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Abstract

Federated fine-tuning for Large Language Mod-
els (LLMs) has recently gained attention due
to the heavy communication overhead of trans-
mitting large model updates. Low Rank Adap-
tation (LoRA) has been proposed as a solu-
tion, yet its application in federated learning
is complicated by discordance in aggregation.
Existing methods addressing this discordance
often suffer from performance degradation at
low ranks in heterogeneous data settings. In
response, we introduce LoRA-A? (Low Rank
Adaptation with Alternating freeze and Adap-
tive rank selection), which demonstrates ro-
bustness in challenging settings with low ranks
and high data heterogeneity. Our experimental
findings reveal that LoORA-A? maintains perfor-
mance even under extreme heterogeneity and
low rank conditions, achieving up to a 99.8%
reduction in uploaded parameters compared to
full fine-tuning without compromising perfor-
mance. This adaptive mechanism boosts robust-
ness and communication efficiency in federated
fine-tuning, enabling the practical deployment
of LLMs in resource-constrained environments.

1 Introduction

Large Language Models (LLMs), exemplified by
ChatGPT (OpenAl, 2024), Llama (Dubey et al.,
2024) and others, represent a hallmark of the cur-
rent era. These models are being widely applied in
real-world scenarios by fine-tuning them on various
task-specific datasets (Dodge et al., 2020). With the
expansion of edge devices, the potential to leverage
rich, privacy-sensitive data for fine-tuning LLMs
has shifted the focus toward federated fine-tuning.
Despite its potential, this is often infeasible due to
the large size of LLMs, which require extensive
computational and communication resources from
local devices.

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods (Lester et al., 2021; Liu et al., 2022) are increas-
ingly being explored in the context of federated

fine-tuning. Among these, Low-Rank Adaptation
(LoRA) (Hu et al., 2021) is particularly noteworthy
for its significant reduction in number of commu-
nicated parameters. However, naive application of
LoRA in Federated Learning (FL) (McMahan et al.,
2017) environment comes with several challenges
such as aggregation discordance. Although several
solutions have been proposed, they often remain
vulnerable to high heterogeneity and low ranks due
to a limited parameter space, making it difficult to
reduce rank size for communication efficiency in
realistic FL scenarios.

To address this, we introduce LORA-A? (Low
Rank Adaptation with Alternating freeze and
Adaptive rank selection), which is robust to both
high heterogeneity and low ranks. LoRA-A? in-
corporates two main strategies: alternating freeze,
which switches between freezing LoRA modules
B and A in each round, and adaptive rank selec-
tion, which identifies and updates only important
ranks in LoRA modules. We conduct experiments
across various rank sizes and heterogeneity levels,
comparing our algorithm with multiple baselines.
Through the experiments, we reveal the vulnera-
bilities of existing methods and highlight the ro-
bustness of LoRA-A? in challenging conditions,
providing analyses of the reasons for its robustness.
Additionally, we empirically demonstrate that our
approach achieves performance comparable to or
exceeding that of full fine-tuning, while uploading
less than 0.2% of parameters to the server.

Our contributions can be summarized as follows:

* We address the vulnerabilities of previous fed-
erated LoRA methods in high heterogeneity
and low-rank settings, and propose a novel
algorithm, LoRA-A2, which demonstrates ro-
bustness in these challenging conditions.

* Our algorithm effectively reduces communi-
cation costs, achieving a 99.8% reduction in
uploaded parameters compared to federated
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Figure 1: An overview of the proposed method, LoRA-A?. It alternately trains B and A of the LoRA adapters, with
each client training only a subset of the downloaded parameters. LoRA-A? is free from several issues for using
LoRA in FL, which are discussed in Section 3. A detailed explanation of the method is provided in Section 4.

full fine-tuning, while maintaining or surpass-
ing its performance.

* We provide visualization on adaptive rank
selection process and a thorough empirical
exploration on how important ranks are effi-
ciently trained and transmitted.

2 Related Works

LoRA with adaptive rank selection LoRA (Hu
et al., 2022) is a widely used PEFT method for
LLMs. It tries to approximate the updated part
of the pre-trained model with two smaller size of
matrices. This approach is inspired by previous
studies (Li et al., 2018; Aghajanyan et al., 2021),
which suggest that newly learned parameters for
adaptation lie within a low dimensional subspace.
AdalLLoRA (Zhang et al., 2023) assumes a sce-
nario where the total parameter budget is limited. It
adaptively selects the rank for each LoRA adapter
under this constraint, with a criterion for rank selec-
tion based on singular values of the updated part.
ALoRA (Liu et al., 2024) utilizes a router for
each LoRA adaptor. The router determines which
part of each LoRA adaptor should be either turned
on or off, enabling efficient fine-tuning via pruning.
Similarly, DoRA (Mao et al., 2024) re-splits LoRA
into smaller groups of LoRAs. During the training
session, it estimates the importance of each small
LoRA, allowing the parts with less contribution
across the whole LoRA to be pruned. Our research
extends this adaptive rank selection in centralized

learning so that each client adaptively selects dif-
ferent ranks suitable for their own dataset.

Federated learning with LoRA As training
LLMs on mobile devices becomes feasible, fine-
tuning LLMs via FL has recently gained attention.
In line with this trend, using LoRA for federated
fine-tuning (Babakniya et al., 2023; Kuo et al.,
2024; Wang et al., 2024), is also being considered.
However, simply adopting LoRA for FL presents
several obstacles, which are discussed in Section 3.

HetLoRA (Cho et al., 2023) assumes that each
client may have different computational power,
which is a common scenario in FL. Based on this
assumption, it allows each client to use a LoRA
adapter of varying sizes. Zero-padding is then ap-
plied to equalize the LoRA sizes for aggregation.

Sun et al. (2024) point out that aggregating the
two matrices of a LoRA adapter separately can-
not fully approximate the original LoRA adapter.
Based on this finding, they propose FFA-LoRA,
which addresses this issue by freezing half of each
LoRA throughout the entire fine-tuning session.

FlexLoRA (Bai et al., 2024) aggregates the prod-
uct of two matrices that make up each LoRA
adapter and then decomposes the aggregated pa-
rameters back into two smaller matrices via sin-
gular value decomposition. This approach allows
FlexLoRA to overcome the challenges addressed
by HetLoRA and FFA-LoRA, respectively, though
at the cost of increased computational cost on the
server-side for the decomposition process.



3 Problem Formulation

Low rank adaptation Because LLMs have bil-
lions of parameters, fine-tuning them for specific
domains demands significant computational power,
which may be infeasible in many situations. To
address this issue, PEFT techniques such as LoRA
(Hu et al., 2022) have recently gained attention, as
they can effectively reduce the number of parame-
ters that need to be trained. Specifically, when fine-
tuning a pre-trained weight matrix W, € R% x4
to obtain W, LoRA achieves this by decomposing
AW, the update of the weight matrix, into smaller
matrices B € R¥*" and A € R™*%;

W =Wy + AW = W, + BA, (1)

where r < {d1,d2} denotes the rank of LoRA.
With this approximation, the number of trainable
parameters is reduced from d; - da to 7 - (dy + d2).

Federated LoRA and discordance problem
Consider a global pre-trained model W and a set
of clients {1,2,--- , K'}. The objective in feder-
ated fine-tuning is to update W to obtain a model
W that is suitable for local datasets D;,. How-
ever, fine-tuning LLMs is very expensive for local
devices in terms of both computation and commu-
nication, as billions of parameters must be trained
and transmitted in each round.

LoRA presents a promising approach in FL for
reducing communication costs, as only low rank
module B and A are trained and transmitted, al-
lowing the number of communicated parameters
to be linearly reduced by the rank r of LoORA mod-
ules. However, the straightforward application of
LoRA in FL introduces a significant issue known
as discordance (Sun et al., 2024), primarily due to
aggregation algorithms. In methods like FedAvg
(McMahan et al., 2017), where each weight is ag-
gregated individually, discordance occurs between
the actual and aggregated parameters. That is,

K K
Z wi AW = Z wy B A
k=1 k=1

(o) (504)

in general, where Zle wg = 1 with w, > 0
for all £ € [K]. One might consider aggregat-
ing AW;, = By Ay directly to eliminate the dis-
cordance, but this approach entails decomposing
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Figure 2: Accuracy of previous Federated LoRA meth-
ods across different rank sizes in heterogeneous data
settings.

AW = Zﬁil wr AW}, back into B and A for the
next round, which is computationally unstable and
non-trivial.

Limited parameter space in low rank and high
data heterogeneity This discrepancy can be ef-
fectively addressed by either freezing the LoRA
module A, as suggested by Sun et al. (2024), or
employing SVD decomposition, as outlined by Bai
et al. (2024). However, Figure 2 illustrates that
the accuracy of these approaches decreases signifi-
cantly at lower ranks in the presence of high hetero-
geneity. We attribute this decline primarily to the
restricted parameter space imposed by LoRA. A
limited training parameter space constrains the op-
timization capabilities for complex federated learn-
ing tasks, and a restricted aggregation parameter
space exacerbates conflicts among clients. A de-
tailed analysis of this limited parameter space is
provided in Appendix C.

4 Proposed Method

To tackle the identified challenges, we propose a
novel framework called Low Rank Adaptation with
Alternating freeze and Adaptive rank selection for
federated learning, or LORA-A?, for communica-
tion efficient FL with LoRA. LoRA-A? adaptively
selects LoRA ranks for training and communica-
tion. And it trains and transmits only the selected
part of each adaptor in an alternating way.

4.1 Alternating Freeze

LoRA-A? efficiently addresses the issue of discor-
dance by employing a simple alternating freeze
technique to train the LoRA modules B and A.
Instead of solely training module B while keep-
ing module A frozen permanently, as suggested by
FFA-LoRA (Sun et al., 2024), LoRA-A? alternates
between the two: LoRA module A is frozen dur-
ing even rounds, while module B is frozen during



odd rounds. This method preserves the optimiza-
tion space while effectively resolving discordance.
Specifically, when freezing A, we have

K
AW =" (wiBy) A
k=1
K K (3)
= Z (wipBrAg) = Z wiAWy)
k=1 k=1

and the same applies when freezing B. In this way,
LoRA-A? trains both B and A, ensuring that A
does not remain the same as its initial value.

To further enhance the effect of alternating op-
timization, we adopt different learning rates for B
and A, inspired by LoRA+ (Hayou et al., 2024).
Figure 6 demonstrates the effectiveness of alternat-
ing freeze and learning rate adjustment.

4.2 Adaptive Rank Selection

Furthermore, we propose an adaptive rank selection
method designed to reduce the number of transmit-
ted parameters while preserving the training and
aggregation parameter space. This approach selects
important LoRA ranks to match local communica-
tion rank budget r; out of global LoRA adapter
with rank r¢ adaptively based on the local dataset.
We mainly focus on communication cost for up-
loading parameters to the server as it is known
that upload bandwidth is generally much slower
than download bandwidth and is the major part of
communication cost (Kone¢ny et al., 2017; Suresh
et al., 2017; Kairouz et al., 2021). The adaptive
rank selection process provides two key benefits:
it minimizes client conflicts by allowing different
clients to choose different LoRA ranks in high het-
erogeneity, and reallocates rank resources from
unimportant LoRA modules to modules that re-
quire more fine-tuning which is especially effective
when communication rank budget is small.

To quantify which ranks are more important, we
introduce our novel criterion S, ;, as follows:

S = |AB Al 7

4
Sik = 1By Al r

Our criterion is based on the Frobenius norm
of each rank’s contribution (Cy, ;) to the change
in AW, represented as AW/ — AW} =
> (ABg i Ajg) = Y2 Cmi- This criterion cap-
tures the impact of each rank on model updates,
considering the interaction between the updated

and frozen LoRA modules. This approach is better
suited for LoORA modules than simpler magnitude-
based criteria, [|ABg[. ;|| or [|AAg; [, as it ex-
plicitly accounts for the interplay between the up-
dated and frozen modules, which is a critical factor
in our alternating freeze strategy. The ablation
study in Table 6 empirically supports the superior-
ity of this criterion.

After computing S, - k or SA’“ for each module
m, we select top-(r; - N ) LoRA ranks from a to-
tal of r - N based on the scores across the entire
model, where IV denotes the number of target mod-
ules across all the layers of the base model. We
refer to the set of selected ranks of client k£ as Ry.

Once the ranks are selected, each client defines

LoRA module mask M ,gm) for the module m to be
my )15 ifieR
Mk[:,i} = OT h . )
4, Otherwise
1 ifieR ©)
S
M) = e B ,
Fliv] {0d2 otherwise

which is producted element-wise to the updated
part of By, (or Ag). That is, before each backpropa-
gation, LoORA-A? calculates

(6)
AAL™  AAL™ © M (M)

for each By, (or Ay), where the notation ©® stands
for the Hadamard product. After each local train-
ing, each client uploads By, ® My, (or Ay ® My),
resulting in sparsification and reducing the number
of uploaded parameters. Then, the server aggre-
gates the uploaded ones, which are again added to
the By, (or Ag) saved two rounds before. Algorithm
1 and 2 provide the pseudocode of LoRA-AZ.

4.3 Theoretical Insights

In this section, we provide a brief theoretical
analysis of the parameter spaces relevant to
previous methods and our proposed LoRA-A?
framework. To substantiate our approach, we
introduce the following proposition:

Proposition 1. For a model W, consider
LoRA-based FL algorithms which update r rank
parameters per round. Let €24 denote the space of
all possible parameter values that an algorithm A €
{FFA-LoRA, FL+LoRA, FlexLoRA, LoRA-A?}
can make. Then, we have Qppai1ora &
QrL + LoRA = QFiextorA C € gra-a2-



Algorithm 1 LoRA-A?

Initialize AW = BA with B € R1X7¢ and
A € R"¢*% for each LoRA adaptor
fort=1,2,--- T do
Sample participants K (*)
wy = Dyl (S, D4l
ift % 2 = 1 then
for k =1,2,--- ) K in parallel do
Bl(:H) = LocalTraining(B®), t)
B+ — B®) 4 ZkK:1 ka](:H)
AR+ — A0
end for
else
for k =1,2,.--, K in parallel do
A,(fﬂ) = LocalTraining(A® 1)
AMHD) — A4 4 Zszl kagtH)
B+l — g@®)
end for
end if
end for

[K] for round ¢

The proof for the proposition is provided in Ap-
pendix D.

Our algorithm is designed to adaptively select
the relevant training and aggregation parameter
spaces while concurrently reducing the number of
parameters that are updated.

5 Experiments

In this section, we evaluate the performance of our
algorithm against existing FL. methods combined
with LoRA across various heterogeneity settings
and datasets. We assess performance based on accu-
racy and the total number of uploaded parameters.

5.1 Experimental Settings

Across all experiments, we utilize RoOBERTa-base
(Liu et al., 2019) pre-trained model as the base
model. For fine-tuning, we choose BANKING77
(Casanueva et al., 2020) and 20 Newsgroups (Lang,
1995) datasets for fine-tuning the base model.
These datasets are chosen for their ability to simu-
late a controlled level of data heterogeneity using
Dirichlet distribution (Hsu et al., 2019). Dataset
statistics for different levels of heterogeneity are
reported in Appendix A.

Unless otherwise stated, we trained 30 local
clients, assuming a full participation setting, i.e.,
K® = [K]forallt € [T]. The clients were trained

Algorithm 2 LocalTraining

[Rank Selection]
Calculate importance scores following (4)
Define the mask M}, following (5)
[Local Training]
if t % 2 = 1 then
B};; e=1) _ B
fore=1,2.--- ,Edo
(te) _ plte=1) (t; e—1)
AB,(Cte) _Bk(: | - B, N
;e ;e
AB," = AB," " © My

Backpropagate AB,(:; etl)
end for
Return: B,(:; E)
else

fore=1,2.--- ,Edo
AAS; e) _ AS; e-1) AS; e—1)
AATD = AAT9) o My,

Backpropagate AA,(f;eH)
end for
Return: A,(f; E)
end if

for 50 rounds with 5 local epochs. Detailed hyper-
parameters for experiments are specified in Ap-
pendix B.

For baselines, we adopt four methods that utilize
LoRA for federated fine-tuning: FL + LoRA, FFA-
LoRA (Sun et al., 2024), FlexLoRA (Bai et al.,
2024), and HetLLoRA (Cho et al., 2023), where FL
+ LoRA stands for the naive implementation of
LoRA in FedAvg (McMabhan et al., 2017).

5.2 Main Results

We compare our algorithm with the baseline meth-
ods under various data heterogeneity settings in
BANKING77 and 20 Newsgroups datasets to
demonstrate that our algorithm outperforms pre-
vious federated LoRA fine-tuning methods across
different non-IID settings and LoRA ranks.

Robustness of LoRA-A? in low ranks and high
heterogeneity Table 1 highlights the vulnerabil-
ity of previous methods under conditions of high
heterogeneity and low ranks. The accuracy of
baseline methods declines significantly as rank de-
creases, whereas our algorithm maintains its perfor-
mance, achieving up to a 23% accuracy advantage.
This suggests that reducing LoRA ranks is chal-
lenging for previous methods under realistic het-
erogeneous data conditions. Also, Our algorithm



Method BANKING77 Dataset 20 Newsgroups Dataset Communicated
Dir(0.5)  Dir(0.1) Dir(0.01) | Dir(0.5) Dir(0.1) Dir(0.01) | Parameters*

FL (W0 LoRA) | 92761030 90.29:1073 67.58:044 | 70.9311.04 68.82:060 64414030 | 186B
FL + LoRA (Rank—s) | 92.801024 90474053 60.961147 | 70441005 67.334018 43.9011.08 1.99B
FFA-LoRA (Rank—s) | 87.201057 77441128 40.8811.04 | 67.001067 61.271071 37.3410.30 0.991B
FlexLoRA (Rank=g) | 93351024 92141025 69.844065 | 70.591022 68101035 60.4111 54 1.99B
Ours(ranks) | 93.241027 91611039 70131199 | 70261091 67.124090 54504144 1.31B
FL + LoRA Rank—1) | 92.86:008 88.11:10s8 54.99:+050 | 70.334012 67.2940.10 43.12:267 0.991B
FFA'LORA(Ra1nk:4) 86.901114 76.384061 37.631080 | 67.7510.45 61251026 36.0410.50 0.497B
FlexLORA<Rank=4) 92.7110,31 90-53i0.70 57.38+1,30 70~05i0.14 68.00i0_33 50-50i2.09 0.991B
Ours(rank—s) | 93222024 91431063 69.63:15: | 70.281032 67.124060 53.0421 68 0.888B
FL + LoRA(Rank=2) | 91.9710.43 85591113 49.081056 | 70.1440.13 65404031 39.0742.93 0.497B
FFA-LORA(Rankzg) 84.654105 73441088 34441915 | 68.124047 61.571938 36.6541052 0.249B
FlexLoRA(Rank=2) | 92224050 87314027 55244219 | 70.031031 66.174170 48234173 0.497B
OurS(Rank:2) ‘ 93-10i0A07 92-02&0‘36 69-40i048 70-12i0.18 67-02i0.26 52-99i2.56 0.528B
FL + LoRA(Rank=1) | 90.611010 82.24116s 45.78+1.04 | 69401033 63.161053 36.5840.08 0.249B
FFA'LORA(Rank=1) 82514053 72964054 33.681020 | 67.731030 61.351020 34.44.106s 0.124B
FIGXLORA(Rank:U 90-40i054 82.20i074 42-75i0A89 69.53i0.25 62.98i1.12 35-54i0.68 0.249B
Ours(Rank:l) ‘ 93214013 91.871033 68.88:1.15 ‘ 7031024 6695007 54.84.; 15 ‘ 0.270B

Table 1: Results with ROBERTa-base on BANKING?77 and 20 Newsgroups datasets. Smaller « for Dir(«) implies
that the simulated setting is more heterogeneous. The best results on each dataset are shown in bold and second best
is shown by underline. * This column reports the total number of uploaded parameters, averaged across rows.

consistently achieves the highest performance or
remains within a 1% margin of the best-performing
baselines at ranks 8 and 4 while showing large per-
formance gap in low ranks.

Communication cost reduction by LoRA-A?
Decreasing LoRA ranks in federated LoRA meth-
ods reduces the communication cost linearly. Our
algorithm achieves performance comparable to or
better than fully fine-tuned models even at rank 1,
allowing for up to a 99.8% reduction in communi-
cated parameters with minimal performance loss.
This demonstrates that LoORA-A? effectively solves
the significant communication cost challenges of
federated fine-tuning on LLMs.

5.3 Analysis on Adaptive Rank Selection

In this section, we visualize the process of our adap-
tive rank selection, and explore how we efficiently
train and send important ranks, highlighting the
robustness of our algorithm in heterogeneous and
low rank environments. To simulate extreme cases
of both identical and different client distributions,
we test our algorithm on a pathological toy dataset
using the 20 Newsgroups dataset. In this setup, 20
clients each holds data from only two classes, with

consecutive pairs sharing the same classes, while
others do not. For instance, clients O and 1 have
classes "medical" and "space," whereas clients 2
and 3 have "motorcycle" and "religions". Detailed
settings are shown in Appendix C.

Robustness to low rank by Adaptive Module Se-
lection In this experiment, our algorithm selects
2 - N(™) ranks from a total of 16 - N (™) across the
whole RoBERTa model, guided by our importance
criterion, and visualizes the adaptive selection of
modules. Figure 3 illustrates the number of ranks
selected for each module in the model during the
training. The figure shows that most modules are
allocated with zero ranks, indicating either no need
for fine-tuning or the insignificance of updates on
those modules. This suggests that our adaptive rank
selection automatically prunes out modules that do
not require additional fine-tuning.

To further justify that our adaptive rank selection
adequately selects important modules, we conduct
an ablation study on module selection, akin to the
approach in AdaLLoRA (Zhang et al., 2023) but
in a federated environment. Figure 5 displays the
model’s performance when only specific modules
or layers are fine-tuned. The results show that tun-
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Figure 3: Visualization on number of selected rank per module. The x-axis shows RoBERTa module types, while the
y-axis indicates layer numbers. Experimented on the 20 Newsgroups dataset with a pathological data distribution.
Average 2 ranks were selected out of 16 ranks by our adaptive rank selection algorithm.

ing the last layer and intermediate, dense modules
leads to better performance, highlighting their im-
portance for fine-tuning. This aligns with our find-
ings, where the last layers and intermediate / output
dense modules are automatically selected, demon-
strating the algorithm’s effectiveness in prioritizing
essential modules for additional fine-tuning.

Robustness to data heterogeneity by client clus-
tering Another effect of rank selection is cluster-
ing of clients to minimize conflicts among clients
with different dataset and enhance cooperation
among clients with similar dataset.

Figure 4 (a) illustrates how much local rank pa-
rameters are shared among different clients. The
figure shows that clients that share data distribu-
tions share more rank parameters than the clients
who do not share data tends to share less parame-
ters. This trend is also evident at the module level
in Figure 3, where clients O and 1 select a similar
number of ranks for each module, differing from
client 2, while retaining the tendency to choose
more ranks from the last layers or intermediate and
output dense modules. This indicates that clients
with similar datasets select the same ranks, pro-
moting cooperative model training, whereas clients
with differing data select fewer common ranks, re-
sulting in independent parameter training. Figure 4
(b) further supports this by visualizing the cosine
similarity between clients’ model updates, showing
near 1 for clients with the same classes and near
zero for those who do not share data. This under-
scores the cooperative nature of updates from sim-
ilar clients while maintaining independence from

#of RoBERTa-Large
Ranks | FL+LoRA FFA-LoRA FlexLoRA* | Ours
8 80.56 63.08 - 85.85
4 78.37 62.07 - 84.70
2 75.47 60.70 - 84.70
1 72.02 55.97 - 85.78

Table 2: Experimental results on RoBERTa-Large
model. The level of heterogeneity is Dir(0.01).
* FlexLoRA results could not be reported due to an ill-
conditioned matrix issue in SVD decomposition

# of DistilBERT

Ranks | FL+LoRA FFA-LoRA FlexLoRA* ‘ Ours
8 32.58 18.82 51.21 52.97
4 36.92 16.73 41.26 51.24
2 27.14 15.49 34.05 49.97
1 21.59 14.29 21.01 48.89

Table 3: Experimental results on DistilBERT (Sanh
et al., 2020) model. The level of heterogeneity is
Dir(0.01).

those with different data, contributing to our algo-
rithm’s robustness against data heterogeneity.

5.4 Ablation Studies

Through these ablation studies, we show empirical
evidence for our engineering choices on aggrega-
tion tactics and rank selection criteria.

Efficacy of alternating freeze To address the
discordance problem in federated LoRA aggrega-
tion, we employ an alternating freeze approach
that alternately freezes LoORA modules B and A,
rather than exclusively freezing module A as in
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Figure 4: Visualization of similarity between clients. the
x and y axes represent individual clients trained on 20
Newsgroups dataset with pathologic data distribution.

FFA-LoRA (Cho et al., 2023). Furthermore, we set
the learning rate of module B, 1, to be five times
that of module A, 14, inspired by LoRA+ (Hayou
et al., 2024). This configuration further enhances
overall performance and robustness in highly het-
erogeneous environments. Figure 6 illustrates the
performance difference among these approaches,
showing that solely freezing A is less effective un-
der high data heterogeneity, whereas alternating
freeze demonstrates greater robustness.

Scalability and generalizability on model struc-
tures In evaluating the scalability and generaliz-
ability of our algorithm across various model struc-
tures, we present the results in Table 2 and Table
3. These tables illustrate the performance of our
model when applied to diverse architectures and
parameter configurations. The outcomes clearly
demonstrate that our algorithm achieves superior
performance, even on models with a larger number
of parameters or different architectures. This high-
lights the robust scalability and generalizability of
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Figure 5: Ablation analysis on the performance of
model when solely fine-tuned on selected layers or types
of modules. Experimented on 20 Newsgroups dataset
with Dir(0.1) heterogeneity.
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Figure 6: Effect of alternating freeze under varying
levels of heterogeneity.

our approach across different model structures.

Additional experiments We also include further
experiments addressing resource heterogeneity set-
tings, pathological distributions, as well as investi-
gations into convergence speed and computational
overhead in Appendix C.

6 Conclusion

In this work, we tackle the vulnerability of previ-
ous methods in high heterogeneity and low ranks
by proposing a novel algorithm, LoRA-A?, which
shows robustness in these challenging conditions
with alternating freeze and adaptive rank selec-
tion. Our approach offers significant improvements
in communication efficiency without compromis-
ing performance, as demonstrated by a reduction
of 99.8% in parameter uploads compared to full
fine-tuning. Through extensive experiments, we
establish LoRA-A? as a superior alternative, pro-
viding a practical pathway for efficient and effec-
tive federated fine-tuning in diverse and resource-
constrained environments.



7 Limitations

LoRA-A? shows promising results and we plan to
distribute the implementation code with detailed
instructions for reproducibility. However, several
areas remain open for future exploration.

First, our work mainly focuses on classification
tasks, primarily due to computational constraints
and the use of Dirichlet distribution to simulate
non-IID conditions. However, extending LoORA-A?
to more complex tasks, such as natural language
generation, could offer additional perspectives. Fu-
ture work with more resources could explore these
broader applications.

Second, our experiments are primarily con-
ducted on comparatively smaller language models,
such as RoBERTa-base and RoBERTa-large, due
to limited computation resources. Applying LoRA-
A? to larger models, such as LLaMA or GPT-style
architectures, could provide an opportunity to test
its scalability. Investigating how well the method
handles the increased parameter space of these
state-of-the-art models could further demonstrate
its efficiency.

Finally, due to the limited access to real world
datasets, our current results are mainly based on
simulated settings. Extensive research on real
world dataset, which typically exhibit more diverse
types of noise and heterogeneity would help under-
stand performance and robustness of LoORA-A? in
practical, dynamic environments.
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A Dataset Statistics

BANKING77 (Casanueva et al., 2020) is an intent
classification dataset with 77 fine-grained intents
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Dir(0.01) Dir(0.1) Dir(0.5)
Train | Test | Train | Test | Train | Test
max\{Dk}\kE[m 1317 | 877 | 911 | 606 | 576 | 383
min\{Dk}\ke[K] 1 1 58 37 151 100
max [{Cr}Hyex] 5 5 12 12 20 14
min ‘{Ckae[K] 1 1 5 5 20 12
Number of classes 20
Number of clients 30

Table 4: Statistics of 20 Newsgroups datasets.

Dir(0.01) | Dir(0.1) Dir(0.5)
Train | Test | Train | Test | Train | Test
max |{Dk}‘ke[K] 639 | 212 | 672 | 185 | 473 | 133
min |{’Dk}|k€[K] 50 30 139 43 248 75
max [{Cy} ‘ke[K] 15 10 34 24 65 52
min [{Cr} e 2 2 18 15 37 31
Number of intents 77
Number of clients 30

Table 5: Statistics of BANKING77 dataset.

related to the banking domain, comprising 10,003
training samples and 3,080 test samples. 20 News-
groups (Lang, 1995) is a widely used text classifi-
cation dataset with 20 classes, each representing a
unique topic. It contains 11,314 training samples
and 7,532 test samples.

We provide the statistics of two datasets in Table
4 and Table 5, respectively. Dy and |Ci| denotes
the local dataset of k£ and the number of unique
classes in Dy, respectively. Figure 7 shows the dis-
tribution of a local dataset for varying @ simulating
the Dirichlet distribution.

B Reproducibility

Hyperparameters When training, we use
AdamW (Loshchilov and Hutter, 2019) optimizer
with a learning rate of = 0.0005. For LoORA-AZ2,
since B and A of each LoRA module are optimized
separately, we use different learning rates for them.
Specifically, n4 = nis used for A and np =514
is used for B, which is inspired by LoRA+ (Hayou
et al., 2024). For HetLoRA, v = 0.99 is used
for the decaying factor as suggested by Cho et al.
(2023). When evaluating, we merge the LoRA
adapter AW with the pre-trained model Wy using
a scaling factor, so that Wy, = Wy + 176AW.

Experiments Settings Without further specifi-
cation, K = 30 clients participate in all experi-
ments. We assume that there are no stragglers, i.e.,
K® = K forallt = 1,2,---,T, where T' = 50
represents the total communication round. Each
local client trains 5 epochs before each communi-
cation round. This simulation setting is constructed
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Figure 7: Local dataset distribution for varying hetero-
geneity. The 20 Newsgroup datasets of client O for each
Dir(«) are visualized as an example.

BANKING77 Dataset ~ Communicated
Dir(0.1)  Dir(0.01) Parameters
Importance 91.291076 66.921158 0.215B
Magnitude 91.7119923 68.001¢57 0.651B
Ours 92-02i0.36 69.4010.48 0.507B

Table 6: Ablation study on scoring functions.

using Flower (Beutel et al., 2020), and all exper-
iments with RoOBERTa-base (Liu et al., 2019) are
conducted three times to ensure reproducibility.

Base Model We mainly adopt the pre-trained
RoBERTa-base (Liu et al., 2019) as the base model
for fine-tuning, The base model has approximately
125M parameters, which are all frozen during the
fine-tuning phase. And a frozen classifier is added
upon the model, following Sun et al. (2024). For
Table 2 and 3, we adopt RoBERTa-large and Distil-
BERT(Sanh et al., 2020), respectively. ROBERTa-
large has approximately 355M parameters, and
DistilBERT has approximately 82M parameters.
All the models are downloaded from HuggingFace
Tranformers (Wolf et al., 2020) library.

C Additional Experiments

Client Drift Experiment To thoroughly analyze
the impact of data heterogeneity within constrained
parameter spaces, we conducted additional experi-
ments that illustrate the local client drift observed
in baseline methods operating under these limita-
tions. We quantified the degree of client drift by
calculating the "Average Gradient Similarity," de-
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Rank | FL + LoRA | FFA-LoRA | FlexLoRA Ours
8 53.80+1.44 | 52.60+0.96 | 60.3611 15 | 58.7410.95
4 55.0310.43 | 50.57+158 | 89124098 | 58.62+1 51
2 50401077 | 48.361086 | 35.4610.99 | 59.6310.59
1 S51.241312 | 46.921130 | 51.0540.69 | 59.1110.88

Table 7: Experiments on pathologic settings.

fined as follows:

AverageGradientSimilarity =

Z":Z“: (AW — AW - (AW — AW
n? AW — AW - ||AW! - AWt ol
(7>

The experimental results presented in Figure 9 in-
dicate a rapid decline in average gradient similarity
as the level of heterogeneity increases. In contrast,
our method demonstrates greater robustness, ex-
hibiting lower client drift even in rounds where
only the LoORA module A is updated. These find-
ings are consistent with the results shown in Figure
2 and Table 1, which illustrate that FFA-LoRA ex-
periences the most significant performance decline
between the directional settings of 0.1 and 0.01,
while our algorithm maintains its effectiveness in
heterogeneous environments.
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Efficacy of importance criterion As mentioned
in Section 4.2, other criteria such as magnitude-
based or importance-based scoring functions can
be used for selecting ranks. Table 6 shows that our
criterion outperforms others, with less communica-
tion than the magnitude-based criterion.

Convergence Speed Analysis Figure 8 shows
the convergence curve of our algorithm and base-
line methods. The figure demonstrates that our
algorithm shows similar convergence speed com-
pared to baseline methods in various levels of het-
erogeneity.

Pathologic Setting Table 7 provides experiments
on pathologic setting, which is also used to gen-
erate Figure 4 in Section 5.3, to show the efficacy
of adaptive rank selection. In this setting, we have
K = 20 clients. And client (2k — 1) and client
(2k) exclusively possess half of class (2k — 1) and
(2k) of 20 Newsgroups datasets, respectively, for
k=1,2,---,10.

Experiments on Resource Heterogeneity In
this section, we assume that each client has a dif-
ferent communication cost budget (Chen et al.,
2023). For example, some clients might use smart-
phones with Wi-Fi, while others may use 3G net-
works for federation. We aim to allow each client
to have its own rank for the LoRA adapter, al-
lowing clients with lower budgets to participate
in training. In Table 8, we compare our method
with HetLoRA and FlexLoRA, two previous LoORA
methods that can handle resource heterogeneity
in FL. Here, we assume that there are 5 types of
ranks, {2',22 23 24 25} The ranks are evenly
distributed, with 6 clients assigned to each rank.
Specifically, rj, = 2Fm°46 for k = 1,2,--- , 30.



BANKING77 Dataset ~ Communicated
Dir(0.1)  Dir(0.01) Parameters

HetLoRA 8691043 68.53,4 14 3.09B
FlexLoRA 73~01j:0469 45~41j:1460 3.09B
Ours 92-02i0.16 70.6710_76 1.97B

Table 8: Experimental results for the resource hetero-
geneity setting.

Computational OverHead Regarding computa-
tional overhead, our analysis shows that LoORA-A
exhibits a 1.17x increase in computation time com-
pared to standard FL+LoRA, slightly higher than
FFA-LoRA (0.93x) and FlexLoRA (1x). However,
we note that communication time, often the dom-
inant bottleneck in federated learning, is signifi-
cantly reduced by LoRA-A? (upto 99.8% reduc-
tion compared to full-finetuning), outweighing the
modest increase in computation time.

D Theoretical Proofs

Here’s brief proof for the proposition made in sec-
tion 4.3: Proof) First, since FFA-LoRA freezes
all the A;’s permanently, Qppa1orRA = {BZ}Z]\L1
Next, since FL. + LoRA and FlexLoRA up-
date B;’s and A;’s simultaneously, O +orA =
{(BlaAz)}z]\il = QFlexLoRA- Finally, QLORA—A2 =
{(B,-,f_li) }Z.]il, where its subspace {Bi}fil or
{A;}Y | is optimized according to the Alter-
nating freeze and Adaptive rank selection algo-
rithm. Therefore, noting that r < rg, we have

QrrA-LoRA © QFL + LoRA = 2FlexLoRA C € orA-A2
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