Published as a conference paper at ICLR 2022

EXACT: SCALABLE GRAPH NEURAL NETWORKS
TRAINING VIA EXTREME ACTIVATION COMPRESSION

Zirui Liu', Kaixiong Zhou', Fan Yang', Li Li?, Rui Chen?*, and Xia Hu'*
IRice University, 2Samsung Research America

{z1105, kaixiong.zhou, £fyl9, xia.hu}@rice.edu,
{1i.1i1, rui.chenl}@samsung.com

ABSTRACT

Training Graph Neural Networks (GNNs) on large graphs is a fundamental chal-
lenge due to the high memory usage, which is mainly occupied by activations
(e.g., node embeddings). Previous works usually focus on reducing the num-
ber of nodes retained in memory. In parallel, unlike what has been developed
for other types of neural networks, training with compressed activation maps is
less explored for GNNs. This extension is notoriously difficult to implement
due to the lack of necessary tools in common graph learning packages. To un-
leash the potential of this direction, we provide an optimized GPU implementa-
tion which supports training GNNs with compressed activations. Based on the
implementation, we propose a memory-efficient framework called “EXACT”,
which for the first time demonstrates the potential and evaluates the feasibil-
ity of training GNNs with compressed activations. We systematically analyze
the trade-off among the memory saving, time overhead, and accuracy drop. In
practice, EXACT can reduce the memory footprint of activations by up to 32x
with 0.2-0.5% accuracy drop and 10-25% time overhead across different mod-
els and datasets. We implement EXACT as an extension for Pytorch Geomet-
ric and Pytorch. In practice, for Pytorch Geometric, EXACT can trim down
the hardware requirement of training a three-layer full-batch GraphSAGE on
ogbn-products from a 48GB GPU to a 12GB GPU. The code is available at
https://github.com/warai-0toko/Exact.

1 INTRODUCTION

Despite Graph Neural Networks (GNNs) have achieved great success across different graph-related
tasks, training GNNs on large graphs is a long-standing challenge due to its extensive memory
requirement (Kipf & Welling, 2017;Zhang & Chenl |2018;|Cai et al.,[2021b)). The extensive memory
consumption of a GNN stems from its recursive neighborhood aggregation scheme, where each node
aggregates the embeddings of its neighbors to update its new embedding at each layer. Thus, training
an L-layer GNN requires storing all L layers’ intermediate node embeddings in GPU memory for
computing the gradients, and this typically adds several times more memory than holding the node
feature matrix (see Algorithm [I]for a detailed analysis). Hence, storing these node embeddings is
the major memory bottleneck for training GNNs on large graphs.

Most of the existing works towards this problem can be roughly divided into two categories. First,
some works propose to train GNNs with sampled subgraphs instead of the whole graph at each
step. In this way, only node embeddings that are present in the current subgraph will be retained
in memory (Chiang et al.l 2019; Hamilton et al.l 2017} Zeng et al., 2020; [Zou et al.| [2019; (Chen
et al., 2018; |Huang et al.,|2018). Second, another line of works tries to decouple the neighborhood
aggregation from prediction, either as a preprocessing step (Wu et al., 2019; |Klicpera et al., | 2018;
Yu et al., [2020) or post-processing step (Huang et al., 2020), where the model is simplified as the
Multi-Layer Perceptron (MLP) that can be trained with mini-batch data.

*Corresponding Author

Published as a conference paper at ICLR 2022

In parallel, another orthogonal direction is to store only the compressed node embeddings (i.e., acti-
vations) in memory for computing the gradients. Recent works propose to quantize the activations in
lower numerical precision (e.g., using 8-bit integer) during the forward pass (Chakrabarti & Mose-
leyl [2019; |Fu et al.| [2020; |Chen et al.,[2021a; [Evans & Aamodt, [2021)). This framework successfully
trims down the memory requirement for training Convolutional Neural Networks (CNNs) by a large
margin, at the cost of additional time overhead and loss of accuracy. Ideally, the real-world usage
requires that the training method should achieve a balanced trade-off among the following three as-
pects: 1. Space. It should enable to train GNNSs on large graphs using off-the-shelf hardwares, such
as GPUs and CPUs; 2. Speed. The time overhead should be acceptable, ideally as small as possible;
3. Model Performance. The loss of accuracy should be acceptable, ideally as small as possible.

Although storing the compressed activations successfully saves the memory for CNNSs, up to our
knowledge, there is no existing work that extends this direction to GNNs and evaluates the men-
tioned trade-off to analyze its feasibility. Despite the extension is conceptually straightforward, this
direction is less-explored since it can be notoriously difficult to implement to fully leverage hardware
potentials. This dilemma stems from the fact that the necessary tools for supporting this direction
are usually missing in common graph learning packages. For example, operations in popular graph
learning packages only support casting tensors down to 8-bit integer on GPUs, significantly limiting
the memory saving potential (Paszke et al.| 2019} [Fey & Lenssen, [2019; |Wang et al., [2019). As a
result, previous GNN quantization works either emulate inference-time quantization via “simulated
quantization” (Tailor et al.,[2021; Zhao et al.,[2020), or are impractical to use GPUs for accelerating
(Feng et al.||2020). To unleash the potential of this direction, we provide a space-efficient GPU im-
plementation for supporting common operations in GNNs with compressed activations. Equipped
with our implementation, this paper asks: To what extent can we compress the activations with both
acceptable loss in accuracy and time overhead for scalable GNN training?

To answer the open question, we first explore two different types of compression methods. One
is “quantization” that compresses the activations into lower numerical precision. The other one is
called “random projection” (Achlioptas, 2001)) that projects the activations into a low-dimensional
space. Both these two simple strategies can achieve near-lossless accuracy at a non-trivial com-
pression ratio. For example, the loss in accuracy is negligible (0.2%) even under the vanilla 2-bit
quantization. However, we cannot further push forward the memory saving by these two methods,
e.g., we cannot use a numerical precision below 1-bit. Considering that the real-world graphs often
contain hundreds of millions of nodes, our main goal is to trim down the memory consumption to
the maximum extent among the three aspects, as long as the other two are acceptable. We then nat-
urally explore the direction of combining random projection and quantization, dubbed “EXACT”,
to aggressively maximize the memory saving. EXACT essentially applies random projection and
quantization sequentially for compressing activations. Despite the superior memory saving, another
following question is whether the combination brings significantly worse model performance and
larger time overhead? Following the questions, we make three major contributions as follows:

* We provide a space-efficient GPU implementation for training GNNs with compressed activations
as an extension for Pytorch. Based on our implementation, we are the first one training GNNs
with compressed activations and demonstrating its potential for real-world usage. EXACT can
complement the existing studies, as it can be integrated with most of existing solutions.

* We propose EXACT, a simple-yet-effective framework which applies random projection and
quantization sequentially on activations for scalable GNN training. We theoretically and experi-
mentally show that applying random projection and quantization sequentially has an “interaction”
effect. Namely, from the model performance aspect, after random projection, applying quantiza-
tion only has a limited impact on the model performance. From the time aspect, EXACT runs
comparably or even faster than quantization only.

* Despite the simplicity, EXACT achieves non-trivial memory saving with both acceptable time
overhead and loss in accuracy: EXACT can reduce the memory footprint of activations by up
to 32x with roughly 0.5% loss in accuracy and 10 — 25% time overhead across models and
datasets. We implement EXACT as an extension for Pytorch Geometric and Pytorch. For Pytorch
Geometric, EXACT trims down the hardware requirement of training a full-batch GraphSAGE
(Hamilton et al.,|2017) on ogbn-products (Hu et al.,|2020) from a 48GB GPU to a 12GB GPU.

Published as a conference paper at ICLR 2022

2 THE MEMORY CONSUMPTION OF GNNS

Background. Let G = (V,&) be an undirected graph with V = (vi,---,vy) and £ =
(e1,--- ,ejg|) being the set of nodes and edges, respectively. Let X € RIVIX? be the node fea-
ture matrix of the whole graph. The graph structure can be represented by an adjacency matrix
A € RIVIXIVI where A;; = 1if (v;,v;) € £else A;; = 0. In this work, we are mostly in-
terested in the task of node classification, where the goal is to learn the representation h,, for all
v € V such that the label y, can be easily predicted. To obtain such a representation, GNNs follow
the neighborhood aggregation scheme. Specifically, GNNs recursively update the representation of
a node by aggregating the representations of its neighbors. Formally, the [*" layer of a GNN can

be written as h\'"Y) = UPDATE <h§,l), @ueN(u) MSG(h,(f), h,(f))), where A" is the representa-

tion of node v at the I*® layer. A/(v) denotes the neighboring nodes of node v, not including v
itself. The full table of notations can be found in Appendix [A] Table[5] For node v, messages from
its neighbors are calculated by the message functionMSG(+). Then these messages are aggregated
using a permutation-invariant aggregation function €. The aggregated features at v are updated by
UPDATE(+). For example, the Graph Convolutional Network (GCN) (Kipf & Welling, 2017)) layer
can be defined as

H) —ReLUAHYOW), (1)

where H(is the node embedding matrix consisting of all nodes’ embeddings at the I*" layer
and HO = X. OW is the weight matrix of the ' GCN layer. A = D 2AD = is
the normalized adjacency matrix, where D is the degree matrix of A + I. We note that A is
usually stored using the sparse matrix format. For GCN layers, the message and the aggrega-
tion function are fused into a Sparse-Dense Matrix Multiplication (SPMM |')) operation. Namely,
AHOOW = spmM(A, HOOO). Thus, the computation graph of Equationcan be written as

HD = ReLU (SPMM<A7MM(H(”,@([))>>,)

where MM(+, -) is the normal Dense-Dense Matrix Multiplication. Equationresembles how GCNs
are implemented in popular packages (Fey & Lenssen, 2019;|Wang et al.l 2019).

Here we analyze the memory consumption for the forward pass of GCN since most of the memory
is occupied during the forward pass. For the memory usage of the backward pass, a detailed analysis
is given in Appendix|[C} Specifically, for an L layer GCN, suppose the hidden dimensions of layer
0,---,L — 1 are the same, which are denoted as D. The forward pass of GCN layers is shown in
Appendlx [C| Algorithm [I] For layer /, it saves the following four variables in memory. (1) the weight

matrix @) € RP*P whose shape is independent to the graph size and is generally negligible. (2)
the normalized adjacency matrix A (in CSR format) whose space complexity is O(|V| + |€]). Note
that it only needs to store one Ain memory which can be accessed by different layers. Thus, the
memory consumption of Ais independent of the number of layers and is not the main memory bot-
tleneck. (3) the intermediate result J) = vm(H® ©©®) € RIVI*P_ For an L layer GCN, storing
{JO ... J(=D1 has a O(L|V|D) space complexity, which is the main memory bottleneck. (4)
the node embedding matrix H) € RIVI*P_ For an L layer GCN, storing {H® ... H(Z-1}
has a O(L|V|D) space complexity, which is also a main memory bottleneck. In this paper, we
use the term “activation maps” to encompass H, J, and activation maps of other commonly used
layers/operations such as BatchNorm, ReLU and Dropout.

3 METHODOLOGY

From the above analysis, the memory consumption of GCNs can be significantly reduced by stor-
ing only the compressed activations. As shown in Figure |1} due to the simplicity and small time
overhead of quantization (Section [3.1)) and random projection (Section [3.2), we first explore these
two methods for compressing the activations of GNNs. We show that these two simple methods can

"We note that the output of SPMM(-, -) is a dense matrix.

Published as a conference paper at ICLR 2022

Backward Pass

Backward Pass Forward Pass
Tensors Tensors

Forward Pass | (, ‘\’ Low-Precision C) Full-Precision (’ ‘}nimev-;:i“nsr:' :educedowll-?::ln;::innal

Context
(Lived in Memory)

Context
(Lived in Memory)

O =0 Qv
(S >10]
H: HO ; Ve

(e (e
T Jo.
proj
(a) GCN layers with quantized activations. (b) GCN layers with randomly projected activations.

Figure 1: The training procedure of GCN layers, where only compressed activations are stored in
memory. For illustration convenience, ReLU is ignored. During the forward pass, each layer’s

accurate activations (H®) is used to compute those for the subsequent layer. Then the accurate

activations will be compressed into the compressed activations (H I(If,)T and HIErl())j), which overwrites

the the accurate activations and is retained in the memory. During the backward pass, we recover
the compressed activations back to decompressed activation (H") for computing the gradient.

bring moderate compression ratios with negligible loss in accuracy. However, the highest compres-
sion rates of these two methods are limited by either hardwares or the accuracy drop. Motivated by
GNNs’ endless demand on memory, we then explore the direction of combining quantization with
random projection into one framework termed “EXACT” to aggressively maximize the memory
saving (Section[3.3). We show that random projection and quantization have an “interaction” effect.
That is, from the model performance aspect, after random projection, applying quantization only
has a limited impact on the model performance. From the time aspect, EXACT runs comparably or
even faster than quantization only.

3.1 STORING QUANTIZED ACTIVATIONS

Inspired by ActNN (Chen et al 2021a), as shown in Figure [Tal we first explore the direction of
compressing activation maps in lower numerical precision. Specifically, during the forward pass,
each layer’s accurate activations (e.g., J and H®) is used to compute those for the subsequent

layer. Then the accurate activations will be quantized into the compressed activations (e.g., H I(If])T

and JI(I?T) with lower numerical precision, which overwrite the accurate activations and are retained
in the memory. During the backward pass, we dequantize the compressed activations back to full-
precision (e.g., H® and J®). Then the gradients are computed based on the dequantized acti-
vations. We note that all operations (e.g., MM and SPMM) are done in full-precision since most of
the GPUs do not support operands with bit-width other than full-precision and half-precision. For
convenience, we use the term “precision’ to present “numerical precision” in the following of
this paper. Below we introduce the technical details of (de)quantization.

Specifically, each node embedding vector hgl) will be quantized and stored using b-bit integers. Let
B = 2" — 1 be the number of quantization bins. The integer quantization can be expressed as

hq()l) . Zgl)
h = Quant(hvl)) = LWBL 3)

Vint
Ty

where Zf,l) = min{hg,l)} is the zero-point, m(,l) = max{hg,l)} — min{hq()l)} is the range for hq(,l), and

| -] is the stochastic rounding operation (Courbariaux et al., 2015). HI(IZ\I)T in Figureis the matrix
U] ()

Uit * UiNt

h) = Dequant(th)T) = rf)l)hgi]iT/B +zW, 4)

containing all quantized h,,/,. During the backward pass, each hy,;, will be dequantized as

HO in Figureis the matrix containing all dequantized embeddings A. The following proposi-
tion characterizes the effect of quantization, which is adopted from (Chen et al.| (2021a).

Published as a conference paper at ICLR 2022

Proposition 1 (Details in Appendix[E) The above quantization and dequantization are unbiased
~ A~)12
operations, i.e., E[hg)] = E[Dequant(Quant(hS,l)))] = h{" and Var(hg,l)) = %.

From the unbiased nature of quantization illustrated in Proposition |1} the calculated gradient is also
unbiased. The approach imposes extra noise (i.e., the variance term in Proposition[I) to the gradient
during the backward pass. From Proposition [T} the noise effect is inversely-correlated with the
number of quantization bins B. To evaluate how the noise affects the model performance, we train
three popular GNN models, namely, GCN, GraphSAGE, and GAT, on the ogbn-arxiv dataset (Hu
et al [2020) with different precisions (Table [T). The detailed experiment setting is elaborated in
Appendix Here we emphasize that all these three models are trained with full-batch data.

Table 1: The test accuracy of GCN, GraphSAGE, and GAT trained on the ogbn-arxiv dataset with
compressed activations storing in different precision. All results are averaged over ten random trials.

Model FP32 (Baseline) INTS INT4 INT2 INT1
GCN 72.07+0.16 72.06+0.29 71.96+0.26 71.93+0.20 71.68+0.17
GraphSAGE 71.85+0.24 71.83+0.15 71.85+0.27 71.58+0.22 71.34+0.24
GAT 72.35+0.12 72.39+0.14 72.34+0.12 72.35+0.12 72.17+0.12

Observations. For all three models, the loss in accuracy is negligible (=~ 0.2%) even using the
vanilla 2-bit quantization. In contrast, for CNNs, adopting the vanilla INT1 or INT2 quantization
will cause a significant accuracy drop (usually > 5%) (Chen et al.,|{2021a;2020a)). This observation
can be explained by the following mechanism. We show in Appendix [E.4] that the approximation
error will compound layer-by-layer during the backward pass. The layer-depth of GNNs is much
smaller than CNNs due to the over-smoothing problem, and hence GNNs are much more noise-
tolerant than CNNs. Our observation suggests that in practical scenarios, there is no need for an
expensive sophisticated quantization approach (e.g., mixed precision quantization) as considered in
previous works (Chen et al.||2021a; |Fu et al., 2020).

3.2 STORING RANDOMLY PROJECTED ACTIVATIONS

Here we explore the direction of random projection. The key idea is to project the activation maps
into a low-dimensional space that keeps the original information as much as possible. In this way,
similar to the framework in Section [3.1] we only need to store the dimension reduced activation
maps in memory. Figure [Th|illustrates the workflow of GCN layers. During the forward pass, each

layer’s accurate activations (e.g., hg,l)) are used to compute those for the subsequent layer. Then the
accurate activations will be projected into a low-dimensional space, which can be expressed as:
) =RP(hY)=hVR, (3)

Uproj
where R € RP*® is a random matrix (R < D) which satisfies E[RRT] = I. H{}), € RIVI*R s
the matrix containing all projected node embeddings thp)] In this paper, R is set as the normalized
Rademacher random matrix (Achlioptasl|2001) due to its low sampling cost (detailed introduction

in Appendix D). After projection, we store only ngrlgj

is %. During the backward pass, the projected node embeddings are inversely transformed by

in memory, and hence the compression ratio

h{) =IRP(R{)) = h{) RT, 6)

Vproj
where IRP(+) is the inverse projection operation. HO = HérlijRT € RIVIXD s the recovered
activation map containing all fLE,l). The following proposition shows the effect of random projection.

Proposition 2 (Proof in Appendix[E) The above RP and IRP are unbiased operations, i.e.,
E[H®] = EIRP(RP(H®))] = HY. For each A in HO, we have Var(izg,l)) = %Hh&””%.

From the unbiased nature of random projection given in Proposition 2] the calculated gradient is also
unbiased. The approach here also only imposes extra variance to the calculated gradient, where the
variance linearly scales with the % ratio. To quantitatively study the effect of the extra variance in
scenarios of practical interest, we follow the same setting in Section [3.1)and show the performance

Published as a conference paper at ICLR 2022

Table 2: The test accuracy of GCN, GraphSAGE, and GAT trained on the ogbn-arxiv dataset with
randomly projected activations. All results are averaged over ten random trials.

Model Full-Dimension (Baseline) & =2 £=14 £=38 T=16

GCN 72.07+0.16 7187+0.15 7172018 71.71:022 71.55+0.13
GraphSAGE 71.85+0.24 71.58+028 71.46+028 71.29+0.25 71.13+0.28

GAT 72.35+0.12 72.18+0.14 72.15+0.10 72.02+0.12 71.89+0.12

of GCN, GraphSAGE, and GAT trained on the ogbn-arxiv dataset with different % ratios in Table
2

Observations. We make two main observations: (1) For all three models, the loss in accuracy
tends to range from negligible (=~ 0.2%) to moderate (=~ 0.5%) when % < 8. (2) Under the same
compression ratio, the quantization is better than random projection in terms of the loss in accuracy
(e.g., compare the % = 16 result in Table with the INT2 result in Table .

3.3 EXACT: COMBINING RANDOM PROJECTION AND QUANTIZATION

We experimentally show that GNNs are noise-tolerant to inaccurate activations compressed by quan-
tization and random projection. However, the highest compression ratio of these two methods is
limited. The precision cannot be less than 1-bit for quantization and % cannot surpass eight for
random projection due to a large accuracy drop. However, GNNs’ demand on memory is endless
since real-world graphs can contain hundreds of millions of nodes and the graph size is ever grow-
ing. Motivated by this fact, we try to further push forward the memory saving as long as the loss of
accuracy and the time overhead are both acceptable. We explore the direction of combining these
two methods into one framework termed “EXACT” to maximize the memory saving. Specifically,

we compress the activations and store only A" = Quant(RP(hg,l))) in memory during the forward

pass. During the backward pass, the node embedding is recovered as R = IRP(Dequant(ﬁS,l))).
EXACT can achieve a superior compression ratio, e.g., the compression ratio of EXACT is roughly
128x if % = 8 and the precision is INT2.

However, one practical question is whether the variance will explode, leading to significantly worse
performance when applying random projection and quantization sequentially. Here we try to answer
the above question both theoretically and experimentally. Below we first theoretically show that after
applying random projection, the quantization range of projected node embeddings is bounded.

Proposition 3 (Proof in Appendix[E) For each projected node embedding R

$). = RP(hY)) =
R\ R, forVe > 0, by choosing s = ||h\ |2/ &RR/G), we have P(th), o <s)>1-ec

O]

From Proposition after projection, the maximal absolute value among weights in by, is bounded.
Following the fact that the quantization range rf,lp)mj = max{hg,?mj} — min{hq(}izoj} < 2||h$fp)roj loos

) T .
rq(fp)mj is also bounded. Recall that the variance of quantization scales with —231— (Proposition |1)).

Applying random projection and quantization sequentially will not lead to the variance explosion.

We also experimentally visualize the in- GCN (Full-Batch)
finity norm of projected embeddings in —*— DR-1Io

Appendix [F] Figure[d The infinity norm of pro- % ™91 /’ — DA
jected embeddings may be even less than those £ 7] S
of original embeddings when R is larger thana %, | e——*— _ —
threshold (R = 0.5D in Figure {). Thus, the “ ;]
extra variance is expected to be dominated by N2 N4 NTS 0
random projection, and hence the loss in ac- Quantization Precision

curacy is largely determined by the % ratio.
We also experimentally investigate the effect of
EXACT by plotting the test accuracy against
each quantization precision and the % ratio.
Due to the page limit, we only present one representative result in Figure 2} namely, training GCNs

on ogbn-arxiv with EXACT. More similar results can be found in Appendix [[.T| Here we do not

Figure 2: The performance of EXACT is mainly
determined by the % ratio of random projection.

Published as a conference paper at ICLR 2022

consider INT1 precision since its model performance drop is already near 0.5%. We summarize

two main observations. First, the performance of EXACT is largely determined by the % ratio of

random projection. Second, when % < 8, the loss in accuracy generally ranges from = 0.2% to

~ 0.5%, regardless of the quantization precision.

System Implementation. In EXACT, each operation (e.g., SPMM , ReLU, and BatchNorm) is re-
implemented with different configurations using CUDA kernels. For example, BatchNorm only sup-
ports quantization, while random projection is not applicable to it. Since Pytorch only supports
precision down to INTS, we convert quantized tensors into bit-streams by CUDA kernels to maxi-
mize the memory saving. The configuration and implementation details are given in Appendix [F

4 RELATED WORK AND DISCUSSION

Due to the page limit, we briefly review and discuss the relationship between existing works and
EXACT. A more comprehensive discussion can be found in Appendix[B] Existing works can be
roughly divided into scalable/efficient GNN inference and scalable GNN training according to the
problem they try to solve. Almost all previous GNN quantization works try to solve the first problem,
which is much simpler than the second problem that EXACT tries to address. Specifically, most
of them try to enable the usage of low precision integer arithmetic during inference (Tailor et al.,
2021;|Zhao et al.,|2020) by simulating the quantization effect, which may even increase the memory
consumption during training. |[Feng et al.| (2020) tries to address the second problem by proposing
a heterogeneous quantization framework which assigns different bits to node embeddings in each
layer. However, this framework is impractical on off-the-shell hardwares. For scalable GNN training
methods, EXACT is orthogonal to most of them, including distributed training (Zheng et al.|[2020b;
Jia et al.| 2020} Zhu et al.l 2019; Wan et al., 2021}, subgraph sampling (Hamilton et al.,[2017; |Zeng
et al., [2020; |Chiang et al., 2019), and historical embedding-based methods (Fey et al., 2021). We
discuss the potential benefit of integrating EXACT with them in Appendix

5 EXPERIMENTS

The experiments are designed to answer the following research questions. RQ1: How effective is
EXACT in terms of model performance at different compression rates (Section [5.1)? RQ2: Is the
training process of deeper GNNs also robust to the noise introduced by EXACT (Section[5.1))? RQ3:
How sensitive is EXACT to its key hyperparameters (Appendix[[.4)? RQ4: What is the running time
overhead of EXACT (Section[5.2)? RQ5: Is the convergence speed of GNNs impacted by EXACT
(Appendix [L.3)? RQ6: To what extent can EXACT reduce the hardware requirement for training
GNNss on large graphs (Section[5.3))?

Datasets and Models. To evaluate the scalability of EXACT, we adopt five common large-scale
graph benchmark datasets from different domains. Namely, Reddit, Flickr, Yelp, ogbn-arxiv, and
ogbn-products. We evaluate EXACT under both the mini-batch training and full-batch training set-
tings. In the mini-batch training setting, we integrate EXACT with two state-of-the-art subgraph
sampling methods, namely Cluster-GCN (Chiang et al.,[2019) and GraphSAINT (Zeng et al.,[2020).
In the full-batch training setting, we integrate EXACT with three popular models, including two
commonly used shallow models, namely GCN (Kipf & Welling, [2017) and GraphSAGE (Hamilton
et al.}2017)), and one deep model GCNII (Chen et al., | 2020b). To avoid confusions, GCN, Graph-
SAGE, and GCNII are both trained with the whole graph at each step. For a fair comparison,
we use the mean aggregator for GraphSAGE, Cluster-GCN, and GraphSAINT throughout the paper.
Details about the hyperparameters of models and datasets can be found in Appendix [G]

Hyperparameter Settings. From Section we show that the performance of EXACT is largely
determined by the % ratio of random projection, and the model performance drop with INT2 quan-
tization is negligible. Thus, to balance the accuracy drop and memory saving ratio, we adopt INT2
precision with different % ratios for EXACT. Specifically, EXACT (INT2) indicates that it only
applies 2-bit quantization to the activation maps of all applicable operations (see Table [§). EX-
ACT(RP+INT2) indicates that it applies random projection followed b% a 2-bit quantization to the
activations of all applicable operations. We perform a grid search for % ratio from {2, 4, 8}. De-

tailed % configuration for EXACT(RP+INT?2) can be found in Table

Published as a conference paper at ICLR 2022

Table 3: Comparison on the test accuracy/F1-micro and memory saving on five datasets. The hard-
ware here is a single RTX 3090 (24GB). “Act Mem.” is the memory (MB) occupied by activation
maps. “OOM” indicates the out-of-memory error. Bold faces indicate that the loss in accuracy is
negligible (= 0.2%) or the result is better compared to the baseline. Underline numbers indicate that
the loss in accuracy is moderate (= 0.5%). All reported results are averaged over ten random trials.

nodes 230K 89K 717K 169K 2.4M
#edges 11.6M 450K 7.9M 12M 61.9M
. . ogbn- ogbn-
Model Methods Reddit Flickr Yelp arxiv products
Act Act . Act Act Act
Acc. Mem. Acc. Menm. Fl-micro Menm. Acc Mem. Acc. Menm.
P Baseline 95.62-0.10 145(1x) 4961047 165(1x) 63.98:0.14 293 (I1x) — 7862026 35.2(1x)
GeN EXACT(INT2) 95.58+0.09 2(7.3x) 49.69-020 15(11x) 63.90=0.15 4(7.3x) — 78475040 2.5 (14x)
EXACT(RP+INT2) 95.32:0.07 1.4 (10.4x) 49.31:021 09(18.3x) 63.61+021 3(9.8x) — 77.86+0.28 2.2 (16x)
Graph- Baseline 96.02-008 443 (1x) SLIIZ0.8 887(I1x) 63.78:0.12 335(1x) 71492020 270(1x) 79.03:0.23 516 (1x)
SAI‘,’\,T EXACT(INT2) 95.96:0.05 6.6(6.7x) 50.86+0.32 7.8 (11.4x) 63.77+0.14 43 (7.8x) TL76x0.15 20 (13.5x) 78.94:0.28 40.5(12.7x)
EXACT(RP+INT2) 95.69:0.06 3.6 (12.3x) 50.65:0.17 3.4(26x) 63.41:0.19 33(10.2x) 7144:0.16 10.8(25x) 78.50:0.41 29.5 (17.5%)
Baseline 9539:0.04 1029 (1x) 53.08:0.14 3788 (1x) 40223047 6429 (1x) 720720.16 729.4(1x) — —
GCN EXACT(INT2) 9536003 122.8(8.4x) 5292020 37(10.2x) 40.20:0.38 640 (10x) 72.04+0.21 54.5 (13.4x) — —
EXACT(RP+INT2) 9530:0.03 67 (15.4x) 52.90:022 17.8(21.3x) 39.89+0.56 427 (15x) 7L.67+0.16 30.2(24.1x) — —
Graph- Baseline 96.44:0041 15274 (1x) SL74:0.13 5469 (1x) 62.05:0.14 6076 (1x) 71.85:024 786.2(1x) 78.78%0.10 OOM
SASE EXACT(INT2) 96.40+-0.05 155.5(9.8x) 5197022 493 (11.1x) 61.95:0.12 680 (10.3x) 7L.71+0.38 60.8 (12.9x) 78.79+0.12 1144
EXACT(RP+INT2) 96.34:0.03 71.7(21.3x) 51.83:0.21 204 (26.8x) 61.59+0.12 466.5 (15x) 71.32:0.26 30.5(25.8x) 78.76:0.13 572
Baseline 96.71:0.07 5850 (1x) 54.23:0.77 4067 (1x) OOM OOM 72.85:027 14409 (1x) — —
GCNII EXACT(INT2) 96.65:0.06 388(15x) 54.55:0.47 256.4(15.9x) 64.79+0.09 2236 72.85:0.43 899 (16x) — —
EXACT(RP+INT2) 96.51:0.09 197.8(29.6x) 53.96:0.58 127.6(31.9x) 64.01=0.17 1649 7267045 4512 (32x) — —
@ 2 >
?‘2 50 w3 ?5 }g o®
;%40 a9 ? f_% °5°59_3x 9.3
ES VB3 7 o o 2 2
530))
= =2 =
g 20 g g
=) g2 =)
£ 2 g
E . 0616191015 152 é S

GCN

GCNIT

GCN

GraphSAGE GraphSAGE GCN GraphSAGE GCNIT

ogbn-arxiv Yelp
Figure 3: Training throughput comparison on a single RTX 3090 (24GB) GPU (higher is bet-
ter). The time overhead of EXACT is roughly 12%-25%. We discuss about swapping and gradient
checkpointing in Appendix [[.2]

Reddit

5.1 TRADE-OFF BETWEEN SPACE AND MODEL PERFORMANCE

To answer RQ1 and RQ2, we first analyze the trade-off between the model performance and mem-
ory saving. Table [3]summarizes the model performance and the memory footprint of the activation
maps. Besides the memory usage of activation maps, a detailed analysis about the overall memory
saving ratio is provided in Appendix [Hl We make two main observations.

First, EXACT aggressively reduces the memory footprint with < 0.5% loss in accuracy. From
Table 3] EXACT (INT2) reduces the memory footprint of activation maps from 7x to 16x, with
negligible loss in accuracy (=~ 0.2%) in almost all experiments. EXACT (RP+INT2) generally
reduces the memory footprint of activation maps from 10x to 32, and the loss in accuracy tends to
range from lossless (0.0%) to moderate (=~ 0.5%). Although EXACT can aggressively compress the
memory usage of activations associated with MM and SPMM by up to 128 x, the compression ratio for
other operations usually cannot surpass 32x (e.g., the activation maps of ReLU and Dropout take
exact one bit to store, see Appendix[F]). As a result, the overall compress ratio is pulled down. We
show in Appendix [H] that the measured compression ratio is consistent with the theoretical one.

Second, the training process of deeper models is also robust to extremely compressed acti-
vations. As we analyzed in Appendix[E4] the vanilla quantization and random projection obtain
unreasonable good performance might because the commonly used GNNs are shallow. Thus, one
open question is that, to what extent can deeper GNNs robust to extremely compressed activation
maps (RQ2)? The ablation study of GCNII in Table 3] tries to experimentally answer this question.
The training process of deeper GNNSs (up to 16-layer, see Table is also robust to the noise intro-
duced by the extremely compressed activations, with up to 32 less memory footprint of activation
maps. We note that building deeper GNNss is still an open direction due to the over-smoothing and
the extensive memory consumption problem (Oono & Suzukil [2019; |Li et all, 2021}, [Chen et all}
[2020b). From the practical usage perspective, our GCNII ablation study indicates that EXACT may
enable to train deeper GNNSs on large graphs with minimal loss in performance.

*The regular training raises OOM error. The result is obtained using the automated mixed-precision training
(torch.cuda.amp).

Published as a conference paper at ICLR 2022

To answer RQ3, we present the sensitivity study of EXACT (RP+INT2) to % ratio in Appendix[[.4]
In general, the model performance drop of EXACT (RP+INT2) increases with the % ratio. In

summary, when % = 8, the loss in accuracy of EXACT (RP+INT?2) is < 0.5% in roughly two-third
of experiments and < 1% in almost all experiments.

5.2 TRADE-OFFS BETWEEN SPACE AND SPEED

To answer RQ4, we compare the training throughput of EXACT with the baseline using a single
RTX 3090 (24GB) GPU. Figure [3| shows the results among EXACT with different configurations
and the baseline (see Table 0] for detailed package information). We make two main observations.

First, the overhead of EXACT (INT2) is roughly 12% ~ 25%. The overhead of EXACT (INT2)
comes entirely from quantization. We note that EXACT (INT2) adopts vanilla integer quantization
with negligible loss in accuracy, which has the lowest overhead among all quantization methods. So-
phisticated quantization strategies (e.g., mixed precision quantization and non-uniform quantization)
further increase the time overhead, because they require an extra search process to find precision or
quantization step for each layer/sample (Chakrabarti & Moseleyl, 2019} [Fu et al., |2020; |Chen et al.,
2021a). From Figure[3] the overhead of EXACT is roughly 12% ~ 25%.

Second, the running speed of EXACT (RP+INT2) is comparable or even faster than quantiza-
tion only. The above counter-intuitive observation can be explained by the following mechanism.
Although random projection introduces two extra matrix multiplication operations, the total num-
ber of elements to be quantized is % times less than directly quantizing the activations. Considering
that quantization is the main bottleneck, compared to EXACT (INT2), EXACT (RP+INT2) achieves
roughly twice overall compression ratios with a comparable or even smaller time overhead.

RQ4 focuses on the actual running speed measured by the hardware throughput. Here we inves-
tigate the convergence speed from the optimization perspective (RQS). To answer RQS, due to
the page limit, we present the training curve of models trained on Reddit dataset with EXACT in
Appendix[[.3] The converge speed here is measured by the number of epochs it takes to reach a
certain validation accuracy. In summary, the convergence speed of EXACT is slightly slower than
the baseline, with limited impact on final accuracy.

5.3 ABLATION STUDIES

Train full-batch GraphSAGE on ogbn-products using a GPU with 11GB memory.

Table |3| shows that EXACT reduces the memory foot- Table 4: The test accuracy of full-batch
print of activation maps by up to 32x. However, as an- GraphSAGE trained on ogbn-products
alyzed in Appendix [H] besides the activation maps, in- using a single GTX 1080 Ti (11GB).

put data (including feature matrices X, adjacency matrix

A, and labels), activation gradients also occupy mem- Methods Accuracy
ory in the full-batch training. For ogbn-products, the AMP OOM i
input data occupies 4.7GB (see Appendix [H). From the EXACT(RP+INT2) + AMP | 78.28:0.18

OGB leader-board, training a full-batch GraphSAGE re-
quires GPUs with at least 4GB memory. We note that EXACT can be integrated with AMP (see
Appendix [F) to further squeeze out the memory. To answer RQ6, by integrating AMP and EXACT

(RP+INT2) with % = 4, we successfully train a full-batch GraphSAGE on ogbn-products on a
single GTX 1080 Ti with 11GB memory, with moderate loss (= 0.5%) in accuracy (Table [4).

6 CONCLUSION AND FUTURE WORK

In this paper, we propose EXACT, a simple-yet-effective framework for training GNNs with com-
pressed activations. We demonstrate the potential of EXACT for the real-world usage by system-
atically evaluating the trade-off among the memory-saving, time overhead, and accuracy drop. We
show that EXACT is orthogonal to most of the existing solutions and discuss how EXACT can be
integrated with them in Appendix [B} Future work includes (1) evaluating EXACT under multi-GPU
settings for distributed training; (2) combining EXACT with historical embedding-based methods;
(3) combining EXACT with memory-efficient training systems, such as swapping.

Published as a conference paper at ICLR 2022

7 ACKNOWLEDGEMENT

We would like to thank all the anonymous reviewers for their valuable suggestions. Thank all the
members of Samsung Research America advertisement intelligence team for your feedback, and
everyone who has provided their generous feedback on this work. This work is, in part, supported
by NSF IIS-1750074. The views and conclusions contained in this paper are those of the authors
and should not be interpreted as representing any funding agencies.

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pp. 265-283, 2016.

Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 274-281, 2001.

Friedrich L Bauer. Computational graphs and rounding error. SIAM Journal on Numerical Analysis,
11(1):87-96, 1974.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223-311, 2018.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. arXiv preprint
arXiv:2102.01350, 2021a.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A prin-
cipled approach to accelerating graph neural network training. In International Conference on
Machine Learning, pp. 1204—1215. PMLR, 2021b.

Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activations for memory-
efficient network training. Advances in Neural Information Processing Systems, 32:2429-2438,
2019.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International conference on machine learning. PMLR, 2017.

Jianfei Chen, Yu Gai, Zhewei Yao, Michael W Mahoney, and Joseph E Gonzalez. A statistical
framework for low-bitwidth training of deep neural networks. arXiv preprint arXiv:2010.14298,
2020a.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W Mahoney, and
Joseph E Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. In International Conference on Machine Learning. PMLR, 2021a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In International Conference on Machine Learning, pp. 1725-1735. PMLR,
2020b.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning,
pp. 1695-1706. PMLR, 2021b.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost.(2016). arXiv preprint arXiv:1604.06174, 2016.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257-266, 2019.

10

Published as a conference paper at ICLR 2022

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123-3131, 2015.

R David Evans and Tor Aamodt. AC-GC: Lossy activation compression with guaranteed con-
vergence. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=MwFdgFRxIFO.

R David Evans, Lufei Liu, and Tor M Aamodt. Jpeg-act: accelerating deep learning via transform-
based lossy compression. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 860-873. IEEE, 2020.

Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding. Sgquant: Squeezing the
last bit on graph neural networks with specialized quantization. In 2020 IEEE 32nd International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 1044-1052. IEEE, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and ex-
pressive graph neural networks via historical embeddings. In International conference on machine
learning, 2021.

Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang, and Bin Cui. Don’t
waste your bits! squeeze activations and gradients for deep neural networks via tinyscript. In
International Conference on Machine Learning, pp. 3304-3314. PMLR, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025-1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label
propagation and simple models out-performs graph neural networks. In International Conference
on Learning Representations, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in Neural Information Processing Systems, 2018.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion Stoica,
and Joseph E Gonzalez. Checkmate: Breaking the memory wall with optimal tensor rematerial-
ization. arXiv preprint arXiv:1910.02653, 2019.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the accuracy, scala-
bility, and performance of graph neural networks with roc. Proceedings of Machine Learning and
Systems, 2:187-198, 2020.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing, 20(1):359-392, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=SJU4ayYgl.

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch,
Tianqi Chen, and Zachary Tatlock. Dynamic tensor rematerialization. arXiv preprint
arXiv:2006.09616, 2020.

11

https://openreview.net/forum?id=MwFdqFRxIF0
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Published as a conference paper at ICLR 2022

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Guohao Li, Matthias Miiller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. arXiv preprint arXiv:2106.07476, 2021.

Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Zafarani. Sgcn: A
graph sparsifier based on graph convolutional networks. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 275-287. Springer, 2020.

Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija,
Bryan Perozzi, Greg Ver Steeg, and Aram Galstyan. Graph traversal with tensor functionals: A
meta-algorithm for scalable learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=6D0OZ8XNNLfGN.

Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. Training deeper models by gpu
memory optimization on tensorflow. In Proc. of ML Systems Workshop in NIPS, 2017.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026-8037, 2019.

Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, and Philipp Kridhenbiihl.
Memory optimization for deep networks. arXiv preprint arXiv:2010.14501, 2020.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913-1926, 2011.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=NSBrFgJAHg.

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly improving lossy com-
pression for scientific data sets based on multidimensional prediction and error-controlled quanti-
zation. In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.
1129-1139. IEEE, 2017.

Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp, Robert Underwood, Sian
Jin, Xin Liang, Jon Calhoun, Dingwen Tao, et al. Cusz: An efficient gpu-based error-bounded
lossy compression framework for scientific data. arXiv preprint arXiv:2007.09625, 2020.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2017.

Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. BNS-GCN: Efficient full-graph
training of graph convolutional networks with partition-parallelism and random boundary node
sampling. In Fifth Conference on Machine Learning and Systems, 2021.

Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and Yingyan Lin.
PipeGCN: Efficient full-graph training of graph convolutional networks with pipelined feature
communication. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=kSwgMHOzn1F.

12

https://openreview.net/forum?id=6DOZ8XNNfGN
https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=kSwqMH0zn1F
https://openreview.net/forum?id=kSwqMH0zn1F

Published as a conference paper at ICLR 2022

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861-6871. PMLR, 2019.

Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. Scalable graph neural networks for hetero-
geneous graphs. arXiv preprint arXiv:2011.09679, 2020.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in Neural
Information Processing Systems, 31:5165-5175, 2018.

Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and Pietro Lio. Learned low
precision graph neural networks. arXiv preprint arXiv:2009.09232, 2020.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458-11468. PMLR, 2020a.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang,
and George Karypis. Distdgl: distributed graph neural network training for billion-scale graphs. In
2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures and Algorithms (IA3),
pp. 36—44. IEEE, 2020b.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou.
Aligraph: a comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730,
2019.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. arXiv preprint
arXiv:1911.07323, 2019.

13

https://openreview.net/forum?id=BJe8pkHFwS

Published as a conference paper at ICLR 2022

A NOTATIONS

Table 5: Table of Notations.

Notations Description
V| The number of nodes
I€| The number of edges
A e RVIXVI The adjacency matrix, which is stored in sparse matrix format
A e RVIXVI The normalized adjacency matrix, which is stored in sparse matrix format
X The input feature matrix
r The uncompressed node embedding at the I*" layer corresponding to node v
HO The uncompressed node embedding matrix at the [*" layer (each row is a node embedding R)
D The node embedding dimension
hf,f\).T The quantized node embedding at the I*" layer corresponding to node v
H, I<IZ\I)T The quantized node embedding matrix at the I'" layer (each row is a hff,gT)
rf,l) The quantization range, where rf,l) = max{hgl)} - rnin{hgl)}
b The bit-width. In this paper, b must be chosen from {1, 2, 4,8, 32}
h,(Ji))mj The randomly projected node embedding at the I'® layer corresponding to node v
HY. The randomly projected node embedding matrix at the I*" layer (each row is a hiﬁq)

The dimension of projected node embeddings
40) The recovered node embedding at the I*" layer corresponding to node v
v (either compressed by quantization or random projection)

240 The recovered node embedding matrix at the [th layer (each row is a ﬁgl))
Var(h) The variance of the vector h, where Var(h) = E[h " h] — (E[h]) " (E[h])

|h]|2 The 2-norm of vector h, where |h||o = VRATh

|R|oo The infinity norm of vector h, where |h||c = max |h|

B RELATED WORK AND DISCUSSION

Due to the page limit, we discuss the relationship between EXACT and existing works in detail here.
GNN is notoriously inefficient and non-scalable during both the training and inference phase. Pre-
vious works can be divided into two categories according to the problem they try to solve. Namely,
scalable/efficient GNN inference and scalable GNN training. Below we introduce and discuss the
relationship between them and EXACT.

B.1 SCALABLE/EFFICIENT GNN INFERENCE

Scalable GNN inference is an orthogonal direction to the problem that EXACT tries to address. Be-
low we introduces two popular directions for scalable GNN inference. Namely, GNN quantization
and graph sparsification.

GNN Quantization. Most of the previous GNN quantization works focus on enabling the usage of
low precision integer arithmetic during inference. Specifically, [Tailor et al.|(2021) proposes a Quan-
tization Aware Training method tailored for GNNs, which emulates inference-time quantization
during the training phase. |Zhao et al|(2020) proposes to jointly search the quantization bit-width
and GNN architectures. Note that both of them do not actually convert the node embeddings into
lower numerical precision during training. Instead, they use full precision data type to simulate the
effect of real quantization. [Feng et al.| (2020) proposes a heterogeneous quantization framework
which assigns different bits to node embeddings in each layer while maintaining the weights at full
precision. However, due to the mismatch in operands’ bit-width, it is impractical to use in general
purpose hardwares, such as CPUs and GPUs.

Graph Sparsification. The adjacency matrices are usually stored as sparse matrices. When hard-
wares perform SPMM , the sparse matrix format leads to random memory accesses and limited data
reuse due to its irregular structure. Thus, GNNs have higher inference latency than other neural
networks. Graph sparsification can alleviate the issue by removing redundant edges from original
graphs. [Zheng et al.|(2020a) proposes a learning-based graph sparsification method which removes

14

Published as a conference paper at ICLR 2022

potentially task-irrelevant edges from input graphs [Li et al.| (2020) formulates the graph sparsifica-
tion problem as an optimization objective which can be solved by alternating direction method of
multipliers (ADMM). |Chen et al.|(2021b) proposes to co-simplify the input graph and GNN model
by extending the iterative magnitude pruning to graph areas.

B.2 ScALABLE GNN TRAINING

In this subsection, we introduce previous works that try to train GNNs on large graphs. We conclude
that EXACT are parallel to most of the previous works.

Subgraph Sampling/Mini-Batch Training. As we introduced in the main body, most of the pre-
vious scalable GNN training methods fall into this category. The key idea is to train GNNs with
sampled subgraphs instead of the whole graph at each step. In this way, only node embeddings
that are present in the current subgraph will be retained in memory. Based on this idea, various
sampling techniques have been proposed, including the node-wise sampling (Hamilton et al., 2017;
Chen et al., [2017}; [Markowitz et al.,[2021)), layer-wise sampling (Zou et al., 2019; (Chen et al., 2018;
Huang et al.| |2018)), and subgraph sampling (Chiang et al., 2019} [Zeng et al., 2020). Generally,
methods in this category are orthogonal to EXACT, and they can certainly be combined. Similar
to EXACT, subgraph sampling also introduce the gradient noise during the training process. How-
ever, the gradient noise does not necessarily result in the model performance drop. In contrast,
many previous works experimentally show that subgraph sampling based methods may even yield
better performance than the whole graph training (Zeng et al., [2020; [Hu et al., 2020). Our experi-
ment results also exhibit a similar phenomenon that EXACT may achieve better performance than
the original one. This observation can be explained by the regularization effect introduced by the
gradient noise (Hu et al.| [2020).

In this paper, we show in experiments that EXACT can be combined with subgraph-sampling based
methods with only limited accuracy drop. From the practical usage perspective, EXACT can enlarge
the maximal subgraph size for subgraph training-based method. As a result, the error introduced by
EXACT can be compensated by using larger subgraphs, which previously cannot fit into GPUs. We
leave it as one future direction.

GNNAutoScale (Fey et al., [2021). GNNAutoScale follows the idea of utilizing historical embed-
dings from prior training iterations (Fey et al.l [2021). Specifically, it stores a historical embedding
for each node as an offline storage in CPU memory. At each training step, it first samples a mini-
batch of nodes. Then for out-of-mini-batch nodes, GNNAutoScale swaps their historical embed-
dings from CPU memory to GPU memory and utilizes their non-trainable historical embeddings for
propagation. In this way, only the node embeddings inside the current mini-batch and those of their
direct 1-hop neighbors are retained in memory. The time overhead of GNNAutoScale is mainly from
the swapping step. EXACT is orthogonal to GNNAutoScale. It would be interesting to store node
embeddings compressed by EXACT as historical embeddings for GNNAutoScale. Considering that
quantization is more time-efficient compared to swapping, the time overhead of GNNAutoScale can
be greatly reduced since the time cost of swapping scales with the total number of bits to be swapped.

Distributed Training. Unlike the data in other domains, the graph data cannot be trivially divided
into mini-batches due to its connectivity between samples. The graph distributed training methods
require to split the graph into mini-batches that minimizes the communication overhead. Specifi-
cally, AliGraph (Zhu et al., 2019) is a distributed GNN framework on CPU platforms, which does
not support GPUs acceleration. ROC (Jia et al.| 2020) learns to optimize the graph partitioning
by predicting the execution time of performing a GNN operation on an input subgraph. PipeGCN
(Wan et al., 2022) proposes to train GNNs with stale features and stale feature gradients under the
distributed training setting. Both BNS-GCN (Wan et al., [2021)) and DistDGL (Zheng et al., 2020b)
leverage METIS (Karypis & Kumar, |1998) to performance the graph partitioning to minimize the
communication cost. However, one main drawback of applying METIS is that the ahead-of-training
overhead of METIS is relatively large on huge graphs. EXACT is also orthogonal to the distributed
training methods and can be used to decrease the hardware requirements. It would be interesting to
investigate the trade-off among the accuracy drop and the memory saving of EXACT under multi-
GPU settings.

Memory efficient training system. Gradient checkpointing (Chen et al.l 2016; Jain et al., 2019
Kirisame et al., 2020} Shah et al., 2020) trades computation for memory by dropping some of the

15

-

w

wn

=

R -]

10

Published as a conference paper at ICLR 2022

Algorithm 1: Forward Pass of the I** GCN layer
Input: HY, @Y, the total number of layers L.
Output: H(+D
ctx® < {} /» the context which saves tensors for backward */
JO —mu(HY, W)
Add H® and ©® to ctx® /+ used for MMbackward */
H™Y spvm(A, JO)
Add A (in CSR format) and J® to ctx® /+ used for SPMM.backward %/
if | # L — 1 then
Add 1 z7a41)50y tO ctx® /% used for ReLU.backward */
HUTY = ReLU(H"*)
end

return H¢1t1

activations in the forward pass and recomputing them in the backward pass. Swapping (Meng et al.,
2017) utilizes the huge amount of available CPU memory by swapping tensors between CPU and
GPU. EXACT is also parallel to both the gradient checkpointing and swapping. As a result, EXACT
can be combined with them to further squeeze out the memory, at the cost of larger time overhead.

Other Activation Compression Techniques. JPEG-ACT (Evans et al., 2020) extends the widely-
used JPEG method to compress the activations. Cusz is a prediction-based lossy compression
method with GPU support (Tian et al., [2020; Tao et al.} 2017). Both of them can be applied to
compress the activations of GNNs. However, one practical problem is that they have hyperparam-
eters which are hard to tune. For example, in JPEG-ACT, there is a hyperparameter a controls
the space/accuracy trade-off. This problem can be alleviated by incorporating one recent proposed
method AC-GC (Evans & Aamodt, |2021). Given a preset allowable increase in loss, AC-GC can
automatically find the hyperparameter such that the compression rate can adapt to the preset training
conditions. We note that EXACT and AC-GC approaches the problem from different perspective.
For EXACT, we value the compression rate more than the accuracy drop. Namely, given a preset
memory budget, we try to fit the model with acceptable accuracy drop. For AC-GC, they value the
accuracy change more than the compression rate in the sense that the compression rate is adapted to
the given allowable accuracy drop.

C ANALYZING THE MEMORY CONSUMPTION OF GCNS

Generally, each training step contains a forward pass phase and a backward pass phase. During the
forward pass, activation maps of each operation are kept in memory for computing the gradients.
During the backward pass, the weight gradients and activation gradients are calculated and stored
in memory. For weight gradients, their memory usage is negligible since they share the same shape
with model weights. For activation gradients, their memory usage is dynamic and will eventually
be cleared to zero. In standard deep learning libraries, activation gradients will be deleted as soon
as their reference counting becomes zero (Paszke et al) 2019} |Abadi et al 2016). Thus, storing
activation maps take up most of the memory. The memory usage of activation maps in GCN layers
are given in Algorithm 1]

D RANDOM PROJECTION

In this paper, we use the normalized Rademacher random matrix (Achlioptas, 2001)) for projecting
the activation maps. Specifically, for a D x R normalized Rademacher random matrix R, each
element in R is i.i.d. sampled from the following distribution:

1 +1, with probability
Ri,j = E X

—1, with probability

)

DN = N =

16

Published as a conference paper at ICLR 2022

where 1/% is the normalize factor such that E[fRR"] = I. From above, we can see that the

sampling cost of the normalized Rademacher random matrix is relatively low since sampling from
Bernoulli distribution is much cheaper than sampling from Gaussian distribution.

E THEORY

E.1 PROOF OF PROPOSITION[I]

Proposition 1 (Details in Appendix[E) The above quantization and dequantization are unbiased
D

~ ~ MO
operations, i.e., E[th)] = E[Dequant(Quant(hg)))] = n" and Var(hg,l)) = é#’lz].
Proposition|1|is adopted from the theoretical analysis in ActNN (Chen et al., 2021a). For complete-

ness, we prove it here with more details. The conclusion of E[izg)] = h,(f) follows from the fact that
the stochastic rounding is an unbiased operation (Courbariaux et al., 2015). Specifically, V scalar h,
the stochastic rounding can be expressed as

h] = [h], with probability h — |h],
~ | |h], withprobability 1— (h— |h]),

where [] is the ceil operation and |- | is the floor operation. First, we have E[|]] = h because
E[[A]] = [R](h = [n]) + [A]J(1 = h + [A])
= h (following the fact that [h] — |h] = 1)

®)

Hence,

@) @ O}

T hy’ — Z

_ M v v 0 — p0
= BE[l_ 0 Bl + 2, = hy.

Regarding the variance, let h = hg)E)ZS)B = (h1,--+ ,hp). Suppose Vi,h; — |hi] = o ~
Uniform(0, 1), we have.
(l)}2

~ Ty _ e _ _
Var(h(?) = " Cvar((1) = E[RTH] ~ (B[R] (B[A))
[7’7(})]2 ¢ 2 2 2
=5 > Thil®(hi = [hal) + [hi (1 = hi + [hi)) = b
i=1
[Ti()l)]QD 2 2 : :
2 (2|_h1Jh1 + hy — |_h1J — |_h1J — hl) (substitute |_h1-| with |_h1J +1)
(D12
= [T”B]Q D (0 —0?) (substitute | hy] with by — o)
. . . 2)y _ [rV1?D
By taking expectation w.r.t. o on the both side, we have Var(h,’) = %

E.2 PROOF OF PROPOSITION[2]

Proposition 2 (Proof in Appendix[E) The above RP and IRP are unbiased operations, i.e.,
E[H"] = E[IRP(RP(H®W))] = HOY. For each R in HO, we have Var(fzg,l)) = %th)H%.

We can get E[H®] = E[IRP(RP(H"))] = H® directly following the fact that
E[RPRP(HW)) =E[HVRR"| = HYVE[RR"] = HWY.

Regarding the variance, let P = RRT € RP*P For the sake of notation convenience, we ignore

the subscript and superscript in this subsection. Namely, we use the notation hto represent fz(yl), and

17

Published as a conference paper at ICLR 2022

O]

use the notation h to represent h,’. Also, we assume the shapes of h and h are both 1 x D in this

subsection. We have
Var(h) = Var(h.P)
= hE[PP"]h" —hh'T

Next, we will characterize the distribution of PP . Recall that P = RR, thus,

R
P, ;= Zai,kaj,k;
k=1
where each a; ; = j:\/% with equal probability. Thus,

D
[PP'];;=> P.mPim

m=1
D R R
= Z <(Z ai,kanL,k’)(Z aj,kam,k)>~
m=1 k=1 k=1

€))

From Equation E], it is easy to show that E[PP] is a diagonal matrix. Namely, Vi # j, we have
E[PP "], ; = 0 following the fact that each a; ; are independent and E[a; ;] = 0. For elements on

the diagonal, we have

D
E[PPT]iJ =]E[Z -Pi,m-PL',m]
m=1
D R
E[Y (D ainamr)’]
m=1 k=1
R R
=B ainair)’] +EDY (O aikami)’]
k=1 mi k=1

R
=1+ Z <ZE[(ai7kam,k)2] +2 Z E[ai,pammai,qanhq])
m#i k=1

p,q:p<q

||
ﬂM
7~
i
=
S
z
3
?T‘
\/

Let h = (hy,- - hp), we have
Var(h) = hE[PPT]hT — hh"

D—1
1+ =%
=h h" —hhT
D—
1+T1
D D
D-1
DI T Y
i=1 =1
1
=~ IInll3

18

(10)

(1)

Published as a conference paper at ICLR 2022

E.3 PROOF OF PROPOSITION[3]

Proposition 3 (Proof in Appendix [E) For each projected node embedding hq(fp)mj = RP(hg,l)) =
YR, for¥e > 0, by choosing s = th)Hm/ %RR’/E), we have P(th,)mj

w<s)>1-c
For the normalized Rademacher random matrix R € RP**, we have R;; = £ with equal

probability. Let b = (hy,--- ,hp) and b\, = (uy,--- ,ug). Since b\, = h{ R, we have

Uproj
up = Zi'il a;h;, where a; = :tﬁ with equal probability.

First, we have the following inequality:

fRu1 H]E tRa;h Z

ot VER; —tVRh; D
= te = H cosh t\Fh

; 2
=1

t2Rh2

%2
e = (following the fact that coshz < e¢2)

IN
-EU

Il
-

(2

l
2R 1nY) 12

ez (12)

For notation convenience, we use the notation “C” to represent the node embedding norm ||h£,l) [l
For Vs, ¢ > 0, according to Chernoff bound, we have:

P(luil = s) = 2P(u; > s)

= 2P (e > %)
Efe]

< s (by Chernoff bound)
e(S

]E[sR'u.i] SR

e c2

<2——; (by setting ¢ = o2
e c?
2

< 2e 50t (by Equation[12) (13)

Note that Equationholds for Vs > 0. Given a specific €, by setting s = C'y/ %RR/E), we have
P(Ju;| > s) < 5. Also,

VUproj

R
P([[R Jloe < s) = [] P(luil < 5)
=1

= (1= P(lus] > 5))"

€

>(1-—-)F

> (1-3)

>1—c¢

O

Here we also experimentally verify Proposition [3|by visualizing the infinity norm of projected node
embeddings in Figure 4l To avoid creating confusions, % = 1 in Figure 4{ means we apply the
random projection with R = D on the actlvatlon maps. We can observe that in general, the infinity

norm increases with the compression ratio R However, we note that the infinity norm of projected
embeddings may less than those of original embeddings when R is larger than a threshold. This sug-
gests that when R is below a certain threshold, quantizing projected embeddings only have limited
influence on model performance. This claim is also verified in the main body of this paper.

19

Published as a conference paper at ICLR 2022

20000 D/R=8 DIR=8
D/R=4 12000 D/R=4
D/R=2 DIR=2
15000 DIR=1 10000 D/R=1
original ariginal

))
O 500 £ 8000
(1) (1)
qgJ_mmm qg,' w000
£ mo £

g

2000

00 05 10 15 20 25 30 0 1 2 3 4 5
The infinity norm of projected embeddings The infinity norm of projected embeddings

Figure 4: The histogram of the projected node embeddings’ infinity norm at MM (the left figure) and
SPMM (the right figure) operation of the first GCN layer.

E.4 THE COMPOUND EFFECT OF APPROXIMATION ERRORS

In this subsection, we analyze why GNN5s can tolerate the extremely compressed activations. From
the numerical analysis (Bauer, [1974), the jacobian matrix (gradient) between two tensors can be
viewed as a sum over all "paths” connecting these two tensors. Moreover, the architecture of GNNs
is considerably shallower than CNNs and transformers. Informally, for GNNs, the key intuition is
that these paths are significantly “shorter” compared to those of CNNs. As a result, the approxima-
tion error (i.e., the variance from quantization) along the path is hard to get accumulated.

We adopt Theorem 3 in ActNN (Chen et al.| 2021a)) to make the above statement more rigorous. Let
C(™) be the compressed context (either by quantization, random projection, or quantized random
projection). Let VO and VH® be the gradient of ®") and H"), respectively. ve® and
VH®O are the calculated gradient using the compressed context, respectively. Further, we use the
notation Ggwm) (@H (m), C (™)) to represent the variance introduced by utilizing the compressed
context C(™). Specifically, for a L layer GNN, we have

L
Var(VOW) = Var(VO®) + Z E {Var(G%Nm)(?H(m), é(m))|@H(m)) , (14)

m=l

where Var(-|V H (™)) is the conditional variance, and Var(V@O®) is the variance is from the mini-
batch sampling variance. The key insights from Equation[I4]are two folds. First, since the variances
introduced by compressed contexts at different layers will accumulate, it suggests that the noise
introduced by the compressed context is relatively small for shallow models. Considering that most
of GNNs are usually less than four layers, this may explain why the loss in accuracy is negligible
when using the vanilla INT2 quantization and a relatively large % ratio. Second, under the subgraph
training setting, the extra variance introduced by quantization can be compensated when using larger
batch size (i.e., the size of subgraph in the graph learning).

In Table |I|, we evaluate GNNs under the full-batch setting. Therefore, in addition to the reason of
mentioned shallower architecture, it is also possible that the activation compressed training benefits
from the large batch size, which leads to a much smoother gradient. To quantitatively study the
effect of the batch size, below we present the ablation studies of two representative sampling based
methods with much smaller batch size. Namely, GraphSAINT (Table[6)) and Cluster-GCN (Table[7)).
For the baseline, we use the same hyperparameters reported in the corresponding paper. We make
two main observations. First, INT2 quantization works under a much smaller batch size. Namely,
for both Cluster-GCN and GraphSAINT, the accuracy drop is negligible even when the sampled
subgraph contains only /~ 500 nodes. This observation implies that the activations of GNNs can
be aggressively compressed regardless of the batch size. Second, using a much smaller batch size
in general will lead to an accuracy drop. However, for Yelp, a much smaller batch size may even
improve the performance.

20

Published as a conference paper at ICLR 2022

Table 6: The ablation study of the effect of batch size to GraphSAINT. Here “Small BS” means
smaller batch size. For GraphSAINT, INT2 quantization also works under the smaller batch size.

Dataset Method Walk Length Root]S?’flztgh Accuracy (%) / F1-micro

Baseline 2 6000 12,000 51.11 £0.28

Flickr Small BS 1 500 500 47.67 +£0.42
Small BS w./

INT? quantization 1 500 500 48.33 +0.29

Baseline 4 2000 8,000 96.02 +0.08

Reddit Small BS 1 500 500 93.73 +£0.14
Small BS w./

INT2 quantization 1 500 500 93.72 +£0.10

Baseline 2 1250 2,500 63.78 £0.12

Yelp Small BS 1 500 500 64.05 +£0.14

Small BS 1 500 500 64.01 % 0.12

w./INT2 quantization

Table 7: The ablation study of the effect of batch size to Cluster-GCN. Here “Small BS” means
smaller batch size. For Cluster-GCN, INT2 quantization also works under the smaller batch size.

#clusters Batch

Dataset Method #partitions perbatch Size Accuracy (%) / F1-micro

Baseline 1000 30 2,680 49.61 £0.47

Flickr Small BS 1000 5 446 50.01 £0.30
Small BS w./

INT2 quantization 1000 5 446 49.99 £0.28

Baseline 1500 20 3,100 95.62+0.10

Reddit Small BS 1500 3 465 95.30 £0.13
Small BS w./

INT? quantization 1500 3 465 95.29 £ 0.07

Baseline 5000 20 2,870 63.98 +0.14

Yelp Small BS 5000 3 430 63.91 £0.14

Small B 5000 3 430 63.69 +0.23

w./INT2 quantization

Table 8: The Operation configurations of EXACT.

Operations Quantization? Random Projection? Extra Errors?

ReLU / (fixed 1 bit)
Dropout v (fixed 1 bit)

Linear (MM) v v v
SPMM Ve v v
SPMM_MEAN v v v
SPMM_MAX v v v
SPMM_MIN Ve Ve Ve
BatchNorm v X v
X X

X X

F SYSTEM IMPLEMENTATION OF EXACT

F.1 INDIVIDUAL LAYERS CONFIGURATIONS OF EXACT

The operation configurations are shown in Table[8] For all graph convolution operations, EXACT
can apply both the quantization and random projection to their saved activation maps. In EXACT,
the SPMM and its variants (i.e., SPMM_MAX , SPMM_MEAN , and SPMM_MIN) are implemented based

21

Published as a conference paper at ICLR 2022

on those provided in Pytorch Sparseﬂ with extra supporting for compressing activation maps by
quantization and random projection.

For BatchNorm layers, we found that quantizating its saved activation maps only impact model per-
formance a little, which is experimentally verified in the experiments. However, we experimentally
found that randomly projecting its saved activation maps will lead to divergence. We note that this
observation is consistent with previous finding that BatchNorm is very sensitive to noise (Micikevi-
cius et al., 2017)). Hence, EXACT only apply the quantization to BatchNorm layers.

Regarding ReLU operations, we have y = ReLU(x) = xl,- and Vy = Vylz-o. Hence,
ReLU operations only need to store 1, in the context for the backward pass, which takes a single
bit per element to store, without introducing any errors. Since standard deep learning framework
only support down to INTS precision, here we convert the mask matrix into bit-stream and fuse this
process into the CUDA kernel of ReLU.forward to minimize the time overhead.

Regarding Dropout operations, let p be the dropout probability. During the training process, we have

1 1
y = Dropout(x, p) = ——xg, Ve = —Vyg, (15)
1—p 1—p

where g ~ Bernoulli(1 — p) is a binary vector sharing the same shape as . ﬁ is the normal-

ization factor such that E[y] = . Similarly, Dropout Operations also only need to store g in the
context for the backward pass, which takes a single bit per element to store, without introducing
any errors. Similarly, we convert g into bit-stream and fuse this process into the CUDA kernel of
Dropout.forward to minimize the time overhead..

To be clear, “fixed 1 bit” in Table[§]means the activation maps of ReLU and Dropout operations take
only 1 bit per element to store. And the bit-width of all other operations can be adjusted.

F.2 IMPLEMENTATION DETAILS

We provide simple API for converting modules in Pytorch Geometric and Pytorch to its corre-
sponding version in EXACT. For example, replacing torch_geometric.nn.GCNConv with
exact .GCNConv and replacing torch.dropout with exact .dropout. Currently, EXACT
only support Pytorch Geometric and Pytorch. In future we will try to integrate EXACT with other
popular graph learning packages, such as DGL.

Following ActNN (Chen et al., [2021a), to obtain the highest compression ratio, the quantization

range rq(}l) and the zero point Zf)l) are stored in the bfloat16 data type The quantization and de-

quantization modules are both implemented using CUDA kernels. We note that Pytorch only support
data types down to INT8. To obtain highest compression ratio, the quantized data is compressed
into bit streams such that it can be decoded later during the dequantization process.

All CUDA kernels in EXACT support both full-precision and half-precision (i.e., bfloat16 and
float16). Thus, EXACT can also be integrated with the automated mixed precision training, i.e.,
AMlﬂ to further decrease the memory consumption.

G EXPERIMENT SETTINGS

G.1 DATASETS, FRAMEWORKS, AND HARDWARES

We give the detailed statistics and the download URLs for all datasets used in our experiments in
Table[I0] We follow the standard data splits and all datasets are directly downloaded from Pytorch
Geometric or the protocol of OGB (Hu et al.| 2020). We implement all models based on Pytorch
and Pytorch Geometric. Almost all experiments are done on a single NVIDIA GeForce RTX 3090
with 24GB GPU memory. During our experiments, we found that the version of Pytorch, Pytorch
Sparse, and Pytorch Scatter can significantly impact the running speed of the baseline. Here
we list the details of our used packages in all experiments in Table[9]

3https://github.com/rusty 1s/pytorch_sparse/blob/master/torch_sparse/matmul.py
*https://pytorch.org/docs/stable/generated/torch. Tensor.bfloat16.html
>https://pytorch.org/docs/stable/amp.html

22

Published as a conference paper at ICLR 2022

Table 9: Package configurations of our experiments.

Package Version
CUDA 11.1
pytorch_sparse 0.6.12
pytorch_scatter 2.0.8
pytorch_geometric 1.7.2
pytorch 1.9.0
OGB 1.3.1

Table 10: Dataset Statistics.

Dataset Task Nodes Edges Features Classes Label Rates
Reddit’l multi-class 232,965 11,606,919 602 41 65.86%
Flickr[] multi-class 89,250 449,878 500 7 50.00%
Yelp multi-label 716,847 6,977,409 300 100 75.00%
ogbn-arxivPl multi-class 169,343 1,157,799 128 40 53.70%
ogbn-products[Y] multi-class 2,449,029 61,859,076 100 47 8.03%

G.2 MODEL HYPERPARAMETER CONFIGURATIONS OF TABLE[I]AND TABLE 2]

Table 11: Training configuration of Full-Batch GCN, GraphSAGE, and GAT in Tableand Table

Model Training Architecture
Learning Gradient Hidden
Rates Epochs Dropout Clipping BatchNorm Layers Dimension Heads
GCN 0.01 500 0.5 0.0 Yes 3 128
GraphSAGE 0.01 500 0.5 0.0 Yes 3 128 -
GAT 0.002 2000. 0.75 0.0 Yes 3 128 3

We adopt three popular GNNs. Namely, GCN (Kipf & Welling,2017)), GraphSAGE (Hamilton et al.|
2017), and GAT (Velickovic et al., 2017) in Table |1| and Table We follow the hyperparameter
configurations and codebases provided on the OGB (Hu et al.l 2020) leader-board. Specifically,
the hyperparameter configuration is given in Table [[1] The optimizer is Adam (Kingma & Bal
2014) for GCN and GraphSAGE, while the optimizer is RMSprop for GAT. All methods terminate
after a fixed number of epochs. We report the test accuracy associated with the highest validation
score. The “Gradient Clipping” in Table [T]indicate the maximum norm for gradients. “Gradient
Clipping= 0.0” means we do not clip the gradients in that experiment.

G.3 HYPERPARAMETER CONFIGURATIONS OF EXACT (RP+INT2)

The EXACT (RP+INT2) has only one hyperparameter, namely, %. The % configuration of EXACT
(RP+INT?2) can be found in Table

G.4 MODEL HYPERPARAMETER CONFIGURATIONS IN SECTION[3

The optimizer used in all experiments in SectionE]is Adam (Kingma & Bal[2014). We use the default
hyperparameters for Adam optimizer, except for the learning rate. All methods terminate after a
fixed number of epochs. We report the test accuracy/F1-micro associated with the highest validation
score. Regarding Reddit, Flickr, and Yelp dataset, we follow the hyperparameter configurations
reported in the respective papers as closely as possible. We clips the gradient during training. The
“Gradient Clipping” in below tables indicate the maximum norm for gradients. “Gradient Clipping=
0.0” means we do not clip the gradients in that experiment.

®https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.Reddit
"https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets. html#torch_geometric.datasets Flickr
8https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets. html#torch_geometric.datasets. Yelp
“https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

23

Published as a conference paper at ICLR 2022

Regarding ogbn-arxiv and ogbn-products dataset, we follow the hyperparameter configurations and
codebases provided on the OGB (Hu et al.|, [2020) leader-board. Please refer to the OGB website for
more details. Table[I3]and Table 4] summarize the hyperparameter configuration of Cluster-GCN
and GraphSAINT, respectively. Table [I5] Table [I6] and Table [T7] summarize the hyperparameter

Table 12: The % configuration of EXACT (RP+INT?2) in Table

Reddit Flickr Yelp 08Pn- osbn-
arxiv products
Cluster-GCN 8 8 4 - 2
GraphSAINT 8 8 8 8 2
GCN 8 8 8 8 -
GraphSAGE 8 8 4 8 4
GCNII 8 8 2 8 -

configuration of full-Batch GCN, full-Batch GraphSAGE, and full-batch GCNII, respectively.

Table 13: Training configuration of Cluster-GCN in Table

Cluster ..
Dataset Sampler Training Archtecture
s #Cluster Learning . Gradient } . Hidden
#partitions per batch Rates Epochs Dropout Clipping BatchNorm Layers Dimension
Reddit 1500 20 0.01 40 0.1 0.5 Yes 2 128
Flickr 1000 30 0.01 15 0.2 0.5 Yes 2 256
Yelp 5000 20 0.01 75 0.1 0.5 Yes 2 512
ogbn- 15000 EY) 0.001 50 05 0.0 No 3 256
products
Table 14: Training configuration of GraphSAINT in Table
RandomWalk .
Dataset Sampler Training Archtecture
. . Learning) Gradient i - Hidden
Walk length Roots Rates Epochs Dropout Clipping BatchNorm Layers Dimension
Reddit 4 2000 0.01 40 0.1 0.5 Yes 2 128
Flickr 2 6000 0.01 15 0.2 0.5 Yes 2 256
Yelp 2 1250 0.01 75 0.1 0.5 Yes 2 512
ogbn- 3 10000 0.01 500 0.5 0.5 Yes 3 256
arxiy
ogbn- 3 20000 0.01 20 0.5 0.0 No 3 256
products

Table 15: Training configuration of Full-Batch GCN in Table

Dataset Training Archtecture
Learning Gradient Hidden
Rates Epochs Dropout Clipping BatchNorm Layers Dimension
Reddit 0.01 400 0.5 0.5 Yes 2 256
Flickr 0.01 400 0.3 0.5 Yes 2 256
Yelp 0.01 500 0.1 0.5 Yes 2 512
ogbn- 0.01 500 05 05 Yes 3 128
arxiy

Table 16: Training configuration of Full-Batch GraphSAGE in Table

Training Archtecture
Dataset . . .
Learning Enoch D " Gradient BatchN L Hidden
Rates pochs ropou Clipping atehivorm 4YeTS " Dimension
Reddit 0.01 400 0.5 0.5 Yes 2 256
Flickr 0.01 400 0.3 0.5 Yes 2 256
Yelp 0.01 500 0.1 0.5 Yes 2 512
ogbn- 0.01 500 05 05 Yes 3 128
arxiv
ogbn- 0.002 500 05 05 No 3 256
products

24

Published as a conference paper at ICLR 2022

Table 17: Training configuration of Full-Batch GCNII in Table

Dataset Training Archtecture
Learning Gradient Hidden
Rates Epochs Dropout Clipping BatchNorm Layers Dimension
Reddit 0.01 400 0.5 0.5 Yes 4 256
Flickr 0.01 400 0.5 0.5 Yes 8 256
Yelp 0.01 500 0.1 0.5 Yes 4 512
ogbn- 0.001 1000 0.1 0.1 Yes 16 256
arxiy

H ANALYZING THE MEMORY USAGE

H.1 ANALYZING THE MEMORY USAGE

We use torch.cuda.memory_allocated for the memory measurement. As we mentioned
in Table 3] “Act Mem.” is the memory occupied by activation maps. Besides activation maps, the
model, optimizer, input data, weight gradients, and activation gradients also occupy GPU memory.
We will analyze each of them below. First, the memory occupied by the model, optimizer, and
weight gradients is negligible because the number of parameters in most of GNNs is very small.
Second, the memory occupied by the input data depends on the graph size and often cannot be
compressed. This part can take up a lot of memory when the graph is large. Third, the memory
occupied by activation gradients is dynamic and hard to estimate, since these tensors are temporarily
stored in GPUs. For standard deep learning library, they will be deleted as soon as their reference
counting becomes zero (Abadi et al.|[2016} Paszke et al.,|2019). EXACT cannot compress activation
gradients. However, the memory occupied by activation gradients can be compressed using AMP,
because activation gradients are stored in float16 data type under AMP. As illustrated in Appendix
F.2| we note that our EXACT framework can be integrated with AMP.

The memory usage of the model weights plus optimizer is about 2MB. Since activation gradients
are dynamic and hard to analyze, here we report the peak memory usage during the backward pass,
which encompass the activation gradients and other intermediate variables. For the memory usage of
the input data, activation maps, and the peak memory usage during the backward pass, we provided
a detailed analysis in Table [I8] We can observe that the memory usage is mainly occupied by
activation maps. For GCNII, the memory usage is dominated by the activation maps. This is because
we need to store all layers’ activation maps during the forward pass. In contrast, during the backward
pass, there is usually only one layer’ activation gradients are kept in memory.

Table 18: The detailed analysis about the memory usage of input data, activation maps, and peak
memory usage during the backward pass. “Data Mem” is the memory usage of input data (including
the input feature matrix X, adjacency matrices A, and labels).“Act Mem” is the memory usage of

activation maps. “Peak BWD Mem” is the peak memory usage during the backward pass. “Ratio
i Act Mem
(%) here equals Data Mem+-Act Mem-+Peak BWD Mem *

oghn- oghn-

Reddit Flickr Yelp -
arxiv products
Peal Peak Peak Peak Peak
Data = Act pwh Ratio(@%) DM A Bwh Rajo(@) DM A Bwh Rao) DM A Bwh Rao@) DM A pwh Ratio (%)
Mem Mem. Mem Mem Mem Mem Mem Mem Mem Mem
Mem. Mem. Mem. Mem. Mem.

Cluster-GCN 8.8 15 3 60.0 55 16.5 53 60.4 53 293 12 629 - - - - 49 352 115 68.2

GraphSAINT ~ 27.6 44 9.3 544 312 887 29 59.6 58 335 13 64.0 26.7 270 62.4 75.1 57 516 157 70.7
GCN 1168 1029 316 409 208 379 86 56.3 1544 6429 1195 70.1 175.7 7294 822 739 - - - -

GraphSAGE 1168 1527 696 45.0 208 547 184 583 1544 6976 2881 61.2 175.7 786.2 192 68.1 4811 16555 6176 60.1
GCNII 1168 5850 239 80.6 208 4067 88 93.2 1544 33540 1197 924 1757 14409 194 97.5 - - - -

H.2 OVERALL COMPRESSION RATIO

The overall memory compression ratio is shown in Table [I9] We observe that (1) for shallow GNN
models, the overall memory compression ratio ranges from 1.5x to 4x. (2) for GCNII, the overall
memory compression ratio ranges from 4x to 18x. We note that we store the graph structure data
(e.g., node ID and edge ID) in torch.Long data type, which can safely cast to torch.Int data type to
save the memory. Our implementation supports for using torch.Int as the data type for the graph
structure data. However, for a fair comparison, we do not utilize this feature.

25

Published as a conference paper at ICLR 2022

Table 19: The detailed analysis for the overall memory compression ratio. Below the equation
means “Data Mem” + “Act Mem” + “Peak BWD Mem” = “Overall Mem”. EXACT can only
compress the memory usage of activation maps.

Model Method

Reddit

Flickr

Yelp

ogbn-

ogbn-
products

Baseline

8.8+14.5+3=26.8

5.5+16.5+53=27.3

5.3+29.3+12=46.6

arxiv

4.9+352+11.5=51.6

C(';’(i‘ff' EXACT (INT2) 8.8+243=13.8 (1.94x) 5.541.5+5.3=12.3 (2.22x) 53444122213 (2.19%) 4.942.5+11.5=18.9 (2.73x)
™ EXACT (RP+INT2) 8.8+1.4+3=13.2 (2.03x) 5.5409+5.3=11.7 (2.33) 5.3+3+12=20.3 (230x) 4.942.2+11.5218.6 (2.77x)
Graph- Baseline 27.6+44 3+9.3=81.2 31.2+88.7+29=148.9 5.8+33.5+13=5 26.7+270+62.4=350.1 57+516+157=730
St EXACT (INT2) 27.6+6.6+9.3=43.5 (1.87) 31.2+7.8+29=68 (2.19) 5.8+4.3+13 26.7+20+62.4=109.1 (3.29) 57+40.5+157=254.5 (2.87x)
EXACT (RP+INT2) 27.643.6+9.3=40.5 (2.00x) 31.2+3.4+29=63.6 (2.34x) 5.8+3.3+13 26.7+10.8+62.4=99.9 (3.59) 57+29.5+157=243.5 (3.00x)
Baseline 1168+1029+316=2513 208+378.8+86=672.8 1544+6429+1195=9168 175.7+729.4+82.2=987.3 -
GCN EXACT (INT2) 1168+122.8+316=1607 (1.56x) 208+37+86=331 (2.03x) 1544+64041195=3379 (2.71x) 175.7+54.5+82.2=312.4 (3.16x)
EXACT (RP+INT2) 1168+67+316=1551 (1.62x) __ 208+17.8+86=311.8 (2.16x) 1544+427+1195=3166 (2.90x) __175.7+30.2+82.2=288.1 (3.43x) -
Graph- Baseline 1168+1527+696=3391 208+547+184=939 1544+6976+2881=11401 175.7+786.2+192=1153.9 4811+16555+6176=27542
SAGE EXACT(NT2) 1168+156+696=2020 (1.68x) 208+493+184=441.3 (.13x) 1544+680+2881=5105 (223x) 1757+60.8+192=428.5 (2.69x) 4811+114446176=12131 (2.27x)
* EXACT (RP+INT2) 1168+72+696=1936 (1.75x) 208+20.4+184=412.4 (2.28x) _ 1544+466.5+2881=4891.5 (4.33x) 175.7430.5+192=398.2 (2.90x) __ 4811+572+6176=11559 (2.38x)
Baseline 1168+5850+239=7257 208+4067+88=4363 1544+33540+1197=36281 175.7+14409+194=14778.7 -
GCNII EXACT(INT2) 1168+388+239=1795 (4.04x) 208+256.4+88=552.4 (7.89x) 1544+2236+1197=4977 (7.29x) 175.7+4899+194=1268.7 (11.65x)

EXACT (RP+INT2)

1168+198+239=1605 (4.52x)

208+127.6+88=423.6 (10.30x)

1544+1649+1197=4390 (8.26 x)

175.74451.2+194=820.9 (18.00x)

H.3 ANALYZING THE MEMORY COMPRESSION RATIO

Below we analyze the compress ratio in Table [3| We take a three-layer, 128-dimensional GCNs
trained on ogbn-arxiv for example. The computational graph of the baseline in Table [3]is:

Total bits =0(MM) + 32(SPMM) + 32(BN) 4 0(ReLU) + 8(Dropout) + (the first layer)
32(MM) + 32(SPMM) + 32(BN) + 0(ReLU) + 8(Dropout) + (the second layer)
32(MM) + 32(SPMM) (the third layer)

Hence the baseline costs totally 240 bit per element. The first MM in the first layer does not cost extra
bits because its activation map is exactly the input feature matrix X, which has been stored in GPU
memory (recall that we need to first move the input data to GPU memory before training). Pytorch
will save this part of memory via the “pass by reference” mechanism. The official ReLU operation
in Pytorch does not need the extra space for saving activation maps (they can reuse the activation
maps saved by the previous layer via passing by reference). Regarding Dropout operation, Pytorch
stores the mask matrix using UINTS data type, which costs 8 bit per element.

The computational graph of “EXACT (INT2)” in Table [3|is:

Total bits =2.25(MM) + 2.25(SPMM) + 2.25(BN) + 1(ReLU) + 1(Dropout) + (the first layer)
2.25(MM) + 2.25(SPMM) + 2.25(BN) + 1(ReLU) + 1(Dropout) + (the second layer)
2.25(MM) + 2.25(sPMM) (the third layer)

16 _(the bit-width of bfloat16 .
tensor) + 0.125 (the range tensor), where 0.125 = 128(‘ (elhe“ e is(’]“‘;g)) (See Appendix [F.2| for

details). Also for EXACT, we cannot leverage the “pass by reference” mechanism to save memory
for ReLU since the exact activation maps of previous operation is replaced by the compressed one.
Hence in EXACT, the 1-bit masks of ReLLU and Dropout is converted into bit-streams using CUDA
kernels, which cost 1 bit per element to store.

The 2.25 bit of MM , SPMM , and BN is from 2 (quantized activation maps) + 0.125 (the zeroint

Hence the “EXACT (INT2)” costs totally 22 bit per element. And the theoretical compression ratio

is % = 10.9. The empirical compression ratio in Table|3|may have a small gap with the theoretical
one. This is because the attributes of the sparse tensor (adjacency matrix) in pytorch_sparse is lazily
initialized, i.e., it may be generated during the forward pass and be account for the memory of

activation maps.
The computational graph of “EXACT (RP+INT2)” with % = 8 (see Table in Table |3|is:
Total bits =0.28(MM) + 0.28(SPMM) + 2.25(BN) + 1(ReLU) + 1(Dropout) + (the first layer)

0.28(MM) + 0.28(SPMM) + 2.25(BN) + 1(ReLU) + 1(Dropout) + (the second layer)
0.28(MM) + 0.28(SPMM) (the third layer)

: . 2 16 16 _
The 0.28 bit of MM and SPMM is from £+ 5198 + 52195 — 0.28125. We note that EXACT

does not apply random projection for BatchNorm layers (see Appendix [F2). Hence the “EXACT

26

Published as a conference paper at ICLR 2022

(RP+INT2)” costs totally 10.18 bit per element. And the theoretical compression ratio is 3 =
23.57. Again, there exists gap between the empirical compression ratio and the theoretical one
because the lazy initialization mechanism, the existence of temporary tensors, and the neglect of the

memory usage of these random projection matrices.

We emphasize that the compression ratio also depends on the number of input features of the
dataset. (because the mentioned “input feature matrix X is passed by reference” mechanism). For
the above example, the number of input features and the hidden dimension are both 128 and hence
it is easy to be analyzed. Hence, the theoretical compression ratio may vary for different datasets.

I ADDITIONAL EXPERIMENT RESULTS
I.1 MORE RESULTS ON ACCURACY AGAINST THE PRECISION AND %

To support the claim that “the performance of EXACT is mainly determined by the % ratio of
random projection”, we present more results on the test accuracy against the precision and % ratio
here. In Figure[5] we show the results of two models trained with EXACT using full-batch data on
the ogbn-arxiv dataset. In Figure[6] we show the results of two models trained with EXACT using
mini-batch data on Yelp dataset.

GCN (Full-Batch) 0 GraphSAGE (Full-Batch)

_ €7l.8* —+— DR=8

9 ~ 5

;720 \ . 71.6 —— DR=4
2 71.84 8 —— DR=2
E Véz>- £ 7144 o
g g —— bascline
% 714

K

%
& 71.0

INT2 INT4 INTS 32 INT2 INT4 INTS P32
Quantization Precision Quantization Precision

Figure 5: The performance of EXACT is mainly determined by the % ratio of random projection.
The dataset here is ogbn-arxiv. All reported results are averaged over ten random trials.

GraphSAINT (Yelp) ClusterGCN (Yelp)

—e— D/R=8
6387 ¢ 64.0 ¥ ———* | _+ pR-4
/ — '*—‘__________.‘ —— DR=2
63.69 —— DR=1
— 63.54 \ —— bascline

gl O ————————

63.01
63.24 T T T T T T
INT2 INT4 INTS INT2 INT4 INTS

Figure 6: The performance of EXACT is mainly determined by the % ratio of random projection.
The dataset here is Yelp. All reported results are averaged over ten random trials.

1.2 COMPARISON AGAINST SWAPPING AND GRADIENT CHECKPOINTING

We also compare EXACT against the naive swapping and the naive gradient checkpointing. Both
swapping and gradient checkpointing are lossless compression, so they do not have any accuracy
drop. Below we present and discuss about their trade-off among the space and speed.

For swapping, we simply offload all activation maps to CPU memory. Thus, it can achieve the
highest compression ratio for activation maps. However, its running time overhead is roughly 50%-
80%, which is often unacceptable.

For gradient checkpointing, we utilize torch.utils.checkpoint toinsert checkpoints at each
GNN layer. For the time overhead, as shown in Figure[3] it is comparable to EXACT. We present the
memory usage of activations in Table 20| In summary, its time overhead is comparable to EXACT,
however, the memory compression ratio of activations is 1.7 ~ 2.3x, which is not large enough.
Thus, we still cannot train the GCNII on Yelp dataset using a RTX 3090 (24GB) GPU.

27

Published as a conference paper at ICLR 2022

Table 20: The memory usage (MB) of activation maps with the gradient checkpointing. “OOM”
means out-of-memory. In general, the compression ratio of activation maps are 1.7 ~ 2.3 .

Model | %P™ | yeip | Reddit
arxiv
GCN 15 [4493 | 722
GraphSAGE | 424 | 3913 | 1030
GCNII | 6236 | OOM | 3366

GCN GraphSAGE GCNII

—— EXACT (RP+INT2) with DR =4
—— EXACT (RP4INT2) with DR =2
—— EXACT(INT2)

— Baseline

X
—— EXACT(NT2)

— Baselne m
95.0

0 100 200 300 400 : 0 100 200 300 400 0 100 200 300 400
Epochs Epochs Epochs

Figure 7: Validation Accuracy on Reddit dataset using EXACT with different configurations.

1.3 THE TRAINING CURVES OF EXACT

From the optimization theory, common convergence speed bounds (measured by the number of it-
erations) in stochastic optimization improve with smaller gradient variance (Bottou et al., [2018).
EXACT essentially trades the gradient variance in return for reduced memory. Here we experimen-
tally examine how EXACT affects the convergence speed. Figure [/| shows the training curves of
GNNs trained with EXACT using different configurations on Reddit dataset. We make two main
observations. First, EXACT with smaller % typically converges faster per iteration. This is consis-

tent with the mentioned optimization theory. Second, when increasing the % ratio, the difference in
the convergence speed is very small, where the convergence speed is measured by the gap in valida-
tion accuracy between consecutive epochs. In practical scenarios, EXACT hence only have limited
impact on the model performance.

1.4 HYPERPARAMETER SENSITIVITY EXPERIMENT

As we analyzed in the main body, INT2 is a suitable precision and we only vary the % ratio for

EXACT. In this section, we investigate the sensitivity of EXACT (RP+INT2) to the % ratio. Table
[12] shows the configuration of EXACT (RP+INT?2) in the experiment in the main body. Here we
present a comprehensive hyperparameter sensitivity study for EXACT. Specifically, the sensitivity
studies of EXACT with GraphSAINT, ClusterGCN, GCN, GraphSAGE, and GCNII are shown in
Figure[§] Figure[9] Figure[I0] Figure[T1] and Figure[I2] respectively. Here we summarize some key

observatlons First, the model performance drop generally increases with the £ F ratio. Second, when

E = 8, the loss in accuracy of EXACT (RP+INT2) is below 0.5% on two third of experiments.
To be concrete, in Table[3] we totally adopt 22 combinations of different datasets and models. As
shown in Table [3and Table [§] for 15 of the 22 experiments, the loss of accuracy is below or near
0.5% when 2 % = 8. Third, when 2 % = 8, the loss in accuracy is below 1% in almost all experiments,
excepting for two experiments. Namely, ClusterGCN with ogbn-products and GraphSAINT with

ogbn-products.

1.5 COMPARISON BETWEEN EXACT AND SAMPLING METHODS
1.5.1 COMPARE EXACT TO SAMPLING METHODS UNDER A FIXED MEMORY BUDGET

As examined in Table[3] EXACT and subgraph sampling methods are orthogonal and can be applied
over each others. Here we present an ablation study of comparing EXACT to subgraph sampling
methods in a standalone way. We note that EXACT only focus on saving the memory for activations.
In contrast, subgraph sampling methods can simultaneously reduce the memory of the input data,
activations, and activation gradients since they directly reduce the number of node embeddings

28

Published as a conference paper at ICLR 2022

GraphSAINT (Flickr) GraphSAINT (Reddit)
| 96.0

& 51.00 |
E P 95.9 4
é" 50.75 — ascline E 5.5 —— baseline
3 ° e ® DR=%8
7 50.50 4 L] 7 ® DR=4
& . & 957 e DR-=2

50.251 ® e pR7!

8 4 2 i 8 4 2 I
The D/R ratio The D/R ratio
GraphSAINT (Yelp) GraphSAINT (ogbn-products)
|

e ael _ 790
63.8
2 2 78.5 1
:_:’: 63.61 —— haseline :_:’i 78.0 1 baseline
8 ; g 78 ;
% e DR-s | £ ® DR=8
7 634+ ® DR=4 | % 475] e DR-4
= e DR=2| R e DR-2

Gl e DR-1I 710 e DR-1

8 4 2 1 8 4 2 1
The D/R ratio The D/R ratio

Figure 8: The sensitivity study of EXACT (RP+INT2) to the % ratio, where the model is Graph-
SAINT. All reported results are averaged over ten random trials.

ClusterGCN (Flickr) ClusterGCN (Reddit)
95.6
g 49.75 4 | g
& 49.50 | ?:3“95'5'
E —— hascline b5 baseline
< 49251 e DR-s | 2 9541 o DR-S
% e DR-4 b ® DR-4
= e DR=2 = 953 e DR=2
49.00 e DR-1 e DR-1
8 4 2 1 8 4 2 I
The D/R ratio The D/R ratio
ClusterGCN (Yelp) . ClusterGCN (ogbn-products) I
64.00 | _
- $
B <
& | 78
. 63.75 ?
£ 63.50] el z baseline
E . Ds'SRe :'3 é 771 e DR=3%
7 63.251 e DR-4 z e DR-4
& e DR-2 = e DR-2
63.00 A ® DR-1 76 e DR=1
8 4 2 1 8 4 2 1
The D/R ratio The D/R ratio

Figure 9: The sensitivity study of EXACT (RP+INT2) to the % ratio, where the model is Clus-
terGCN. All reported results are averaged over ten random trials.

retained in the memory. Hence compared to subgraph sampling methods, one limitation of EXACT
is that the overall memory saving ratio of EXACT often cannot surpass that of sampling methods.

Under the full-batch setting, one way to further improve the overall memory saving ratio is to in-
corporate the graph compression methods with EXACT, such as the graph sparsification (Spielman
& Srivastava, 2011)) and graph coarsening (Cai et al., [2021a). However, it is beyond the scope of
this paper. For a fair comparison, we control the batch size of subgraph subgraph sampling methods
such that their activation memory usage equals to that of EXACT (INT2). For both EXACT(INT2)
and EXACT(RP+INT2), we quote the “GraphSAGE” results from Table 3] For GraphSAINT and
Cluster-GCN, we tune their batch size such that they have the same activation memory usage as
EXACT (INT2). The results are shown in Table 21} We make two main observations. First, for
Reddit and Flickr, full batch training with EXACT outperforms the two sampling methods. For
Yelp, subgraph sampling methods are better than full batch training with EXACT. However, we note

29

Published as a conference paper at ICLR 2022

GCN (Flickr) GCN (Reddit)
1]]
33.0 S 95.375
g £ 95.350
§ 9287 — mscline z — bascline
< ® DR=8 4:0 95.3251 e DR=%§
o s e DR=4 = ® DR=4
& 5261 o pmr-2 & 95.3001 e DR-2
e DR-I e DR-I
T T T T 95.275 T T T T
8 4 2 1 8 4 2 1
The D/R ratio The D/R ratio
GCN (Yelp) GCN (ogbn-arxiv)
0.5 72.2
% P 72.0
g 40.0 —_ ba.sehm: g 71.8 baseline
2 ® DR=8 Z ® DR=%8
o e DR=4 7 i ® DR=4
395 e DR-2 | (2716 ® DR-2
e DR-1 e DR-1
! ' ! ' 141 ! ! !
8 4 2 1 8 4 2 1
The D/R ratio The D/R ratio

Figure 10: The sensitivity study of EXACT (RP+INT2) to the % ratio, where the model is GCN.
All reported results are averaged over ten random trials.

GraphSAGE (Flickr) GraphSAGE (Reddit)

—— haseline

. 96.45 1 |

96.40

® DR=8
52,04 e DR-4
e DR=2
® DR=I
5181
8 : 4 2 1

The D/R ratio The D/R ratio

Test Accuracy (%)
Test Accuracy (%

.
[Sp
=]

GraphSAGE (Yelp) GraphSAGE (ogbn-arxiv)

J. 72.00

7175 /+

71.50

62.25

62.00

S 61.754

61.50 4 ® DR=8

61.25 1

Test Accuracy (%)
=l=S-g-N-y
Test Accuracy (%)

L] L] 4
e DR=2 71.251 e DR=2
L] L]

oo

8 4 2 1 4 2 i
The D/R ratio The D/R ratio

Figure 11: The sensitivity study of EXACT (RP+INT?2) to the % ratio, where the model is Graph-
SAGE. All reported results are averaged over ten random trials.

that this gap is not from EXACT. As shown in Table [3] without EXACT, the F1-micro of full batch
GraphSAGE is 62.05%, which is much lower than that of subgraph sampling methods. Also, from
Table [6] one interesting observation is that for Yelp, a much smaller batch size (= 500) may even
further improve the F1-micro of GraphSAINT from 63.20% to 64.05%.

In summary, subgraph sampling methods may outperform the full batch training on some datasets
(e.g., Yelp). In this case, we think full batch training with EXACT cannot outperform subgraph
sampling methods. If this is not the case, as shown in Table@ full batch training with EXACT can
outperform subgraph sampling methods under a fixed activation memory usage.

30

Published as a conference paper at ICLR 2022

GCNII (Flickr) GCNII (Reddit)

/ | —— hbaseline

54.0 7 ® DR-8
e DR=%

535 e DR=2
e DR-1

8 4 2 i 8 4 2 I
The D/R ratio The D/R ratio

L
o
o

o

@

B

0
X
o

—— baseline
® DR=8

Test Accuracy (%)
Test Accuracy (%)
=l
(=]
h

3
o
IS

L]
e DR=2
L]

GCNII (Yelp)

64.5 4

64.0 4

Test Accuracy (%)

8 4 2 1
The D/R ratio

Figure 12: The sensitivity study of EXACT (RP+INT?2) to the % ratio, where the model is GCNII.
All reported results are averaged over ten random trials.

Table 21: The ablation study of comparing GraphSAINT and Cluster-GCN to EXACT under a fixed
memory budget for activations. For convenience, in this table, the activation memory usage of of
full batch w./ EXACT (INT2), GraphSAINT, and Cluster-GCN are the same. And the activation
memory usage of EXACT (RP+INT?2) is lower than EXACT (INT2).

Dataset Method Accuracy (%) / F1-micro
GraphSAINT 50.30+£0.16
. Cluster-GCN 49.98 +0.15
Flickr
Full Batch 5197 4020
w./ EXACT (INT2) 7= 0.
Full Batch
w./ EXACT (RP+INT2) 51.83+0.21
GraphSAINT 96.18 £0.03
Reddit Cluster-GCN 96.03 + 0.05
Full Batch 96.40 + 0.05
w./ EXACT (INT2) 40£0.
Full Batch
w./ EXACT (RP+INT2) 96.34+0.03
GraphSAINT 63.20 +0.19
Yelp Cluster-GCN 63.26 + 0.14
Full Batch
w./ EXACT (INT2) 61.95 £0.12
Full Batch
w./ EXACT (RP+INT2) 61.59 +0.12

1.5.2 ENLARGING THE BATCH SIZE OF SAMPLING METHODS WITH EXACT

Here we present a case study of scaling up the batch size of GraphSAINT with EXACT on the
ogbn-products dataset. As shown in Table the batch size of GraphSAINT (number of nodes in
the sampled subgraphs) is controlled by the “Walk length” and “Roots”, and roughly equals “Walk
length” x“Roots” (Zeng et all [2020). For ogbn-products, we tripled the batch size by changing
“Roots” from 20,000 to 30,000. All other hyperparameters are left unchanged. The results are
shown in Table [22] We observe that EXACT may improve the accuracy when using larger batch
size. We note that EXACT can scale up the batch size to more than 3x larger. However, we found
that if we further scale up the batch size to 4, there is an accuracy drop compared to the baseline

31

Published as a conference paper at ICLR 2022

Table 22: The test accuracy of GraphSAINT on the ogbn-products. All reported results are averaged
over ten random trials.

Method Test Accuracy (%)
GraphSAINT 79.03 £0.23
GraphSAINT + EXACT (INT2) w./ 3% batch size 79.16 £0.24
GraphSAINT + EXACT (RP+INT2) w./ 3x batch size 78.54 £0.41

with the original batch size, regardless applying EXACT or not. This is consistent with previous
finding that a larger batch size does not always lead to better performance for ogbn-products (Zeng
et al.||2020;Hu et al.,|2020). We quote the sentences from the OGB paper (Hu et al.,2020) to explain
this counter-intuitive observation. “The recent mini-batch-based GNNs give promising results, even
slightly outperforming the full-batch version of GraphSAGE that does not fit into ordinary GPU
memory. The improved performance can be attributed to the regularization effects of mini-batch
noise and edge dropout.” (Hu et al., [2020).

In summary, in the ogbn-products ablation study, we utilize EXACT to triple the batch size of
GraphSAINT, which may even improve the accuracy over the original one. Moreover, from our
experiments, the 3 x larger batch size performs the best on ogbn-products. Thus, for some datasets,
there exist an optimal batch size for subgraph sampling methods. Since this optimal batch size may
be beyond the capacity of the hardware, the meaning of EXACT is to enlarge the “search space” for
finding this optimal batch size.

32

	Introduction
	The memory consumption of GNNs
	Methodology
	Storing Quantized Activations
	Storing Randomly Projected Activations
	EXACT: Combining random projection and quantization

	Related Work and Discussion
	Experiments
	Trade-Off between Space and Model Performance
	Trade-Offs between Space and Speed
	Ablation Studies

	Conclusion and Future Work
	Acknowledgement
	Notations
	Related Work and Discussion
	Scalable/Efficient GNN Inference
	Scalable GNN Training

	Analyzing the memory consumption of GCNs
	Random Projection
	Theory
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	The Compound Effect of Approximation Errors

	System Implementation of EXACT
	Individual Layers Configurations of EXACT
	Implementation Details

	Experiment Settings
	Datasets, Frameworks, and Hardwares
	Model Hyperparameter Configurations of Table 1 and Table 2
	Hyperparameter Configurations of EXACT (RP+INT2)
	Model Hyperparameter Configurations in Section 5

	Analyzing the Memory Usage
	Analyzing the Memory Usage
	Overall Compression Ratio
	Analyzing the Memory Compression Ratio

	Additional Experiment Results
	More results on Accuracy against the Precision and DR
	Comparison against swapping and gradient checkpointing
	The Training Curves of EXACT
	Hyperparameter Sensitivity Experiment
	Comparison between EXACT and Sampling Methods
	Compare EXACT to Sampling Methods under a Fixed Memory Budget
	Enlarging The Batch Size of Sampling Methods with EXACT

