
Under review as submission to TMLR

EdgeMask-DG*: Learning Domain-Invariant Graph Struc-
tures via Adversarial Edge Masking

Anonymous authors
Paper under double-blind review

Abstract

Structural shifts pose a significant challenge for graph neural networks, as graph topology acts
as a covariate that can vary across domains. Existing domain generalization methods rely on
fixed structural augmentations or training on globally perturbed graphs, mechanisms that do
not pinpoint which specific edges encode domain-invariant information. We argue that domain-
invariant structural information is not rigidly tied to a single topology but resides in the
consensus across multiple graph structures derived from topology and feature similarity. To
capture this, we first propose EdgeMask-DG, a novel min-max algorithm where an edge masker
learns to find worst-case continuous masks subject to a sparsity constraint, compelling a task
GNN to perform effectively under these adversarial structural perturbations. Building upon
this, we introduce EdgeMask-DG*, an extension that applies this adversarial masking principle
to an enriched graph. This enriched graph combines the original topology with feature-
derived edges, allowing the model to discover invariances even when the original topology is
noisy or domain-specific. At equilibrium, the structural patterns that the task GNN relies
upon are, by design, robust and generalizable. EdgeMask-DG* is the first to systematically
combine adaptive adversarial topology search with feature-enriched graphs. We provide a
formal justification for our approach from a robust optimization perspective. We demonstrate
that EdgeMask-DG* achieves new state-of-the-art performance on diverse graph domain
generalization benchmarks, including citation networks, social networks, and temporal graphs.
Notably, on the Cora OOD benchmark, EdgeMask-DG lifts the worst-case domain accuracy
to 78.0%, a +3.8 pp improvement over the prior state of the art (74.2%). The source code for
our experiments can be found here: https://anonymous.4open.science/r/TMLR-EAEF/

1 Introduction

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017; Xu et al.,
2019) have revolutionized learning on graph data, driving progress in fields ranging from social network analysis
and bioinformatics to recommendation systems (Wu et al., 2021). However, their remarkable performance
often relies on the stringent assumption that training and testing data are drawn from the same distribution
(I.I.D.). In many real-world applications, this assumption is violated; data often originates from heterogeneous
sources or evolves, leading to distribution shifts that can severely degrade GNN performance (Shi et al., 2024;
Zhu et al., 2021a). Graph Domain Generalization (Graph-DG) aims to tackle this fundamental problem by
developing models capable of generalizing from one or more source graph domains to unseen target domains
with different underlying distributions.

A particularly challenging yet common scenario in Graph-DG involves structural distribution shifts (Chen
et al., 2025; Wu et al., 2022). In tasks like cross-graph node classification (e.g., predicting research areas
of papers across different citation networks), the node features and label semantics often remain consistent,
while the graph topology can vary drastically. GNNs trained naively via Empirical Risk Minimization (ERM)
on source graphs overfit to these domain-specific topological patterns, failing to generalize to target graphs
with different structures.

1

https://anonymous.4open.science/r/TMLR-EAEF/

Under review as submission to TMLR

Existing approaches for Graph-DG include designing invariant architectures (Li et al., 2022), employing robust
training objectives (Wu et al., 2022), or utilizing data augmentation (Chen et al., 2025). Data augmentation
methods targeting structural shifts, such as GraphAug (Chen et al., 2025), often apply fixed heuristic rules
(e.g., edge dropping based on node degrees, edge addition based on feature similarity). These static strategies
may not optimally identify the domain-invariant structural factors, which can be complex and data-dependent.

To address these limitations, we first introduce the core algorithmic concept of EdgeMask-DG, a novel
min-max adversarial framework. In EdgeMask-DG, an “edge masker” network learns to generate sparse binary
or continuous masks over the edges of a given graph. This masker is trained adversarially against a “task
GNN” to find masks that maximally disrupt the task GNN’s performance, subject to a sparsity constraint on
the mask. The task GNN, in turn, must learn to perform its task robustly under these worst-case structural
perturbations. This process encourages the task GNN to rely on structural patterns that are inherently
resilient to such adversarial masking.

However, relying solely on the original graph topology, even with adaptive masking, can be problematic if
the source topology is sparse, noisy, or highly domain-specific. To overcome this, we propose an extension,
EdgeMask-DG*, which applies the EdgeMask-DG adversarial masking principle to an enriched graph
representation. This enriched graph is constructed by augmenting the original edges with new edges derived
from node feature similarity, specifically using k-Nearest Neighbours (kNN) and spectral clustering. This
allows EdgeMask-DG* to leverage the (often assumed) invariance of the feature distribution (P (X)) to
discover robust structures that might not be apparent in the original topology alone. The adversarial game
then proceeds on this enriched graph: the MaskNet identifies challenging sparse masks over both original and
feature-derived edges, and the TaskNet (implemented using a Graph Attention Network, GAT (Veličković
et al., 2018)) learns to perform under these conditions.

A GAT backbone is well-suited for this task, as its layers can directly incorporate the learned edge masks
as edge attributes, directly influencing message passing and attention. This dynamic, learned masking on
an enriched graph allows EdgeMask-DG* to adaptively identify and exploit the most reliable structural
information for generalization.

Our contributions are:

• We propose EdgeMask-DG, a novel min-max adversarial learning framework for Graph-DG that
learns domain-invariant edge masks adaptively on a given graph structure.

• We introduce EdgeMask-DG*, an extension that applies this adversarial masking principle to an
enriched graph structure, integrating original topology with feature-derived edges (kNN and spectral
clustering) to leverage feature invariance and overcome limitations of the original topology.

• We employ a GAT backbone that naturally incorporates the learned continuous edge masks as
attributes, enhancing the model’s ability to focus on relevant substructures.

• We demonstrate through extensive experiments that EdgeMask-DG* achieves new state-of-the-art
results on diverse Graph-DG benchmarks, including citation networks (ACM, DBLP, Citation,
ArXiv), social networks (Facebook-100, Twitch), and e-commerce graphs (Amazon-Photo, Elliptic),
significantly outperforming recent methods.

2 Related Work

Graph Domain Generalization (Graph-DG). Generalizing GNNs to out-of-distribution data is a
critical challenge (Shi et al., 2024; Zhu et al., 2021a). Early work adapted principles like invariant risk
minimization (Arjovsky et al., 2019) and distributionally robust optimization (e.g., EERM (Wu et al., 2022)).
Other strategies include disentangling representations (Zhu et al., 2021b; Yu et al., 2023), filtering spurious
correlations via information-theoretic objectives (Yang et al., 2023), and unsupervised contrastive learning
(Zhu et al., 2024). On the data augmentation front, methods range from static perturbations like GraphAug
(Chen et al., 2025) to more advanced techniques like generating continuous invariant subgraphs (GRM (Wang
et al., 2025)) or combining adversarial learning with mixup (TRACI (Zhao et al., 2025)). Our method differs

2

Under review as submission to TMLR

by using adversarial edge masking to adaptively learn domain-invariant substructures rather than relying on
predefined heuristics or variational objectives.

Graph Data Augmentation (GDA). GDA techniques aim to improve GNN robustness and generalization,
often in standard graph learning settings (You et al., 2020; Zhu et al., 2021b). Common strategies involve
node dropping, edge perturbation (random or heuristic addition/deletion), feature masking, and subgraph
sampling (Feng et al., 2020). GraphAug (Chen et al., 2025) specifically targets Graph-DG structural shifts
with predefined rules for edge dropping (low-weight) and edge adding (spectral clustering); however, its
heuristics are static. Other works explore learnable GDA (Zhao et al., 2021), but typically optimize for source
domain performance, which may not guarantee OOD generalization. EdgeMask-DG* uses an adversarial
objective to learn domain-invariant structural masks over an enriched graph space.

Adversarial Learning on Graphs. Adversarial techniques are prevalent in graph learning, primarily for
enhancing robustness against adversarial attacks designed to fool GNNs (Zügner et al., 2018; Dai et al., 2018).
Adversarial domain adaptation (ADA) methods (Wu et al., 2020; Ma et al., 2019) use domain discriminators to
align representations across domains, but typically require access to target domain data (labeled or unlabeled)
during training, violating the DG setup. EdgeMask-DG* employs a distinct adversarial mechanism: the
adversary (MaskNet) operates solely on source domains, perturbing the structure via learned masks to enforce
generalizable robustness in the primary model (TaskNet), rather than defending against attacks or adapting
to a specific target.

Graph Attention Networks (GAT). GAT (Veličković et al., 2018) introduced an attention mechanism
allowing nodes to weigh the importance of their neighbours during message passing. Its ability to handle
weighted graphs or incorporate edge features makes it well-suited for EdgeMask-DG*, where the learned mask
values s act as dynamic edge attributes guiding the aggregation process. This contrasts with GCN (Kipf &
Welling, 2017) or GIN (Xu et al., 2019), which typically treat edges uniformly or require modifications to
handle edge weights effectively.

3 Preliminaries

Notation. We represent a graph as G = (V, E ,X), where V is the set of N = |V| nodes, E is the set of
edges, and X ∈ RN×d is the node feature matrix with dimension d. The graph topology can be represented
by an adjacency matrix A ∈ {0, 1}N×N . Node labels are denoted by Y. A GNN model is denoted by f(·),
parameterized by θ. The classification loss (e.g., cross-entropy) is Lcls.

Graph Domain Generalization (Graph-DG). We are given M source domains {GiS}Mi=1, each associated
with a distribution P iS(X,Y,A). The goal is to learn a model f using data from these source domains,
{GiS ,Yi

S}Mi=1, that generalizes well to an unseen target domain GT drawn from PT (X,Y,A), where PT ̸=
P iS , ∀i ∈ {1, . . . ,M}. Specifically, for cross-graph node classification with structural shifts (Chen et al., 2025;
Wu et al., 2022), we make the following assumptions: the marginal distribution of node features is invariant
across domains, i.e., PSi(X) = PSj (X) = P (X) for any source domains Si, Sj ; the conditional distribution of
labels given features is invariant, i.e., PSi(Y | X) = PSj (Y | X) = P (Y | X) for any source domains Si, Sj ;
and the distribution of the graph structure (adjacency A) depends on the source domain, i.e., P (A | Si) can
change depending on the source domain Si. The objective in cross-domain generalization is to minimize the
target risk: minf E(XT ,YT ,AT)∼PT

[Lcls(f(XT ,AT),YT)].

Graph Attention Networks (GAT). GAT (Veličković et al., 2018) learns node embeddings by attending
over neighbours. For head k at layer l,

h(l+1,k)
i = σ

(∑
j∈N (i)∪{i}

α
(l,k)
ij W(l,k)h(l)

j

)
,

where αij are softmax-normalized attention scores. Outputs from K heads are concatenated. Our model
extends GAT by concatenating the learned mask value sij to the key–query pair, letting low-scoring edges be
down-weighted automatically.

Spectral Clustering. Spectral clustering (Von Luxburg, 2007) groups data points using the eigenvectors
(spectrum) of a Laplacian matrix derived from a similarity graph. For nodes with features X, an affinity

3

Under review as submission to TMLR

Figure 1: EdgeMask-DG*: (1) enrich the graph with kNN & spectral edges; (2) play a min–max game where
MaskNet sparsifies edges and TaskNet (GAT) learns to stay accurate.

matrix S is built (e.g., using an RBF kernel Sij = exp(−∥xi − xj∥2/2ζ2) or cosine similarity). The graph
Laplacian (e.g., Lsym = I−D−1/2

S SD−1/2
S) is computed. The eigenvectors corresponding to the K smallest

eigenvalues are used to form a K-dimensional embedding, which is then clustered. This effectively identifies
clusters of nodes that are close in the feature space, providing a basis for feature-derived edges.

k-Nearest Neighbour (kNN) Graph Construction. Given a set of node features X, a kNN graph is
constructed by creating an edge between a node and its most similar peers. For each node i, we identify the
set of its k nearest neighbors, Nk(i), based on a distance metric (e.g., Euclidean distance) or a similarity
metric (e.g., cosine similarity) in the feature space Rd. An edge (i, j) is added to the graph if j ∈ Nk(i). This
method generates a sparse graph structure capturing the most salient local similarities.

4 Proposed Approach for Cross-Domain Generalization: EdgeMask-DG*

EdgeMask-DG* aims to learn a GNN f that generalizes across domains with structural shifts by identifying
and utilizing domain-invariant substructures. It achieves this through an adversarial learning process operating
on an enriched graph structure, using GAT as the backbone. Figure 1 illustrates the two main stages of the
EdgeMask-DG* framework: (1) Graph Enrichment augments the source graph topology with feature-derived
edges from k-Nearest Neighbors and spectral clustering to form an enriched graph; (2) Adversarial Masking
uses a min-max game where MaskNet generates a sparse continuous edge mask to identify challenging
perturbations while TaskNet (a GAT) learns to minimize classification loss on the masked graph.

4.1 Enriched Graph Representation

Traditional GNNs rely solely on the provided graph structure ES . However, in Graph-DG with structural
shifts, ES can contain domain-specific spurious correlations or be insufficient to capture invariant relationships,
especially if the source topology is sparse or noisy. Conversely, node features XS are assumed to be more
stable across domains (Wu et al., 2022). Motivated by this and by prior work such as GraphAug (Chen et al.,
2025), EdgeMask-DG* enriches the graph representation by incorporating edges derived from node feature
similarity alongside the original topological edges. For each source graph GS = (VS , ES ,XS), we construct a
set of feature-based edges using two complementary strategies. Both the spectral edge set ESpec and the kNN
edge set EkNN are generated independently, with each process using the original node features XS as input.
The strategies are:

To overcome the limitations of domain-specific topology, EdgeMask-DG* constructs an enriched graph
by augmenting the original edges ES with new edges derived from node feature similarity. We use two
complementary strategies. First, we capture global similarity by applying spectral clustering to node features

4

Under review as submission to TMLR

XS to identify K communities; edges ESpec are added between all nodes within the same community. Second,
we capture local similarity by building a k-Nearest Neighbors graph based on cosine similarity, creating
edges EkNN . To manage complexity, we precompute these full edge sets and, during training, sample subsets
EsampledSpec and EsampledkNN . The final enriched edge set is the union E ′

S = ES ∪ EsampledSpec ∪ EsampledkNN , which is then
used in the adversarial masking process.

The motivation for combining these two distinct feature-based edge generation strategies is to capture
complementary aspects of node similarity. Spectral clustering provides a global perspective, ensuring that
all nodes within a broad semantic community are connected, which facilitates robust intra-cluster message
passing. In contrast, kNN offers a local perspective, creating high-precision connections to a node’s most
immediate peers. This dual approach creates a more comprehensive and multi-scale structural foundation.
The enriched structure G′

S = (VS , E ′
S ,XS) then serves as the input for our adversarial masking process.

4.2 Adversarial Edge Masking

The core of EdgeMask-DG* is a min-max adversarial framework comprising two jointly optimized networks: a
TaskNet (fθ) and a MaskNet (mϕ,ψ). The TaskNet is a GAT model, parameterized by θ, that performs node
classification. It operates on the node features XS and the enriched graph structure G′

S , with its message
passing modulated by a continuous edge mask s. The MaskNet is a lightweight network that generates this
edge mask. It consists of a feature projection layer pψ : Rd → Rd′ and a mask prediction MLP gϕ. For each
edge (u, v) ∈ E ′

S , it computes a score suv ∈ [0, 1] based on the projected features of the incident nodes:

zu = ReLU(pψ(xu)), zv = ReLU(pψ(xv)) suv = σsigmoid(gϕ([zu, zv])) (1)

where [·, ·] denotes concatenation, gϕ is a two-layer MLP, and σsigmoid ensures the output lies in [0, 1]. The
two networks are trained via an alternating optimization procedure to solve a min-max objective over the
source domains DS . In the first step, the TaskNet’s parameters θ are updated to minimize the classification
loss, conditioned on the adversarial mask s generated by a fixed MaskNet. This corresponds to the descent
step of the game:

min
θ

E(GS ,YS)∼DS
[Lcls(fθ(XS ,G′

S , s),YS)] (2)

During this step, the mask s = mϕ,ψ(XS , E ′
S) is detached from its generator and treated as a fixed edge

attribute. Conversely, the MaskNet’s parameters (ϕ, ψ) are updated to find a mask that maximizes the
TaskNet’s loss (with fixed θ), while being regularized to enforce sparsity. This ascent step is formulated as an
equivalent minimization problem:

min
ϕ,ψ

E(GS ,YS)∼DS
[−Lcls(fθ(·),YS) + λ ·mean(mϕ,ψ(·))] (3)

where the arguments to the loss and mask functions are as in Eq. 2, mean(mϕ,ψ(. . .)) = 1
|E′

S
|
∑

(u,v)∈E′
S
suv,

and λ is a hyperparameter controlling the sparsity strength. The TaskNet parameters θ are frozen during
this update. This objective encourages the MaskNet to identify edges whose removal or down-weighting
most significantly degrades the TaskNet’s performance, while the λ term prevents it from applying a dense,
uninformative mask.

4.3 GAT Backbone with Edge Attributes

We assume the enriched graph G′ = (V, E ′,X, s), where s = { suv ∈ [0, 1] | (u, v) ∈ E ′} is the continuous mask
produced by the MaskNet. At layer l, each node u ∈ V has a feature vector h(l)

u ∈ Rdin . We employ an
H-head Graph Attention Network (GAT) in which, for head k ∈ {1, . . . ,H}, one first computes the linearly
transformed features z(k)

u = W(k)h(l)
u ∈ Rdh . For each neighbor v ∈ N (u), the unnormalized attention logit is

then given by
e(k)
uv = LeakyReLU

(
a(k) T[z(k)

u ∥ z(k)
v ∥w(k) suv

])
,

where W(k) ∈ Rdh×din is a learnable weight matrix for feature transformation, distinct from the learnable
scalar weight w(k) ∈ R which scales the mask value. The parameters also include the attention vector

5

Under review as submission to TMLR

a(k) ∈ R2dh+1, and ∥ denotes vector concatenation. The scalar term w(k) suv injects the learned mask into
the attention computation, so that edges with low suv are less likely to receive high attention weights. We

normalize these logits via softmax over v ∈ N (u) to obtain α
(k)
uv = exp

(
e(k)

uv

)∑
w∈N (u)

exp
(
e

(k)
uw

) .

Next, the message passed from v to u under head k is multiplied by suv, yielding m(k)
uv = suv α

(k)
uv z(k)

v . In
this way, even if α(k)

uv is large, a near-zero suv will completely nullify the contribution of node v. Node u’s
aggregated pre-activation representation for head k is then h̃(k)

u =
∑
v∈N (u) m

(k)
uv . At intermediate layers,

we apply a nonlinearity σ(·) (RELU) and concatenate across heads: h(l+1)
u =

∥∥H
k=1σ(h̃(k)

u) ∈ RH dh . In the
final layer, we instead average across heads before classification: h(L)

u = 1
H

∑H
k=1 σ(h̃(k)

u) ∈ Rdh , and the
logits are ou = Wout h(L)

u with Wout ∈ RC×dh . When suv = 1 for every edge, this reduces exactly to the
standard GAT formulation. When suv = 0, edge (u, v) is entirely suppressed, both in the attention score
(since w(k) suv = 0) and in the message itself. As a result, the adversarially learned mask s influences the flow
of information during message passing: edges that the MaskNet deems uninformative (low suv) contribute
almost nothing to the final node embeddings. This enables the TaskNet to focus on substructures that are
robust across domains.

4.4 Training Procedure

The overall training process is summarized in Algorithm 1. It is crucial to note that the expectations in the
objective functions (Eq. 2 and 3) are taken over the source domain distribution DS . This is a fundamental
constraint of the domain generalization setting, where the target domain is entirely unseen during training.
The algorithm, therefore, optimizes the model exclusively on the source graphs. The core hypothesis is that
by learning to be robust against adversarial structural perturbations on the source domains, the model will
implicitly discover domain-invariant patterns that generalize to the target domain.

The procedure involves iterating through epochs, and within each epoch, processing each source domain. For
each source graph, we first construct the enriched edge set E ′

S . Then, we perform alternating optimization:
Ndescent gradient descent steps are taken on the TaskNet parameters θ (minimizing Eq. 2), followed by
Nascent gradient steps on the MaskNet parameters ϕ, ψ (minimizing Eq. 3). This adversarial interplay drives
the TaskNet to learn representations that are invariant to the structural perturbations found by the MaskNet,
thereby promoting domain generalization.

4.5 Theoretical Grounding: Robust Optimization Perspective

The adversarial training procedure of EdgeMask-DG* can be understood through the lens of robust optimiza-
tion (Ben-Tal et al., 2009; Bertsimas et al., 2011). The MaskNet aims to find a “worst-case” sparse mask s
within a budget ρ (defined by 1

m∥s∥1 ≤ ρ) that maximizes the TaskNet’s loss ℓ(fθ, s) = Lcls(fθ(X,A(s)),Y).
We define this worst-case sparse-mask loss for a fixed θ as:

P (θ) = max
s∈Sρ

ℓ(fθ, s), where Sρ = {s ∈ [0, 1]m : 1
m
∥s∥1 ≤ ρ}. (4)

Robust-optimization view. The problem P (θ) in equation 4 is upper-bounded by the Lagrangian-penalized
objective Dλ(θ) = maxs∈[0,1]m

[
ℓ(fθ, s) + λ(1

m∥s∥1 − ρ)
]

for every λ ≥ 0 (weak duality). We therefore train
(θ, ϕ, ψ) to find a saddle point for Dλalg(θ) with a penalty weight λalg. The MaskNet’s objective in Algorithm 1
(maximizing ℓ(fθ, s)− λalg ·mean(s)) targets the inner maximization maxs[ℓ(fθ, s)− λalg

1
m∥s∥1] (ignoring

the −λalgρ term which is constant w.r.t s for a fixed λalg). We show in Appendix D that, when the
inner maximisation has converged, the resulting masks satisfy the KKT conditions of the constrained
problem. In practice, rather than keeping λalg fixed, one could also update it using a dual ascent step like
λalg ← [λalg + α(1

m∥s∥1 − ρ)]+, yielding a primal-dual algorithm that can help drive the mean mask value
toward ρ. For simplicity in this work, we keep λalg as a fixed hyperparameter.

Furthermore, we can characterize the properties of the optimal adversarial mask s∗ sought by the MaskNet
using the Karush-Kuhn-Tucker (KKT) conditions associated with equation 4. The continuous mask values

6

Under review as submission to TMLR

Algorithm 1 EdgeMask-DG* training procedure
1: Input: Source graphs {(GiS ,Yi

S)}Mi=1, TaskNet fθ (GAT), MaskNet mϕ,ψ (Projection pψ, MLP gϕ),
epochs E, learning rates ηθ, ηϕψ, steps Ndescent, Nascent, sparsity λ, spectral sample ratio γspec.

2: Initialize parameters θ, ϕ, ψ.
3: Precompute spectral edges {E iSpectral}Mi=1 for all source graphs.
4: Initialize optimizers Optθ, Optϕψ.
5: for epoch = 1 to E do
6: for each source graph i ∈ {1, . . . ,M} do
7: Let GS = GiS = (VS , ES ,XS), YS = Yi

S .
8: Sample EsampledSpectral ⊆ E iSpectral with ratio γspec.
9: Combine edges E ′

S = coalesce(ES ∪ EsampledSpectral).
10: // — TaskNet Descent —
11: for k = 1 to Ndescent do
12: Compute mask s = mϕ,ψ(XS , E ′

S) // Detach s from ϕ, ψ
13: Compute logits O = fθ(XS , E ′

S , s) // Pass s as edge_attr
14: Compute loss Ltask = Lcls(O,YS)
15: Update θ using ∇θLtask via Optθ.
16: end for
17: // — MaskNet Ascent —
18: for k = 1 to Nascent do
19: Compute mask s = mϕ,ψ(XS , E ′

S)
20: Compute logits O = fθ(XS , E ′

S , s) // Detach O from θ
21: Compute loss Ltask = Lcls(O,YS)
22: Compute regularizer R(s) = mean(s)
23: Compute objective Lmask = −Ltask + λR(s)
24: Update ϕ, ψ using ∇ϕ,ψLmask via Optϕψ.
25: end for
26: end for
27: end for
28: Output: Trained TaskNet fθ.

suv ∈ [0, 1] generated by our MaskNet (Eq. 1) are differentiable. If employing discrete masks, techniques
like Gumbel-softmax (Jang et al., 2016; Maddison et al., 2016) or hard-concrete distributions can provide
differentiable relaxations, making the following analysis applicable to such cases.

Lemma 4.1 (Optimality Conditions for Adversarial Mask). Let s∗ be an optimal solution to the mask
optimization problem equation 4 for a fixed θ. Assuming continuous differentiability of ℓ(fθ, s) w.r.t. s and
constraint qualifications (Slater’s condition holds), there exists an optimal dual variable λ∗

L ≥ 0 (corresponding
to the sparsity constraint) such that the optimal mask values s∗

e satisfy the following conditions for all

edges e. (a) If 0 < s∗
e < 1 (edge partially masked): ∂ℓ(fθ, s∗)

∂se
= λ∗

L

m
. (b) If s∗

e = 0 (edge fully masked):
∂ℓ(fθ, s∗)
∂se

≤ λ∗
L

m
. (c) If s∗

e = 1 (edge fully included): ∂ℓ(fθ, s∗)
∂se

≥ λ∗
L

m
.

Interpretation: Lemma 4.1 reveals that the optimal adversarial mask operates based on a threshold
mechanism determined by the optimal sparsity cost τ∗ = λ∗/m. Edges whose marginal contribution to
increasing the loss (∂ℓ/∂se) exceeds this threshold are fully included (s∗

e = 1), edges whose contribution is
below the threshold are fully masked (s∗

e = 0), and edges whose contribution exactly matches the threshold can
be partially masked (0 < s∗

e < 1). This provides insight into how the MaskNet prioritizes edges based on their
impact on the TaskNet’s loss versus the sparsity budget. The alternating training procedure (Algorithm 1)
drives the TaskNet to become robust against masks with these properties, encouraging reliance on structures
whose removal does not drastically increase the loss.

7

Under review as submission to TMLR

4.6 Computational Complexity

A thorough analysis of the computational complexity for our EdgeMask-DG variants, considering both
precomputation and per-epoch training costs, is provided in Appendix B.2. The detailed breakdown
incorporates parameters such as the number of nodes (N), edges (M,M̃), feature dimensions (F, P), GAT
architecture (L,H, h), and training schedule (T,D,U,K). After substituting typical hyperparameter values
and focusing on dominant terms, the key findings are as follows: The base EdgeMask-DG model (without
additional edges) exhibits an overall complexity of O(KTN), primarily driven by the epoch-wise training
on sparse graphs. Introducing kNN augmentation in EdgeMask-DG* (kNN only) shifts the bottleneck to
the precomputation phase, resulting in an overall complexity of O(KN2). The most comprehensive variant,
EdgeMask-DG* (kNN + spectral), which also incorporates spectral clustering edges, sees its complexity
further increase to O(KN3), dominated by the spectral precomputation. This progression underscores the
trade-off between richer graph representations and computational cost, with the choice of variant depending
on the available resources and the scale of the graphs (N,K). The number of training epochs (T) remains a
significant factor, primarily for the base model operating on inherently sparse structures.

5 Experiments

We evaluate EdgeMask-DG* on a diverse set of benchmarks for node classification under domain shifts,
comparing it against various baselines and recent state-of-the-art methods.

5.1 Experimental Setup

Our evaluation spans several benchmark datasets prevalent in Graph-DG research, selected to cover diverse
distribution shifts, graph properties, and evaluation schemes. A primary set of experiments focuses on the
widely used citation networks ACMv9 (A), DBLPv7 (D), and Citationv1 (C).In these datasets, nodes represent
academic papers with bag-of-words abstract features (6,775 dimensions) and are classified into 5 research areas.
The core challenge arises from significant structural differences across these graphs despite consistent feature
and label semantics. To assess broader applicability, we extend our evaluation to additional benchmarks
detailed in Table 1. This set includes Cora and Amazon-Photo (featuring artificial transformations), Twitch-
explicit, Elliptic, and OGB-Arxiv (characterized by temporal evolution), and Facebook-100 (involving
cross-domain transfers). These datasets also vary in their train/validation/test splitting strategies, utilizing
either domain-level or time-aware splits. For the citation networks (ACM, DBLP, Citation), we employ the

Table 1: Summary of datasets. “Artificial Transformation” uses synthetic spurious features to create domain
shifts; “Cross-Domain Transfers” uses graphs from distinct domains; “Temporal Evolution” uses dynamic
graphs. Splits are “Domain-Level” (by graph) or “Time-Aware” (by time). See Appendix E for details.

Dataset #Nodes #Edges #Classes Split Metric

Artificial Transformation
Cora 2,703 5,278 10 Domain-Level Accuracy
Amazon-Photo 7,650 119,081 10 Domain-Level Accuracy

Cross-Domain Transfers
Twitch-explicit 1,912–9,498 31,299–153,138 2 Domain-Level ROC-AUC
Facebook-100 769–41,536 16,656–1,590,655 2 Domain-Level Accuracy

Temporal Evolution
Elliptic 203,769 234,355 2 Time-Aware F1 Score
OGB-Arxiv 169,343 1,166,243 40 Time-Aware Accuracy

Adapted from: Yang et al. (2016); Shchur et al. (2018); Rozemberczki & Sarkar (2021); Traud
et al. (2011); Pareja et al. (2020); Hu et al. (2020).

8

Under review as submission to TMLR

standard leave-one-domain-out protocol. This involves training a model on two domains (e.g., A and C) and
evaluating its performance on the unseen third domain (e.g., D), leading to three distinct scenarios: AC→D,
AD→C, and CD→A. Performance is quantified using Micro-F1 and Macro-F1 scores (Sechidis et al., 2011).
For the additional datasets (Cora, Photo, FB-100, Twitch, Elliptic, ArXiv), we adhere to their established
train/validation/test splits and evaluation metrics—such as Accuracy, ROC-AUC, or F1 score—as specified
in Table 1 and common in existing literature.

We benchmark EdgeMask-DG* against a comprehensive set of methods. This includes standard GNNs trained
with Empirical Risk Minimization (ERM), such as GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), GAT
(Veličković et al., 2018), and SGC (Wu et al., 2019). We also compare against general domain-generalization
and robustness techniques, including ERM, DRNN (Sagawa et al., 2020), MMD (Li et al., 2018), ARM
(Zhang et al., 2021), and EERM (Wu et al., 2022). Furthermore, our comparison encompasses specialized
Graph-DG methods: EGC (Tailor et al., 2022), ADA (Volpi et al., 2018), MAT (Wang et al., 2022), FLOOD
(Liu et al., 2023), MARIO (Zhu et al., 2024), LiSA (Yu et al., 2023), IS-GIB (Yang et al., 2023), and GRM
(Wang et al., 2025). Finally, we include recent state-of-the-art approaches like TRACI (Zhao et al., 2025) and
GraphAug (Chen et al., 2025), which utilize both GCN and GIN backbones.

EdgeMask-DG* is implemented using PyTorch Geometric (Fey & Lenssen, 2019). The TaskNet (fθ) is a
2-layer Graph Attention Network (GAT) with 8 attention heads, a hidden dimension of 64 per head, ELU
activation, and dropout rates of 0.6 for attention coefficients and 0.5 between layers. The MaskNet (mϕ,ψ)
comprises a projection layer pψ that maps the input node feature dimension d to d′ = 128, followed by an
MLP gϕ with one hidden layer of size 64. Training employs the Adam optimizer (Kingma & Ba, 2014). For
the citation benchmarks (ACM, DBLP, Citation), we use a learning rate of 10−3, TaskNet weight decay of
5× 10−4, and train for 200 epochs. Key hyperparameters include a sparsity coefficient λ = 10−3 (for citation
benchmarks, potentially varied for others), Ndescent = 5 TaskNet steps, and Nascent = 1 MaskNet step per
iteration. The enriched graph structure incorporates kNN edges (with k = 10 using cosine similarity) and
spectral clustering edges (with Kc = 100 clusters for citation benchmarks). We sample these feature-derived
edges with ratios γknn = 0.1 and γspec = 0.1, though these parameters are adjusted for different datasets.

5.2 Main Results

We present the empirical evaluation of EdgeMask-DG*, comparing its performance against a comprehensive
suite of baselines and state-of-the-art methods across various domain generalization benchmarks. The results
demonstrate the effectiveness of our proposed adversarial masking on enriched graph structures.

5.2.1 Performance on Citation Networks (ACM, DBLP, Citation)

Table 2 summarizes the performance on the cross-graph node classification task using the ACM, DBLP,
and Citation datasets. This leave-one-domain-out evaluation directly tests generalization to unseen graph
structures. Overall, EdgeMask-DG* achieves the highest total average F1 score of 73.81, surpassing all other
methods, including the recent strong baseline GRM (73.28). This indicates the superior overall generalization
capability of our approach. Specifically, our method establishes new state-of-the-art performance in two of
the three challenging scenarios. In the AD→C scenario, EdgeMask-DG* achieves a Micro-F1 of 79.14% and a
Macro-F1 of 77.66%, outperforming all competitors. The improvement in Macro-F1 is particularly notable,
suggesting our model’s robustness in classifying less frequent classes. Similarly, in the CD→A scenario, our
method leads with a Micro-F1 of 71.62% and a Macro-F1 of 72.11%. In the AC→D scenario, while GRM
reports the highest scores, EdgeMask-DG* remains highly competitive with a Micro-F1 of 72.54%, performing
on par with or better than other recent methods like GraphAug (GIN) and TRACI. These results validate
that our proposed mechanism of discovering invariant substructures through adversarial masking on an
enriched graph is highly effective for handling the structural shifts inherent in citation networks.

5.2.2 Performance on Diverse Graph-DG Benchmarks

To assess the broader applicability of EdgeMask-DG*, we evaluated it on datasets exhibiting different types of
distribution shifts, as shown in Table 3 and Table 4. On benchmarks with artificial domain shifts (Cora and
Photo), EdgeMask-DG* demonstrates exceptional performance, achieving the highest minimum and average

9

Under review as submission to TMLR

Table 2: Performance on cross-graph node classification (ACM, DBLP, Citation). Results are mean F1 scores
(% ± std. dev.). Best results per column are in bold. EdgeMask-DG* uses a GAT backbone and adversarial
masking on enriched graphs (kNN + Spectral edges).

Method AC→D AD→C CD→A Total Avg

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

MMD 68.70± 0.88 65.88± 0.54 70.24± 0.77 65.79± 2.40 62.24± 1.48 58.45± 4.15 65.22
ERM 67.92± 0.50 62.72± 0.58 70.91± 0.61 67.81± 0.69 62.44± 0.98 59.64± 2.34 65.24
DRNN 69.07± 0.90 65.19± 0.26 71.46± 0.69 67.98± 0.86 63.45± 0.89 60.27± 4.00 66.24
GA (GCN) 71.45± 0.55 67.19± 0.72 71.62± 0.75 66.09± 0.56 66.44± 0.52 60.70± 0.70 67.25
EERM 71.31± 0.10 68.39± 0.19 72.91± 0.39 68.47± 1.32 65.28± 1.04 62.98± 2.49 68.22
LiSA 70.34± 1.45 67.15± 1.45 73.53± 0.60 69.65± 0.88 66.28± 0.67 64.17± 2.43 68.52
TRACI 72.95± 0.77 69.25± 1.22 74.20± 0.68 69.08± 1.07 67.01± 1.04 65.03± 0.35 69.59
MARIO 71.71± 0.72 68.66± 0.87 76.05± 0.16 72.38± 0.20 67.90± 0.47 67.13± 0.16 70.64
GA (GIN) 72.55± 0.60 70.05± 1.71 74.77± 0.60 71.79± 1.18 69.43± 0.65 68.77± 1.07 71.23
GRM 73.72± 0.75 71.19± 0.93 79.13± 0.22 75.74± 0.54 70.23± 1.04 69.66± 2.00 73.28

EDG* 72.54± 1.41 69.81± 1.76 79.14± 0.19 77.66± 0.15 71.62± 0.29 72.11± 0.25 73.81

accuracy. On Photo, the average accuracy of 94.8% represents a more than 2-percent improvement over the
next best method, GRM. The model also performs very strongly on the cross-domain social network Twitch,
attaining the highest average ROC-AUC of 59.3%, which is a substantial improvement over prior work.

However, on the FB-100 dataset, our method’s performance is less competitive. The average accuracy of
52.1% is lower than that of several baselines, and the minimum accuracy of 45.4 is also comparatively
low. This outcome suggests that the core assumption of our method—that node features provide a stable,
domain-invariant signal for constructing a reliable enriched graph—may be less effective for the FB-100
dataset, where the topological structure might be overwhelmingly dominant and the node features less
informative for generalization.

On the temporal benchmarks, Elliptic and ArXiv, the results presented in Table 4 show varied performance
relative to the baselines. While one method, GRM, reports exceptionally high, state-of-the-art scores, these
results are unverifiable due to the lack of a public codebase. Among the verifiable methods, EdgeMask-DG*
delivers competitive performance. For instance, on Elliptic, its average F1 score of 69.7% is comparable
to methods like ARM (69.9%) and MMD (70.6%), though lower than DRNN (71.8%). A similar trend is
observed on ArXiv, where our method is competitive with baselines but is outperformed by MARIO and
IS-GIB. This suggests that while our approach is robust, specialized methods for handling temporal evolution
may have an advantage in these specific settings.

5.3 Ablation Studies

To understand the contribution of different components and the sensitivity to hyperparameters, we conduct
ablation studies. Unless otherwise specified, results are shown for a representative scenario (e.g., CD→A or
AC→D) or averaged if specified.

5.3.1 Impact of Enriched Graph and Adversarial Masking

We first analyze the contribution of the enriched graph representation and the adversarial masking mechanism.
Table 5 shows performance for different configurations on the AC→D scenario. Table 6 compares our full
method against EERM trained on original and enriched graphs (averaged over 3 scenarios). Table 5 shows
that while adversarial masking on the original graph (EdgeMask-DG(Orig)) offers limited gains or can
even slightly degrade performance compared to EERM if the original graph is not sufficiently informative,

10

Under review as submission to TMLR

Table 3: OOD Performance on Cora, Photo, FB-100 & Twitch. Min. denotes minimum accuracy/ROC-AUC
across domains/runs, Avg. denotes average. Best results are in bold. Values for EdgeMask-DG* are single-seed
for Min. (no ±) and include ± for Avg. where provided.

Method Cora Photo FB-100 Twitch

Min. Avg. Min. Avg. Min. Avg. Min. Avg.

ERM 65.0± 1.5 68.2± 0.4 84.4± 1.5 88.6± 1.3 50.5± 0.4 52.8± 0.6 49.7± 1.1 52.2± 0.9
DRNN 56.4± 1.4 74.8± 1.2 76.7± 1.5 77.1± 1.2 48.0± 1.0 51.4± 0.7 44.0± 0.5 48.1± 1.4
MMD 52.4± 1.5 75.8± 0.6 82.1± 1.1 84.8± 0.6 51.4± 0.9 53.3± 0.7 42.8± 0.6 49.1± 0.9
ARM 60.6± 1.1 62.9± 1.4 58.3± 1.1 74.6± 0.7 50.7± 1.3 54.5± 0.9 43.2± 1.5 48.5± 1.3
EERM 68.0± 0.6 70.5± 1.0 90.8± 0.5 91.8± 0.9 50.9± 0.4 54.3± 1.4 51.6± 0.8 54.1± 0.9
LiSA 71.1± 1.5 76.7± 0.8 90.3± 1.2 91.5± 1.5 48.8± 1.2 54.2± 1.0 48.6± 1.2 55.8± 2.2
IS-GIB 71.3± 1.9 78.6± 1.5 87.2± 0.6 90.2± 0.9 49.6± 1.6 54.6± 1.2 51.2± 1.9 56.0± 1.2
MARIO 70.8± 1.3 76.1± 1.0 88.6± 0.8 89.4± 1.4 50.3± 1.9 53.9± 1.4 50.7± 2.0 55.1± 1.9
GRM 74.2± 1.2 81.2± 1.5 91.3± 0.9 92.7± 1.6 52.0± 1.3 55.1± 1.1 52.5± 1.7 56.7± 1.0

EDG* 78.0± 1.2 83.2± 1.1 94.3± 0.6 94.8± 0.6 45.4± 1.2 52.1± 1.8 52.5± 1.3 59.3± 1.7

Table 4: OOD Performance on Elliptic & ArXiv. T1–T3 denote different time periods. Avg. denotes average.
Best results are in bold. *GRM results are unverifiable because the codebase is not publicly available.

Method Elliptic ArXiv

T1 T2 T3 Avg. T1 T2 T3 Avg.

ERM 59.6± 1.4 63.5± 1.3 61.7± 0.6 61.6± 1.1 47.6± 0.9 45.5± 1.4 41.4± 1.0 44.8± 1.4
EERM 66.3± 0.4 63.8± 0.6 55.5± 0.6 61.9± 1.1 50.3± 1.4 48.3± 0.4 44.7± 1.4 47.8± 1.4
ARM 72.1± 1.5 69.7± 0.7 67.9± 1.4 69.9± 1.3 44.9± 0.7 42.3± 0.6 39.7± 0.8 42.3± 1.0
LiSA 68.8± 0.9 65.6± 0.7 69.3± 1.0 67.9± 0.8 45.9± 0.6 42.3± 0.5 46.1± 0.8 44.7± 0.6
MMD 71.9± 0.7 70.1± 0.4 69.9± 0.8 70.6± 0.8 44.6± 1.3 42.4± 0.7 38.9± 1.0 42.0± 0.5
EDG* 70.7± 1.2 68.9± 0.9 68.2± 1.3 69.7± 1.0 48.1± 1.1 45.8± 0.8 44.2± 1.2 45.9± 1.0
DRNN 73.2± 1.4 71.4± 0.7 70.6± 0.3 71.8± 0.8 46.8± 0.5 44.7± 1.1 40.5± 1.3 44.0± 1.0
IS-GIB 71.2± 1.1 70.0± 1.0 70.4± 1.2 70.5± 1.1 49.3± 0.8 46.6± 0.9 50.5± 1.3 48.8± 0.7
MARIO 69.8± 1.9 72.8± 2.4 71.1± 1.4 71.2± 2.0 48.8± 2.3 50.1± 2.4 49.2± 2.4 49.4± 2.8
GRM∗ 89.4± 1.5 85.5± 1.1 89.1± 1.5 88.0± 1.4 52.2± 0.9 52.6± 1.4 56.1± 1.4 53.6± 1.2

the introduction of feature-based edges (Spectral or kNN) significantly helps. The full model, EdgeMask-
DG*(Spec+kNN), leveraging both types of feature edges with adversarial masking, yields the best results.
Furthermore, Table 6 demonstrates that simply training EERM on an enriched graph (EERM-Enriched) is
not enough and can perform worse than EERM on the original graph.

5.3.2 Effect of Sparsity Regularization λ

We evaluate EdgeMask-DG* with varying values of the sparsity coefficient λ in Eq. 3. The results for the
CD→A scenario (on citation networks) are shown in Table 7. The results in Table 7 demonstrate that the
sparsity regularization term is a key component for effective generalization. While the model performs well
without any explicit sparsity penalty (λ = 0), introducing a non-zero λ consistently improves performance.
The model achieves optimal or near-optimal results across a range of small values, particularly between 10−5

and 10−2, indicating robustness to the exact choice of this hyperparameter within this effective range. The

11

Under review as submission to TMLR

Table 5: Component ablation results (Scenario: AC→D). Performance metrics (Accuracy, Micro-F1, Macro-
F1) and training time (s) are reported. Best results are highlighted in bold. (Results are from single runs;
std. dev. over multiple seeds would be beneficial.)

Method Acc Micro-F1 Macro-F1 Train Time (s)

EERM 0.6948 0.6948 0.6962 16.6
EdgeMask-DG(Orig) 0.6902 0.6902 0.6971 110.4
EdgeMask-DG* (Spec) 0.7000 0.7000 0.7010 238.4
EdgeMask-DG* (kNN) 0.7006 0.7006 0.7112 128.0
EdgeMask-DG* (Spec+kNN) 0.7145 0.7145 0.7201 257.1

Table 6: Comparison with E baselines (average over 3 Scenarios). EERM-Enriched uses the same augmented
graph (Original + Spec(k=100) + kNN(k=10)) as our full method but without adversarial masking. Best
results are highlighted. (Results are from single runs for EERM-Enriched and EdgeMask-DG*; std. dev. over
multiple seeds would be beneficial.)

Method Avg Acc Avg Micro-F1 Avg Macro-F1 Avg Train Time (s)

EERM (Original Graph) 0.7048 0.7048 0.6893 18.1000
EERM-Enriched (Augmented Graph) 0.6953 0.6953 0.6567 100.1000
EdgeMask-DG*(Spec+kNN) 0.7463 0.7463 0.7354 363.1000

explicit sparsity term helps guide the MaskNet to find challenging yet meaningful perturbations, preventing
it from simply masking a large number of edges. This controlled adversarial pressure is crucial for forcing the
TaskNet to rely on domain-invariant structural patterns.

Table 7: Ablation on the sparsity coefficient (λ) for the CD→A scenario. Performance is F1 score (%).

λ Micro F1 Macro F1 λ Micro F1 Macro F1

0.0 70.60 71.54 1e-3 71.59 72.18
1e-5 71.78 72.69 1e-2 71.63 72.65
1e-4 70.85 71.48 1e-1 71.49 72.18

6 Conclusion

We introduced EdgeMask-DG*, a novel Graph-DG framework that learns domain-invariant substructures
to handle structural shifts. It operates via a min-max game on an enriched graph, where an adversarial
masker challenges a GAT-based classifier by finding worst-case sparse edge masks. This forces the classifier to
become robust to structural perturbations and rely on generalizable patterns. Our approach, which combines
original topology with feature-derived edges, overcomes the limitations of static augmentations. Experiments
show that EdgeMask-DG* achieves new state-of-the-art results on several key benchmarks, with ablations
confirming the necessity of both the enriched graph and the adversarial mechanism. Future work could
explore more advanced graph enrichment techniques, apply the framework to graph-level tasks, and improve
computational efficiency.

References
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv

preprint arXiv:1907.02893, 2019.

12

Under review as submission to TMLR

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization. Princeton University
Press, Princeton, NJ, 2009. ISBN 978-0-691-13528-3.

Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and applications of robust
optimization. SIAM Review, 53(3):464–501, 2011. doi: 10.1137/100788821.

Guanzi Chen, Jiying Zhang, and Yang Li. Graph augmentation for cross graph domain generalization. arXiv
preprint arXiv:2502.18188, 2025.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph
structured data. In International Conference on Machine Learning (ICML), pp. 1115–1124. PMLR, 2018.

Wenzheng Feng, Jie Zhang, Peng Zhao, Yifei Li, and Zheng Zhang. Graph random neural network for
semi-supervised learning on graphs. In Advances in Neural Information Processing Systems (NeurIPS),
volume 33, pp. 18185–18195, 2020.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Will L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances
in Neural Information Processing Systems (NeurIPS), volume 30, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. CoRR, abs/2005.00687,
2020. URL https://arxiv.org/abs/2005.00687.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. URL https://arxiv.org/abs/1611.01144.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. Domain generalization with adversarial feature
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5400–5409, 2018.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on graphs: A
survey. arXiv preprint arXiv:2202.07987, 2022.

Yang Liu, Xiang Ao, Fuli Feng, Yunshan Ma, Kuan Li, Tat-Seng Chua, and Qing He. Flood: A flexible
invariant learning framework for out-of-distribution generalization on graphs. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’23), pp. 1548–1558, Long
Beach, CA, USA, 2023. ACM. doi: 10.1145/3580305.3599355.

Xiaojun Ma, Feiyang Zhao, Zheng Qin, Xuechen Sun, Wenwu Ou, and Yong Xu. Graph convolutional
adversarial network for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10000–10009, 2019.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016. URL https://arxiv.org/abs/1611.
00712.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,
Tao B. Schardl, and Charles E. Leiserson. Evolvegcn: Evolving graph convolutional networks for dynamic
graphs. In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020), pp. 5363–5370.
AAAI Press, 2020. doi: 10.1609/aaai.v34i04.5984. URL https://doi.org/10.1609/aaai.v34i04.5984.

13

https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1611.00712
https://doi.org/10.1609/aaai.v34i04.5984

Under review as submission to TMLR

Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluating proximity preserving and
structural role-based node embeddings. CoRR, abs/2101.03091, 2021. URL https://arxiv.org/abs/
2101.03091.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case generalization. In International
Conference on Learning Representations (ICLR), 2020.

Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. On the stratification of multi-label data.
In European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD),
volume 6912 of LNCS, pp. 145–158. Springer, 2011. URL https://lpis.csd.auth.gr/publications/
sechidis-ecmlpkdd-2011.pdf.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation. CoRR, abs/1811.05868, 2018. URL http://arxiv.org/abs/1811.05868.

Boshen Shi, Yongqing Wang, Fangda Guo, Bingbing Xu, Huawei Shen, and Xueqi Cheng. Graph domain
adaptation: Challenges, progress and prospects. arXiv preprint arXiv:2402.00904, 2024.

Shyam A. Tailor, Felix L. Opolka, Pietro Liò, and Nicholas D. Lane. Do we need anisotropic graph neural
networks? In International Conference on Learning Representations (ICLR), 2022. Introduces Efficient
Graph Convolution (EGC) baseline.

Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook networks. CoRR,
abs/1102.2166, 2011. URL http://arxiv.org/abs/1102.2166.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations (ICLR), 2018.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio Savarese.
Generalizing to unseen domains via adversarial data augmentation. In Advances in Neural Information
Processing Systems (NeurIPS), volume 31, 2018.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

Qixun Wang, Yifei Wang, Hong Zhu, and Yisen Wang. Improving out-of-distribution generalization by
adversarial training with structured priors. arXiv preprint arXiv:2210.06807, 2022.

Song Wang, Zhen Tan, Yaochen Zhu, Chuxu Zhang, and Jundong Li. Generative risk minimization for
out-of-distribution generalization on graphs. Transactions on Machine Learning Research, 2025. URL
https://openreview.net/pdf?id=EcMVskXo1n. TMLR, February 2025.

Felix Wu, Tianyi Zhang, Amauri H Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning (ICML), pp. 6861–6871.
PMLR, 2019.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain adaptive graph
convolutional networks. In Proceedings of The Web Conference 2020, pp. 1457–1467, 2020.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations (ICLR), 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):
4–24, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations (ICLR), 2019.

14

https://arxiv.org/abs/2101.03091
https://arxiv.org/abs/2101.03091
https://lpis.csd.auth.gr/publications/sechidis-ecmlpkdd-2011.pdf
https://lpis.csd.auth.gr/publications/sechidis-ecmlpkdd-2011.pdf
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1102.2166
https://openreview.net/pdf?id=EcMVskXo1n

Under review as submission to TMLR

Ling Yang, Jiayi Zheng, Heyuan Wang, Zhongyi Liu, Zhilin Huang, Shenda Hong, Wentao Zhang, and Bin
Cui. Individual and structural graph information bottlenecks for out-of-distribution generalization. TKDE,
2023.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33rd International
Conference on Machine Learning (ICML), volume 48 of Proceedings of Machine Learning Research, pp. 40–
48, New York, NY, USA, June 2016. PMLR. URL https://proceedings.mlr.press/v48/yanga16.html.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In Advances in Neural Information Processing Systems (NeurIPS), volume 33,
pp. 5812–5823, 2020.

Junchi Yu, Jian Liang, and Ran He. Mind the label shift of augmentation-based graph ood generalization. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11620–11630. IEEE,
2023. doi: 10.1109/CVPR52729.2023.01118.

Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea Finn. Adaptive
risk minimization: Learning to adapt to domain shift. In Advances in Neural Information Processing
Systems, volume 34, pp. 23664–23678, 2021.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, and Meng Jiang. Data augmentation for graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11016–
11024, 2021.

Yusheng Zhao, Changhu Wang, Xiao Luo, Junyu Luo, Wei Ju, Zhiping Xiao, and Ming Zhang. Traci: A
data-centric approach for multi-domain generalization on graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39 of AAAI-25 Technical Tracks, pp. 13401–13409, 2025. doi: 10.1609/
aaai.v39i12.33463. URL https://doi.org/10.1609/aaai.v39i12.33463.

Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the limitations
of localized graph training data. In Advances in Neural Information Processing Systems (NeurIPS), 2021a.

Yanqiao Zhu, Yichen Xu, Feng Liu, Jin-Hee Cho, Shu Wang, and Hao Peng. Graph contrastive learning with
adaptive augmentation. In Proceedings of the Web Conference (WWW), pp. 2069–2080, 2021b.

Yun Zhu, Haizhou Shi, Zhenshuo Zhang, and Siliang Tang. MARIO: Model agnostic recipe for improving
ood generalization of graph contrastive learning. In Proceedings of the ACM Web Conference 2024 (WWW
’24), pp. 300–311, 2024.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks for
graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 2847–2856, 2018.

A Appendix

A.1 Dataset Statistics

Detailed statistics for the citation network datasets used in our experiments are provided in Table 8.

B Reproducibility Statement

All datasets used in this study are publicly available and cited appropriately. Specifically, the citation network
datasets (ACMv9, DBLPv7, Citationv1) follow the splits and preprocessing from prior works (Chen et al.,
2025; Wu et al., 2022). Other benchmark datasets like Cora, Amazon-Photo, Twitch-explicit, Facebook-100,
Elliptic, and OGB-Arxiv are standard benchmarks with established splits detailed in Section 5 and Table 1,
with references to their original sources.

15

https://proceedings.mlr.press/v48/yanga16.html
https://doi.org/10.1609/aaai.v39i12.33463

Under review as submission to TMLR

Table 8: Statistics of the citation network datasets used for domain generalization.

Dataset Abbrev. # Nodes # Edges # Features # Classes

ACMv9 A 9,360 15,602 6,775 5
Citationv1 C 8,935 15,113 6,775 5
DBLPv7 D 5,484 8,130 6,775 5

Our model, EdgeMask-DG*, is implemented in PyTorch using PyTorch Geometric. Key architectural details
(GAT: 4 layers, 8 heads, 64 dim/head; MaskNet: projection to 128 dim, MLP with one 64-dim hidden
layer) and training hyperparameters (Adam optimizer, LR 10−3 for citation nets, WD 5× 10−4, 200 epochs,
λ = 10−3 sparsity, Ndescent = 5, Nascent = 1) are provided in Section 5 and Appendix B. Specifics for feature
edge generation (kNN: k=10, cosine; Spectral: Kc = 100 clusters, RBF kernel, sample ratios γ = 0.1) are also
detailed. Ablation studies in Appendix F further explore hyperparameter sensitivity.

The source code for our experiments, including scripts for data loading, model training, and evaluation,
is provided at the anonymized URL: https://anonymous.4open.science/r/TMLR-EAEF/. This repository
contains instructions to reproduce all main results and ablation studies presented. The computational
experiments were run on NVIDIA 2080 GPUs.

B.1 Code Availability

The source code for reproducing the experiments presented in this paper is available at: https://anonymous.
4open.science/r/TMLR-EAEF/

B.2 Time Complexity Analysis

We now provide a time-complexity analysis for the three proposed variants of our EdgeMask-DG framework.
Throughout this analysis, we consistently use the following notation: N = |V | represents the number of nodes,
M = |E| is the count of original edges, and F denotes the input feature dimension. The mask-projection
dimension is P , while H signifies the hidden size per GAT head, with h attention heads and L GAT layers.
The training regimen includes D TaskNet (“descent”) steps and U MaskNet (“ascent”) steps per epoch.
This process is repeated for K source-domain graphs over a total of T training epochs. Additional edges
introduced by kNN and spectral clustering are denoted EkNN and Espec, respectively. The total number of
edges in the graph used for computation is M̃ = M + EkNN + Espec.

Each training epoch executes D + U inner loops, iterating over the K source graphs. Within each such inner
loop, the computational costs are primarily composed of four components. First, the mask projection step
incurs a cost of O(N · F · P). Second, the MaskNet forward pass requires O(M̃ · P). Third, the TaskNet
forward and backward passes, which involve a stack of GATConv layers, cost O

(
L · M̃ · (h ·H)

)
. Finally,

computing losses and penalties (cross-entropy and sparsity regularization) takes O(N + M̃). Summing these,
and noting that the O(N + M̃) term is dominated by others (assuming P ≥ 1 and LhH ≥ 1), one inner step
has an asymptotic cost of

O
(
NFP + M̃P + LM̃hH

)
.

Consequently, a full epoch, encompassing all K graphs and D + U inner loops, costs

O
(
(D + U)K (NFP + M̃P + LM̃hH)

)
.

1. EdgeMask-DG (base, no extra edges)

For the base EdgeMask-DG variant, no additional edges are precomputed or added, so M̃ = M . The
precomputation cost is therefore zero. The per-epoch complexity is O

(
(D + U)K (NFP +MP + LMhH)

)
.

Over T training epochs, the overall complexity is

O
(
T (D + U)K (NFP +MP + LMhH)

)
.

16

https://anonymous.4open.science/r/TMLR-EAEF/
https://anonymous.4open.science/r/TMLR-EAEF/
https://anonymous.4open.science/r/TMLR-EAEF/

Under review as submission to TMLR

2. EdgeMask-DG* (kNN only)

In the EdgeMask-DG* variant augmented solely with kNN edges, we first precompute the kNN graph for each of
the K domains. Using a standard implementation like kneighbors_graph, this takes O(N2) per graph, leading
to a total precomputation cost of O(KN2). These EkNN edges are then added to the original M edges, so
M̃ = M+EkNN. The per-epoch training cost becomesO

(
(D+U)K (NFP+(M+EkNN)P+L(M+EkNN)hH)

)
.

The overall complexity is the sum of precomputation and total training costs:

O
(
KN2 + T (D + U)K (NFP + (M + EkNN)P + L(M + EkNN)hH)

)
.

3. EdgeMask-DG* (kNN + spectral)

When both kNN and spectral edges are incorporated, the precomputation phase is more intensive. For each
graph, spectral edge generation involves constructing an affinity matrix and performing eigen-decomposition,
costing O(N3), followed by edge sampling, which is typically O(N2). Thus, spectral precomputation is
O(N3) per graph. The kNN precomputation remains O(N2) per graph. Across K graphs, the total
precomputation cost is O(K(N3 + N2)), which simplifies to O(KN3). With these additional Espec and
EkNN edges, the total edge count becomes M̃ = M + EkNN + Espec. The per-epoch training cost is
O
(
(D + U)K (NFP + M̃P + LM̃hH)

)
. The overall complexity is therefore

O
(
KN3 + T (D + U)K (NFP + (M + EkNN + Espec)P + L(M + EkNN + Espec)hH)

)
.

Worst-case Simplification

Under worst-case assumptions where added kNN and spectral edges result in dense graphs, i.e., EkNN, Espec =
O(N2), the total edge count M̃ becomes O(N2). In this scenario, the dominant term in the per-epoch
complexity for all variants, when summed over T epochs, is O

(
T (D+U)K LhH N2). For the EdgeMask-DG*

(kNN + spectral) variant, the precomputation cost is O(KN3). Comparing these, the heaviest scenario across
all variants and phases is dictated by the spectral precomputation and the dense-graph training, leading to
an overall worst-case complexity of

O
(
KN3 + T (D + U)K LhH N2).

Simplification with Default Hyperparameters

We now simplify the complexity expressions by substituting default hyperparameter values commonly used in
our experiments and then dropping negligible terms.

Common Starting Point for Simplification The cost for one inner loop over a single graph, including
all four components (Mask projection, MaskNet forward, TaskNet forward/backward, and Losses/penalties),
is NFP + M̃P + LM̃hH + N + M̃ . The total training cost over T epochs, D + U inner loops per epoch
(where D = 5 descent and U = 1 ascent steps, so D + U = 6), and K = 3 source graphs, is

train-cost = T (D + U)K
[
NFP + M̃P + LM̃hH +N + M̃

]
.

We use the default constants from our implementation: F = 7, P = 128, H = 128, h = 8, L = 4, and T = 200.
Let C1 = (D + U)K = 6 × 3 = 18. The term FP + 1 becomes (7 × 128) + 1 = 896 + 1 = 897. The term
P + LhH + 1 becomes 128 + (4× 8× 128) + 1 = 128 + 4096 + 1 = 4225. Substituting these into the training
cost formula yields:

train-cost = TC1
[
N(FP + 1) + M̃(P + LhH + 1)

]
= 200× 18

[
N(897) + M̃(4225)

]
.

The leading numeric factor 200× 18× 897 ≈ 3.23× 106 for the N -term and 200× 18× 4225 ≈ 1.52× 107 for
the M̃ -term are constant multipliers. Asymptotically, only the terms involving N and M̃ (and other variables
like T,K) matter, so the training cost is broadly O(TK(N + M̃)).

17

Under review as submission to TMLR

1. EdgeMask-DG (no extra edges) For the base variant, M̃ = M . In sparse graphs like social networks,
M ≈ cN for a small constant average degree c (e.g., 20− 30). The general training cost O

(
TK(N + M̃)

)
,

upon substituting M̃ ∼ O(N), simplifies to O
(
TK(N +N)

)
= O

(
TKN

)
. Since there is no pre-computation

cost, this is the overall complexity.

EdgeMask-DG: O
(
KTN

)
This simplified form depends on the number of nodes N , the number of domains K, and the number of
epochs T .

2. EdgeMask-DG* (kNN edges only) The pre-computation for kNN graphs (e.g., k = 10) is O(KN2).
During training, kNN adds EkNN = kN edges (assuming undirected edges, this is a constant degree addition).
Thus, M̃ = M + EkNN ≈ (c + k)N = Θ(N) if M ≈ cN . The training cost therefore remains O(TKN).
To compare magnitudes, for a graph with N = 10, 000, and with T = 200,K = 3: The pre-computation
cost KN2 = 3 × (104)2 = 3 × 108. The training cost KTN = 3 × 200 × 104 = 6 × 106. The quadratic
pre-computation cost clearly dominates the training cost.

EdgeMask-DG* (kNN): O
(
KN2)

The dominant variables are N and K.

3. EdgeMask-DG* (kNN + spectral) The pre-computation for spectral clustering is O(N3) per
graph (dominated by eigen-decomposition), leading to a total pre-computation cost of O(KN3). Spectral
clustering can add Espec = ρN2 edges (e.g., with default ρ = 0.1), making the graph dense. Thus,
M̃ = M + EkNN + Espec = O(N) +O(N) +O(N2) = Θ(N2). The training cost O

(
TK(N + M̃)

)
becomes

O
(
TK(N + N2)

)
= O(TKN2). Comparing magnitudes with N = 10, 000, T = 200,K = 3: The pre-

computation cost KN3 = 3 × (104)3 = 3 × 1012. The training cost KTN2 = 3 × 200 × (104)2 = 6 × 1010.
The cubic pre-computation cost is again the bottleneck by a significant margin.

EdgeMask-DG* (kNN + spectral): O
(
KN3)

The complexity is primarily determined by N and K.

C Theoretical Analysis: Robust Optimization Perspective

We provide a theoretical foundation for EdgeMask-DG* by framing its adversarial training as solving a robust
optimization problem over edge masks. This perspective highlights how the method encourages robustness to
structural perturbations.

C.1 Problem Setup

Let G′ = (V, E ′,X) be an enriched graph instance with N = |V| nodes and m = |E ′| edges. Let Y be the
node labels. The TaskNet fθ maps the graph features X and an adjacency structure A(s) modulated by an
edge mask s ∈ [0, 1]m to node logits. The average cross-entropy loss on this graph is denoted by:

ℓ(fθ, s) := 1
N

∑
v∈V
LCE

(
[fθ(X,A(s))]v, [Y]v

)
.

We define an uncertainty set Sρ for the masks based on an ℓ1 sparsity budget ρ ∈ (0, 1]:

Sρ :=
{

s ∈ [0, 1]m : 1
m
∥s∥1 ≤ ρ

}
, where ∥s∥1 =

m∑
e=1

se.

Consider the robust optimization problem of finding the mask s ∈ Sρ that maximizes the TaskNet’s loss for a
fixed θ:

P (θ) := max
s∈Sρ

ℓ(fθ, s). (P’)

The goal of robust training is to find parameters θ that minimize this worst-case loss: minθ P (θ).

18

Under review as submission to TMLR

C.2 Lagrangian Duality and Penalized Objective

We demonstrate that the constrained maximization problem equation P’ is equivalent to an unconstrained
maximization problem with an ℓ1 penalty term, achieved through Lagrangian duality.
Lemma C.1 (Lagrangian Upper Bound). For any Lagrange multiplier λL ≥ 0 and any fixed θ, the worst-case
loss P (θ) = maxs∈Sρ

ℓ(fθ, s) is upper-bounded by the dual function D(λL; θ):

P (θ) ≤ D(λL; θ) := max
s∈[0,1]m

[
ℓ(fθ, s) + λL

(
1
m
∥s∥1 − ρ

)]
. (5)

Consequently, P (θ) ≤ minλL≥0 D(λL; θ). Equality, P (θ) = minλL≥0 D(λL; θ), holds (i.e., strong duality) if
ℓ(fθ, s) is concave in s and other regularity conditions are met. However, since ℓ(fθ, s) (which involves GNN
computations and cross-entropy loss) is generally non-concave in s, we only have weak duality (the upper
bound).

Proof. The primal problem is P (θ) = maxs ℓ(fθ, s) subject to s ∈ [0, 1]m and g(s) = 1
m∥s∥1 − ρ ≤ 0.

The Lagrangian is L(s, λL; θ) = ℓ(fθ, s) + λLg(s) = ℓ(fθ, s) + λL
(1
m∥s∥1 − ρ

)
, for λL ≥ 0.

The dual function is D(λL; θ) = maxs∈[0,1]m L(s, λL; θ). Since ℓ(fθ, s) is continuous and [0, 1]m is compact,
the maximum is attained.

For any s feasible for the primal problem (i.e., s ∈ Sρ, so g(s) ≤ 0) and any λL ≥ 0:

ℓ(fθ, s) ≤ ℓ(fθ, s)− λLg(s)% since λL ≥ 0 and g(s) ≤ 0 =⇒ −λLg(s) ≥ 0

The term −λLg(s) is non-negative. More accurately, ℓ(fθ, s) ≤ L(s, λL; θ) because λLg(s) ≤ 0. This seems
off for maximization. Let’s restate for standard weak duality in maximization. For any s′ ∈ Sρ (feasible for
primal) and any λL ≥ 0:

ℓ(fθ, s′) ≤ ℓ(fθ, s′)− λL
(

1
m
∥s′∥1 − ρ

)
because λL ≥ 0 and

(1
m∥s

′∥1 − ρ
)
≤ 0. Then,

ℓ(fθ, s′) ≤ max
s∈[0,1]m

[
ℓ(fθ, s) + λL

(
1
m
∥s∥1 − ρ

)]
= D(λL; θ).

Since this holds for any feasible s′, it holds for the s∗ that maximizes ℓ(fθ, s′) over Sρ. Thus, P (θ) =
maxs∈Sρ ℓ(fθ, s) ≤ D(λL; θ) for any λL ≥ 0. This implies P (θ) ≤ minλL≥0 D(λL; θ), which is the statement
of weak duality.

Strong duality, P (θ) = minλL≥0 D(λL; θ), holds if the primal problem is a convex optimization problem
(i.e., maximizing a concave function over a convex set) and satisfies constraint qualifications (e.g., Slater’s
condition). In our case, ℓ(fθ, s) is generally non-concave due to the non-linear GNN and the convex (not
concave) nature of the cross-entropy loss with respect to logits, which themselves are non-linear functions of
s. Therefore, strong duality is not guaranteed. The saddle-point formulation presented previously relied on
strong duality and thus may not hold in the general non-concave case. Thus, to show the intuition behind
the proposed method, we show this analysis on a concave surrogate as well.

C.3 Interpretation and Connection to Algorithm 1

Lemma C.1 establishes that the dual function D(λL; θ) provides an upper bound on the true robust objective
P (θ). Our algorithm aims to find parameters (θ, ϕ, ψ) that optimize a related penalized objective.

Algorithm 1 implements an alternating gradient descent-ascent procedure. For a fixed sparsity hyperparameter
λalg ≥ 0 (this is the λ used in Eq. 3 and Algorithm 1), the algorithm seeks parameters (θ∗, ϕ∗, ψ∗) such that:

• θ∗ minimizes ℓ(fθ, s∗) given s∗ = mϕ∗,ψ∗(·).

19

Under review as submission to TMLR

• (ϕ∗, ψ∗) minimizes −ℓ(fθ∗ , s) + λalg ·mean(s) over masks s generated by mϕ,ψ(·). This is equivalent
to maximizing ℓ(fθ∗ , s)− λalg ·mean(s).

The MaskNet’s objective (maximization form: ℓ(fθ, s)− λalg ·mean(s)) targets the inner maximization of a
Lagrangian-like expression maxs[ℓ(fθ, s)− λalg

m ∥s∥1]. This corresponds to the term ℓ(fθ, s) + λL(1
m∥s∥1 − ρ)

from D(λL; θ) if we associate λalg/m with −λL/m (for maximization of loss) or λL/m (for minimization of
negative loss), and note that the term −λLρ is constant with respect to s for a fixed λL and is thus dropped
during the MaskNet’s optimization of s.

C.4 Analysis of a Concave Surrogate Inner Game (s is discrete add relaxation)

While the true loss function ℓ(fθ, s) is generally non-concave in s, we can gain further insight by analyzing a
simplified surrogate problem where the inner objective is concave. This allows us to establish strong duality
and derive a closed-form optimal mask, providing an intuition for the behavior of the MaskNet.

Consider an affine approximation of the loss function ℓ(fθ, s) linearized around s = 0:

ℓ̃(fθ, s) = ℓ(fθ,0) +∇sℓ(fθ,0)⊤s. (6)

This surrogate loss ℓ̃(fθ, s) is affine in s, and therefore also concave in s. Let ce(θ) = ∇seℓ(fθ,0) be
the gradient of the original loss with respect to the e-th mask component, evaluated at s = 0. Then
ℓ̃(fθ, s) = ℓ(fθ,0) +

∑m
e=1 ce(θ)se.

C.4.1 Optimal Mask for the Penalized Surrogate Problem

We first analyze the optimal mask for a penalized version of the surrogate problem, which directly relates to
the objective optimized by the MaskNet in Algorithm 1 if it were using this surrogate loss. The MaskNet’s
update rule (Eq. 3) aims to maximize Lcls(fθ, s)− λ ·mean(s). Using the surrogate loss ℓ̃ and defining the
penalty strength τ = λalg/m (where λalg is the sparsity hyperparameter from Algorithm 1), the objective
becomes:

max
s∈[0,1]m

[
ℓ̃(fθ, s)− τ

m∑
e=1

se

]
. (7)

Substituting Eq. equation 6:

max
s∈[0,1]m

[
ℓ(fθ,0) +

m∑
e=1

ce(θ)se − τ
m∑
e=1

se

]

= ℓ(fθ,0)+ max
s∈[0,1]m

m∑
e=1

(ce(θ)− τ) se.

This is a linear program in s, where each se is constrained to [0, 1] and can be chosen independently to
maximize its term in the sum. For each edge e:

• If ce(θ)− τ > 0, the term (ce(θ)− τ)se is maximized by setting s∗
e = 1.

• If ce(θ)− τ < 0, the term (ce(θ)− τ)se is maximized by setting s∗
e = 0.

• If ce(θ) − τ = 0, any se ∈ [0, 1] is optimal for that term; we can choose s∗
e = 0 by convention (or

s∗
e = 1).

Thus, the optimal mask s∗ for the penalized surrogate problem has components:
Proposition C.2 (Optimal Mask for Penalized Surrogate). The optimal mask s∗ = (s∗

1, . . . , s
∗
m) that solves

the penalized surrogate problem defined in equation 7 is given by:

s∗
e = I [∇seℓ(fθ,0) > τ] , (8)

where τ = λalg/m is the effective sparsity threshold and I[·] is the indicator function (equal to 1 if the condition
is true, 0 otherwise).

20

Under review as submission to TMLR

Proof. As derived above, maximizing
∑m
e=1(ce(θ) − τ)se subject to se ∈ [0, 1] involves setting se = 1

if its coefficient (ce(θ) − τ) is positive, and se = 0 if its coefficient is negative. This directly leads to
s∗
e = I[ce(θ) > τ].

C.4.2 Strong Duality for the Constrained Surrogate Problem

Now, consider the original constrained robust optimization problem P (θ) from Eq. equation 4 (or equation P’),
but using the surrogate loss ℓ̃:

Psurr(θ) := max
s∈Sρ

ℓ̃(fθ, s), where Sρ =
{

s ∈ [0, 1]m : 1
m
∥s∥1 ≤ ρ

}
. (9)

Since ℓ̃(fθ, s) is affine (and thus concave) in s, and the feasible set Sρ is convex and compact, strong duality
holds for this problem (e.g., Slater’s condition is satisfied if ρ > 0 by choosing s = 0 as a strictly feasible
point). Therefore, Psurr(θ) = minλD≥0 Dsurr(λD; θ), where Dsurr(λD; θ) is the dual function:

Dsurr(λD; θ) = max
s∈[0,1]m

[
ℓ̃(fθ, s)− λD

(
1
m

m∑
e=1

se − ρ

)]

= max
s∈[0,1]m

[
ℓ(fθ,0) +

m∑
e=1

ce(θ)se −
λD
m

m∑
e=1

se + λDρ

]

= ℓ(fθ,0) + λDρ+ max
s∈[0,1]m

m∑
e=1

(
ce(θ)−

λD
m

)
se. (10)

Let τD = λD/m. The inner maximization maxs∈[0,1]m

∑m
e=1(ce(θ)−τD)se is solved by s∗

e(λD) = I[ce(θ) > τD].
The optimal s∗∗ for the constrained problem Psurr(θ) will be s∗∗

e = I[ce(θ) > λ∗
D/m], where λ∗

D is the optimal
dual variable that minimizes Dsurr(λD; θ). This λ∗

D is chosen such that the resulting mask s∗∗ satisfies the
budget constraint 1

m

∑
s∗∗
e = ρ (if the constraint is active) or 1

m

∑
s∗∗
e < ρ (if λ∗

D = 0).

C.4.3 Connection to the EdgeMask-DG* Algorithm

The EdgeMask-DG* algorithm does not directly use the surrogate loss ℓ̃ based on ∇sℓ(fθ,0). Instead, its
MaskNet uses the gradients of the true loss ℓ(fθ, s) evaluated at the current mask scurr, i.e., ∇sℓ(fθ, scurr),
to guide its updates. However, the analysis of the surrogate problem provides a valuable intuition:

• It demonstrates that if the loss landscape were simple (affine), the optimal strategy for the MaskNet
(given a fixed sparsity penalty τ) would be a hard thresholding of edges based on their gradient scores
ce(θ). Edges whose inclusion contributes to increasing the loss by more than τ are kept (se = 1),
while others are discarded (se = 0).

• The EdgeMask-DG* algorithm, through its adversarial training and the MaskNet’s objective (Eq.
3), can be viewed as attempting to learn such a thresholding behavior, but adapted to the complex,
non-linear landscape of the true loss ℓ(fθ, s). The MaskNet computes edge scores suv (Eq. 1) based
on node features and aims to find masks that are impactful yet sparse.

• The gradient ascent performed by the MaskNet on −Lcls +λ ·mean(s) iteratively seeks regions where
a sparse mask maximally degrades TaskNet performance. The structure of the optimal mask for
the surrogate (Proposition C.2) suggests that such masks would prioritize edges with high “scores”
(sensitivity of loss) relative to the sparsity cost.

Therefore, while the true optimization is more complex, the concave surrogate analysis reinforces the idea that
the MaskNet learns to identify and exploit a critical subset of edges, akin to a learned thresholding mechanism
based on edge importance and sparsity budget. This iterative process, acting on the true non-concave loss
but sharing similarities with the optimal strategy for the concave surrogate, drives the TaskNet to become
robust to the removal/down-weighting of edges deemed less critical or potentially spurious by this adaptive

21

Under review as submission to TMLR

thresholding. It is important to reiterate that strong duality and the closed-form solution of Proposition C.2
apply to the simplified concave surrogate problem. Hence, these specific results apply only to the surrogate,
not directly to the original non-concave game, for which we only have weak duality.

D KKT Analysis of the Adversarial Mask Optimization

We analyze the properties of the optimal mask s∗ that the MaskNet implicitly seeks for a fixed TaskNet
fθ. This corresponds to solving the inner maximization problem from the robust optimization perspective
(Problem equation P’ in Section C):

max
s∈Rm

ℓ(fθ, s) (11)

subject to:

g1(s) = 1
m

m∑
e=1

se − ρ ≤ 0 (12)

he(s) = se − 1 ≤ 0 ∀e ∈ {1, . . . ,m} (13)
ke(s) = −se ≤ 0 ∀e ∈ {1, . . . ,m} (14)

where ℓ(fθ, s) is the TaskNet loss, m = |E ′|, and ρ ∈ (0, 1] is the sparsity budget. We assume ℓ(fθ, s) is
continuously differentiable with respect to s.

To analyze the solution s∗, we formulate the Karush-Kuhn-Tucker (KKT) conditions. It is standard to
formulate KKT conditions for minimization problems. We consider the equivalent minimization problem:

min
s∈Rm

−ℓ(fθ, s)

subject to the same constraints equation 12, equation 13, equation 14.

Let λ ≥ 0 be the Lagrange multiplier for the sparsity constraint g1(s) ≤ 0. Let µe ≥ 0 be the Lagrange
multipliers for the upper bound constraints he(s) ≤ 0. Let νe ≥ 0 be the Lagrange multipliers for the lower
bound constraints ke(s) ≤ 0.

The Lagrangian function is:

L(s, λ,µ,ν) = −ℓ(fθ, s) + λg1(s) +
m∑
e=1

µehe(s) +
m∑
e=1

νeke(s)

= −ℓ(fθ, s) + λ

(
1
m

m∑
e=1

se − ρ

)
+

m∑
e=1

µe(se − 1) +
m∑
e=1

νe(−se)

The KKT conditions for an optimal solution s∗ (assuming constraint qualifications like Slater’s condition
hold, which is true here as s = 0 is strictly feasible for g1 if ρ > 0) are:

1. Stationarity: The gradient of the Lagrangian with respect to s must be zero at s∗:

∇sL(s∗, λ∗,µ∗,ν∗) = 0

For each component se, this gives:

−∂ℓ(fθ, s
∗)

∂se
+ λ∗

(
1
m

)
+ µ∗

e(1) + ν∗
e (−1) = 0

Rearranging:
∂ℓ(fθ, s∗)
∂se

= λ∗

m
+ µ∗

e − ν∗
e ∀e ∈ {1, . . . ,m} (15)

22

Under review as submission to TMLR

2. Primal Feasibility: The solution s∗ must satisfy all original constraints:

1
m

m∑
e=1

s∗
e − ρ ≤ 0 (16)

s∗
e − 1 ≤ 0 ∀e (17)
−s∗

e ≤ 0 ∀e (18)

3. Dual Feasibility: All Lagrange multipliers must be non-negative:

λ∗ ≥ 0, µ∗
e ≥ 0, ν∗

e ≥ 0 ∀e (19)

4. Complementary Slackness: The product of each multiplier and its corresponding constraint value
must be zero at s∗:

λ∗

(
1
m

m∑
e=1

s∗
e − ρ

)
= 0 (20)

µ∗
e(s∗

e − 1) = 0 ∀e (21)
ν∗
e (−s∗

e) = 0 ⇔ ν∗
e s

∗
e = 0 ∀e (22)

It is important to note that because the inner maximization problem equation 11 (maximizing ℓ(fθ, s))
is generally non-convex with respect to s (due to the non-linear GNN operations), the KKT conditions
characterize necessary conditions for local optima or stationary points. They do not guarantee that a point
satisfying them is the global maximizer of the MaskNet’s objective. During the adversarial training (Algorithm
1), the MaskNet’s optimization step (ascent) aims to find such a point, typically approximating a local
maximum but the above analysis provides a theoretical justification for the algorithm’s objective.

D.1 Interpretation of KKT Conditions

We analyze the stationarity condition equation 15 based on the optimal value s∗
e using the complementary

slackness conditions equation 21 and equation 22. Let g∗
e = ∂ℓ(fθ,s∗)

∂se
denote the gradient of the loss with

respect to the mask value of edge e at the optimum.

• Case 1: Interior solution (0 < s∗
e < 1)

From equation 22, since s∗
e > 0, we must have ν∗

e = 0.
From equation 21, since s∗

e < 1 (i.e., s∗
e − 1 < 0), we must have µ∗

e = 0.
Substituting µ∗

e = 0 and ν∗
e = 0 into the stationarity condition equation 15:

g∗
e = ∂ℓ(fθ, s∗)

∂se
= λ∗

m

Interpretation: For edges that are partially masked, the marginal increase in loss obtained by
slightly increasing the mask value se must exactly equal the marginal “cost” imposed by the sparsity
constraint, represented by λ∗/m.

• Case 2: Fully masked edge (s∗
e = 0)

From equation 21, µ∗
e(0− 1) = −µ∗

e = 0, which implies µ∗
e = 0.

Condition equation 22 (ν∗
e s

∗
e = 0) is automatically satisfied, and we only know ν∗

e ≥ 0.
Substituting µ∗

e = 0 into the stationarity condition equation 15:

g∗
e = ∂ℓ(fθ, s∗)

∂se
= λ∗

m
− ν∗

e

Since ν∗
e ≥ 0, this implies:

∂ℓ(fθ, s∗)
∂se

≤ λ∗

m

23

Under review as submission to TMLR

Interpretation: An edge is completely removed (s∗
e = 0) if the marginal gain in loss from slightly

increasing its mask value is less than or equal to the marginal sparsity cost λ∗/m. Including this
edge even partially is not “worth” the sparsity cost it incurs.

• Case 3: Fully included edge (s∗
e = 1)

From equation 22, ν∗
e (1) = 0, which implies ν∗

e = 0.
Condition equation 21 (µ∗

e(s∗
e − 1) = 0) is automatically satisfied, and we only know µ∗

e ≥ 0.
Substituting ν∗

e = 0 into the stationarity condition equation 15:

g∗
e = ∂ℓ(fθ, s∗)

∂se
= λ∗

m
+ µ∗

e

Since µ∗
e ≥ 0, this implies:

∂ℓ(fθ, s∗)
∂se

≥ λ∗

m

Interpretation: An edge is fully kept (s∗
e = 1) if the marginal gain in loss from increasing its mask

value (evaluated at se = 1) is greater than or equal to the marginal sparsity cost λ∗/m. The
contribution of this edge to maximizing the loss outweighs its sparsity cost.

Furthermore, the complementary slackness condition equation 20 tells us about the optimal Lagrange
multiplier λ∗ for the sparsity constraint:

• If the sparsity constraint is inactive at the optimum (i.e., 1
m

∑
s∗
e < ρ), then we must have λ∗ = 0.

In this scenario, the sparsity budget is not limiting, and the optimal mask s∗ is determined solely by
maximizing ℓ(fθ, s) within the box [0, 1]m. The conditions simplify: g∗

e = µ∗
e − ν∗

e .

• If the sparsity constraint is active at the optimum (i.e., 1
m

∑
s∗
e = ρ), then λ∗ can be positive (λ∗ ≥ 0).

In this case, λ∗/m acts as a non-zero threshold on the loss gradient ∂ℓ
∂se

required to include an edge
(s∗
e > 0). A higher λ∗ (resulting from a tighter budget ρ) imposes a stricter requirement for including

edges.

E Gradient Analysis of the Adversarial Game

We analyze the gradient dynamics of the alternating optimization procedure used in Algorithm 1 to understand
how the interplay between the TaskNet (fθ) and MaskNet (mϕ,ψ) encourages robustness. Let Lcls(θ, ϕ, ψ)
denote the classification loss for a given graph instance, making the parameter dependencies explicit:

Lcls(θ, ϕ, ψ) = Lcls(fθ(X,G′, s),Y), where s = mϕ,ψ(X, E ′).

Let R(ϕ, ψ) denote the sparsity regularization term:

R(ϕ, ψ) = λ ·mean(s) = λ

m
∥s∥1 = λ

m

m∑
e=1

se, where s = mϕ,ψ(X, E ′).

E.1 TaskNet Gradient Update

The TaskNet aims to minimize the classification loss given the current fixed mask s generated by the MaskNet.
The objective for the TaskNet update step is:

Jtask(θ) = Lcls(θ, ϕfixed, ψfixed)

The gradient used for updating the TaskNet parameters θ is:

gθ = ∇θJtask(θ) = ∇θLcls(fθ(X,G′, s),Y) (23)

where s = mϕfixed,ψfixed(·) is treated as a constant input (edge attributes) during this computation. This is
a standard gradient computation for the GAT model fθ operating on the graph G′ with edge attributes s.
The update rule is θ ← θ − ηθgθ. This step adapts the TaskNet to perform well on the graph structure as
perturbed by the current adversarial mask.

24

Under review as submission to TMLR

E.2 MaskNet Gradient Update

The MaskNet aims to find mask parameters (ϕ, ψ) that maximize the TaskNet’s loss (for fixed θ) while
minimizing the average mask value (promoting sparsity). This is formulated as minimizing the following
objective:

Jmask(ϕ, ψ) = −Lcls(θfixed, ϕ, ψ) +R(ϕ, ψ)
The gradient used for updating the MaskNet parameters (ϕ, ψ) is gϕ,ψ = ∇ϕ,ψJmask(ϕ, ψ). We compute this
gradient using the chain rule. Let p = (ϕ, ψ) denote the combined MaskNet parameters.

gϕ,ψ = ∇pJmask(ϕ, ψ) = ∇p[−Lcls(θfixed, ϕ, ψ)] +∇p[R(ϕ, ψ)]

Term 1: Gradient of Negative Loss The loss Lcls depends on p through the mask s = mp(·).

∇p[−Lcls] = −∇p[Lcls]

Applying the chain rule:
∇p[Lcls] = ∂Lcls

∂s
∂s
∂p

Here:

• ∂Lcls

∂s = ∇sLcls is the gradient of the TaskNet’s loss with respect to the mask vector s. This is a row
vector of size 1×m. Its e-th element, ∂Lcls

∂se
, represents the sensitivity of the loss to the mask value

of edge e.

• ∂s
∂p = ∇ps is the Jacobian matrix of the MaskNet output s with respect to its parameters p. Its size
is m× |p|. The (e, j)-th element is ∂se

∂pj
.

The product is a row vector of size 1× |p|, representing the gradient of the loss with respect to the MaskNet
parameters.

∇p[−Lcls] = −(∇sLcls)(∇ps)

Term 2: Gradient of Sparsity Regularizer

R(ϕ, ψ) = λ

m

m∑
e=1

se(p)

∇p[R(ϕ, ψ)] = λ

m
∇p

[
m∑
e=1

se(p)
]

= λ

m

m∑
e=1
∇p[se(p)]

Using Jacobian notation:
m∑
e=1
∇p[se(p)] = 1T (∇ps)

where 1 is an m× 1 column vector of ones. So,

∇p[R(ϕ, ψ)] = λ

m
1T (∇ps)

Combined MaskNet Gradient: Substituting the terms back:

gϕ,ψ = ∇pJmask(ϕ, ψ)

= −(∇sLcls)(∇ps) + λ

m
1T (∇ps)

=
(
−∇sLcls + λ

m
1T
)

(∇ps) (24)

The update rule for the MaskNet is p← p− ηϕψgTϕ,ψ (transposing the row gradient to a column vector for
parameter updates).

25

Under review as submission to TMLR

E.3 Interpretation of Gradient Dynamics

The gradient update for the MaskNet parameters p = (ϕ, ψ) is driven by two main components, filtered
through the MaskNet’s Jacobian ∇ps:

1. Loss Sensitivity (−∇sLcls): This term pushes the MaskNet parameters to change the mask s in a
direction that increases the TaskNet loss Lcls. Specifically, if ∂Lcls

∂se
is positive (increasing se increases loss),

the gradient term −∂Lcls

∂se
is negative, encouraging changes in p that lead to a decrease in se. Conversely, if

∂Lcls

∂se
is negative (increasing se decreases loss), this term encourages an increase in se. The MaskNet learns

to identify edges where the TaskNet is sensitive.

2. Sparsity Pressure (λm1T): This term provides a constant positive pressure in the objective gradient
(or negative pressure in the parameter update direction −gϕ,ψ) for all mask values se, scaled by λ/m. It
encourages the MaskNet parameters to change in ways that decrease all se values, promoting overall sparsity.

The MaskNet parameters p = (ϕ, ψ) are updated to minimize Jmask(ϕ, ψ) = −Lcls(θfixed, ϕ, ψ) + R(ϕ, ψ).
The gradient gϕ,ψ is given by Equation equation 24. Since Algorithm 1 employs an optimizer that minimizes
Jmask, the parameter update is p← p− ηϕψgTϕ,ψ.

To understand how this update affects individual mask values se, consider the term Qe = −∂Lcls

∂se
+ λ

m , which
is the e-th component of the vector

(
−∇sLcls + λ

m1T
)

in Equation equation 24. The change in se is driven
by this Qe through the MaskNet’s Jacobian ∇ps. Specifically, because the MaskNet uses a sigmoid output
for se (Equation 1), the entries of the Jacobian term ∂se

∂(pre-sigmoid activation for se) are non-negative. Assuming
the parameters p primarily influence se through its pre-sigmoid activation in a way that ∂se

∂p components
(relevant to se) don’t invert the sign of Qe’s influence, the effective change ∆se will have a sign opposite to
Qe. Thus, the MaskNet will tend to:

• Increase se if Qe < 0, which means ∂Lcls

∂se
> λ

m (the loss increase from se outweighs the sparsity
cost, so making se larger helps minimize −Lcls).

• Decrease se if Qe > 0, which means ∂Lcls

∂se
< λ

m (the loss increase from se is less than the sparsity
cost, or se helps decrease loss, so making se smaller helps minimize Jmask).

This aligns with the MaskNet’s objective of minimizing Jmask(ϕ, ψ) = −Lcls(θfixed, ϕ, ψ) +R(ϕ, ψ). (Note: If
using a hard-concrete gate or other mechanisms where the Jacobian ∂s/∂p might have more complex sign
interactions, this direct interpretation would need adaptation.)

Interaction Driving Robustness (Hypothesis): The adversarial process unfolds as follows:

1. The MaskNet identifies edges e where the current TaskNet fθ is vulnerable (high positive ∂Lcls

∂se
) or

edges that are not sufficiently beneficial (low negative ∂Lcls

∂se
) relative to the sparsity cost λ/m. It

decreases the corresponding se values.

2. The TaskNet receives this challenging mask s and updates its parameters θ via ∇θLcls to minimize
the loss despite the mask.

3. This adaptation by the TaskNet changes its internal representations and consequently alters the loss
sensitivity ∇sLcls for the next MaskNet update.

We hypothesize that domain-specific, spurious edges exhibit high positive ∂Lcls

∂se
for a non-robust TaskNet.

The MaskNet consistently targets these edges for down-weighting. The TaskNet, to survive, must adapt θ
such that its predictions become less dependent on these specific edges, thereby reducing the magnitude of
∂Lcls

∂se
for those spurious edges. This forces the TaskNet to rely more heavily on other structural patterns,

potentially the domain-invariant ones, whose presence consistently leads to a decrease in loss (negative ∂Lcls

∂se
)

even under perturbation. The gradient dynamics thus provide a mechanism pushing the TaskNet towards
representations robust to the removal of likely domain-specific structural features identified by the MaskNet.

26

Under review as submission to TMLR

F Additional Ablation Studies: Hyperparameters for Graph Enrichment

This section details further ablation studies on hyperparameters related to the graph enrichment process
(kNN and Spectral clustering edges) used in EdgeMask-DG*. All experiments, unless otherwise specified,
use the default hyperparameters outlined in the main paper. Leave-one-out cross-validation across the three
citation datasets (‘acmv9’, ‘citationv1’, ‘dblpv7’) is used for these hyperparameter sweeps. (Results are from
single runs; std. dev. over multiple seeds would be beneficial for robustness assessment.)

F.1 kNN K Ablation

We study the effect of varying the number of neighbors (‘knnk’) used for constructing the kNN feature graph
within our full EdgeMask-DG*(Spec+kNN) method. The spectral K is fixed at 100. Average results over the
three leave-one-out scenarios are presented in Table 9 and Figure 2.

Table 9: kNN K ablation results (average over 3 Scenarios). Performance metrics (Avg Micro-F1, Avg
Macro-F1) are reported. The default value (k=10) and the best average performance (k=3) are highlighted.

kNN K Avg Micro-F1 Avg Macro-F1

3.0000 0.7383 0.7260
5.0000 0.7263 0.7115

10.0000 0.7307 0.7175
20.0000 0.6871 0.6428
50.0000 0.6362 0.5166

3 5 10 20 50
0.5

0.6

0.7

kNN K (Number of Neighbors)

Av
er

ag
e

F1
Sc

or
e

Avg Micro-F1
Avg Macro-F1

Figure 2: Average performance vs. kNN K (number of neighbors). Results averaged over 3 leave-one-out
scenarios.

Analysis: The choice of ‘knnk’ significantly impacts performance. Figure 2 shows a clear trend: performance
is best for small values of K (peaking at K=3 on average), remains relatively good at K=10 (our default),
but drops sharply for larger values (K=20 and K=50). The particularly steep decline in Macro-F1 for K=50
suggests that including too many neighbors introduces excessive noise or spurious connections, potentially
linking nodes across class boundaries and harming the classification of minority classes. This indicates that
the kNN edges are most beneficial when they capture strong, local similarities based on node features. While
K=3 yields the best average, K=10 provides a good balance and strong performance, justifying its use as a
default, although smaller values might offer further improvements.

27

Under review as submission to TMLR

F.2 Spectral K Ablation

We analyze the effect of varying the number of clusters (‘spectralk’) used for generating spectral feature edges
in our full EdgeMask-DG*(Spec+kNN) method. The kNN K is fixed at 10. Average results over the three
leave-one-out scenarios, including training time, are presented in Table 10 and Figure 3.

Table 10: Spectral K ablation results (average over 3 Scenarios, except k=50). Performance metrics (Avg
Micro-F1, Avg Macro-F1) and average training time (s) are reported. The default (k=100) and best performing
(k=200) values are highlighted.

Spectral K Avg Micro-F1 Avg Macro-F1 Avg Train Time (s)

50.0000 0.7126 0.6551 393.30
100.0000 0.7463 0.7354 363.0800
150.0000 0.7404 0.7268 323.6400
200.0000 0.7498 0.7364 309.3200
250.0000 0.7457 0.7339 325.2400
300.0000 0.7449 0.7301 318.8800

100 150 200 250 3000.72

0.73

0.74

0.75

0.76

Spectral K (Number of Clusters)

Av
er

ag
e

F1
Sc

or
e

Avg Micro-F1
Avg Macro-F1

300

320

340

360

380

Av
g

Tr
ai

n
T

im
e

(s
)

Avg Train Time

Figure 3: Average performance and training time vs. spectral K. F1 scores (left axis) and training time (right
axis) averaged over three leave-one-out runs (note: k = 50 omitted due to OOM).

Analysis: The number of spectral clusters (‘spectralk’) influences both performance and training time. The
partial results and OOM error for ‘k=50’ suggest that using too few clusters can be problematic, potentially
leading to very large, dense clusters that are computationally expensive to process during edge generation.
For ‘k’ values between 100 and 300, performance is relatively stable, as shown in Figure 3. The best average
performance (both Micro-F1 and Macro-F1) is achieved at ‘k=200’. Interestingly, ‘k=200’ also results in the
fastest average training time among the reliable runs. While the default ‘k=100’ performs well, increasing ‘k’
to 200 offers a slight performance boost and improved efficiency. Increasing ‘k’ further to 250 and 300 leads
to a minor drop in performance and slightly longer training times compared to ‘k=200’.

28

	Introduction
	Related Work
	Preliminaries
	Proposed Approach for Cross-Domain Generalization: EdgeMask-DG*
	Enriched Graph Representation
	Adversarial Edge Masking
	GAT Backbone with Edge Attributes
	Training Procedure
	Theoretical Grounding: Robust Optimization Perspective
	Computational Complexity

	Experiments
	Experimental Setup
	Main Results
	Performance on Citation Networks (ACM, DBLP, Citation)
	Performance on Diverse Graph-DG Benchmarks

	Ablation Studies
	Impact of Enriched Graph and Adversarial Masking
	Effect of Sparsity Regularization (lambda)

	Conclusion
	Appendix
	Dataset Statistics

	Reproducibility Statement
	Code Availability
	Time Complexity Analysis

	Theoretical Analysis: Robust Optimization Perspective
	Problem Setup
	Lagrangian Duality and Penalized Objective
	Interpretation and Connection to Algorithm 1
	Analysis of a Concave Surrogate Inner Game (s is discrete add relaxation)
	Optimal Mask for the Penalized Surrogate Problem
	Strong Duality for the Constrained Surrogate Problem
	Connection to the EdgeMask-DG* Algorithm

	KKT Analysis of the Adversarial Mask Optimization
	Interpretation of KKT Conditions

	Gradient Analysis of the Adversarial Game
	TaskNet Gradient Update
	MaskNet Gradient Update
	Interpretation of Gradient Dynamics

	Additional Ablation Studies: Hyperparameters for Graph Enrichment
	kNN K Ablation
	Spectral K Ablation

