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Abstract

Quantifying uncertainty about a policy’s long-term performance is key in sequen-
tial decision-making tasks. We study the problem from a Bayesian perspective,
where the goal is to learn the posterior distribution over value functions induced
by parameter (epistemic) uncertainty of the Markov decision process. Previous
work restricts the analysis to a few moments of the distribution over values or
imposes a particular distribution shape (e.g., Gaussians). Inspired by distribu-
tional reinforcement learning, we introduce a Bellman operator whose fixed-point
is the value distribution function. Based on our theory, we propose Epistemic
Quantile-Regression (EQR), a model-based algorithm that learns a value distribu-
tion function that can be used for policy optimization. Evaluation across several
continuous-control tasks shows performance benefits with respect to established
model-based and model-free algorithms.

1 Introduction

Reinforcement learning (RL) tackles optimal decision-making in an unknown Markov Decision
Process (MDP) (Sutton and Barto, 2018). Uncertainty is at the heart of the RL problem: on one
hand, aleatoric uncertainty refers to the stochasticity in the MDP transitions and the RL agent’s action
selection; on the other hand, epistemic uncertainty appears due to lack of knowledge about the MDP.
During policy evaluation, both sources of uncertainty induce a distribution of possible returns, which
should be considered for policy optimization. For instance, in high-stakes applications like medical
treatments, accounting for aleatoric noise is key towards training risk-averse policies (Chow et al.,
2015; Keramati et al., 2020). Similarly, effective exploration can be achieved by proper handling of
epistemic uncertainty (Deisenroth and Rasmussen, 2011; Curi et al., 2020).

Two paradigms have emerged to capture uncertainty in the predicted outcomes of a policy. First,
distributional RL (Bellemare et al., 2017) models the aleatoric uncertainty about returns, due to
the inherent noise of the decision process. In contrast, Bayesian RL (Ghavamzadeh et al., 2015)
captures the epistemic uncertainty about the unknown expected return of a policy — denoted as the
value function — due to incomplete knowledge of the MDP. As such, the distribution over outcomes
from each perspective has fundamentally different meaning and utility. If we care about effective
exploration of unknown (rather than stochastic) outcomes, then Bayesian RL is the appropriate choice
of framework (Osband et al., 2019).

In this paper, we focus on the Bayesian RL setting where a posterior distribution over possible MDPs
induces a distribution over value functions. The posterior over values naturally models the epistemic
uncertainty about the long-term performance of the agent, which is the guiding principle behind
provably-efficient exploration (Strehl and Littman, 2008; Jaksch et al., 2010). An open question
remains how to effectively model and learn the posterior distribution over value functions. We
approach this problem by using tools from distributional RL in the Bayesian framework. The key idea
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is that, for time-inhomogeneous MDPs with a tabular representation, the value distribution follows a
Bellman equation from which we can derive an iterative estimation algorithm that resembles methods
from distributional RL. Based on this insight, we present a novel algorithm that uses a learned value
distribution for policy optimization.

Our contribution. We introduce the value-distributional Bellman equation that describes the rela-
tionship between the value distributions over successive steps. Moreover, we show that the fixed-point
of the associated Bellman operator is precisely the posterior value distribution. Then, leveraging
tools from distributional RL, we propose a practical algorithm for learning the quantiles of the value
distribution function. Finally, we propose Epistemic Quantile-Regression (EQR), a model-based
policy optimization algorithm that learns a distributional critic and can flexibly accomodate any
differential objective function of the learned value distribution (mean, exponential risk, CVaR, etc.)

1.1 Related work

Distributional RL. The treatment of the policy return as a random variable dates back to Sobel (1982),
where it is shown that the higher moments of the return obeys a Bellman equation. More recently,
distributional RL has emerged as a paradigm for modelling and utilizing the entire distribution of
returns (Tamar et al., 2013; Bellemare et al., 2023), with real-world applications including guidance of
stratospheric balloons (Bellemare et al., 2020) and super-human race-driving in simulation (Wurman
et al., 2022). The distributional RL toolbox has expanded over the years with diverse distribution
representations (Bellemare et al., 2017; Dabney et al., 2018b,a; Yang et al., 2019) and deeper
theoretical understanding (Bellemare et al., 2019; Rowland et al., 2018; Lyle et al., 2019). In our core
algorithm, we use quantile-regression (QR) by Dabney et al. (2018b) as a tool for learning the value
— rather than return — distribution. Moreover, QR has been integrated with soft actor-critic (SAC)
(Haarnoja et al., 2018) for improved performance (Wurman et al., 2022; Kuznetsov et al., 2020). At a
high level, EQR combines model learning with quantile-regression, which is then integrated with
SAC for policy optimization.

Bayesian RL. Model-free approaches to Bayesian RL directly model the distribution over values,
e.g., with normal-gamma priors (Dearden et al., 1998), Gaussian Processes (Engel et al., 2003) or
ensembles of neural networks (Osband et al., 2016). Instead, model-based Bayesian RL represents
uncertainty in the MDP dynamics, which must then must be propagated to the value function. For
instance, the PILCO algorithm by Deisenroth and Rasmussen (2011) learns a Gaussian Process
(GP) model of the transition dynamics and integrates over the model’s total uncertainty to obtain
the expected values. In order to scale to high-dimensional continuous-control problems, Chua
et al. (2018) use ensembles of probabilistic neural networks (NNs) to capture both aleatoric and
epistemic uncertainty as first proposed by Lakshminarayanan et al. (2017). Both approaches propagate
model uncertainty during policy evaluation and improve the policy via greedy exploitation over this
model-generated noise.

Closest to our problem setting are approaches that model the value distribution function or statistics
thereof. The uncertainty Bellman equation (UBE) offers a framework to estimate the variance of
the value distribution (O’Donoghue et al., 2018; Zhou et al., 2020; Luis et al., 2023). Jorge et al.
(2020) propose a principled backwards induction framework to estimate value distributions, with the
caveat of assuming a Gaussian parameterization for practical implementation. Perhaps closest to our
approach is the work by Dearden et al. (1999), which is a local sampling scheme that maintains a
sample-based approximation of the value distribution, updated using a Bellman equation. While it
does not assume a restrictive parametric form for the distribution, it ignores that samples from the
value distribution at successive states are correlated through the Bellman equation; we make a similar
approximation in our theory, see Section 3. In our work, rather than generating random samples of
the value distribution, we keep track of a relevant set of statistics (Rowland et al., 2019), e.g., evenly
spread quantiles, that have adequate coverage and representation power of the underlying distribution.

Mixed Approaches. Recent methods have combined distributional and Bayesian RL methods to
capture both sources of uncertainty. The core idea is to train an ensemble of return-distributional
critics, where each critic models aleatoric uncertainty, and the ensemble recovers epistemic uncertainty
(Moskovitz et al., 2021; Eriksson et al., 2022). Our approach is fundamentally different: we leverage
tools from distributional RL to model the epistemic uncertainty around expected returns, i.e., we
average over aleatoric noise. Moreover, our experiments show that our value representation with
quantiles leads to substantial gains in performance over an ensemble of critics.
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2 Background & Notation

In this section, we provide the relevant background and formally introduce the problem of value dis-
tribution estimation. We use upper-case letters to denote random variables and lower-case otherwise.
Vectors and matrices are denoted by bold font.

2.1 Markov Decision Processes

We consider an agent that acts in an infinite-horizon MDPM = {S,A, p, r, γ} with finite state space
S , finite action spaceA, unknown transition function p : S ×A → P(S) that maps states and actions
to the set of probability distributions over S , a known1 and bounded reward function r : S ×A → R,
and a discount factor γ ∈ [0, 1). The agent is equipped with an action-selection stochastic policy
π : S → P(A) defining the conditional probability distribution π(a | s), (s, a) ∈ S ×A. Given an
initial state s ∈ S and some policy π, the RL agent interacts with the environment and generates
a random trajectory T = {Sh, Ah, Rh}∞h=0, with S0 = s and for h ≥ 0 we have Ah ∼ π(· | Sh),
Rh = r(Sh, Ah), Sh+1 ∼ p(· | Sh, Ah).

2.2 Return-Distributional Reinforcement Learning

The return of a policy, denoted Zπ, is a random variable defined as the discounted sum of rewards
along a trajectory, Zπ(s) =

∑∞
h=0

[
γhRh

]
. The randomness in trajectories and returns originates

from the stochasticity of the environment dynamics and the policy, oftentimes called aleatoric
uncertainty. A common objective for the RL agent is to maximize the expected return, where we
average over this aleatoric noise to obtain a deterministic function known as the value. The value
function of policy π under dynamics p, starting from s ∈ S is defined as a map vπ,p : S → R and is
given by

vπ,p(s) = ET

 ∞∑
h=0

γhRh

∣∣∣∣∣∣S0 = s, p

, (1)

where we explicitly condition on the dynamics p; although redundant in the standard RL setting, this
notation will become convenient later on when we consider distributions over dynamics.

In contrast to learning value functions, return-distributional RL aims to learn the entire distribution
of returns via the random variable return-distributional Bellman equation (Bellemare et al., 2017)

Zπ(s)
D
= r(s,A) + γZπ(S′), (2)

where A ∼ π(· | s), S′ ∼ p(· | s,A) and (
D
=) denotes equality in distribution, i.e., the random

variables in both sides of the equation may have different outcomes, but they share the same
distribution.

2.3 Bayesian RL

In this paper, we adopt a Bayesian perspective and define the unknown dynamics as a random
transition function P with some prior distribution Φ(P ). As the agent acts inM, it collects data2

D and obtains the posterior distribution Φ(P | D) via Bayes’ rule. In what follows, we will
assume P ∼ Φ(P | D) and consider trajectories T defined as previously but with next-states as
Sh+1 ∼ P (· | Sh, Ah). Notably, the sampling process of next states mixes two sources of uncertainty:
the aleatoric noise, as with the original MDP, but also the uncertainty in P due to finite data, often
called epistemic uncertainty. Consequently, the aleatoric and epistemic noise in trajectories propagates
to the returns. We define the random value function of policy π under random dynamics P as

V π(s) = vπ,P (s). (3)

By (1), V π is an expectation over the trajectories T conditioned on the random variable P , which
means the aleatoric noise of trajectories is averaged out, but the epistemic uncertainty (due to the
conditioning on P ) remains and is propagated to V π. Intuitively, to obtain a sample from V π is

1The theory results can be easily extended to unknown reward functions.
2We omit time-step subscripts and refer to dataset D as the collection of all available transition data.
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Figure 1: Example value distribution. (Left) Uncertain Markov Reward Process with a truncated
Gaussian transition probability δ ∼ N̄ (µ = 0.4, σ = 0.1) and a scalar (deterministic) β ∈ [0, 1]. For
this example, we fixed β = 0.9. (Middle) The prior over MRPs, which corresponds directly to the
distribution of δ. (Right) The corresponding distribution over values for state s0.

equivalent to sample from the posterior Φ(P | D) and calculate the corresponding expected return,
i.e., the value. As such, the stochasticity of V π decreases as we gather data and Φ(P | D) concentrates
around the true transition function p.

The main focus of this paper is to study the value-distribution3 function µπ : S → P(R), such that
V π(s) ∼ µπ(s), ∀s ∈ S. As such, µπ represents the distribution of the epistemic noise around the
expected return of a policy. Refer to Figure 1 for a simple example of a transition function prior and
the value distribution it induces.

Our problem statement stands in clear contrast to the return-distributional RL setting introduced
in Section 2.2, which models the aleatoric noise around the return of a policy. While both value
and return distributions aim to obtain a richer representation of complex random variables, only the
former characterizes the type of uncertainty which could be valuable for effective exploration of the
environment.

3 The Value-Distributional Bellman Equation

In this section, we establish the theoretical backbone of iterative algorithms for learning the value-
distribution function µπ . We include formal proofs in Appendix A.

For the nominal transition kernel p, we can relate the values at subsequent time steps using the
well-known Bellman equation

vπ,p(s) =
∑
a

π(a | s)r(s, a) + γ
∑
s′,a

π(a | s)p(s′ | s, a)vπ(s′), (4)

which holds for any policy π and initial state s ∈ S . It is straightforward to extend the Bellman-style
recursion to account for the distributional nature of the values.
Proposition 1 (Random Variable Value-Distribution Bellman Equation). Let V π be the random
value function defined in (3). Then, it holds that

V π(s) =
∑
a

π(a | s)r(s, a) + γ
∑
s′,a

π(a | s)P (s′ | s, a)V π(s′), (5)

for any policy π and initial state s ∈ S.

Note that the random variable value-distribution Bellman equation (5) differs from the random
variable return-distribution Bellman equation (2) in that the former holds in strict equality, while the

3We focus on state-value functions for simplicity, but the results have a straightforward extension for
state-action-value functions.
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latter holds in the weaker notion of equality in distribution. The main caveat of (5) with respect to
model-free distributional RL is that, in general, P (s′ | s, a) and V π(s′) are correlated.

We now shift from discussing the random value function to focus instead on the value distribution
function. The main challenge in establishing a recursion for learning µπ is the dependency between
P (s′ | s, a) and V π(s′) in (5). We side-step the issue by restricting our study to a family of MDPs
under which these random variables are independent, similar to previous work (O’Donoghue et al.,
2018; Luis et al., 2023). All the results that follow in this section hold under:
Assumption 1 (Independent transitions). P (s′ | x, a) and P (s′ | y, a) are independent random
variables if x 6= y.
Assumption 2 (Acyclic MDP (O’Donoghue et al., 2018)). Let p̃ be a realization of the random
variable P . Then, the MDP M̃ with transition function p̃ is a directed acyclic graph, i.e., states are
not visited more than once in any given episode.

Assumption 1 holds in the case of discrete state-action spaces with a tabular transition function, where
there is no generalization. Assumption 2 is non-restrictive as any finite-horizon MDP with cycles can
be transformed into an equivalent time-inhomogeneous MDP without cycles by adding a time-step
variable h to the state-space. Since the state-space is finite-dimensional, for infinite-horizon problems
we consider the existence of a terminal (absorbing) state which is reached in finite steps.

To establish a Bellman-style recursion defining the value distribution function, we leverage the notion
of pushforward distributions akin to Rowland et al. (2018). Informally, given a random variable
X ∼ ν and a map b : R→ R, the pushforward of ν by b, denoted b#ν, is defined as the distribution of
the random variable b(X) (Bellemare et al., 2023). In particular, we are interested in the pushforward
of the value distribution by the bootstrap function in (5). We adopt the matrix-vector notation of
the standard Bellman equation: vπ,p = rπ + γpπvπ,p, where rπ ∈ RS , vπ,p ∈ RS are vectors and
pπ ∈ RS×S[0,1] is a so-called stochastic matrix whose entries are restricted to [0, 1] and whose rows sum
up to 1, i.e., they represent a discrete probability distribution. Then, we define the bootstrap function
applied to value vectors:

br,p,γ : v→ r + γpv, (6)

for an arbitrary r ∈ RS , p ∈ RS×S[0,1] and γ ∈ [0, 1). Applying br,p,γ is a combination of adding r to a
γ-scaled linear transformation of the input vector. Based on this pushforward operation, we can now
propose a Bellman equation for the value distribution function µπ .
Lemma 1 (Value-Distribution Bellman Equation). The value distribution function µπ obeys the
Bellman equation

µπ = EP
[
(brπ,Pπ,γ)#µ

π
]

(7)
for any policy π.

Lemma 1 provides the theoretical backbone towards designing an iterative algorithm for learning
the value distribution function. From (7) we can extract an operator that acts on arbitrary value
distribution functions.
Definition 1. The value-distributional Bellman operator T π : P(R)S → P(R)S is defined by

T πµ = EP
[
(brπ,Pπ,γ)#µ

]
(8)

Intuitively, the operator T π corresponds to mixing pushforward distributions, where the pushforward
itself involves shifting, scaling and linearly transforming the probability mass. The natural question
that follows is whether we can establish convergence to µπ by repeated applications of T π starting
from an arbitrary initial guess µ0.

Our convergence result is an adaptation of the standard distributional RL analysis done in Bellemare
et al. (2023). With some abuse of notation, we adopt the supremum p-Wasserstein distance w̄p to
establish contractivity of the operator T π (see Definition 2 in Appendix A).
Theorem 1. The operator T π is a γ-contraction with respect to w̄p for all p ∈ [1,∞). That is,
w̄p(T πµ, T πµ′) ≤ γw̄p(µ, µ′) for all µ, µ′ ∈ P(R)S .

Theorem 1 parallels similar results in standard RL and model-free distributional RL, in that it allows us
to establish the convergence of iterated applications of T π and characterize the operator’s fixed-point.
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Corollary 1. Denote the space of value distribution functions with bounded support4 by PB(R)S .
Given an arbitrary value distribution function µ0 ∈ PB(R)S , the sequence {µk}∞k=0 defined by
µk+1 = T πµk for all k ≥ 0 is such that w̄p(µk, µπ) ≤ γkw̄p(µ0, µ

π) → 0 as k → ∞ for
p ∈ [1,∞). That is, µπ is the unique fixed-point of the value-distribution Bellman operator T π .

Proof. First, since we consider bounded rewards, it follows immediately that µπ ∈ PB(R)S . Further,
it can be shown that the operator T π maps PB(R)S onto itself, such that for arbtirary µ ∈ PB(R)S

then T πµ ∈ PB(R)S (Lemma 2). By Theorem 1, T π is then a contraction mapping and by Banach’s
fixed-point theorem T π admits a unique fixed-point which is the limiting value of the sequence
{µk}∞k=0. Since µπ = T πµπ holds by Lemma 1, then µπ must be the unique fixed-point of T π .

In summary, Corollary 1 establishes that repeated applications of T π from an arbitrary initial guess
converges to the value distribution function µπ. Inspired by this theoretical result, in the remaining
sections we introduce and evaluate a practical algorithm for learning the value-distribution function.

4 Quantile-Regression for Value-Distribution Learning

In the previous section we described an iterative process that converges to µπ starting from an arbitrary
(bounded) value distribution. In practice, however, to implement such a recursion we must project the
value distributions onto some finite-dimensional parameter space. Following the success of quantile
distributional RL (Dabney et al., 2018b), we adopt the quantile parameterization. Let VM be the space
of quantile distributions with fixed M quantiles corresponding to quantile levels τi = (2i− 1)/2M .
Define a parametric model θ : S → RM , then the quantile distribution µθ ∈ VM maps states to a
uniform probability distribution supported on θi(s). That is, µθ(s) =

∑M
i=1

1
M δ
(
θi(s)

)
given by a

uniform mixture of Dirac deltas, where the particle θi(s) corresponds to the τi-quantile. Our aim
now becomes to compute the so-called quantile projection of µπ onto VM , given by

Πw1
µπ := argmin

µθ∈VM
w1(µπ, µθ), (9)

where w1 is the 1-Wasserstein distance.

In order to solve (9), we follow closely the treatment by Rowland et al. (2023) of quantile-
regression temporal-difference learning for return-distributions, and adapt it to instead work on
value-distributions. The following loss function corresponds to the quantile-regression problem of
estimating the quantile τ of the value distribution µπ:

Lτ,πs (v) = EP
[(
τ1{V π(s) > v}+ (1− τ)1{V π(s) < v}

)∣∣V π(s)− v
∣∣]. (10)

It is an asymmetric convex loss function whose minimizer is the τ -quantile of µπ, where quantile
overestimation and underestimation errors are weighted by τ and 1− τ , respectively.

Our goal is to propose a practical algorithm to learn the value distribution function based on the
quantile-regression loss (10). If we have access to samples of V π(s), denoted ṽπ(s), then we can
derive an unbiased estimate of the negative gradient of (10) and obtain the update rule

θi(s)← θi(s) + α
(
τi − 1{ṽπ(s) < θi(s)}

)
, (11)

where α is some scalar step size. One option to sample V π = ṽπ would be to first sample a model
P = p̃ and then solve the corresponding Bellman equation. Instead, we use a computationally
cheaper alternative (albeit biased) and bootstrap like in temporal-difference learning:

ṽπ(s) = rπ(s) + γ
∑
s′

p̃π(s′ | s)θJ(s′), (12)

where J ∼ Uniform(1, . . . ,M). Lastly, we reduce the variance of the gradient estimate by averaging
over the values of J , which results in the update

θi(s)← θi(s) +
α

M

M∑
j=1

τi − 1
rπ(s) + γ

∑
s′

p̃π(s′ | s)θj(s′) < θi(s)


. (13)

4Under bounded reward functions, the corresponding value distributions have bounded support. The corollary
can be relaxed to distributions with bounded moments (see Proposition 4.30 in Bellemare et al. (2023).)
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Algorithm 1 Epistemic Quantile-Regression (EQR)

1: Input: Posterior MDP Φ, policy π, number of quantiles M .
2: Randomly initialize estimates

{
θi(s)

}M
i=1

for all s ∈ S
3: repeat
4: Sample p̃ from posterior Φ
5: for i = 1, . . . ,M do
6: Update θi(s) with (13) for all s ∈ S
7: until convergence
8: return

{
θi(s)

}M
i=1
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Figure 2: Performance of quantile-regression for value-distribution learning in the example MDP
of Figure 1. The parameter β controls the covariance between V (s0) and P (s2|s0); the covariance
increases with β and is zero for β = 0. (Top) Value distributions (Gaussian, bi-modal and heavy-
tailed) generated by different prior distributions of the parameter δ. (Middle) Evolution of the
per-quantile estimation error between the true quantile projection Πw1µ(s0) and the estimate µθ(s0);
for β = 0 our algorithm oscillates around the true quantile projection. (Bottom) 1-Wasserstein metric
between the true quantile projection and the estimate µθ after 104 gradient steps, as a function of
the correlation parameter β. As β moves from zero to one, the regression error increases and the
algorithm no longer converges to the true quantiles, although the error is relatively small.

We introduce EQR in Algorithm 1 to iteratively learn the value distribution function µπ. From an
arbitrary initial guess of quantiles, we sample an MDP from the posterior and update the quantiles
using (13) for all states until convergence.

We validate our theoretical results by running Algorithm 1 in the simple MDP of Figure 1 for diverse
posterior distributions. The results are summarized in Figure 2: when the assumptions hold (β = 0),
we validate the algorithm converges to the true quantile projection of the value distribution. As we
move β from zero to one, the covariance between V (s0) and P (s2|s0) — a term ignored by our
theory — increases, which induces an approximation error in EQR.

5 Policy Optimization with Value Distributions

In this section we combine EQR with SAC (EQRSAC) to obtain a model-based reinforcement learning
algorithm that leverages a value-distributional critic for policy optimization. The key ingredients
of our method are: (1) an ensemble-based posterior over MDPs, (2) a quantile-distributional critic
network that models the M -quantile function θ(s, a) and (3) a policy network πφ trained to optimize
some differentiable function of the critic. A full algorithmic description of EQRSAC is included in
Appendix B.
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Posterior Dynamics. We adopt the baseline architecture from MBPO (Janner et al., 2019) and the
implementation from Pineda et al. (2021), where the posterior MDP, denoted Γψ, is represented as
an ensemble of N neural networks trained via supervised learning on the environment dataset D
to predict the mean and variance of a Gaussian distribution over next states and rewards. We use
Γψ to populate an experience replay buffer Dmodel with model-consistent k-step rollouts; that is, we
use a consistent ensemble member throughout a rollout, rather than randomizing the model per-step
like in MBPO. We believe that model-consistent rollouts are important to disentangle aleatoric and
epistemic uncertainties, as argued by Chua et al. (2018).

Critic. We train the critic on mini-batches drawn from Dmodel, using the entropy regularization loss
from SAC with temperature α and replacing the quantile regression loss with the quantile Huber loss
ρτ (u) from Dabney et al. (2018b) (see Appendix B.1)

Lcritic(θ) = E(S,A)∼Dmodel

E(R̂,P̂ )∼Γψ

 M∑
i=1

EJ
[
ρτi
(
T θJ(S,A)− θi(S,A)

)]
, (14)

where the target quantiles T θj are defined as

T θj(s, a) = R̂(s, a) + γ E(S′,A′)∼P̂ (·|s,a),πφ

[
θj(S

′, A′)− α log πφ(A′ | S′)
]
. (15)

The expectation in (15) is approximated by generating transition tuples (s′, a′) using the policy and
the sampled dynamics from Γψ . Typically, model-based algorithms like MBPO only use data in the
mini-batch to compose critic targets, rather than leveraging the learned dynamics model for better
approximation of expectations.

Actor. The policy is trained to maximize some differentiable utility function f of the quantile critic,
in addition to the entropy regularization term from SAC,

Lactor(φ) = ES∼Dmodel

[
EA∼πφ

[
f(θ(S,A))− α log πφ(A | S)

]]
. (16)

Let θ̄(s, a) and σθ(s, a) be the mean and standard deviations of the quantiles, respectively. Then, we
consider two concrete utility functions: the classical mean objective fmean(θ(s, a)) = θ̄(s, a) and an
objective based on optimism in the face of uncertainty fofu = θ̄(s, a) + σθ(s, a).

6 Experiments

In this section we evaluate EQRSAC in environments with continuous state-action spaces. Implemen-
tation details and hyperparameters are included in Appendix B.

6.1 Baselines

We consider the following baselines, which all share a common codebase and hyperparameters: SAC
(Haarnoja et al., 2018), MBPO (Janner et al., 2019), Quantile-regression MBPO (QRMBPO), which
replaces the standard critic with a distributional one; and Q-uncertainty SAC (QUSAC) from Luis
et al. (2023), which trains an ensemble of critics to model the posterior over values and optimizes its
policy using the mean prediction of the ensemble. More details about these baselines are provided
in Appendix B.3. For EQRSAC we consider two variants: EQRSAC-mean, which uses fmean and
EQRSAC-OFU, which uses fofu.

6.2 DM Control Benchmark

We conduct an experiment in a subset of 14 continuous-control tasks from the DeepMind Control
Suite (Tunyasuvunakool et al., 2020). In Figure 3, we plot the results for four environments ranging
from small (cartpole) to mid/large (quadruped) observation spaces. Our method significantly improves
performance over previous model-based algorithms in these environments. Moreover, in the full
benchmark, EQRSAC achieves the best (or comparable) final performance in 11 out of 14 tasks (see
Appendix E). Table 1 shows the mean/median scores across all tasks after 250 episodes of training,
which demonstrates the performance gain achieved by our algorithm. Training runs and final scores
for all environments are included in Appendices D and E, respectively.

8



0 200

Episodes

0

500
R

et
ur

n

cartpole-swingup sparse

eqrsac mean

eqrsac ofu

qrmbpo mean

qusac

mbpo

sac

0 200

Episodes

0

500

cheetah-run

0 200

Episodes

0

500

walker-run

0 200

Episodes

250

500

750

quadruped-run

Figure 3: Performance in four DeepMind Control tasks. The returns are smoothened by a moving
average filter and we report the mean and standard error over 10 random seeds. EQRSAC significantly
improves performance with respect to the model-based baselines. In the full benchmark, EQRSAC
achieves the best or comparable final performance in 11 out of 14 tasks and the best mean/median
scores (see Table 1).

Table 1: Mean and median scores in the DM control benchmark after 250 episodes (or 250K
environment steps). We report the mean and standard error over 10 random seeds.

sac mbpo qrmbpo qusac eqrsac mean eqrsac ofu
mean 556± 16 333± 26 543± 8 473± 6 605± 13 624± 12

median 596± 26 406± 7 659± 13 459± 14 750± 13 748± 11

6.3 Discussion

We observe a clear gap in performance between MBPO and QRMBPO, which supports the ob-
servations from Lyle et al. (2019) and reinforces their hypothesis that distributional critics boost
performance under non-linear function approximation.

The gap between QUSAC and the distributional methods (QRMBPO / EQRSAC) indicates that the
quantile representation of values leads to more sample-efficient learning compared to the ensemble-
based approach. Moreover, training one distributional critic is typically less computationally intensive
than training an ensemble of standard critics.

Most interestingly, the performance difference between QRMBPO and EQRSAC suggests that our
loss function (14) is instrumental towards sample-efficient learning, especially in environments
with sparse rewards like cartpole swing-up (see also fish-swim and finger-spin in Appendix D). As
such, our theory provides a solid guideline on how to integrate model-based RL architectures with
distributional RL tools, which goes beyond simply using a distributional critic with established
algorithms like MBPO.

7 Conclusions

We investigated the problem of estimating the distribution of values, given parameter uncertainty of
the MDP. We proposed the value-distributional Bellman equation and extracted an operator whose
fixed-point is precisely the distribution of values. Leveraging tools from return-distributional RL, we
designed Epistemic Quantile-Regression, an iterative procedure for estimating quantiles of the value
distribution. We applied our algorithm in a simple MDP and validated the convergence properties
prescribed by our theory and assessed its limitations once the main assumptions are violated. Lastly,
we scaled-up EQR using neural networks and combine it with SAC for policy optimization, which
resulted in a novel model-based deep RL algorithm that trains a critic to predict quantiles of the
value distribution and optimizes the actor on any differentiable function of the learned quantiles. Our
approach was benchmarked in several continuous-control tasks from the DeepMind Control suite and
showed improved sample-efficiency and final performance compared to several baselines.
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A Theory Proofs

Proposition 1 (Random Variable Value-Distribution Bellman Equation). Let V π be the random
value function defined in (3). Then, it holds that

V π(s) =
∑
a

π(a | s)r(s, a) + γ
∑
s′,a

π(a | s)P (s′ | s, a)V π(s′), (5)

for any policy π and initial state s ∈ S.

Proof. We proceed similarly as the standard Bellman equation proof shown by Bellemare et al.
(2023). First, the random trajectories T̃ have two properties endowed by the Markov decision process:
time homogeneity and the Markov property. Informally speaking, time homogeneity states that the
trajectory from a given state s is independent of the time k at which the state is visited, while the
Markov property states that trajectories starting from s are independent of states, actions or rewards
encountered before s (c.f. Bellemare et al. (2023) Lemmas 2.13, 2.14 for a formal definition). In the
domain of random variables, these properties imply that two trajectories starting from the same initial
state s are equally distributed regardless of past history.

From the definition (3) we decompose the random value into the immediate reward and the value at
the next state:

V π(s) = ET̃ [R0|S0 = s, P ] + γ ET̃

 ∞∑
h=1

γh−1Rh

∣∣∣∣∣∣S0 = s, P

. (17)

For the first term, the only random variable remaining is A0, so we rewrite it as

=
∑
a

π(a | s)r(s, a) + γ ET̃

 ∞∑
h=1

γh−1Rh

∣∣∣∣∣∣S0 = s, P

. (18)

For the second term, we apply the tower property of expectations

=
∑
a

π(a | s)r(s, a) + γ ET̃

ET̃
 ∞∑
h=1

γh−1Rh

∣∣∣∣∣∣S0 = s, A0, S1, P


∣∣∣∣∣∣∣S0 = s, P

. (19)

By the Markov property,

=
∑
a

π(a | s)r(s, a) + γ ET̃

ET̃
 ∞∑
h=1

γh−1Rh

∣∣∣∣∣∣S1, P


∣∣∣∣∣∣∣S0 = s, P

. (20)

By time homogeneity, the inner expectation is exactly equal to the random variable V π(S1), after a
change of variable in the infinite sum index

=
∑
a

π(a | s)r(s, a) + γ ET̃
[
V π(S1)

∣∣S0 = s, P
]
. (21)

Lastly, the remaining random variable is S1, for which we can explicitly write its probability
distribution, concluding the proof

=
∑
a

π(a | s)r(s, a) + γ
∑
a,s′

π(a | s)P (s′ | s, a)V π(s′). (22)

Lemma 1 (Value-Distribution Bellman Equation). The value distribution function µπ obeys the
Bellman equation

µπ = EP
[
(brπ,Pπ,γ)#µ

π
]

(7)
for any policy π.
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Proof. In matrix-vector format, the random-variable value-distributional Bellman equation is ex-
pressed as

V π = rπ + γPπV π. (23)
Let DP (·) be a function that extracts the probability distribution of a random variable belonging to
the probability space of P . Then, Applying DP (·) to both sides we get

µπ = DP (rπ + γPπV π). (24)

Now we use the fact that any marginal probability can be written as the expected value of a conditional
probability. In our case, by conditioning on the transition function, we obtain:

µπ = EP
[
DP (rπ + γPπV π | Pπ)

]
, (25)

but given that P (s′ | s, a) and V π(s′) are independent under our assumptions, then conditioning
on Pπ means that the distribution of the matrix-vector product PπV π is simply the distribution
of applying a linear transformation on V π. The result is that the conditional distribution can be
interpreted as the pushforward

DP (rπ + γPπV π | Pπ) = (brπ,Pπ,γ)#µ
π, (26)

which completes the proof.

We adopt the supremum p-Wasserstein distance to establish contractivity of the operator T π .
Definition 2. For p ∈ [1,∞), the p-Wasserstein distance between two distributions ν, ν′ is a metric
wp : P(R)× P(R)→ [0,∞] defined by

wp(ν, ν
′) =

(∫ 1

0

∣∣∣F−1
ν (τ)− F−1

ν′ (τ)
∣∣∣pdτ)1/p

, (27)

where F−1
(·) is the inverse cumulative distribution function. Furthermore, the supremum p-Wasserstein

distance w̄p between two value distribution functions µ, µ′ ∈ P(R)S is defined by w̄p(µ, µ′) =
sups∈S wp(µ(s), µ′(s)).

The supremum p-Wasserstein distance was proven to be a metric in P(R)S by Bellemare et al. (2017).

To prove that T π is a contraction, we adopt the technique from Bellemare et al. (2023) that relies on
the alternative definition of the p-Wasserstein distance in terms of couplings.
Definition 3. Let ν, ν′ ∈ P(R) be two probability distributions over the reals. A coupling υ is a
joint probability whose marginals are ν and ν′, such that if (V, V ′) ∼ υ, then we have V ∼ ν and
V ′ ∼ ν′. Further, we denote Γ(ν, ν′) the set of all couplings of ν and ν′.

Intuitively, the coupling υ can be interpreted as a transport plan to move probability mass from one
distribution to another. As such, the p-Wasserstein distance is defined as the cost of the optimal
transport plan.

wp(ν, ν
′) = min

υ∈Γ(ν,ν′)
E(V,V ′)∼υ

[
|V − V |p

]1/p
(28)

With these definitions, we now proceed to prove the contraction of the Bellman operator.
Theorem 1. The operator T π is a γ-contraction with respect to w̄p for all p ∈ [1,∞). That is,
w̄p(T πµ, T πµ′) ≤ γw̄p(µ, µ′) for all µ, µ′ ∈ P(R)S .

Proof. Follows closely the proof of Proposition 4.15 by Bellemare et al. (2023). For each s ∈ S , let
υ? denote the optimal coupling w.r.t. the p-Wasserstein distance between some arbitrary pair of value
distributions µ(s), µ′(s) ∈ P(R). Further, define a pair of random variables (V (s), V ′(s)) ∼ υ?

such that V (s) ∼ µ(s) and V ′(s) ∼ µ′(s). We assume the pair (V (s′), V ′(s′)) is statistically
independent of Pπ(s′ | s) for any s′ ∈ S, akin to Assumptions 1 and 2.

Define new random variables Ṽ (s) = rπ(s) + γ
∑
s′ P

π(s′ | s)V (s′), Ṽ ′(s) = rπ(s) +

γ
∑
s′ P

π(s′ | s)V ′(s′). By definition of the operator T π, we have that Ṽ (s) ∼ (T πµ)(s) and
Ṽ ′(s) ∼ (T πµ′)(s), which means that the pair (Ṽ (s), Ṽ ′(s)) ∼ υ̃ is a coupling between (T πµ)(s)
and (T πµ′)(s).
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Starting from Definition 3, by definition of the p-Wasserstein distance

wpp
(
(T µ)(s), (T µ′)(s)

)
≤ EP

[∣∣∣Ṽ (s)− Ṽ ′(s)
∣∣∣p]. (29)

Plugging the definition of the random variables,

= EP


∣∣∣∣∣∣rπ(s) + γ

∑
s′

Pπ(s′ | s)V (s′)− rπ(s)− γ
∑
s′

Pπ(s′ | s)V ′(s′)

∣∣∣∣∣∣
p


(30)

By re-arrangement of terms

= γp EP


∣∣∣∣∣∣
∑
s′

Pπ(s′ | s)(V (s′)− V ′(s′))

∣∣∣∣∣∣
p
. (31)

Since f(x) = |x|p is convex for p ≥ 1, then by Jensen’s inequality

≤ γp EP

∑
s′

Pπ(s′ | s)
∣∣(V (s′)− V ′(s′))

∣∣p. (32)

By linearity of expectation

= γp
∑
s′

EP
[
Pπ(s′ | s)

∣∣(V (s′)− V ′(s′))
∣∣p]. (33)

By the independence assumption on Pπ, the expectation of the product becomes the product of
expectations

= γp
∑
s′

EP
[
Pπ(s′ | s)

]
EP
[∣∣(V (s′)− V ′(s′))

∣∣p]. (34)

Since the supremum of non-negative values is greater or equal than any convex combination of them

≤ γp sup
s′

EP
[∣∣(V (s′)− V ′(s′))

∣∣p]. (35)

By definition of the supremum p-Wasserstein distance

= γpw̄pp(µ, µ′). (36)

Taking supremum on the left-hand side and taking the p-th root on both sides completes the proof.

Theorem 1 parallels similar results in standard RL and model-free distributional RL, in that it allows
us to establish the convergence of iterated applications of T π (Corollary 1).

The following lemma supports the proof of Corollary 1.
Lemma 2. If the value distribution function µ has bounded support, then T πµ also has bounded
support.

Proof. From bounded rewards on [rmin, rmax], then we denote by PB(R)S the space of value
distributions bounded on [vmin, vmax], where vmin = rmin/(1− γ) and vmax = rmax/(1− γ).

Given arbitrary µ ∈ PB(R)S , let v(s) be a realization of µ(s) for any s ∈ S. Then,
∑
a π(a |

s)r(s, a) + γ
∑
a,s′ π(a | s)P (s′ | s, a)v(s′) is an instantiation of (T πµ)(s) for any s ∈ S. We

have:

P
(
(T πµ)(s) ≤ vmax

)
= P

∑
a

π(a | s)r(s, a) + γ
∑
a,s′

π(a | s)P (s′ | s, a)v(s′) ≤ vmax

,
(37)
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= P

γ∑
a,s′

π(a | s)P (s′ | s, a)v(s′) ≤ vmax −
∑
a

π(a | s)r(s, a)

.
(38)

Since
∑
a π(a | s)r(s, a) ≤ rmax, then

≥ P

γ∑
a,s′

π(a | s)P (s′ | s, a)v(s′) ≤ vmax − rmax

. (39)

By definition of vmax

≥ P

∑
a,s′

π(a | s)P (s′ | s, a)v(s′) ≤ vmax

. (40)

Finally, since v(s′) ≤ vmax for any s′ ∈ S, then
= 1. (41)

Under the same logic, we can similarly show that P
(
(T πµ)(s) ≥ vmin

)
= 1, such that

P
(
(T πµ)(s) ∈ [vmin, vmax]

)
= 1 for any s ∈ S.

B Implementation Details

B.1 Quantile Huber Loss

We adopt the quantile Huber loss from Dabney et al. (2018b) in order to train the distributional critic.
The Huber loss is given by

Lκ(u) =

{
1
2u

2, if |u| ≤ κ
κ(|u| − 1

2κ) otherwise
, (42)

and the quantile Huber loss is defined by
ρκτ (u) =

∣∣τ − δ(u < 0)
∣∣Lκ(u). (43)

For κ = 0, we recover the standard quantile regression loss, which is not smooth as u→ 0. In all our
experiments we fix κ = 1 and to simplify notation define ρ1

τ = ρτ .

B.2 EQRSAC Algorithm

A detailed execution flow for training an EQRSAC agent is presented in Algorithm 2. Further
implementation details are now provided.

Model learning. We use the mbrl-lib Python library from Pineda et al. (2021) to train N neural
networks (Line 7). Our default architecture consists of four fully-connected layers with 200 neurons
each (for the Quadruped environments we use 400 neurons to accomodate the larger state space).
The networks predict delta states, (s′ − s), and receives as inputs normalizes state-action pairs. The
normalization statistics are updated each time we train the model and are based on the training dataset
D. We use the default initialization that samples weights from a truncated Gaussian distribution, but
we increase by a factor of 2 the standard deviation of the sampling distribution.

Capacity of Dmodel. The capacity of the model buffer is computed as k×L×F ×N ×∆, where ∆
is the number of model updates we want to retain data in the buffer. That is, the buffer is filled only
with data from the latest ∆ rounds of model training and data collection (Lines 6-10).

Critic Loss. The distributional critic is updated in Line, for which we use the loss function (14). To
approximate the target quantiles (15), we use the learned generative model and the policy to generate
transition tuples (r, s′, a′). More specifically, each (s, a) pair in a mini-batch from Dmodel is repeated
X times and passed through the environment model, thus generating X predictions (r, s′). Then,
every s′ prediction is repeated Y times and passed through πφ, thus obtaining XY next state-action
pairs (s′, a′). This generated data is finally used in (15) to better approximate the expectation. In our
experiments we use X = Y and keep their product as a hyperparameter controlling the total amount
of samples we use to approximate the expectation.
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Algorithm 2 Epistemic Quantile-Regression with Soft Actor-Critic (EQRSAC)

1: Initialize policy πφ, MDP ensemble Γψ , quantile critic θ, environment dataset D, model dataset
Dmodel, utility function f .

2: Warm-up D with rollouts under πφ
3: global step← 0
4: for episode t = 0, . . . , T − 1 do
5: for E steps do
6: if global step % F == 0 then
7: Train Γψ on D via maximum likelihood
8: for each MDP dynamics in Γψ do
9: for L model rollouts do

10: Perform k-step rollouts starting from s ∼ D; add to Dmodel
11: Take action in environment according to πφ; add to D
12: for G gradient updates do
13: Update {θi}Mi=1 with mini-batches from Dmodel, via SGD on (14)
14: Update πφ with mini-batches from Dmodel, via SGD on (16)
15: global step← global step +1

B.3 Baselines

In this section we provide more details about the baselines algorithms. We use a single codebase
for all experiments and share architecture components amongst baselines whenever possible. The
execution of experiments for all baselines follows the workflow of Algorithm 2.

SAC. We base our implementation on the open-source repository https://github.com/pranz24/
pytorch-soft-actor-critic and allow for either model-free or model-based data buffers for the
agent’s updates, as done in mbrl-lib. The implementation uses typical design choices like target
networks (Mnih et al., 2013), clipped double Q-learning (Fujimoto et al., 2018) and automatic entropy
tuning (Haarnoja et al., 2019)

MBPO. Our MBPO implementation differs slightly from Janner et al. (2019) in that: (1) it only uses
Dmodel to update the actor and critic, rather than mixing in data from D; (2) it uses a fixed rollout
length k, instead of having an adaptive scheme. With respect to EQRSAC, MBPO collects data
differently: instead of collecting k-step rollouts under each model of the ensemble, it does so by
uniformly sampling a new model per-step of the rollout. We maintain the original model-buffer
capacity of MBPO, calculated as M × F × k ×∆ (i.e., a factor of N smaller than EQRSAC).

QRMBPO. Simply replaces the critic in MBPO with a quantile-distributional critic, trained on the
standard quantile-regression loss from Wurman et al. (2022), but using data from Dmodel,

Lqrmbpo
critic (θ) = E(S,A,S′,R)∼Dmodel


 M∑
i=1

EJ
[
ρτi

(
T θqrmbpo

J (R,S,A)− θi(S,A)
)]

, (44)

where the target quantile is defined as

T θqrmbpo
j (r, s′, a) = r + γ

(
θj(s

′, a′)− α log πφ(a′ | s′)
)
, (45)

and a′ ∼ φφ(a′ | s′). Importantly, (44) differs from (14) in that it only uses transitions sampled from
the buffer. The objective function for the actor is fixed to be fmean.

QUSAC. It collects data as in EQRSAC, but stores the N model-consistent rollouts in N separate
buffers (while EQRSAC uses a single buffer). Then it trains an ensemble of N standard critics on the
corresponding N model-buffers. As such, it interprets the ensemble of critics as samples from the
value distribution. The actor loss function uses the mean prediction of the critic, mirroring QRMBPO
and EQRSAC-mean.
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C Hyperparameters

Table 2: Hyperparameters for DeepMind Control Suite. In red, we highlight the only deviations of
the base hyperparameters across all environments and baselines.

Name Value
General

T - # episodes 250

E - steps per episode 103

Replay buffer D capacity 105

Warm-up steps (under initial policy) 5× 103

SAC
G - # gradient steps 10

Batch size 256

Auto-tuning of entropy coefficient α? Yes
Target entropy −dim(A)

Actor MLP network 2 hidden layers - 128 neurons - Tanh activations
Critic MLP network 2 hidden layers - 256 neurons - Tanh activations

Actor/Critic learning rate 3× 10−4

Dynamics Model
N - ensemble size 5

F - frequency of model training (# steps) 250

L - # model rollouts per step 400

k - rollout length 5

∆ - # Model updates to retain data 10

Model buffer Dmodel capacity (EQRSAC) M × F × k ×∆(×N) = 5× 106(25× 106)

Model MLP network (quadruped) 4 layers - 200 (400) neurons - SiLU activations
Learning rate 1× 10−3

Quantile Network
M - # quantiles 51

# (s′, a′) samples (EQRSAC only) 25
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D DM Control Learning Curves
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Figure 4: DeepMind Control benchmark of 14 continuous-control tasks. The returns are smoothened
by a moving average filter and we report the mean and standard error over 10 random seeds.
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E DM Control Final Scores

Table 3: Scores in DeepMind Control benchmark after 250 episodes (or 250K environment steps).
For each environment, we report the mean and standard error scores over 10 random seeds.

Environment sac mbpo qrmbpo qusac eqrsac mean eqrsac ofu

acrobot-swingup 167.7± 22.4 57.7± 19.9 202.3± 18.7 220.3± 30.8 217.8± 18.5 229.4± 17.4

ball-in-cup-catch 972.6± 3.3 972.5± 1.7 974.4± 2.3 972.8± 2.8 977.2± 1.4 928.7± 18.5

cartpole-balance-sparse 949.5± 18.7 985.6± 9.7 977.0± 22.2 904.5± 37.3 997.8± 2.1 968.0± 15.2

cartpole-swingup-sparse 693.8± 27.2 0.1± 0.1 476.2± 72.6 310.6± 64.3 566.4± 54.4 510.6± 86.9

cheetah-run 551.6± 22.6 571.4± 19.3 679.1± 10.7 567.4± 16.8 854.0± 11.7 820.0± 18.4

finger-spin 827.5± 68.1 0.1± 0.1 1.2± 1.1 3.2± 2.6 567.1± 146.7 461.9± 154.1

finger-turn-easy 571.3± 31.3 220.0± 20.0 289.8± 34.1 220.0± 20.0 221.3± 19.9 460.5± 58.3

fish-swim 79.9± 10.9 80.6± 10.0 70.0± 8.7 83.8± 10.0 145.1± 27.3 168.3± 20.4

fish-upright 579.4± 50.8 660.5± 59.5 749.9± 29.1 591.9± 53.5 766.2± 45.3 735.0± 23.5

pendulum-swingup 631.0± 111.7 484.5± 76.4 819.2± 17.2 808.6± 19.7 834.4± 15.7 833.7± 16.0

quadruped-escape 8.0± 1.2 8.8± 1.8 34.5± 7.1 13.7± 4.3 54.2± 16.7 41.1± 11.4

quadruped-run 352.0± 36.4 232.3± 41.2 638.5± 26.0 421.9± 16.8 719.8± 19.0 712.5± 23.6

reacher-easy 824.6± 21.9 474.3± 20.8 968.6± 9.8 943.1± 13.8 931.2± 21.5 977.9± 2.5

walker-run 568.9± 19.1 474.3± 20.8 725.5± 10.8 553.8± 30.9 727.4± 24.3 779.3± 7.9

mean 555.6± 16.2 333.1± 25.8 543.3± 7.9 472.5± 6.3 605.3± 13.0 623.7± 12.4

median 595.6± 26.4 406.1± 7.4 658.6± 13.1 459.4± 14.4 750.1± 13.3 748.3± 11.4
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