 GPU with a memory size of 16 GB.

B Motivation: Complex Fluid Dynamics

In this section we provide further information to the experimental setup of the motivation example. We use a
publicly available database of direct numerical simulation data, found in Boudina (2021). The computational
domain for our experiment is restricted to (x, y) ∈ Ω := [−5, 15] ⊗ [−10, 10].

B.1 Boundary Conditions

We show the BC in Figure 5. Here, the top/bottom boundary is considered as a moving wall with no-slip
conditions. We use zero-gradient conditions for the outlet. We note that we have also tested different BC
for the top/bottom boundary (symmetry wall, zero-gradient), and for the outlet (zero pressure), but none
of the considered settings led to the desired vortex shedding motion.

Figure 5: Fluid Dynamics. Boundary conditions for vortex shedding.

B.2 Training Data

Training data for this experiment is used to impose the initial sequence from the reference data, the respective
BC, as well as the physical constraints (9) through a set of collocation points. The training data set for the
initial sequence comprises in total NIC = 100.000 data points which are sampled randomly during network
training with a batch size of NIC,batch = 1024. At each batch iteration, collocation points, and training
data for the BC are sampled anew with sizes Ncol = 1024, NInlet = 128, NOutlet = 128, NWall = 256 and
NCylinder = 128.

B.3 Loss Function and Optimization Settings

The overall loss function in this experiment is composed of the respective loss functions for the IC/BC and
physical constraints:

L(θ) = LIC(θ) + LInlet(θ) + LOutlet(θ)
+LWall(θ) + LCylinder(θ) + Lf,x(θ) + Lf,y(θ),

where Lf,x and Lf,y are the physics loss functions for (9a) and (9b), respectively. As already stated in
the main part of this work, we introduce a stream function ψ(t, x⃗) with u = ψy and v = −ψx to enforce
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Figure 6: Fluid Dynamics. Comparison between a data-guided (DG) and standard physics-driven (PD)
PINN. (a), (b) Predicted velocity magnitudes |u⃗| after two consecutive periods (vertical dashed line). (c), (d)
Learning curves for the physics loss Lf . (e) Time evolution of |u⃗| at a spatial point (red rectangle). While the
DG-PINN achieves a minimal physics loss of Lf,min = 2.07·10−4, that of the PD-PINN is Lf,min = 8.28·10−5.

continuity, i.e., conservation of mass for an incompressible fluid. A single 8x100 neural network with tanh
activation functions is then used to approximate ψθ(t, x⃗) and pθ(t, x⃗).

Optimization is performed using Adam with default settings for the moment estimates and a total number
of 10k epochs. The initial learning rate is set to α = 0.001 and an exponential decay with rate 0.9 and step
1000 is applied. Training for this setting and for the in Section A listed software/hardware took about 7h.

B.4 Comparison to Data-Guided PINN

In the main part of this work, we claimed that evaluating the physics loss for the physics-driven PINN
(presented in Figure 3) and for a solution obtained by training a data-guided PINN on data from the entire
computational domain, i.e., on t ∈ [0, 18], shows that the nonphysical steady-state prediction achieves a
lower physics loss than that capturing the correct system dynamics.

Results to this claim can be found in Figure 6. We note that both PINN instances use the same physics
loss function Lf = Lf,x + Lf,y, evaluated at collocation points in the full domain t ∈ [0, 18]. We observe in
Figure 6(c)-(d) that the minimal physics loss value across all epochs is lower for the physics-driven PINN
compared to that of the data-guided PINN: While the physics-driven prediction that approaches a steady-
state solution yields a minimal physics loss of Lf,min = 8.28 · 10−5, that of the data-guided PINN indeed
resembles the vortex shedding motion with a minimal physics loss of Lf,min = 2.07 · 10−4.

C Additional Content to Undamped Pendulum

This section provides further results in addition to the in Section 4.1 and 4.2 presented experiments.

C.1 Rate of Training Success - Optimization Settings

In Table 1, all PINN instances use an initial learning rate α = 0.001, number of collocation points Nc = 64,
loss weighting factor λ = 1 and as network initialization the Glorot uniform initializer. In addition to this,
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Table 2: Undamped Pendulum. Rate of training success across different system and optimization settings
using the 4x50 network architecture with tanh activation. Triplets in the main table represent in percentage
(%) and in the respective order, cases of successful training, attracted by stable fixed point, and unstable
fixed point. The tested optimization settings are learning rate (α), number of collocation points (Nc), loss
weighting factor (λ) and network weights initialization (Init.) with He denoting the He uniform initialization.
Baseline model (see Table 1) uses α = 0.001, Nc = 64, λ = 1 and Glorot uniform initialization. Bold triplets
represent a low (< 5%) success rate.

T 2.5 5 7.5
y0 25◦ 100◦ 175◦ 25◦ 100◦ 175◦ 25◦ 100◦ 175◦

Baseline 98/2/0 100/0/0 100/0/0 0/100/0 90/10/0 0/100/0 0/100/0 0/100/0 0/61/39

α
0.01 37/0/63 36/0/64 60/0/40 16/0/84 19/0/81 7/0/93 0/7/93 13/0/87 0/0/100
0.001 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0

Nc
16 96/4/0 100/0/0 100/0/0 0/100/0 4/96/0 0/100/0 0/100/0 0/100/0 0/100/0
256 100/0/0 100/0/0 100/0/0 0/100/0 100/0/0 35/64/1 0/99/1 0/100/0 0/89/11

λ
0.1 0/100/0 61/39/0 93/7/0 0/100/0 0/99/1 0/85/0 0/100/0 0/100/0 0/100/0
10 100/0/0 100/0/0 100/0/0 11/89/0 42/0/0 6/85/9 0/99/1 0/100/0 0/35/65

Init. He 100/0/0 98/0/2 100/0/0 0/98/2 93/7/0 0/98/2 0/98/2 0/98/2 0/73/27

we also test different optimization settings using the 4x50 network architecture with tanh activation as base
model.

Results to this experiment can be found in Table 2, where we included the baseline model with default
optimization settings from Table 1 as reference. In general, we observe that none of the tested optimization
settings yields substantial improvement for IC close to fixed points and long simulation times.

C.2 Rate of Training Success - Further Thresholds

In the main part of the paper, we use for the classification of successful training a threshold of 15% in terms
of the L2 relative error. To demonstrate that our particular choice of this threshold does not contradict
qualitative conclusions made in the main part, we further provide results using different thresholds. In
particular, we validate the in Table 1 presented training cases now with a threshold of 5% and 25% in terms
of the L2 relative error.

The results can be found in Table 3. For compactness, we only show the results for the 4x50 and 8x100
architecture with tanh activation. As apparent in the table, no substantial differences in the classified
training outcomes can be observed when using different thresholds.

C.3 Fixed Points Becoming Economical Solutions

In the main part of this work, Figure 3 shows for the toy example that nonphysical predictions can become
better minima than that of the desired solution when the IC is close to a fixed point. To demonstrate
similar qualitative observations for the undamped pendulum, we perform an experiment similar to that in
Section 4.2.

In particular, we use a 8x100 network architecture with tanh activation and choose a simulation time of
T = 10. Since for this simulation time physics-driven PINN instances will hardly converge to the true
solution, we implement the same data-guided strategy as presented in Section 4.2: We include a total
number of 100 labeled training points in the first half of the training. The data is sampled from the Runge-
Kutta solution, equidistantly in the computational domain. In the second half, the training continues with
the physics loss optimization only. Indeed, as show in Figure 7(b), the data-guided strategy successfully
converges to the true solution, representing successful outcomes and sufficient expressive power for the
chosen PINN architecture. We again compare this approach to physics-driven training, i.e., without the use
of labeled training data. We repeat for each IC the experiment with 10 uniquely initialized PINN instances
per training strategy. We note that none of the physics-driven instances converges to the true solution
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Table 3: Undamped Pendulum. Rate of training success using differently set thresholds in terms of the
L2 relative error for the classification of successful and unsuccessful training. Triplets in the main table
represent in percentage (%) and in the respective order, cases of successful training, attracted by stable fixed
point, and unstable fixed point. Bold triplets represent a low (< 5%) success rate.

T 2.5 5 7.5
y0 25◦ 100◦ 175◦ 25◦ 100◦ 175◦ 25◦ 100◦ 175◦

4x50
L2 < 5% 98/2/0 100/0/0 100/0/0 0/100/0 90/10/0 0/100/0 0/100/0 0/100/0 0/61/39
L2 < 15% 98/2/0 100/0/0 100/0/0 0/100/0 90/10/0 0/100/0 0/100/0 0/100/0 0/61/39
L2 < 25% 99/1/0 100/0/0 100/0/0 0/100/0 90/10/0 34/66/0 0/100/0 0/100/0 0/61/39

8x100
L2 < 5% 43/37/20 84/0/16 0/29/71 100/0/0 97/0/3 43/49/8 43/37/20 84/0/16 0/29/71
L2 < 15% 100/0/0 100/0/0 99/0/1 100/0/0 97/0/3 92/0/8 49/31/20 84/0/16 1/29/70
L2 < 25% 100/0/0 100/0/0 99/0/1 100/0/0 97/0/3 92/0/8 55/25/20 84/0/16 1/29/70

(see Figure 7(b)). The unsuccessful training outcomes are further classified into whether the subsequent
nonphysical prediction violates the physics by either being attracted by the stable or the unstable fixed
point (see Figure 2).

In Figure 7(a) we report the minimal physics loss values across all epochs for each training outcome. We
observe, similar to the behavior in the toy example, that the PINN predictions attracted by the unstable
fixed point (y∗ = 180◦) achieve lower physics losses as the IC gets closer to it. Furthermore, for y0 = 175◦ the
nonphysical solution becomes a better optimum than that of the desired solution. As a direct consequence,
any physics-driven instance converges to it.

Figure 7: Undamped Pendulum. (a) Minimal physics loss across all epochs. (b) L2 relative error. While
the data-guided PINNs converge to the true solution (blue), the physics-driven PINNs yield incorrect system
dynamics (large L2 relative errors) by being either attracted by the stable (green) or unstable (red) fixed
point (see Figure 2). For y0 = 175◦ the nonphysical solution becomes a better optimum than that of the
desired solution. In the figure, markers were randomly shifted horizontally to reduce overlap.
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T 2.5 5 7.5
y0 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.001 0.1

4x50
tanh 100 100 100 1 1 12 1 2 14
swish 100 100 100 69 72 100 0 0 2
sin 100 100 100 13 5 61 3 4 12

8x100
tanh 100 100 100 0 0 3 0 1 10
swish 100 100 100 91 100 100 0 0 0
sin 100 100 100 0 1 13 0 3 14

Table 4: Toy Example. Rate of training success across different system settings (T and y0) and network
architectures (size and activation function). Numbers in the main table represent in percentage (%) cases of
successful training. Bold numbers represent a low (< 5%) success rate.

D Additional Content to Toy Example

D.1 Analytical Solution

The analytical solution to (11) is given by

y(t) =


(

1 +
(

1
y2

0
− 1

)
e−2t

)−1/2
for 1 ≥ y0 > 0,

0 for y0 = 0,

−
(

1 +
(

1
y2

0
− 1

)
e−2t

)−1/2
for 0 > y0 ≥ −1.

D.2 Rate of Training Success

As defined in Section 4.1, we declare training successful if the L2 relative error is below 15%. We show
the rate of training success for the toy example using different network architectures in Table 4. Similar to
observations on the undamped pendulum (see Table 1), we observe a low rate of training success for IC close
to the unstable fixed point (y∗ = 0) and long simulation times.

E Visualizing the Physics Loss Landscape

Visualization of the loss landscape is based on the work of Li et al. (2018) and is a two-dimensional projection
(for the 4x50 architecture nθ = 481). We plot the loss landscape L(θ1, θ2) with two specific directions θ1 and
θ2. Here, θ1 points in the direction of the network weights after the first half of the training (θ1 = θ25k −θ0),
and θ2 in their direction after full training (θ2 = θ50k − θ0). A basic Gram-Schmidt process is used to
obtain an orthonormalized set of the two directions, and intermediate positions are projected onto them (see
markers in Figure 4(c)). The loss landscape for different simulation times T is obtained by evaluating the
physics loss function on a total number of 1024 collocation points, sampled from the time domain t ∈ [0, T ].
Furthermore, loss values greater than L(θ1, θ2) > 0.2 were truncated to highlight the interesting domain in
Figure 4(c)-(f).
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