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Abstract001

Federated fine-tuning for Large Language Mod-002
els (LLMs) has recently gained attention due003
to the heavy communication overhead of trans-004
mitting large model updates. Low Rank Adap-005
tation (LoRA) has been proposed as a solu-006
tion, yet its application in federated learning007
is complicated by discordance in aggregation.008
Existing methods addressing this discordance009
often suffer from performance degradation at010
low ranks in heterogeneous data settings. In011
response, we introduce LoRA-A2 (Low Rank012
Adaptation with Alternating freeze and Adap-013
tive rank selection), which demonstrates ro-014
bustness in challenging settings with low ranks015
and high data heterogeneity. Our experimental016
findings reveal that LoRA-A2 maintains perfor-017
mance even under extreme heterogeneity and018
low rank conditions, achieving up to a 99.8%019
reduction in uploaded parameters compared to020
full fine-tuning without compromising perfor-021
mance. This adaptive mechanism boosts robust-022
ness and communication efficiency in federated023
fine-tuning, enabling the practical deployment024
of LLMs in resource-constrained environments.025

1 Introduction026

Large Language Models (LLMs), exemplified by027

ChatGPT (OpenAI, 2024), Llama (Dubey et al.,028

2024) and others, represent a hallmark of the cur-029

rent era. These models are being widely applied in030

real-world scenarios by fine-tuning them on various031

task-specific datasets (Dodge et al., 2020). With the032

expansion of edge devices, the potential to leverage033

rich, privacy-sensitive data for fine-tuning LLMs034

has shifted the focus toward federated fine-tuning.035

Despite its potential, this is often infeasible due to036

the large size of LLMs, which require extensive037

computational and communication resources from038

local devices.039

Parameter-Efficient Fine-Tuning (PEFT) meth-040

ods (Lester et al., 2021; Liu et al., 2022) are increas-041

ingly being explored in the context of federated042

fine-tuning. Among these, Low-Rank Adaptation 043

(LoRA) (Hu et al., 2021) is particularly noteworthy 044

for its significant reduction in number of commu- 045

nicated parameters. However, naive application of 046

LoRA in Federated Learning (FL) (McMahan et al., 047

2017) environment comes with several challenges 048

such as aggregation discordance. Although several 049

solutions have been proposed, they often remain 050

vulnerable to high heterogeneity and low ranks due 051

to a limited parameter space, making it difficult to 052

reduce rank size for communication efficiency in 053

realistic FL scenarios. 054

To address this, we introduce LoRA-A2 (Low 055

Rank Adaptation with Alternating freeze and 056

Adaptive rank selection), which is robust to both 057

high heterogeneity and low ranks. LoRA-A2 in- 058

corporates two main strategies: alternating freeze, 059

which switches between freezing LoRA modules 060

B and A in each round, and adaptive rank selec- 061

tion, which identifies and updates only important 062

ranks in LoRA modules. We conduct experiments 063

across various rank sizes and heterogeneity levels, 064

comparing our algorithm with multiple baselines. 065

Through the experiments, we reveal the vulnera- 066

bilities of existing methods and highlight the ro- 067

bustness of LoRA-A2 in challenging conditions, 068

providing analyses of the reasons for its robustness. 069

Additionally, we empirically demonstrate that our 070

approach achieves performance comparable to or 071

exceeding that of full fine-tuning, while uploading 072

less than 0.2% of parameters to the server. 073

Our contributions can be summarized as follows: 074

• We address the vulnerabilities of previous fed- 075

erated LoRA methods in high heterogeneity 076

and low-rank settings, and propose a novel 077

algorithm, LoRA-A2, which demonstrates ro- 078

bustness in these challenging conditions. 079

• Our algorithm effectively reduces communi- 080

cation costs, achieving a 99.8% reduction in 081

uploaded parameters compared to federated 082
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Figure 1: An overview of the proposed method, LoRA-A2. It alternately trains B and A of the LoRA adapters, with
each client training only a subset of the downloaded parameters. LoRA-A2 is free from several issues for using
LoRA in FL, which are discussed in Section 3. A detailed explanation of the method is provided in Section 4.

full fine-tuning, while maintaining or surpass-083

ing its performance.084

• We provide visualization on adaptive rank085

selection process and a thorough empirical086

exploration on how important ranks are effi-087

ciently trained and transmitted.088

2 Related Works089

LoRA with adaptive rank selection LoRA (Hu090

et al., 2022) is a widely used PEFT method for091

LLMs. It tries to approximate the updated part092

of the pre-trained model with two smaller size of093

matrices. This approach is inspired by previous094

studies (Li et al., 2018; Aghajanyan et al., 2021),095

which suggest that newly learned parameters for096

adaptation lie within a low dimensional subspace.097

AdaLoRA (Zhang et al., 2023) assumes a sce-098

nario where the total parameter budget is limited. It099

adaptively selects the rank for each LoRA adapter100

under this constraint, with a criterion for rank selec-101

tion based on singular values of the updated part.102

ALoRA (Liu et al., 2024) utilizes a router for103

each LoRA adaptor. The router determines which104

part of each LoRA adaptor should be either turned105

on or off, enabling efficient fine-tuning via pruning.106

Similarly, DoRA (Mao et al., 2024) re-splits LoRA107

into smaller groups of LoRAs. During the training108

session, it estimates the importance of each small109

LoRA, allowing the parts with less contribution110

across the whole LoRA to be pruned. Our research111

extends this adaptive rank selection in centralized112

learning so that each client adaptively selects dif- 113

ferent ranks suitable for their own dataset. 114

Federated learning with LoRA As training 115

LLMs on mobile devices becomes feasible, fine- 116

tuning LLMs via FL has recently gained attention. 117

In line with this trend, using LoRA for federated 118

fine-tuning (Babakniya et al., 2023; Kuo et al., 119

2024; Wang et al., 2024), is also being considered. 120

However, simply adopting LoRA for FL presents 121

several obstacles, which are discussed in Section 3. 122

HetLoRA (Cho et al., 2023) assumes that each 123

client may have different computational power, 124

which is a common scenario in FL. Based on this 125

assumption, it allows each client to use a LoRA 126

adapter of varying sizes. Zero-padding is then ap- 127

plied to equalize the LoRA sizes for aggregation. 128

Sun et al. (2024) point out that aggregating the 129

two matrices of a LoRA adapter separately can- 130

not fully approximate the original LoRA adapter. 131

Based on this finding, they propose FFA-LoRA, 132

which addresses this issue by freezing half of each 133

LoRA throughout the entire fine-tuning session. 134

FlexLoRA (Bai et al., 2024) aggregates the prod- 135

uct of two matrices that make up each LoRA 136

adapter and then decomposes the aggregated pa- 137

rameters back into two smaller matrices via sin- 138

gular value decomposition. This approach allows 139

FlexLoRA to overcome the challenges addressed 140

by HetLoRA and FFA-LoRA, respectively, though 141

at the cost of increased computational cost on the 142

server-side for the decomposition process. 143
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3 Problem Formulation144

Low rank adaptation Because LLMs have bil-145

lions of parameters, fine-tuning them for specific146

domains demands significant computational power,147

which may be infeasible in many situations. To148

address this issue, PEFT techniques such as LoRA149

(Hu et al., 2022) have recently gained attention, as150

they can effectively reduce the number of parame-151

ters that need to be trained. Specifically, when fine-152

tuning a pre-trained weight matrix W0 ∈ Rd1×d2153

to obtain W , LoRA achieves this by decomposing154

∆W , the update of the weight matrix, into smaller155

matrices B ∈ Rd1×r and A ∈ Rr×d2 :156

W = W0 +∆W = W0 +BA, (1)157

where r ≪ {d1, d2} denotes the rank of LoRA.158

With this approximation, the number of trainable159

parameters is reduced from d1 · d2 to r · (d1 + d2).160

Federated LoRA and discordance problem161

Consider a global pre-trained model W0 and a set162

of clients {1, 2, · · · ,K}. The objective in feder-163

ated fine-tuning is to update W0 to obtain a model164

W that is suitable for local datasets Dk. How-165

ever, fine-tuning LLMs is very expensive for local166

devices in terms of both computation and commu-167

nication, as billions of parameters must be trained168

and transmitted in each round.169

LoRA presents a promising approach in FL for170

reducing communication costs, as only low rank171

module B and A are trained and transmitted, al-172

lowing the number of communicated parameters173

to be linearly reduced by the rank r of LoRA mod-174

ules. However, the straightforward application of175

LoRA in FL introduces a significant issue known176

as discordance (Sun et al., 2024), primarily due to177

aggregation algorithms. In methods like FedAvg178

(McMahan et al., 2017), where each weight is ag-179

gregated individually, discordance occurs between180

the actual and aggregated parameters. That is,181

K∑
k=1

wk∆Wk =

K∑
k=1

wkBkAk

̸=

(
K∑
k=1

wkBk

)(
K∑
k=1

wkAk

) (2)182

in general, where
∑K

k=1wk = 1 with wk ≥ 0183

for all k ∈ [K]. One might consider aggregat-184

ing ∆Wk = BkAk directly to eliminate the dis-185

cordance, but this approach entails decomposing186
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Figure 2: Accuracy of previous Federated LoRA meth-
ods across different rank sizes in heterogeneous data
settings.

∆W =
∑K

k=1wk∆Wk back into B and A for the 187

next round, which is computationally unstable and 188

non-trivial. 189

Limited parameter space in low rank and high 190

data heterogeneity This discrepancy can be ef- 191

fectively addressed by either freezing the LoRA 192

module A, as suggested by Sun et al. (2024), or 193

employing SVD decomposition, as outlined by Bai 194

et al. (2024). However, Figure 2 illustrates that 195

the accuracy of these approaches decreases signifi- 196

cantly at lower ranks in the presence of high hetero- 197

geneity. We attribute this decline primarily to the 198

restricted parameter space imposed by LoRA. A 199

limited training parameter space constrains the op- 200

timization capabilities for complex federated learn- 201

ing tasks, and a restricted aggregation parameter 202

space exacerbates conflicts among clients. A de- 203

tailed analysis of this limited parameter space is 204

provided in Appendix C. 205

4 Proposed Method 206

To tackle the identified challenges, we propose a 207

novel framework called Low Rank Adaptation with 208

Alternating freeze and Adaptive rank selection for 209

federated learning, or LoRA-A2, for communica- 210

tion efficient FL with LoRA. LoRA-A2 adaptively 211

selects LoRA ranks for training and communica- 212

tion. And it trains and transmits only the selected 213

part of each adaptor in an alternating way. 214

4.1 Alternating Freeze 215

LoRA-A2 efficiently addresses the issue of discor- 216

dance by employing a simple alternating freeze 217

technique to train the LoRA modules B and A. 218

Instead of solely training module B while keep- 219

ing module A frozen permanently, as suggested by 220

FFA-LoRA (Sun et al., 2024), LoRA-A2 alternates 221

between the two: LoRA module A is frozen dur- 222

ing even rounds, while module B is frozen during 223
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odd rounds. This method preserves the optimiza-224

tion space while effectively resolving discordance.225

Specifically, when freezing A, we have226

∆W =

K∑
k=1

(wkBk)A

=
K∑
k=1

(wkBkAk) =
K∑
k=1

(wk∆Wk) ,

(3)227

and the same applies when freezing B. In this way,228

LoRA-A2 trains both B and A, ensuring that A229

does not remain the same as its initial value.230

To further enhance the effect of alternating op-231

timization, we adopt different learning rates for B232

and A, inspired by LoRA+ (Hayou et al., 2024).233

Figure 6 demonstrates the effectiveness of alternat-234

ing freeze and learning rate adjustment.235

4.2 Adaptive Rank Selection236

Furthermore, we propose an adaptive rank selection237

method designed to reduce the number of transmit-238

ted parameters while preserving the training and239

aggregation parameter space. This approach selects240

important LoRA ranks to match local communica-241

tion rank budget ri out of global LoRA adapter242

with rank rG adaptively based on the local dataset.243

We mainly focus on communication cost for up-244

loading parameters to the server as it is known245

that upload bandwidth is generally much slower246

than download bandwidth and is the major part of247

communication cost (Konečný et al., 2017; Suresh248

et al., 2017; Kairouz et al., 2021). The adaptive249

rank selection process provides two key benefits:250

it minimizes client conflicts by allowing different251

clients to choose different LoRA ranks in high het-252

erogeneity, and reallocates rank resources from253

unimportant LoRA modules to modules that re-254

quire more fine-tuning which is especially effective255

when communication rank budget is small.256

To quantify which ranks are more important, we257

introduce our novel criterion Sm,i, as follows:258

SBk
m,i = ∥∆Bk [:,i]A[i,:]∥F

SAk
m,i = ∥B[:,i]∆Ak [i,:]∥F

(4)259

Our criterion is based on the Frobenius norm260

of each rank’s contribution (Cm,i) to the change261

in ∆W , represented as ∆W t+1
k − ∆W t

k =262 ∑
(∆Bk [:,i]A[i,:]) =

∑
Cm,i. This criterion cap-263

tures the impact of each rank on model updates,264

considering the interaction between the updated265

and frozen LoRA modules. This approach is better 266

suited for LoRA modules than simpler magnitude- 267

based criteria, ||∆Bk [:,i]|| or ||∆Ak [i,:]||, as it ex- 268

plicitly accounts for the interplay between the up- 269

dated and frozen modules, which is a critical factor 270

in our alternating freeze strategy. The ablation 271

study in Table 6 empirically supports the superior- 272

ity of this criterion. 273

After computing SBk
m,i or SAk

m,i for each module 274

m, we select top-(ri · N) LoRA ranks from a to- 275

tal of rG ·N based on the scores across the entire 276

model, where N denotes the number of target mod- 277

ules across all the layers of the base model. We 278

refer to the set of selected ranks of client k asRk. 279

Once the ranks are selected, each client defines 280

LoRA module mask M
(m)
k for the module m to be 281

Mk
(m)
[:,i] =

{
1Td1 if i ∈ R
0Td1 otherwise

,

Mk
(m)
[i,:] =

{
1d2 if i ∈ R
0d2 otherwise

,

(5) 282

which is producted element-wise to the updated 283

part of Bk (or Ak). That is, before each backpropa- 284

gation, LoRA-A2 calculates 285

∆Bk
(m) ← ∆Bk

(m) ⊙Mk
(m)

∆Ak
(m) ← ∆Ak

(m) ⊙Mk
(m)

(6) 286

for each Bk (or Ak), where the notation ⊙ stands 287

for the Hadamard product. After each local train- 288

ing, each client uploads Bk ⊙Mk (or Ak ⊙Mk), 289

resulting in sparsification and reducing the number 290

of uploaded parameters. Then, the server aggre- 291

gates the uploaded ones, which are again added to 292

the Bk (or Ak) saved two rounds before. Algorithm 293

1 and 2 provide the pseudocode of LoRA-A2. 294

4.3 Theoretical Insights 295

In this section, we provide a brief theoretical 296

analysis of the parameter spaces relevant to 297

previous methods and our proposed LoRA-A2 298

framework. To substantiate our approach, we 299

introduce the following proposition: 300

301

Proposition 1. For a model W , consider 302

LoRA-based FL algorithms which update r rank 303

parameters per round. Let ΩA denote the space of 304

all possible parameter values that an algorithmA ∈ 305{
FFA-LoRA,FL+LoRA,FlexLoRA,LoRA-A2

}
306

can make. Then, we have ΩFFA-LoRA ⊊ 307

ΩFL + LoRA = ΩFlexLoRA ⊂ ΩLoRA-A2 . 308
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Algorithm 1 LoRA-A2

Initialize ∆W = BA with B ∈ Rd1×rG and
A ∈ RrG×d2 for each LoRA adaptor
for t = 1, 2, · · · , T do

Sample participants K(t) ⊆ [K] for round t

wk = |Dk|/
(∑K

k=1 |Dk|
)

if t % 2 = 1 then
for k = 1, 2, · · · ,K in parallel do

B
(t+1)
k = LocalTraining(B(t), t)

B(t+1) = B(t) +
∑K

k=1wkB
(t+1)
k

A(t+1) = A(t)

end for
else

for k = 1, 2, · · · ,K in parallel do
A

(t+1)
k = LocalTraining(A(t), t)

A(t+1) = A(t) +
∑K

k=1wkA
(t+1)
k

B(t+1) = B(t)

end for
end if

end for

The proof for the proposition is provided in Ap-309

pendix D.310

Our algorithm is designed to adaptively select311

the relevant training and aggregation parameter312

spaces while concurrently reducing the number of313

parameters that are updated.314

5 Experiments315

In this section, we evaluate the performance of our316

algorithm against existing FL methods combined317

with LoRA across various heterogeneity settings318

and datasets. We assess performance based on accu-319

racy and the total number of uploaded parameters.320

5.1 Experimental Settings321

Across all experiments, we utilize RoBERTa-base322

(Liu et al., 2019) pre-trained model as the base323

model. For fine-tuning, we choose BANKING77324

(Casanueva et al., 2020) and 20 Newsgroups (Lang,325

1995) datasets for fine-tuning the base model.326

These datasets are chosen for their ability to simu-327

late a controlled level of data heterogeneity using328

Dirichlet distribution (Hsu et al., 2019). Dataset329

statistics for different levels of heterogeneity are330

reported in Appendix A.331

Unless otherwise stated, we trained 30 local332

clients, assuming a full participation setting, i.e.,333

K(t) = [K] for all t ∈ [T ]. The clients were trained334

Algorithm 2 LocalTraining

[Rank Selection]
Calculate importance scores following (4)
Define the mask Mk following (5)
[Local Training]
if t % 2 = 1 then
B

(t; e−1)
k = B(t)

for e = 1, 2. · · · , E do
∆B

(t; e)
k = B

(t; e−1)
k −B

(t; e−1)
k

∆B
(t;e)
k = ∆B

(t; e)
k ⊙Mk

Backpropagate ∆B
(t; e+1)
k

end for
Return: B(t; E)

k

else
for e = 1, 2. · · · , E do
∆A

(t; e)
k = A

(t; e−1)
k −A

(t; e−1)
k

∆A
(t;e)
k = ∆A

(t; e)
k ⊙Mk

Backpropagate ∆A
(t;e+1)
k

end for
Return: A(t; E)

k

end if

for 50 rounds with 5 local epochs. Detailed hyper- 335

parameters for experiments are specified in Ap- 336

pendix B. 337

For baselines, we adopt four methods that utilize 338

LoRA for federated fine-tuning: FL + LoRA, FFA- 339

LoRA (Sun et al., 2024), FlexLoRA (Bai et al., 340

2024), and HetLoRA (Cho et al., 2023), where FL 341

+ LoRA stands for the naive implementation of 342

LoRA in FedAvg (McMahan et al., 2017). 343

5.2 Main Results 344

We compare our algorithm with the baseline meth- 345

ods under various data heterogeneity settings in 346

BANKING77 and 20 Newsgroups datasets to 347

demonstrate that our algorithm outperforms pre- 348

vious federated LoRA fine-tuning methods across 349

different non-IID settings and LoRA ranks. 350

Robustness of LoRA-A2 in low ranks and high 351

heterogeneity Table 1 highlights the vulnerabil- 352

ity of previous methods under conditions of high 353

heterogeneity and low ranks. The accuracy of 354

baseline methods declines significantly as rank de- 355

creases, whereas our algorithm maintains its perfor- 356

mance, achieving up to a 23% accuracy advantage. 357

This suggests that reducing LoRA ranks is chal- 358

lenging for previous methods under realistic het- 359

erogeneous data conditions. Also, Our algorithm 360
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Method
BANKING77 Dataset 20 Newsgroups Dataset Communicated

Parameters∗Dir(0.5) Dir(0.1) Dir(0.01) Dir(0.5) Dir(0.1) Dir(0.01)

FL (w/o LoRA) 92.76±0.30 90.29±0.73 67.58±0.44 70.93±1.04 68.82±0.69 64.41±0.30 186B

FL + LoRA(Rank=8) 92.80±0.24 90.47±0.53 60.96±1.47 70.44±0.28 67.33±0.18 43.90±1.08 1.99B
FFA-LoRA(Rank=8) 87.20±0.57 77.44±1.28 40.88±1.04 67.00±0.67 61.27±0.71 37.34±0.30 0.991B
FlexLoRA(Rank=8) 93.35±0.24 92.14±0.25 69.84±0.65 70.59±0.22 68.10±0.38 60.41±1.54 1.99B

Ours(Rank=8) 93.24±0.27 91.61±0.39 70.13±1.22 70.26±0.21 67.12±0.22 54.50±1.44 1.31B

FL + LoRA(Rank=4) 92.86±0.08 88.11±0.88 54.99±0.59 70.33±0.12 67.29±0.19 43.12±2.67 0.991B
FFA-LoRA(Rank=4) 86.90±1.14 76.38±0.61 37.63±0.80 67.75±0.45 61.25±0.26 36.04±0.80 0.497B
FlexLoRA(Rank=4) 92.71±0.31 90.53±0.70 57.38±1.30 70.05±0.14 68.00±0.33 50.50±2.09 0.991B

Ours(Rank=4) 93.22±0.24 91.43±0.63 69.63±1.52 70.28±0.32 67.12±0.60 53.04±1.68 0.888B

FL + LoRA(Rank=2) 91.97±0.43 85.59±1.13 49.08±0.56 70.14±0.13 65.40±0.31 39.07±2.23 0.497B
FFA-LoRA(Rank=2) 84.65±1.05 73.44±0.88 34.44±2.15 68.12±0.47 61.57±0.38 36.65±0.52 0.249B
FlexLoRA(Rank=2) 92.22±0.50 87.31±0.27 55.24±2.19 70.03±0.31 66.17±1.70 48.23±1.73 0.497B

Ours(Rank=2) 93.10±0.07 92.02±0.36 69.40±0.48 70.12±0.18 67.02±0.26 52.99±2.56 0.528B

FL + LoRA(Rank=1) 90.61±0.10 82.24±1.68 45.78±1.04 69.40±0.33 63.16±0.53 36.58±0.98 0.249B
FFA-LoRA(Rank=1) 82.51±0.53 72.96±0.54 33.68±0.20 67.73±0.30 61.35±0.22 34.44±0.68 0.124B
FlexLoRA(Rank=1) 90.40±0.54 82.20±0.74 42.75±0.89 69.53±0.25 62.98±1.12 35.54±0.68 0.249B

Ours(Rank=1) 93.21±0.13 91.87±0.33 68.88±1.15 70.31±0.24 66.95±0.07 54.84±1.15 0.270B

Table 1: Results with RoBERTa-base on BANKING77 and 20 Newsgroups datasets. Smaller α for Dir(α) implies
that the simulated setting is more heterogeneous. The best results on each dataset are shown in bold and second best
is shown by underline. ∗ This column reports the total number of uploaded parameters, averaged across rows.

consistently achieves the highest performance or361

remains within a 1% margin of the best-performing362

baselines at ranks 8 and 4 while showing large per-363

formance gap in low ranks.364

Communication cost reduction by LoRA-A2365

Decreasing LoRA ranks in federated LoRA meth-366

ods reduces the communication cost linearly. Our367

algorithm achieves performance comparable to or368

better than fully fine-tuned models even at rank 1,369

allowing for up to a 99.8% reduction in communi-370

cated parameters with minimal performance loss.371

This demonstrates that LoRA-A2 effectively solves372

the significant communication cost challenges of373

federated fine-tuning on LLMs.374

5.3 Analysis on Adaptive Rank Selection375

In this section, we visualize the process of our adap-376

tive rank selection, and explore how we efficiently377

train and send important ranks, highlighting the378

robustness of our algorithm in heterogeneous and379

low rank environments. To simulate extreme cases380

of both identical and different client distributions,381

we test our algorithm on a pathological toy dataset382

using the 20 Newsgroups dataset. In this setup, 20383

clients each holds data from only two classes, with384

consecutive pairs sharing the same classes, while 385

others do not. For instance, clients 0 and 1 have 386

classes "medical" and "space," whereas clients 2 387

and 3 have "motorcycle" and "religions". Detailed 388

settings are shown in Appendix C. 389

Robustness to low rank by Adaptive Module Se- 390

lection In this experiment, our algorithm selects 391

2 ·N (m) ranks from a total of 16 ·N (m) across the 392

whole RoBERTa model, guided by our importance 393

criterion, and visualizes the adaptive selection of 394

modules. Figure 3 illustrates the number of ranks 395

selected for each module in the model during the 396

training. The figure shows that most modules are 397

allocated with zero ranks, indicating either no need 398

for fine-tuning or the insignificance of updates on 399

those modules. This suggests that our adaptive rank 400

selection automatically prunes out modules that do 401

not require additional fine-tuning. 402

To further justify that our adaptive rank selection 403

adequately selects important modules, we conduct 404

an ablation study on module selection, akin to the 405

approach in AdaLoRA (Zhang et al., 2023) but 406

in a federated environment. Figure 5 displays the 407

model’s performance when only specific modules 408

or layers are fine-tuned. The results show that tun- 409
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(a) client 0 (b) client 1 (c) client 2

Figure 3: Visualization on number of selected rank per module. The x-axis shows RoBERTa module types, while the
y-axis indicates layer numbers. Experimented on the 20 Newsgroups dataset with a pathological data distribution.
Average 2 ranks were selected out of 16 ranks by our adaptive rank selection algorithm.

ing the last layer and intermediate, dense modules410

leads to better performance, highlighting their im-411

portance for fine-tuning. This aligns with our find-412

ings, where the last layers and intermediate / output413

dense modules are automatically selected, demon-414

strating the algorithm’s effectiveness in prioritizing415

essential modules for additional fine-tuning.416

Robustness to data heterogeneity by client clus-417

tering Another effect of rank selection is cluster-418

ing of clients to minimize conflicts among clients419

with different dataset and enhance cooperation420

among clients with similar dataset.421

Figure 4 (a) illustrates how much local rank pa-422

rameters are shared among different clients. The423

figure shows that clients that share data distribu-424

tions share more rank parameters than the clients425

who do not share data tends to share less parame-426

ters. This trend is also evident at the module level427

in Figure 3, where clients 0 and 1 select a similar428

number of ranks for each module, differing from429

client 2, while retaining the tendency to choose430

more ranks from the last layers or intermediate and431

output dense modules. This indicates that clients432

with similar datasets select the same ranks, pro-433

moting cooperative model training, whereas clients434

with differing data select fewer common ranks, re-435

sulting in independent parameter training. Figure 4436

(b) further supports this by visualizing the cosine437

similarity between clients’ model updates, showing438

near 1 for clients with the same classes and near439

zero for those who do not share data. This under-440

scores the cooperative nature of updates from sim-441

ilar clients while maintaining independence from442

# of
Ranks

RoBERTa-Large
FL+LoRA FFA-LoRA FlexLoRA∗ Ours

8 80.56 63.08 - 85.85
4 78.37 62.07 - 84.70
2 75.47 60.70 - 84.70
1 72.02 55.97 - 85.78

Table 2: Experimental results on RoBERTa-Large
model. The level of heterogeneity is Dir(0.01).
∗ FlexLoRA results could not be reported due to an ill-
conditioned matrix issue in SVD decomposition

# of
Ranks

DistilBERT
FL+LoRA FFA-LoRA FlexLoRA∗ Ours

8 32.58 18.82 51.21 52.97
4 36.92 16.73 41.26 51.24
2 27.14 15.49 34.05 49.97
1 21.59 14.29 21.01 48.89

Table 3: Experimental results on DistilBERT (Sanh
et al., 2020) model. The level of heterogeneity is
Dir(0.01).

those with different data, contributing to our algo- 443

rithm’s robustness against data heterogeneity. 444

5.4 Ablation Studies 445

Through these ablation studies, we show empirical 446

evidence for our engineering choices on aggrega- 447

tion tactics and rank selection criteria. 448

Efficacy of alternating freeze To address the 449

discordance problem in federated LoRA aggrega- 450

tion, we employ an alternating freeze approach 451

that alternately freezes LoRA modules B and A, 452

rather than exclusively freezing module A as in 453

7



(a) Rank selection similarity

(b) Cosine similarity of local updates

Figure 4: Visualization of similarity between clients. the
x and y axes represent individual clients trained on 20
Newsgroups dataset with pathologic data distribution.

FFA-LoRA (Cho et al., 2023). Furthermore, we set454

the learning rate of module B, ηB , to be five times455

that of module A, ηA, inspired by LoRA+ (Hayou456

et al., 2024). This configuration further enhances457

overall performance and robustness in highly het-458

erogeneous environments. Figure 6 illustrates the459

performance difference among these approaches,460

showing that solely freezing A is less effective un-461

der high data heterogeneity, whereas alternating462

freeze demonstrates greater robustness.463

Scalability and generalizability on model struc-464

tures In evaluating the scalability and generaliz-465

ability of our algorithm across various model struc-466

tures, we present the results in Table 2 and Table467

3. These tables illustrate the performance of our468

model when applied to diverse architectures and469

parameter configurations. The outcomes clearly470

demonstrate that our algorithm achieves superior471

performance, even on models with a larger number472

of parameters or different architectures. This high-473

lights the robust scalability and generalizability of474

(a) Selected layers (b) Selected modules

Figure 5: Ablation analysis on the performance of
model when solely fine-tuned on selected layers or types
of modules. Experimented on 20 Newsgroups dataset
with Dir(0.1) heterogeneity.

Dir(0.5) Dir(0.1) Dir(0.01)
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79.77

42.58

91.81

86.41

48.83

93.25
91.71

68.82

(a) BANKING77

Dir(0.5) Dir(0.1) Dir(0.01)
Data Heterogeneity

35

40
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60
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ra
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64.43

38.93

69.20

65.11

45.53

70.25

67.23
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FFA-LoRA
   + Alternating
       + B > A

(b) 20 Newsgroups

Figure 6: Effect of alternating freeze under varying
levels of heterogeneity.

our approach across different model structures. 475

476

Additional experiments We also include further 477

experiments addressing resource heterogeneity set- 478

tings, pathological distributions, as well as investi- 479

gations into convergence speed and computational 480

overhead in Appendix C. 481

6 Conclusion 482

In this work, we tackle the vulnerability of previ- 483

ous methods in high heterogeneity and low ranks 484

by proposing a novel algorithm, LoRA-A2, which 485

shows robustness in these challenging conditions 486

with alternating freeze and adaptive rank selec- 487

tion. Our approach offers significant improvements 488

in communication efficiency without compromis- 489

ing performance, as demonstrated by a reduction 490

of 99.8% in parameter uploads compared to full 491

fine-tuning. Through extensive experiments, we 492

establish LoRA-A2 as a superior alternative, pro- 493

viding a practical pathway for efficient and effec- 494

tive federated fine-tuning in diverse and resource- 495

constrained environments. 496
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7 Limitations497

LoRA-A2 shows promising results and we plan to498

distribute the implementation code with detailed499

instructions for reproducibility. However, several500

areas remain open for future exploration.501

First, our work mainly focuses on classification502

tasks, primarily due to computational constraints503

and the use of Dirichlet distribution to simulate504

non-IID conditions. However, extending LoRA-A2505

to more complex tasks, such as natural language506

generation, could offer additional perspectives. Fu-507

ture work with more resources could explore these508

broader applications.509

Second, our experiments are primarily con-510

ducted on comparatively smaller language models,511

such as RoBERTa-base and RoBERTa-large, due512

to limited computation resources. Applying LoRA-513

A2 to larger models, such as LLaMA or GPT-style514

architectures, could provide an opportunity to test515

its scalability. Investigating how well the method516

handles the increased parameter space of these517

state-of-the-art models could further demonstrate518

its efficiency.519

Finally, due to the limited access to real world520

datasets, our current results are mainly based on521

simulated settings. Extensive research on real522

world dataset, which typically exhibit more diverse523

types of noise and heterogeneity would help under-524

stand performance and robustness of LoRA-A2 in525

practical, dynamic environments.526
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Dir(0.01) Dir(0.1) Dir(0.5)
Train Test Train Test Train Test

max |{Dk}|k∈[K] 1317 877 911 606 576 383
min |{Dk}|k∈[K] 1 1 58 37 151 100
max |{Ck}|k∈[K] 5 5 12 12 20 14
min |{Ck}|k∈[K] 1 1 5 5 20 12

Number of classes 20
Number of clients 30

Table 4: Statistics of 20 Newsgroups datasets.

Dir(0.01) Dir(0.1) Dir(0.5)
Train Test Train Test Train Test

max |{Dk}|k∈[K] 639 212 672 185 473 133
min |{Dk}|k∈[K] 50 30 139 43 248 75
max |{Ck}|k∈[K] 15 10 34 24 65 52
min |{Ck}|k∈[K] 2 2 18 15 37 31

Number of intents 77
Number of clients 30

Table 5: Statistics of BANKING77 dataset.

related to the banking domain, comprising 10,003716

training samples and 3,080 test samples. 20 News-717

groups (Lang, 1995) is a widely used text classifi-718

cation dataset with 20 classes, each representing a719

unique topic. It contains 11,314 training samples720

and 7,532 test samples.721

We provide the statistics of two datasets in Table722

4 and Table 5, respectively. Dk and |Ck| denotes723

the local dataset of k and the number of unique724

classes in Dk, respectively. Figure 7 shows the dis-725

tribution of a local dataset for varying α simulating726

the Dirichlet distribution.727

B Reproducibility728

Hyperparameters When training, we use729

AdamW (Loshchilov and Hutter, 2019) optimizer730

with a learning rate of η = 0.0005. For LoRA-A2,731

since B and A of each LoRA module are optimized732

separately, we use different learning rates for them.733

Specifically, ηA = η is used for A and ηB = 5 · ηA734

is used for B, which is inspired by LoRA+ (Hayou735

et al., 2024). For HetLoRA, γ = 0.99 is used736

for the decaying factor as suggested by Cho et al.737

(2023). When evaluating, we merge the LoRA738

adapter ∆W with the pre-trained model W0 using739

a scaling factor, so that Wft = W0 +
16
r ∆W .740

Experiments Settings Without further specifi-741

cation, K = 30 clients participate in all experi-742

ments. We assume that there are no stragglers, i.e.,743

K(t) = K for all t = 1, 2, · · · , T , where T = 50744

represents the total communication round. Each745

local client trains 5 epochs before each communi-746

cation round. This simulation setting is constructed747
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Figure 7: Local dataset distribution for varying hetero-
geneity. The 20 Newsgroup datasets of client 0 for each
Dir(α) are visualized as an example.

BANKING77 Dataset Communicated
ParametersDir(0.1) Dir(0.01)

Importance 91.29±0.76 66.92±1.58 0.215B
Magnitude 91.71±0.23 68.00±0.57 0.651B

Ours 92.02±0.36 69.40±0.48 0.507B

Table 6: Ablation study on scoring functions.

using Flower (Beutel et al., 2020), and all exper- 748

iments with RoBERTa-base (Liu et al., 2019) are 749

conducted three times to ensure reproducibility. 750

Base Model We mainly adopt the pre-trained 751

RoBERTa-base (Liu et al., 2019) as the base model 752

for fine-tuning, The base model has approximately 753

125M parameters, which are all frozen during the 754

fine-tuning phase. And a frozen classifier is added 755

upon the model, following Sun et al. (2024). For 756

Table 2 and 3, we adopt RoBERTa-large and Distil- 757

BERT(Sanh et al., 2020), respectively. RoBERTa- 758

large has approximately 355M parameters, and 759

DistilBERT has approximately 82M parameters. 760

All the models are downloaded from HuggingFace 761

Tranformers (Wolf et al., 2020) library. 762

C Additional Experiments 763

764

Client Drift Experiment To thoroughly analyze 765

the impact of data heterogeneity within constrained 766

parameter spaces, we conducted additional experi- 767

ments that illustrate the local client drift observed 768

in baseline methods operating under these limita- 769

tions. We quantified the degree of client drift by 770

calculating the "Average Gradient Similarity," de- 771
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Figure 8: Convergence curve of baseline methods in various levels of heterogeneity. Experimented on BANKING77
dataset and the ranks were all set to 2.

Figure 9: Average Gradient Similarity on various level
of heterogeneity. Experimented on 20 Newsgroups
dataset and the ranks were all set to 2.

Rank FL + LoRA FFA-LoRA FlexLoRA Ours
8 53.80±1.44 52.60±0.96 60.36±1.15 58.74±0.95

4 55.03±0.43 50.57±1.58 59.12±0.98 58.62±1.51

2 50.40±0.77 48.36±0.86 55.46±0.99 59.63±0.59

1 51.24±3.12 46.92±1.30 51.05±0.69 59.11±0.88

Table 7: Experiments on pathologic settings.

fined as follows:772

AverageGradientSimilarity =

1

n2

n∑
i

n∑
i

(∆W t
i −∆W t−1

i ) · (∆W t
j −∆W t−1

j )

||∆W t
i −∆W t−1

i || · ||∆W t
j −∆W t−1

j ||
(7)773

The experimental results presented in Figure 9 in-774

dicate a rapid decline in average gradient similarity775

as the level of heterogeneity increases. In contrast,776

our method demonstrates greater robustness, ex-777

hibiting lower client drift even in rounds where778

only the LoRA module A is updated. These find-779

ings are consistent with the results shown in Figure780

2 and Table 1, which illustrate that FFA-LoRA ex-781

periences the most significant performance decline782

between the directional settings of 0.1 and 0.01,783

while our algorithm maintains its effectiveness in784

heterogeneous environments.785

786

Efficacy of importance criterion As mentioned 787

in Section 4.2, other criteria such as magnitude- 788

based or importance-based scoring functions can 789

be used for selecting ranks. Table 6 shows that our 790

criterion outperforms others, with less communica- 791

tion than the magnitude-based criterion. 792

793

Convergence Speed Analysis Figure 8 shows 794

the convergence curve of our algorithm and base- 795

line methods. The figure demonstrates that our 796

algorithm shows similar convergence speed com- 797

pared to baseline methods in various levels of het- 798

erogeneity. 799

Pathologic Setting Table 7 provides experiments 800

on pathologic setting, which is also used to gen- 801

erate Figure 4 in Section 5.3, to show the efficacy 802

of adaptive rank selection. In this setting, we have 803

K = 20 clients. And client (2k − 1) and client 804

(2k) exclusively possess half of class (2k − 1) and 805

(2k) of 20 Newsgroups datasets, respectively, for 806

k = 1, 2, · · · , 10. 807

Experiments on Resource Heterogeneity In 808

this section, we assume that each client has a dif- 809

ferent communication cost budget (Chen et al., 810

2023). For example, some clients might use smart- 811

phones with Wi-Fi, while others may use 3G net- 812

works for federation. We aim to allow each client 813

to have its own rank for the LoRA adapter, al- 814

lowing clients with lower budgets to participate 815

in training. In Table 8, we compare our method 816

with HetLoRA and FlexLoRA, two previous LoRA 817

methods that can handle resource heterogeneity 818

in FL. Here, we assume that there are 5 types of 819

ranks, {21, 22, 23, 24, 25}. The ranks are evenly 820

distributed, with 6 clients assigned to each rank. 821

Specifically, rk = 2k mod 6 for k = 1, 2, · · · , 30. 822

823
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BANKING77 Dataset Communicated
ParametersDir(0.1) Dir(0.01)

HetLoRA 86.91±0.43 68.53±2.14 3.09B
FlexLoRA 73.01±0.69 45.41±1.60 3.09B

Ours 92.02±0.16 70.67±0.76 1.97B

Table 8: Experimental results for the resource hetero-
geneity setting.

Computational OverHead Regarding computa-824

tional overhead, our analysis shows that LoRA-A825

exhibits a 1.17x increase in computation time com-826

pared to standard FL+LoRA, slightly higher than827

FFA-LoRA (0.93x) and FlexLoRA (1x). However,828

we note that communication time, often the dom-829

inant bottleneck in federated learning, is signifi-830

cantly reduced by LoRA-A2 (upto 99.8% reduc-831

tion compared to full-finetuning), outweighing the832

modest increase in computation time.833

D Theoretical Proofs834

Here’s brief proof for the proposition made in sec-835

tion 4.3: Proof) First, since FFA-LoRA freezes836

all the Ai’s permanently, ΩFFA-LoRA = {Bi}Ni=1.837

Next, since FL + LoRA and FlexLoRA up-838

date Bi’s and Ai’s simultaneously, ΩFL + LoRA =839

{(Bi, Ai)}Ni=1 = ΩFlexLoRA. Finally, ΩLoRA-A2 =840 {(
B̄i, Āi

)}N
i=1

, where its subspace {Bi}Ni=1 or841

{Ai}Ni=1 is optimized according to the Alter-842

nating freeze and Adaptive rank selection algo-843

rithm. Therefore, noting that r ≤ rG, we have844

ΩFFA-LoRA ⊊ ΩFL + LoRA = ΩFlexLoRA ⊂ ΩLoRA-A2845

846
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