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Abstract

Decentralized learning algorithms enable the training of deep learning models over large
distributed datasets, without the need for a central server. The current state-of-the-art de-
centralized algorithms mostly assume the data distributions to be Independent and Identi-
cally Distributed (IID). In practical scenarios, the distributed datasets can have significantly
different data distributions across the agents. This paper focuses on improving decentral-
ized learning on non-IID data with minimal compute and memory overheads. We propose
Neighborhood Gradient Mean (NGM), a novel decentralized learning algorithm that modifies
the local gradients of each agent using self- and cross-gradient information. In particular,
the proposed method averages the local gradients with model-variant or data-variant cross-
gradients based on the communication budget. Model-variant cross-gradients are derivatives
of the received neighbors’ model parameters with respect to the local dataset. Data-variant
cross-gradient derivatives of the local model with respect to its neighbors’ datasets. The
data-variant cross-gradients are aggregated through an additional communication round.
We theoretically analyze the convergence characteristics of NGM and demonstrate its ef-
ficiency on non-IID data sampled from various vision and language datasets. Our exper-
iments demonstrate that the proposed method either remains competitive or outperforms
(by 0−6%) the existing state-of-the-art (SoTA) decentralized learning algorithm on non-IID
data with significantly less compute and memory requirements. Further, we show that the
model-variant cross-gradient information available locally at each agent can improve the
performance on non-IID data by 2 − 20% without additional communication cost.

1 Introduction

The remarkable success of deep learning is mainly attributed to the availability of humongous amounts of
data and computing power. Large amounts of data are generated on a daily basis at different devices all over
the world which could be used to train powerful deep learning models. Collecting such data for centralized
processing is not practical because of communication and privacy constraints. To address this concern, a
new interest in developing distributed learning algorithms (Agarwal & Duchi, 2011) has emerged. Federated
learning (centralized learning) (Konecny et al., 2016) is a popular setting in the distributed machine learning
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paradigm, where the training data is kept locally at the edge devices and a global shared model is learned
by aggregating the locally computed updates through a coordinating central server. Such a setup requires
continuous communication with a central server which becomes a potential bottleneck (Haghighat et al.,
2020). This has motivated the advancements in decentralized machine learning.

Decentralized machine learning is a branch of distributed learning that focuses on learning from data dis-
tributed across multiple agents/devices. Unlike Federated learning, these algorithms assume that the agents
are connected peer to peer without a central server. It has been demonstrated that decentralized learning al-
gorithms (Lian et al., 2017) can perform comparably to centralized algorithms on benchmark vision datasets.
Lian et al. (2017) present Decentralised Parallel Stochastic Gradient Descent (D-PSGD) by combining SGD
with gossip averaging algorithm (Xiao & Boyd, 2004). Further, the authors analytically show that the conver-
gence rate of D-PSGD is similar to its centralized counterpart (Dean et al., 2012). Decentralized Momentum
Stochastic Gradient Descent (DMSGD) which introduces momentum to D-PSGD was proposed and analyzed
in Balu et al. (2021). Assran et al. (2019) introduce Stochastic Gradient Push (SGP) which extends D-PSGD
to directed and time-varying graphs. Tang et al. (2019); Koloskova et al. (2019) explore error-compensated
compression techniques (Deep-Squeeze and CHOCO-SGD) to reduce the communication cost of D-PSGD
significantly while achieving the same convergence rate as centralized algorithms. Aketi et al. (2021) com-
bined Deep-Squeeze with SGP to propose communication-efficient decentralized learning over time-varying
and directed graphs. Lu & De Sa (2020); Liu et al. (2020b); Zhao et al. (2022); Takezawa et al. (2023) also
explore communication compression in decentralized setups. Recently, Koloskova et al. (2020) proposed a
unified framework for the analysis of gossip-based decentralized SGD methods and provide the best-known
convergence guarantees.

The key assumption to achieve state-of-the-art performance by all the above-mentioned decentralized algo-
rithms is that the data is independent and identically distributed (IID) across the agents. In particular, the
data is assumed to be distributed in a uniform and random manner across the agents. This assumption does
not hold in most of the real-world applications as the data distributions across the agents are significantly
different (non-IID) based on the user pool (Hsieh et al., 2020). The effect of non-IID data in a peer-to-peer
decentralized setup is a relatively under-studied problem. There are only a few works that try to bridge the
performance gap between IID and non-IID data for a decentralized setup. Note that, we mainly focus on
a common type of non-IID data, widely used in prior works (Tang et al., 2018; Lin et al., 2021; Esfandiari
et al., 2021): a skewed distribution of data labels across agents. Tang et al. (2018) proposed D2 algorithm
that extends D-PSGD to non-IID data. However, the algorithm was demonstrated on only a basic LeNet5
(LeCun et al., 1998) model and is not scalable to deeper models with normalization layers. SwarmSGD
proposed by Nadiradze et al. (2019) leverages random interactions between participating agents in a graph
to achieve consensus. Lin et al. (2021) replace local momentum with Quasi-Global Momentum (QGM) and
improve the test performance by 1 − 20%. However, the improvement in accuracy is only 1 − 2% in case
of highly skewed data distribution as shown in Aketi et al. (2022). Tracking mechanisms such as Gradient
Tracking (Di Lorenzo & Scutari, 2016; Pu & Nedić, 2021; Koloskova et al., 2021) and Momentum Tracking
(Takezawa et al., 2022) have been proposed to tackle non-IID data in decentralized settings at the cost of
2× communication overhead. Most recently, Esfandiari et al. (2021) proposed Cross-Gradient Aggregation
(CGA) and a compressed version of CGA (CompCGA), claiming state-of-the-art performance for decen-
tralized learning algorithms over completely non-IID data. CGA aggregates cross-gradient information, i.e.,
derivatives of its model with respect to its neighbors’ datasets through an additional communication round.
It then updates the model using projected gradients based on quadratic programming. CGA and CompCGA
require a very slow quadratic programming step (Goldfarb & Idnani, 1983) after every iteration for gradient
projection which is both compute and memory intensive. This work focuses on the following question: Can
we improve the performance of decentralized learning on non-IID data with minimal compute and memory
overhead?

In this paper, we propose Neighborhood Gradient Mean (NGM ) algorithm with two variants to handle
non-IID data in peer-to-peer decentralized learning setups. Firstly, we classify the gradients at each agent
into three types, namely self-gradients, model-variant cross-gradients, and data-variant cross-gradients (see
Section 3). The self-gradients (or local gradients) are the derivatives computed at each agent on its model
parameters with respect to the local dataset. The model-variant cross-gradients are the derivatives of the
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received neighbors’ model parameters with respect to the local dataset. These gradients are computed
locally at each agent after receiving the neighbors’ model parameters. Communicating the neighbors’ model
parameters is a necessary step in any gossip-based decentralized algorithm (Lian et al., 2017). The data-
variant cross-gradients are the derivatives of the local model with respect to its neighbors’ datasets. These
gradients are obtained through an additional round of communication. We then cluster the gradients into
a) model-variant cluster with self-gradients and model-variant cross-gradients, and b) data-variant cluster
with self-gradients and data-variant cross-gradients. Finally, the local gradients are replaced with the model-
variant cluster means in NGMmv where the communication budget is 1×, and with the data-variant cluster
means in NGMdv where the communication budget is 2×. The main motivation behind this modification is
to account for the high variation in the computed local gradients (and in turn the model parameters) across
the neighbors due to the non-IID nature of the data distribution.

The proposed NGMdv has two rounds of communication at every iteration to send model parameters and
data-variant cross-gradients. This incurs 2× communication cost compared to traditional decentralized al-
gorithms (D-PSGD). To reduce this communication overhead, we show that NGMdv can be combined with
error feedback-based compression methods to compress the additional round of cross-gradient communica-
tion. Note that NGMmv has no communication overhead. We provide a detailed convergence analysis of the
proposed NGMdv algorithm and show that the analysis can be trivially extended to NGMmv. We validate
the performance of the proposed algorithm on various datasets, model architectures, and graph topologies.
We compare the proposed algorithm with several baselines such as D-PSGD (Lian et al., 2017), QG-DSGDm
(Lin et al., 2021), Momentum Tracking (Takezawa et al., 2022), and CGA (Esfandiari et al., 2021). Our
experiments show that NGM can achieve superior performance on non-IID data compared to the current
state-of-the-art approaches. We also report the order of communication, memory, and compute overheads
required for various decentralized algorithms as compared to D-PSGD.

Contributions: In summary, we make the following contributions.

• We propose the Neighborhood Gradient Mean (NGM ) algorithm with two variations for decentral-
ized learning on non-IID data. NGMmv utilizes self-gradients and model-variant cross-gradients to
improve the performance on non-IID data. NGMdv improves this performance further by utilizing
self-gradients and data-variant cross-gradients at the cost of 2× communication overhead.

• We theoretically show that the convergence rate of NGM is O( 1√
NK

), which is consistent with the
state-of-the-art decentralized learning algorithms.

• NGMmv outperforms the QG-DSGDm baseline by 2 − 20% without any communication overhead.

• NGMdv either remains competitive or outperforms by 0 − 6% with significantly less compute and
memory requirements compared to the current state-of-the-art at iso-communication.

2 Background

In this section, we provide the background on decentralized learning algorithms with peer-to-peer connec-
tions.

The main goal of decentralized machine learning is to learn a global model using the knowledge extracted
from the locally generated and stored data samples across N edge devices/agents while maintaining pri-
vacy constraints. In particular, we solve the optimization problem of minimizing global loss function F(x)
distributed across N agents as given in equation. 1.

min
x∈Rd

F(x) = 1
N

N∑
i=1

fi(x),

and fi(x) = Edi∈Di [Fi(x; di)] ∀i

(1)

This is typically achieved by combining stochastic gradient descent (Bottou, 2010) with global consensus-
based gossip averaging (Xiao & Boyd, 2004). The communication topology in this setup is modeled as a
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graph G = ([N ], E) with edges {i, j} ∈ E if and only if agents i and j are connected by a communication link
exchanging the messages directly. We represent Ni as the neighbors of i including itself. It is assumed that
the graph G is strongly connected with self-loops i.e., there is a path from every agent to every other agent.
The adjacency matrix of the graph G is referred to as a mixing matrix W where wij is the weight associated
with the edge {i, j}. Note that, weight 0 indicates the absence of a direct edge between the agents. We assume
that the mixing matrix is doubly-stochastic and symmetric, similar to all previous works in decentralized
learning. For example, in a undirected ring topology, wij = 1

3 if j ∈ {i − 1, i, i + 1}. Further, the initial
models and all the hyperparameters are synchronized at the beginning of the training. Algorithm. 2 in the
appendix describes the flow of D-PSGD with momentum. The convergence of the Algorithm. 2 assumes the
data distribution across the agents to be Independent and Identically Distributed (IID).

3 Neighborhood Gradient Mean

We propose the Neighborhood Gradient Mean (NGM) algorithm and a compressed version of NGM which
improve the performance of decentralized learning on non-IID data. We define the concepts of self-gradients
and cross-gradients below.

Self-Gradient: For an agent i with the local dataset Di and model parameters xi, the self-gradient is the
gradient of the loss function fi with respect to the model parameters xi, evaluated on mini-batch di sampled
from dataset Di.

gii = ∇xFi(xi; di) (2)

Cross-Gradient: For an agent i with model parameters xi connected to neighbor j that has local dataset
Dj , the cross-gradient is the gradient of the loss function fj with respect to the model parameters xi,
evaluated on mini-batch dj sampled from dataset Dj .

gij = ∇xFj(xi; dj) (3)

At each agent i, we further divide the cross-gradients into two categories. 1) Model-variant cross-gradients:
The derivatives that are computed locally using its local data on the neighbors’ model parameters (gji). 2)
Data-variant cross-gradients: The derivatives (received through communication) of its model parameters on
the neighbors’ dataset (gij). Note that an agent i computes the cross-gradients gji that act as model-variant
cross-gradients for i and as data-variant cross-gradients for j. In particular, the data-variant cross-gradient
of i i.e., gij is computed by agent j using its local data dj after receiving the model parameters xi from i
and is then communicated to agent i if needed.

3.1 The NGM algorithm

The pseudo-code of the Neighborhood Gradient Mean (NGM ) is shown in Algorithm. 1. The overview of
the algorithm is illustrated in Figure. 5 of Appendix A.3.

The main contribution of the proposed NGM algorithm is the local gradient manipulation step (line 12 in
Algorithm. 1). We first introduce a hyper-parameter α called NGM mixing weight which is either set to
0 or 1. In the kth iteration of NGM, each agent i calculates its self-gradient gii. Then, agent i’s model
parameters are transmitted to all other agents (j) in its neighborhood, and the respective cross-gradients
are calculated by the neighbors. These cross-gradients are transmitted back to agent i through an additional
communication round if α is set to 1. At every iteration after the first communication round, each agent
i has access to self-gradients (gii) and model-variant cross-gradients. When α is set to 1, the agents get
access to data-variant cross-gradients through a second round of communication. Now, we group these
cross-gradients into two clusters: a) Model-variant cluster {gji∀j ∈ Ni} that includes self-gradients and
model-variant cross-gradients, and b) Data-variant cluster {gij∀j ∈ Ni} that includes self-gradients and
data-variant cross-gradients. The local gradients at each agent are replaced with either of the clusters’ mean
based on α value as shown in Equation. 4, which assumes a uniform mixing matrix (wij = 1/m; m = |Ni|).
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Algorithm 1 Neighborhood Gradient Mean (NGM )
Input: Each agent i ∈ [1, N ] initializes model weights xi

(0), step size η, momentum coefficient β, averaging
rate γ, mixing matrix W = [wij ]i,j∈[1,N ], NGM mixing weight α ∈ {0, 1}, and Iij are elements of N × N
identity matrix, Ni represents neighbors of i including itself.

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for k=0, 1, . . . , K − 1 do
3. di

k ∼ Di

4. gii
k = ∇xfi(di

k; xi
k)

5. SENDRECEIVE(xi
k)

6. for each neighbor j ∈ {Ni − i} do
7. gji

k = ∇xfi(di
k; xj

k)
8. if α ̸= 0: SENDRECEIVE(gji

k )
11. end
12. g̃i

k =
∑

j∈Ni
[(1 − α)wjig

ji
k + αwijgij

k ]
13. vi

k = βvi
(k−1) − ηg̃i

k

14. x̃i
k = xi

k + vi
k

15. xi
(k+1) = x̃i

k + γ
∑

j∈Ni
(wij − Iij)xj

k

16. end
17. return

When α is set to zero, the proposed algorithm modifies the local gradient with model-variant cluster mean
and this is referred to as NGMmv. This version of the algorithm does not incur any communication overhead
The α = 1 version of the algorithm replaces local gradient with data-variant cluster mean and is referred
to as NGMdv. Setting α to any non-zero value requires an additional round of communication and we
experimentally determine that α = 1 gives the best results (refer section. 6 for more details).

g̃i
k = (1 − α)

[ 1
m

∑
j∈Ni

gji
k

]
︸ ︷︷ ︸

(a) Model-variant cluster mean

+ α
[ 1

m

∑
j∈Ni

gij
k

]
︸ ︷︷ ︸

(b) Data-variant cluster mean

(4)

The motivation for this modification is to reduce the variation of the computed local gradients across the
agents. In IID settings, the local gradients should statistically resemble the cross-gradients and hence simple
gossip averaging is sufficient to reach convergence. However, in the non-IID case, the local gradients across
the agents are significantly different due to the variation in datasets and hence the model parameters on
which the gradients are computed. The proposed algorithm reduces this variation in the local gradients as it
is equivalent to adding the bias term ϵ for NGMmv and the bias term ω for NGMdv as shown in Equation. 5.

g̃i
k = gii

k + (1 − α)
[ 1

m

∑
j∈Ni

(gji
k − gii

k )
]

︸ ︷︷ ︸
model variance bias ϵi

k

+α
[ 1

m

∑
j∈Ni

(gij
k − gii

k )
]

︸ ︷︷ ︸
data variance bias ωi

k

ϵi
k = 1

m

∑
j∈Ni

(
∇xF (di

k; xj
k) − ∇xF (di

k; xi
k)
)

ωi
k = 1

m

∑
j∈Ni

(
∇xF (dj

k; xi
k) − ∇xF (di

k; xi
k)
)

(5)
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The bias term ϵ compensates for the difference in a neighborhood’s self-gradients caused due to variation
in the model parameters across the neighbors. Whereas, the bias term ω compensates for the difference
in a neighborhood’s self-gradients caused due to variation in the data distribution across the neighbors.
We hypothesize and show through our experiments that the addition of one of these bias terms to the
local gradients improves the performance of decentralized learning on non-IID data by accelerating global
convergence.

4 Convergence Analysis of NGM

In this section, we provide a convergence analysis for NGMdv. We assume that the following statements
hold:

Assumption 1 - Lipschitz Gradients: Each function fi(x) is L-smooth.

Assumption 2 - Bounded Variance: The variance of the stochastic gradients is assumed to be bounded.

Ed∼Di ||∇Fi(x; d) − ∇fi(x)||2 ≤ σ2 ∀i ∈ [1, N ] (6)

||∇fi(x) − ∇F(x)||2 ≤ ζ2 ∀i ∈ [1, N ] (7)
Assumption 3 - Doubly Stochastic Mixing Matrix: The mixing matrix W is a real doubly stochastic
matrix with λ1(W ) = 1 and

max{|λ2(W )|, |λN (W )|} ≤ √
ρ < 1 (8)

where λi(W ) is the ith largest eigenvalue of W and ρ is a constant.
The above assumptions are commonly used in most decentralized learning setups.
Lemma 1. Given assumptions 1-3, we define gi = ∇Fi(x; d) and the NGM gradient update g̃i. For all i,
we have:

E
[∥∥∥∥ 1

N

N∑
i=1

(g̃i − gi)
∥∥∥∥2]

≤ 4(σ2

N
+ ζ2) (9)

A complete proof for Lemma 1 can be found in Appendix. A.1. This lemma bounds the difference between
self-gradients and the proposed gradients in terms of inter- and intra-gradient variance bounds. The inter-
gradient variation bounded by ζ2 determines the heterogeneity in the data distribution i.e., the non-IIDness.
The intra-gradient variation bounded by σ2 determines the stochastic noise across the mini-batches within an
agent. Intuitively, the distance between the self-gradients gi and the NGMdv gradient update g̃i increases with
an increase in the degree of heterogeneity in data distribution which is expected. Note that the convergence
rate for NGMmv remains the same as CGA where E

[∥∥(g̃i − gi)
∥∥2] is bounded by a positive constant which

is of the order of 1
K .

Theorem 1 presents the convergence of the proposed NGMdv algorithm and the proof is detailed in Ap-
pendix A.2.2
Theorem 1. (Convergence of NGMdv algorithm) Given assumptions 1-3 and lemma 1, let step size η satisfy
the following conditions:

(1) η ≤
√

4(1 − √
ρ)2 + 6(1 − √

ρ)(1 − β)2 − 2(1 − √
ρ)

6L

(2) 1 − Lη

2 (
√

1 + 4
Lη

− 1) < β < 1

For all K ≥ 1, we have

1
K

K−1∑
k=0

E[||∇F(x̄k)||2] ≤ 1
C1K

(F(x̄0) − F∗) + C2(σ2

N
+ ζ2) + C3

(σ2 + ζ2)
(1 − √

ρ)2 (10)

where β = momentum coefficient, x̄k = 1
N

∑N
i=1 xi

k
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C1 = 1
2 ( η

1−β − (1−β)
βL ), C2 =

(
10η2L(η2+β)

(1−β)3

)
/C1 = 20η2L2β(η2+β)

(1−β)2(ηβL−(1−β)2) , and C3 = 14η3L3β
(1−β)2(ηβL−(1−β)2) .

The result of the theorem. 1 shows that the magnitude of the average gradient achieved by the consensus
model is upper-bounded by the difference between the initial objective function value and the optimal value,
the sampling variance, and gradient variations across the agents representing data heterogeneity. A detailed
explanation of the constraints on step size and momentum coefficient is presented in the Appendix. A.2.3.
Further, we present a corollary to show the convergence rate of NGMdv in terms of the number of iterations.

Corollary 1. Suppose that the step size satisfies η = O
(√

N
K

)
and that ζ2 = O

(
1

(1−√
ρ)N

)
. For a sufficiently

large K ≥ 36NL2

r2 , and

r =
√

4(1 − √
ρ)2 + 6(1 − √

ρ)(1 − β)2 − 2(1 − √
ρ), we have, for some constant C > 0,

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ C

(
1√
NK

+ 1
K

)
.

The proof for Corollary. 1 can be found in Appendix. A.2.4. Here, the constant C depended on the spectral
gap ρ, stochastic noise bound σ2 and the inter gradient variance bound ζ2. The bound on ζ2 is the result
of the assumption that the graphs with higher connectivity (lower spectral gap) can tolerate more non-
IIDness. Corollary. 1 indicates that the proposed algorithm achieves linear speedup (with a convergence rate
of O( 1√

NK
)) when K is sufficiently large. This convergence rate is similar to the well-known best result for

decentralized SGD algorithms in the literature as shown in Table. 1.

Table 1: Convergence rate comparison between decentralized learning algorithms.

Method Rate Assumption Simplified Rate

D-PSGD O
(

1+σ2
√

NK
+ N2σ2

K(1−ρ) + N2ζ2

K(1−√
ρ)2

)
- O( 1√

NK
+ 1

K )

CGA O
(

1+σ2
√

NK
+ N(ζ2+σ2+ϵ2)

K(1−√
ρ)2 + (

√
K√
N

+
√

N√
K

)ϵ2
)

ϵ2 = O( 1
K ) O( 1√

NK
+ 1

K + 1
K1.5 + 1

K2 )

NGMdv (ours) O
(

1+σ2
√

NK
+ N(σ2+ζ2)

K(1−√
ρ)2 +

√
N√
K

ζ2
)

ζ2 = O( 1
(1−√

ρ)N ) O( 1√
NK

+ 1
K )

5 Experiments

In this section, we analyze the performance of the proposed NGMmv, and NGMdv techniques and compare
them with the corresponding baseline i.e., D-PSGD algorithm (Lian et al., 2017), QG-DSGDm (Lin et al.,
2021), Momentum Tracking (Takezawa et al., 2022) and state-of-the-art CGA method (Esfandiari et al.,
2021). *

5.1 Experimental Setup

The efficiency of the proposed method is demonstrated through our experiments on a diverse set of datasets,
model architectures, tasks, topologies, and numbers of agents. We present the analysis on – (a) Datasets
(Appendix A.5): vision datasets (CIFAR-10, CIFAR-100, Fashion MNIST and Imagenette (Husain, 2018))
and language datasets (AGNews (Zhang et al., 2015)). (b) Model architectures (Appendix A.6): 5-layer
CNN, VGG-11, ResNet-20, LeNet-5, MobileNet-V2, ResNet-18, BERTmini and DistilBERTbase (c) Tasks:
Image and Text Classification. (d) Topologies: Ring, Chain, and Torus. (e) Number of agents: varying from
4 to 20. Note that we use low-resolution (32 × 32) images of the Imagenette dataset for the experiments in
Table. 3. The results for high resolution (224 × 224) Imagenette are presented in Table. 4.

*Our PyTorch code is available at https://github.com/aparna-aketi/neighborhood_gradient_clustering
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We consider an extreme case of non-IID distribution where no two neighboring agents have the same class.
This is referred to as complete label-wise skew or 100% label-wise non-IIDness (Hsieh et al., 2020). In
particular, for a 10-class dataset such as CIFAR-10 - each agent in a 5-agent system has data from 2 distinct
classes, and each agent in a 10-agent system has data from a unique class. For a 20-agent system, two agents
that are maximally apart share the samples belonging to a class. We report the test accuracy of the consensus
model averaged over three randomly chosen seeds. The details of the hyperparameters for all the experiments
are present in Appendix. A.10. We compare the proposed method with iso-communication baselines. The
experiments on NGM mv are compared with D-PSGD and QG-DSGDm, NGM dv with Momentum Tracking
and CGA. The communication cost for each experiment in this section is presented in Appendix A.9.

5.2 Results

Firstly, we evaluate variants of NGM and compare them with respective baselines in Table. 2, for training
different models trained on CIFAR-10 over various graph sizes and topologies. We observe that NGMmv
consistently outperforms QG-DSGDm for all models and graph sizes over ring topology with a significant
performance gain varying from 2 − 20%. For the torus topology, NGMmv outperforms D-PSGD by 14 −
18% and QG-DSGDm fails to converge. Our experiments show the superiority of NGMdv over CGA. The
performance gains are more pronounced when considering larger graphs (with 20 agents) and compact
models such as ResNet-20. We observe that CGA and NGM perform better than Momentum Tracking in
most cases. We further demonstrate the generalizability of the proposed method by evaluating it on various
image datasets (refer Table. 3) such as Fashion MNIST, and Imagenette and on challenging datasets such
as CIFAR-100. Table. 3, 4 show that NGMmv outperforms QG-DSGDm by 1 − 18% across various datasets
whereas NGMdv remain competitive with an average improvement of ∼ 1%.

Table 2: Average test accuracy comparisons for CIFAR-10 with non-IID data using various architectures and
graph topologies. The results are averaged over three seeds where std is indicated.

Method Agents 5layer CNN 5layer CNN VGG-11 ResNet-20
Ring Torus Ring Ring

5 76.00 ± 1.44 - 67.04 ± 5.36 82.13 ± 0.84
D-PSGD 10 47.68 ± 3.20 55.34 ± 6.32 44.14 ± 3.30 31.66 ± 6.01

20 44.85 ± 1.94 50.12 ± 1.91 38.92 ± 2.99 31.94 ± 2.91
5 78.77 ± 0.69 - 81.71 ± 0.45 82.59± 2.66

QG-DSGDm 10 47.83 ± 3.39 14.48 ± 0.50 57.77 ± 0.33 46.09 ± 7.90
20 46.57 ± 4.80 17.25 ± 5.81 32.32 ± 7.61 44.78 ± 3.39
5 82.20 ± 0.34 - 83.65 ± 0.38 85.88 ± 0.58

NGMmv (ours) 10 67.43 ± 1.15 73.84 ± 0.33 59.92 ± 2.12 66.02 ± 2.86
20 58.80 ± 1.30 64.55 ± 1.16 52.70± 1.63 50.74 ± 2.36
5 80.34 ± 0.67 - 79.62 ± 7.42 85.65 ± 0.30

Momentum Tracking 10 58.54 ± 7.51 67.46 ± 1.10 73.51 ± 1.42 66.37 ± 7.72
20 36.58 ± 11.5 56.71 ± 1.96 36.12 ± 13.8 44.35 ± 11.7
5 82.20 ± 0.43 - 84.41 ± 0.22 87.52 ± 0.50

CGA 10 72.96 ± 0.40 76.04 ± 0.62 79.66 ± 0.46 79.98 ± 1.23
20 69.88 ± 0.84 73.21 ± 0.27 79.30 ± 0.12 75.13 ± 1.56
5 83.36 ± 0.65 - 85.15 ± 0.58 88.52 ± 0.19

NGMdv (ours) 10 75.34 ± 0.30 78.53 ± 0.56 79.55 ± 0.30 84.02 ± 0.44
20 73.36 ± 0.88 75.11 ± 0.07 79.43 ± 0.62 81.26 ± 0.69

To show the effectiveness of the proposed method across different modalities, we present results on the text
classification task in Table 4. We train on the BERTmini model with the AGNews dataset distributed over
4 and 8 agents and DistilBertbase distributed over 4 agents. For NGMmv, we see a maximum improvement
of 2.1% over the baseline D-PSGD algorithm. Even for the text classification task, we observe NGMdv to
be competitive with CGA. These observations are consistent with the results of the image classification
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Table 3: Average test accuracy comparisons for various datasets with non-IID sampling trained over undi-
rected ring topology. The results are averaged over three seeds where std is indicated.

Method Agents Fashion MNIST CIFAR-100 Imagenette (32×32)
(LeNet-5) (ResNet-20) (MobileNet-V2)

D-PSGD 5 86.43 ± 0.14 44.66 ± 5.23 47.09 ± 9.20
10 75.49 ± 0.32 19.03 ± 13.27 32.81 ± 2.18

QG-DSGDm 5 89.28 ± 0.52 49.60 ± 3.30 43.70 ± 2.80
10 84.38 ± 0.58 41.28 ± 0.61 17.80 ± 2.66

NGMmv (ours) 5 90.03 ± 0.11 55.96 ± 0.95 60.15 ± 2.17
10 87.10 ± 0.47 49.30 ± 1.02 36.13 ± 1.97

Momentum Tracking 5 90.52 ± 0.56 49.52 ± 2.36 38.79 ± 2.21
10 87.82 ± 0.19 37.74 ± 4.74 23.07 ± 11.3

CGA 5 90.03 ± 0.39 56.43 ± 2.39 72.82 ± 1.25
10 87.61 ± 0.30 53.61 ± 1.07 61.97 ± 0.58

NGMdv (ours) 5 90.61 ± 0.18 56.50 ± 3.23 74.49 ± 0.93
10 87.24 ± 0.23 53.77 ± 0.15 64.06 ± 1.11

tasks. Finally, through this exhaustive set of experiments, we demonstrate that the NGMdv can serve as a
simple plugin to boost the performance of decentralized learning on non-IID data without significant memory
and compute overheads. Further, NGMmv demonstrates that locally available model-variant cross-gradient
information at each agent can be efficiently utilized to improve decentralized learning with no communication
overhead.

Table 4: Average test accuracy comparisons for AGNews dataset (left side of the table) and full resolution
(224 × 224) Imagenette dataset (right side of the table). The results are averaged over three seeds where std
is indicated.

Method
AGNews-BERTmini AGNews-DistilBERTbase Imagenette (224×224)-ResNet-18

Agents = 4 Agents = 8 Agents = 4 Agents = 5
Ring Topology Ring Topology Ring Topology Chain Topology

D-PSGD 89.21 ± 0.41 85.48 ± 0.71 91.54 ± 0.07 65.43 ± 4.60 42.02 ± 1.25
QG-DSGDm 87.38 ± 5.29 76.61 ± 3.63 93.55 ± 0.23 74.22 ± 2.30 43.35 ± 4.57
NGMmv (ours) 89.40 ± 0.13 87.58 ± 0.07 93.60 ± 0.12 78.26 ± 0.67 47.87 ± 0.99
Momentum Tracking 82.45 ± 6.19 87.82 ± 0.047 93.87 ± 0.15 81.11 ± 0.29 22.12 ± 2.93
CGA 91.43 ± 0.11 89.15 ± 0.45 93.42 ± 0.04 85.00 ± 0.67 65.96 ± 1.84
NGMdv (ours) 92.24 ± 0.29 89.02 ± 0.39 94.11 ± 0.01 85.85 ± 0.60 67.77 ± 1.76

(a) NGMmv on IID data (b) NGMmv on Non-IID data (c) Non-IID, ring topology

Figure 1: Average Validation loss of NGMmv during training CIFAR-10 on a 5-layer CNN with 5 agents.
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(a) NGMdv on IID data (b) NGMdv on Non-IID data (c) Non-IID, ring topology

Figure 2: Average Validation loss of NGMdv during training CIFAR-10 on a 5-layer CNN with 5 agents.

(a) Model variance bias of NGMmv (b) Model variance bias of NGMdv (c) Data variance bias of NGMdv

Figure 3: Ablation study: CIFAR-10 dataset trained on a 5-layer CNN over ring graph 5 agents.

5.3 Analysis

We empirically show the generalization characteristics in terms of validation loss convergence for the proposed
algorithm on IID and Non-IID data in Figures. 1(a), 2(a), and Figures. 1(b), 2(b) respectively. For Non-IID
data, we observe that there is a slight difference in convergence (as expected) with a slower rate for sparser
topology (ring graph) compared to a denser counterpart (fully connected graph). Figure. 1(c), 2(c) shows
the comparison of the generalization characteristics of the NGMmv and NGMdv algorithm with the respective
baselines. For the same decentralized setup, We observe that NGMmv and NGMdv have lower validation loss
than D-PSGD and CGA respectively. Analysis for 10 agents is presented in Appendix A.7.

Then we proceed to analyze the model variance and data variance bias terms when training with various
decentralized methods. Figure. 3(a) shows that the model variance bias of NGMmv is much lower than of the
D-PSGD baseline resulting in the better performance of NGMmv. We then compare the model variance and
data variance bias terms of NGMdv with CGA as shown in Figure. 3(b), and 3(c) respectively. We observe
that both the model variance and the data variance bias for NGMdv are significantly lower than CGA. This
is because CGA gives more importance to self-gradients as it updates in the descent direction that is close
to self-gradients and is positively correlated to data-variant cross-gradients. In contrast, NGM accounts for
the biases directly and gives equal importance to self-gradients and data-variant cross-gradients, thereby
achieving superior performance. Further, Figure.4(a) presents the average consensus error i.e., 1

n ||xi
k − x̄k||2F

over time for training CIFAR-10 dataset on 5-layer CNN with respect to various algorithms. This empirically
shows that the proposed NGM algorithm reaches the consensus at the same rate as CGA.

Additionally, we show that NGM can be used in synergy with QGM (Lin et al., 2021) to further improve
the performance of decentralized learning on non-IID Data. Figure. 4(b) shows the test accuracy on the
CIFAR-10 dataset trained on ResNet-20 over ring topology. We observe that the QGM version of NGMmv
performs better than NGMmv by 16 − 27%. Similarly, the QGM version of NGMdv performs 1.3 − 2.5%
better than the local momentum version of NGMdv.
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(a) Consensus Error with 5-layer CNN
over 5 agents

10 nodes 20 nodes40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y (
%
)

QG-DSGDm
ngmmv

ngmmv+QGM
ngmdv

ngmdv+QGM

(b) Training ResNet-20 by combining
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Figure 4: Training CIFAR-10 distributed in a non-IID fashion on a ring topology

5.4 Communication Compression

In this section, we discuss the impact of communication compression on the proposed NGM algorithm.
At every iteration, the NGMdv algorithm involves two rounds of communication with the neighbors: 1)
communicate the model parameters, and 2) communicate the cross-gradients. This communication overhead
can be a bottleneck in a resource-constrained environment. Hence, we explore a compressed version of NGM
referred to as CompNGM using Error Feedback SGD (EF-SGD) (Karimireddy et al., 2019) to compress the
cross-gradients. CompNGM compresses the error-compensated cross-gradients from 32 bits (floating point
precision of arithmetic operations) to 1 bit by using scaled signed gradients. The pseudo-code for CompNGM
is shown in Algorithm. 3 in the Appendix. Additional results and analysis on CompNGM are presented in
the Appendix. A.4.

Table 5: Test Accuracy of CompNGM, Accuracy drop compared to NGMdv and communication reduction
in Giga Bytes compared to NGMdv for various datasets trained on ring topology.

Dataset Model 5 agents 10 agents
Acc (%) Acc. Drop (%) Comm. Drop (GB) Acc (%) Acc. Drop (%) Comm. Drop (GB)

Fashion MNIST LeNet-5 90.48 ± 0.19 0.13 16.71 (1.94×) 83.38 ± 0.39 3.86 8.35 (1.94×)
CIFAR-10 ResNet-20 87.56 ± 0.34 0.96 123.11 (1.94×) 78.50 ± 0.98 5.52 61.75 (1.94×)
CIFAR-100 ResNet-20 57.51 ± 0.48 -1.01 100.49 (1.94×) 43.07 ± 0.32 10.7 50.27 (1.94×)
Imagenette (32×32) MobileNet-V2 72.91 ± 1.06 1.58 99.89 (1.94×) 61.91 ± 2.10 2.15 49.98 (1.94×)

Table. 5 shows that CompNGM reduces the communication cost by 1.94× by trading off 0.1 − 1.57% test
accuracy for 5 agents and 2 − 10% test accuracy for 10 agents. This shows that NGM can be combined with
communication compression techniques to achieve a trade-off between accuracy boost and communication
overhead. Further, NGM can be combined with stronger compression methods such as EF21 (Richtárik
et al., 2021) to have a better trade-off between accuracy and communication cost.

5.5 Hardware Benefits

The proposed NGMdv algorithm is superior in terms of memory and compute efficiency (see Table. 6 and
Appendix. A.8) while having equal communication cost as compared to CGA. NGMdv replaces the com-
plicated quadratic projection step of CGA with a simple weighted averaging step. Since NGMdv involves
weighted averaging, an additional buffer to store the cross-gradients is not required. CGA stores all the cross-
gradients in a matrix form for quadratic programming projection of the local gradient. Therefore, NGM has
no memory overhead compared to the baseline D-PSGD algorithm, while CGA requires additional memory
equivalent to the number of neighbors times model size. Moreover, the quadratic programming projection
step (Goldfarb & Idnani, 1983) in CGA is much more expensive in compute and latency than the weighted
averaging step of cross-gradients in NGM. Our evaluation clearly shows that NGM is superior to CGA in
terms of test accuracy, memory efficiency, compute efficiency, and latency.
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Table 6: Comparison of communication, memory, and compute overheads per mini-batch compared to D-
PSGD. ms: model size, ni: number of neighbors, b: floating point precision, Q: compute for Quadratic
Programming, B: compute for Backward Pass. Note that O(Q) >> O(nims) (Nesterov & Todd, 1997)

Method Comm. Memory Compute
QG-DSGDm 0 O(ms) O(nims)
NGMmv 0 0 O(nims + niB)
Momentum Tracking O(nims) O(2ms) O(nims)
CGA O(nims) O(nims) O(Q + niB)
NGMdv O(nims) 0 O(nims + niB)
CompCGA O( nims

b ) O(nims) O(Q + niB)
CompNGM O( nims

b ) O(nims) O(nims + niB)

6 Discussion and Limitations

As mentioned in Section. 3.1, the NGM mixing weight α is either set to 0 or 1 resulting in NGMmv or NGMdv
respectively. This implies that NGMmv utilizes model-variant cross-gradients whereas, NGMdv utilizes data-
variant cross-gradients. However, the NGMdv variant of the algorithm has access to both model-variant and
data-variant cross-gradients. So, we conduct an ablation study mixing these two cross gradients by varying
NGM mixing weight α in the range of [0, 1]. Figure. 4(c) depicts the change in average validation accuracy
with α and we observe that α = 1 performs best. Further, Figure. 3(b) shows that the model variant bias
reduces for NGMdv even though it does not explicitly utilize the model-variant cross-gradients. We hypothe-
size that, in NGMdv, the use of data-variant cross-gradients for local updates followed by gossip averaging of
model parameters inherently adds model-variant cross-gradients reducing model variance. Hence, explicitly
mixing the two sets of cross-gradients is not necessary. In summary, for 1× communication constraints i.e.,
when agents do not have access to data-variant cross-gradients, NGMmv effectively utilizes locally available
model-variant cross-gradients to improve the accuracy. On the contrary, when 2× communication is allowed
(non-zero α), the best performance is achieved by only utilizing the data-variant cross-gradients.

Table 7: Test Accuracy and Latency of ImageNet (non-IID) trained on ResNet-18 over 10-agent Ring. Note,
LM: Local Momentum, QGM: Quasi Global Momentum.

Trained for D-PSGD QG-DSGDm NGMmv NGMmv NGMmv Momentum CGA NGMdv NGMdv
60 epochs +LM + QGM Tracking + LM + QGM
Accuracy (%) 25.02 45.19 42.66 49.22 51.00 43.65 - 49.42 54.31
Epoch Time (min) 7.6 7.9 18.6 18.8 19.1 10.7 406 21.5 22.2

NGMmv has one potential limitation compared to D-PSGD and QG-DSGDm i.e., compute overhead. NGMmv
has to compute model-variant cross-gradients which requires every agent i to compute ni additional forward
and backward passes. However, NGMdv is significantly better in terms of latency, compute, and memory
requirements compared to CGA as it simplifies the complicated quadratic projection step. Running the
CGA algorithm on larger datasets like ImageNet is impractical due to the significant latency associated with
the quadratic projection step. Table. 7 reports the accuracy and latency of training ImageNet in a non-IID
fashion over a ring topology of 10 agents. We observe that CGA is ∼ 20× slower than NGMdv for the
ImageNet dataset on ResNet-18. We estimate the training time for one simulation of CGA on ImageNet (90
epochs with 10-agent ring topology) to be around 26 days on 4 Nvidia A100s (80 GB) with Intel(R) Xeon(R)
Gold 6338 CPU. Further, it has been shown in the literature (Koloskova et al., 2019; Tang et al., 2019) that
the communication compression with error feedback only affects the higher-order terms of the convergence
rate. Hence, decentralized compression algorithms have linear speedup similar to D-PSGD. Following this,
our future efforts go towards showing that CompNGM has a similar convergence rate as NGM. We would
also like to explore efficient methods to compute cross-gradients for NGM.
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7 Conclusion

Enabling decentralized training on non-IID data is key for ML applications to efficiently leverage the hu-
mongous amounts of user-generated private data. In this paper, we propose the Neighborhood Gradient
Mean (NGM ) algorithm with two variants that improve decentralized learning on non-IID data. NGMmv
improves the performance of decentralized learning utilizing model-variant cross-gradients without any com-
munication overhead. NGMdv further increases these gains by operating on data-variant cross-gradients.
Additionally, we present a compressed version of our algorithm (CompNGM ) to reduce the communication
overhead associated with data-variant cross-gradients of NGMdv. We theoretically analyze the convergence
characteristic and empirically validate the performance of the proposed techniques over different model ar-
chitectures, datasets, graph sizes, and topologies. Finally, we compare the proposed algorithms with the
current state-of-the-art decentralized learning algorithm on non-IID data and show superior performance
with significantly less compute and memory requirements setting the new state-of-the-art for decentralized
learning on non-IID data.
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A Appendix

A.1 Proof of Lemma. 1

This section presents detailed proof for Lemma. 1. The NGM algorithm modifies the local gradients as
follows

g̃i = (1 − α)
∑

j∈Ni

wjig
ji + α

∑
j∈Ni

wijgij = gi +
∑

j∈Ni

wij(gij − gi) (NGMdv uses α = 1)

g̃i − gi =
∑

j∈Ni

wij(∇Fj(x, dj) − ∇Fi(x, di))

Now we prove the lemma. 1 by applying expectation to the above inequality
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[∥∥∥∥∇Fj(x, dj) − ∇fj(x) − (∇Fi(x, di) − ∇fi(x))

∥∥∥∥2]

+ 1
N

N∑
i=1

∑
j∈Ni

wijE
[∥∥∥∥∇fj(x) − ∇F(x) + ∇F(x) − ∇fi(x)

∥∥∥∥2]
(e)
≤ 1

N2

N∑
i=1

∑
j∈Ni

wij4σ2 + 1
N

N∑
i=1

∑
j∈Ni

wijE
[∥∥∥∥∇fj(x) − ∇F(x) + ∇F(x) − ∇fi(x)

∥∥∥∥2]

= 4Nσ2

N2 + 1
N

N∑
i=1

∑
j∈Ni

wijE
[∥∥∥∥∇fj(x) − ∇F(x) + ∇F(x) − ∇fi(x)

∥∥∥∥2]
(∵
∑

j∈Ni

wij = 1)

(f)
≤ 4σ2

N
+ 1

N

N∑
i=1

∑
j∈Ni

wij

(
2E
[∥∥∥∥∇fj(x) − ∇F(x)

∥∥∥∥2]
+ 2E

[∥∥∥∥∇fi(x) − ∇F(x)
∥∥∥∥2])

(g)
≤ 4σ2

N
+ 1

N

N∑
i=1

∑
j∈Ni

wij4ζ2
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= 4σ2

N
+ 4ζ2

(a) identity E[||Z||2] = E[||Z − E[Z]||2] + E[||E[Z]||2] holds for any random vector Z; (b) the fact
E[∇Fi(x, di)] = ∇fi(x); (c) ∇Fi(x, di) − ∇fi(x) are independent random vectors with 0 mean and
E[||

∑N
i=1 Zi||] =

∑N
i=1 E[||Zi||2] holds when Zi are independent with mean zero; (d) jensen’s inequality;

(e) follows from assumption 2 Ed∼Di
||∇Fi(x; d) − ∇fi(x)||2 ≤ σ2 ∀i ∈ [1, N ]; (f) the basic inequal-

ity ||a1 + a2||2 ≤ 2||a1||2 + 2||a2||2 for any vectors a1, a2; and (g) follows from assumption 2 that
||∇fi(x) − ∇F(x)||2 ≤ ζ2 ∀i ∈ [1, N ]

∴ we have following bound given by lemma. 1: E[||g̃i − gi||2] ≤ 4( σ2

N + ζ2)

A.2 Convergence Analysis

In this section, we present the proof for our main theorem. 1 indicating the convergence of the proposed
NGMdv algorithm. Before we proceed to the proof of the theorem, we present a lemma showing that NGM
achieves consensus among the different agents.

A.2.1 Bound for Consensus Error

Lemma 2. Given assumptions 1-3 and lemma 1, the distance between the average sequence iterate x̄k and
the sequence iterates xk

i ’s generated NGM (i.e., the consensus error of the proposed algorithm) is given by

K∑
k=0

1
N

N∑
i=1

E[||x̄k − xi
k||2] ≤ 14η2(σ2 + ζ2)

(1 − β)2(1 − √
ρ)2 K + 6η2

(1 − β)2(1 − √
ρ)

K−1∑
k=0

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] (11)

where K ≥ 1 and β ∈ [0, 1) is the momentum coefficient.

To prove Lemma 2 and Theorem. 1, we follow the similar approach as (Esfandiari et al., 2021). Hence, we
also define the following auxiliary sequence along with Lemma 3

z̄k := 1
1 − β

x̄k − β

1 − β
x̄k−1 (12)

Where k > 0 and xk is obtained by multiplying the update law by 1
N 11⊤, (1 is the column vector with

entries being 1).

v̄k = βv̄k−1 − η
1
N

N∑
i=1

g̃i
k−1

x̄k = x̄k−1 + v̄k

(13)

If k = 0 then z̄k = x̄k. For the rest of the analysis, the initial value will be directly set to 0.

To prove Lemma. 2, we use the following facts.

z̄k+1 − z̄k = − η

1 − β

1
N

N∑
i=1

g̃i
k. (14)

K−1∑
k=0

∥z̄k − x̄k∥2 ≤ η2β2

(1 − β)4

K−1∑
k=0

∥∥∥∥ 1
N

N∑
i=1

g̃i
k

∥∥∥∥2
. (15)

Note that the proof for Eq. 14 and Eq. 15 can be found in (Esfandiari et al., 2021) as lemma-3 and lemma-4
respectively.
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Before proceeding to prove Lemma 2, we introduce some key notations and facts that serve to characterize
the Lemma similar to (Esfandiari et al., 2021).

We define the following notations:

G̃k ≜ [g̃1
k, g̃2

k, ..., g̃N
k ]

Vk ≜ [v1
k, v2

k, ..., vN
k ]

Xk ≜ [x1
k, x2

k, ..., xN
k ]

Gk ≜ [g1
k, g2

k, ..., gN
k ]

Hk ≜ [∇f1(x1
k), ∇f2(x2

k), ..., ∇fN (xN
k )]

(16)

We can observe that the above matrices are all with dimension d × N such that any matrix A satisfies
∥A∥2

F =
∑N

i=1 ∥ai∥2, where ai is the i-th column of the matrix A. Thus, we can obtain that:

∥Xk(I − Q)∥2
F =

N∑
i=1

∥xi
k − x̄k∥2. (17)

Define Q = 1
N 11⊤. For each doubly stochastic matrix W, the following properties can be obtained

(i) QW = WQ;
(ii) (I − Q)W = W(I − Q);
(iii) For any integer k ≥ 1, ∥(I − Q)W∥S ≤ (√ρ)k, where ∥ · ∥S is the spectrum norm of a matrix.

(18)

Let Ai, i ∈ {1, 2, ..., N} be N arbitrary real square matrices. It follows that

∥
N∑

i=1
Ai∥2

F ≤
N∑

i=1

N∑
j=1

∥Ai∥F∥Aj∥F. (19)

We present the following auxiliary lemmas to prove the lemma. 2
Lemma 3. Let all assumptions hold. Let gi be the unbiased estimate of ∇fi(xi) at the point xi such that
E[gi] = ∇fi(xi), for all i ∈ [N ] := {1, 2, ..., N}. Thus the following relationship holds

E
[∥∥∥∥ 1

N

N∑
i=1

g̃i

∥∥∥∥2]
≤ 10σ2

N
+ 8ζ2 + 2E

[∥∥∥∥ 1
N

N∑
i=1

∇fi(xi)
∥∥∥∥2]

(20)

Proof for Lemma 3:

E
[∥∥∥∥ 1

N

N∑
i=1

g̃i

∥∥∥∥2]
= E

[∥∥∥∥ 1
N

N∑
i=1

(g̃i − gi + gi)
∥∥∥∥2]

= E
[∥∥∥∥ 1

N

N∑
i=1

(g̃i − gi) + 1
N

N∑
i=1

gi

∥∥∥∥2]
a
≤ 2E

[∥∥∥∥ 1
N

N∑
i=1

(g̃i − gi)
∥∥∥∥2]

+ 2E
[∥∥∥∥ 1

N

N∑
i=1

gi

∥∥∥∥2]
b
≤ 8(σ2

N
+ ζ2) + 2σ2

N
+ 2E

[∥∥∥∥ 1
N

N∑
i=1

∇fi(xi)
∥∥∥∥2]

= 10σ2

N
+ 8ζ2 + 2E

[∥∥∥∥ 1
N

N∑
i=1

∇fi(xi)
∥∥∥∥2]

18
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(a) refers to the fact that the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2. (b) The first term uses Lemma 1 and
the second term uses the conclusion of Lemma 1 in (Yu et al., 2019).
Lemma 4. Let all assumptions hold. Let gi be the unbiased estimate of ∇fi(xi) at the point xi such that
E[gi] = ∇fi(xi), for all i ∈ [N ] := {1, 2, ..., N}. Thus the following relationship holds

E
[∥∥∥∥G̃τ − Gτ

∥∥∥∥2

F

]
≤ 4N(σ2 + ζ2) (21)

Proof for Lemma 4 is similar to Lemma 1 and is as follows:

E
[∥∥∥∥G̃τ − Gτ

∥∥∥∥2

F

]
=

N∑
i=1

E
[∥∥∥∥ ∑

j∈Ni

wij(∇Fj(x, dj) − ∇Fi(x, di))
∥∥∥∥2]

=
N∑

i=1
E
[∥∥∥∥ ∑

j∈Ni

wij(∇Fj(x, dj) − ∇fj(x)) − (∇Fi(x, di) − ∇fi(x))
∥∥∥∥2]

+
N∑

i=1
E
[∥∥∥∥ ∑

j∈Ni

wij(∇fj(x) − ∇fi(x))
∥∥∥∥2]

≤
N∑

i=1

∑
j∈Ni

wijE
[∥∥∥∥∇Fj(x, dj) − ∇fj(x) − (∇Fi(x, di) − ∇fi(x))

∥∥∥∥2]

+
N∑

i=1

∑
j∈Ni

wijE
[∥∥∥∥∇fj(x) − ∇F(x) + ∇F(x) − ∇fi(x)

∥∥∥∥2]
≤ 4N(σ2 + ζ2) (follows from assumption 2)

The properties shown in Eq. 18 and 19 have been well established and in this context, we skip the proof
here. We are now ready to prove Lemma 2.

Proof for Lemma 2: Since Xk = Xk−1W + Vk we have:

Xk(I − Q) = Xk−1(I − Q)W + Vk(I − Q) (22)

Applying the above equation k times we have:

Xk(I − Q) = X0(I − Q)Wk +
k∑

τ=1
Vτ (I − Q)Wk−τ X0=0=

k∑
τ=1

Vτ (I − Q)Wk−τ (23)

As V̄k = βV̄k−1 − η 1
N

∑N
i=1 G̃i

k−1
V0=0= −η 1

N

∑N
i=1 G̃i

k−1, we can get:

Xk(I − Q) = −η

k∑
τ=1

τ−1∑
l=0

G̃lβ
τ−1−l(I − Q)Wk−τ

= −η

k∑
τ=1

τ−1∑
l=0

G̃lβ
τ−1−lWk−τ (I − Q) − η

k−1∑
n=1

G̃n[
k∑

l=n+1
βl−1−nWk−1−n(I − Q)

= −η

k−1∑
τ=0

1 − βk−τ

1 − β
G̃τ (I − Q)Wk−1−τ .

(24)
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Therefore, for k ≥ 1, we have:

E
[∥∥∥∥Xk(I − Q)

∥∥∥∥2

F

]
= η2E

[∥∥∥∥ k−1∑
τ=0

1 − βk−τ

1 − β
G̃τ (I − Q)Wk−1−τ

∥∥∥∥2

F

]
a
≤ 2η2E

[∥∥∥∥ k−1∑
τ=0

1 − βk−τ

1 − β
(G̃τ − Gτ )(I − Q)Wk−1−τ

∥∥∥∥2

F

]
︸ ︷︷ ︸

I

+

2η2E
[∥∥∥∥ k−1∑

τ=0

1 − βk−τ

1 − β
Gτ (I − Q)Wk−1−τ

∥∥∥∥2

F

]
︸ ︷︷ ︸

II

(25)

(a) follows from the inequality ∥A + B∥2
F ≤ 2∥A∥2

F + 2∥B∥2
F.

We develop upper bounds of the term I:

E
[∥∥∥∥ k−1∑

τ=0

1 − βk−τ

1 − β
(G̃τ − Gτ )(I − Q)Wk−1−τ

∥∥∥∥2

F

]
a
≤

k−1∑
τ=0

E
[∥∥∥∥1 − βk−τ

1 − β
(G̃τ − Gτ )(I − Q)Wk−1−τ

∥∥∥∥2

F

]
b
≤ 1

(1 − β)2

k−1∑
τ=0

ρk−1−τE
[∥∥∥∥G̃τ − Gτ

∥∥∥∥2

F

]
c
≤ 4

(1 − β)2

k−1∑
τ=0

ρk−1−τ N(σ2 + ζ2)
d
≤ 4N(σ2 + ζ2)

(1 − β)2(1 − ρ)
(26)

(a) follows from Jensen’s inequality. (b) follows from the inequality | 1−βk−τ

1−β | ≤ 1
1−β . (c) follows from

Lemma 2 and Frobenius norm. (d) follows from Assumption 3.

We then proceed to find the upper bound for term II.

E
[∥∥∥∥ k−1∑

τ=0

1 − βk−τ

1 − β
Gτ (I − Q)Wk−1−τ

∥∥∥∥2

F

]
a
≤

k−1∑
τ=0

k−1∑
τ ′=0

E
[∥∥∥∥1 − βk−τ

1 − β
Gτ (I − Q)Wk−1−τ

∥∥∥∥
F∥∥∥∥1 − βk−τ

1 − β
Gτ ′(I − Q)Wk−1−τ ′

∥∥∥∥
F

]

≤ 1
(1 − β)2

k−1∑
τ=0

k−1∑
τ ′=0

ρ(k−1− τ+τ′
2 )E

[
∥Gτ ∥F∥Gτ ′∥F

]
b
≤ 1

(1 − β)2

k−1∑
τ=0

k−1∑
τ ′=0

ρ(k−1− τ+τ′
2 )
(

1
2E[∥Gτ ∥2

F] + 1
2E[∥Gτ ′∥2

F]
)

= 1
(1 − β)2

k−1∑
τ=0

k−1∑
τ ′=0

ρ(k−1− τ+τ′
2 )E[∥Gτ ∥2

F]

c
≤ 1

(1 − β)2(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥Gτ ∥2

F]

(27)

(a) follows from Eq. 19. (b) follows from the inequality xy ≤ 1
2 (x2 + y2) for any two real numbers x, y. (c)

is derived using
∑k−1

τ1=0 ρk−1− τ1+τ
2 ≤ ρ

k−1−τ
2

1−√
ρ .
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We then proceed with finding the bounds for E[∥Gτ ∥2
F]:

E[∥Gτ ∥2
F] = E[∥Gτ − Hτ + Hτ − Hτ Q + Hτ Q∥2

F]
≤ 3E[∥Gτ − Hτ ∥2

F] + 3E[∥Hτ (I − Q)∥2
F] + 3E[∥Hτ Q∥2

F]
a
≤ 3Nσ2 + 3Nζ2 + 3E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

(28)

(a) holds because E[∥Hτ Q∥2
F] ≤ E[∥ 1

N

∑N
i=1 ∇fi(xi

τ )∥2]

Substituting (28) in (27):

E
[∥∥∥∥ k−1∑

τ=0

1 − βk−τ

1 − β
Gτ (I − Q)Wk−1−τ

∥∥∥∥2

F

]
≤ 1

(1 − β)2(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )

[
3Nσ2 + 3Nζ2 + 3NE[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

]

≤ 3N(σ2 + ζ2)
(1 − β)2(1 − √

ρ)2 + 3N

(1 − β)2(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

(29)

substituting (29) and (26) into the main inequality (25):

E
[∥∥∥∥Xk(I − Q)

∥∥∥∥2

F

]
≤ 8η2N(σ2 + ζ2)

(1 − β)2(1 − ρ) + 2η2

(1 − β)2(1 − √
ρ)

(
3N(σ2)
1 − √

ρ
+ 3N(ζ2)

1 − √
ρ

+

3N

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

)
= 2η2

(1 − β)2

(
4N(σ2 + ζ2)

1 − ρ
+ 3Nσ2

(1 − √
ρ)2 + 3Nζ2

(1 − √
ρ)2

)
+

6Nη2

(1 − β)2(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

≤ 14Nη2

(1 − β)2

(
σ2

(1 − √
ρ)2 + ζ2

(1 − √
ρ)2

)
+ 6Nη2

(1 − β)2(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

(30)

Summing over k ∈ {1, . . . , K − 1} and noting that E
[∥∥∥∥X0(I − Q)

∥∥∥∥2

F

]
= 0:

K−1∑
k=1

E
[∥∥∥∥Xk(I − Q)

∥∥∥∥2

F

]
≤ CK + 6Nη2

(1 − β)2(1 − √
ρ)

K−1∑
k=1

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

≤ CK + 6Nη2

(1 − β)2(1 − √
ρ)

K−1∑
k=0

1 − ρ( K−1−k
2 )

1 − √
ρ

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2]

≤ CK + 6Nη2

(1 − β)2(1 − √
ρ)

K−1∑
k=0

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2]

(31)
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Where C = 14Nη2

(1−β)2

(
σ2

(1−√
ρ)2 + ζ2

(1−√
ρ)2

)
.

Dividing both sides by N :

K−1∑
k=1

1
N

E
[∥∥∥∥Xk(I − Q)

∥∥∥∥2

F

]
≤ 14η2

(1 − β)2

(
σ2

(1 − √
ρ)2 + ζ2

(1 − √
ρ)2

)
K+

6η2

(1 − β)2(1 − √
ρ)

K−1∑
k=0

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2]

(32)

Hence, we obtain the following as the lemma. 2:

K−1∑
k=0

1
N

N∑
i=1

E
[∥∥∥∥x̄k − xi

k

∥∥∥∥2]
≤ 14η2(σ2 + ζ2)

(1 − β)2(1 − √
ρ)2 K + 6η2

(1 − β)2(1 − √
ρ)

K−1∑
k=0

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] (33)

A.2.2 Proof for Theorem. 1

Proof: Using the L-smoothness properties for F we have:

E[F(z̄k+1)] ≤ E[F(z̄k)] + E[⟨∇F(z̄k), z̄k+1 − z̄k⟩] + L

2 E[∥z̄k+1 − z̄k∥2] (34)

Using Eq. 14 we have:

E[⟨∇F(z̄k), z̄k+1 − z̄k⟩] = −η

1 − β
E[⟨∇F(z̄k), 1

N

N∑
i=1

g̃i
k⟩] =

−η

1 − β
E[⟨∇F(z̄k) − ∇F(x̄k), 1

N

N∑
i=1

g̃i
k⟩]︸ ︷︷ ︸

T1

− η

1 − β
E[⟨∇F(x̄k), 1

N

N∑
i=1

g̃i
k⟩]︸ ︷︷ ︸

T2

(35)

We proceed by bounding T1:

−η

1 − β
E[⟨∇F(z̄k) − ∇F(x̄k), 1

N

N∑
i=1

g̃i
k⟩]

(i)
≤ (1 − β)

2βL
E[∥∇F(z̄k) − ∇F(x̄k)∥2] + βLη2

2(1 − β)3E[∥ 1
N

N∑
i=1

g̃i
k∥2]

(ii)
≤ (1 − β)L

2β
E[∥z̄k − x̄k∥2] + βLη2

2(1 − β)3E[∥ 1
N

N∑
i=1

g̃i
k∥2]

(36)

(i) holds as ⟨a, b⟩ ≤ 1
2 ∥a∥2 + 1

2 ∥b∥2 where a =
√

1−β√
βL

(∇F(z̄k) − ∇F(x̄k)) and b = − η
√

βL

(1−β)
3
2

1
N

∑N
i=1 g̃i

k. and
(ii) uses the fact that F is L-smooth.
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We split the term T2 as follows:

⟨∇F (x̄k) ,
1
N

N∑
i=1

g̃i
k⟩ = ⟨∇F (x̄k) ,

1
N

N∑
i=1

(
g̃i

k − gi
k + gi

k

)
⟩ =

⟨∇F (x̄k) ,
1
N

N∑
i=1

(
g̃i

k − gi
k

)
⟩︸ ︷︷ ︸

T3

+ ⟨∇F (x̄k) ,
1
N

N∑
i=1

gi
k⟩︸ ︷︷ ︸

T4

(37)

Now, We first analyze the term T3:

−η

(1 − β)E[⟨∇F (x̄k) ,
1
N

N∑
i=1

(
g̃i

k − gi
k

)
⟩]

≤ (1 − β)
2βL

E[∥∇F(x̄k)∥2] + η2βL

2(1 − β)3E[∥ 1
N

N∑
i=1

(g̃i
k − gi

k)∥2]

(38)

This holds as ⟨a, b⟩ ≤ 1
2 ∥a∥2 + 1

2 ∥b∥2 where a = −
√

1−β√
βL

∇F(x̄k) and b = η
√

βL

(1−β)
3
2

1
N

∑N
i=1(g̃i

k − gi
k).

Analyzing the term T4:

E
[
⟨∇F (x̄k) ,

1
N

N∑
i=1

gi
k⟩
]

= E
[
⟨∇F(x̄k), 1

N

N∑
i=1

∇fi(xi
k)⟩
]

(39)

Using the equity ⟨a, b⟩ = 1
2 [∥a∥2 + ∥b∥2 − ∥a − b∥2], we have :

⟨∇F (x̄k) ,
1
N

N∑
i=1

∇fi

(
xi

k

)
⟩ = 1

2

(
∥∇F (x̄k) ∥2 + ∥ 1

N

N∑
i=1

∇fi(xi
k)∥2 − ∥∇F(x̄k) − 1

N

N∑
i=1

∇fi(xi
k)∥2

)
a
≥ 1

2

(
∥∇F(x̄k)∥2 + ∥ 1

N

N∑
i=1

∇fi(xi
k)∥2 − L2 1

N

N∑
i=1

∥x̄k − xi
k∥2

) (40)

(a) holds because ∥∇F(x̄k) − 1
N

∑N
i=1 ∇fi(xi

k)∥2 = ∥ 1
N

∑N
i=1 ∇fi(x̄k) − 1

N

∑N
i=1 ∇fi(xi

k)∥2 ≤
1
N

∑N
i=1 ∥∇fi(x̄k) − ∇fi(xi

k)∥2 ≤ 1
N

∑N
i=1 L2∥x̄k − xi

k∥2.

Substituting (40) into (39), we have

E
[
⟨∇F (x̄k) ,

1
N

N∑
i=1

gi
k⟩
]

≥ 1
2

(
E[∥∇F(x̄k)∥2] + E[∥ 1

N

N∑
i=1

∇fi(xi
k)∥2] − L2 1

N

N∑
i=1

E[∥x̄k − xi
k∥2]

)
(41)

Substituting (38), (41) into (37), we have

− η

1 − β
E[⟨∇F(x̄k), 1

N

N∑
i=1

g̃i
k⟩] ≤

( (1 − β)
2βL

− η

2(1 − β)

)
E[∥∇F(x̄k)∥2] + η2βL

2(1 − β)3E[∥ 1
N

N∑
i=1

(g̃i
k − gi

k)∥2]

− η

2(1 − β)E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] + ηL2

2(1 − β)
1
N

N∑
i=1

E[∥x̄k − xi
k∥2]

(42)
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Now, finally substituting (42), (36) into (35), we have

E[⟨∇F(z̄k), z̄k+1 − z̄k⟩] ≤ (1 − β)L
2β

E[∥z̄k − x̄k∥2] + βLη2

2(1 − β)3E[∥ 1
N

N∑
i=1

(g̃i
k)∥2] +

(
(1 − β)

2βL
− η

2(1 − β)

)

E[∥∇F(x̄k)∥2] − η

2(1 − β)E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] + η2βL

2(1 − β)3E[∥ 1
N

N∑
i=1

(g̃i
k − gi

k)∥2] + ηL2

2(1 − β)
1
N

N∑
i=1

E[∥x̄k − xi
k∥2]

(43)

Equation. 14 states that:

E[∥z̄k+1 − z̄k∥2] = η2

(1 − β)2E[∥ 1
N

N∑
i=1

g̃i
k∥2]. (44)

Substituting (43), (44) in (34):

E[F(z̄k+1)] ≤ E[F(z̄k)] + (1 − β)L
2β

E[∥z̄k − x̄k∥2] + βLη2

2(1 − β)3E[∥ 1
N

N∑
i=1

(g̃i
k)∥2] +

(
(1 − β)

2βL
− η

2(1 − β)

)

E[∥∇F(x̄k)∥2] − η

2(1 − β)E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] + η2βL

2(1 − β)3E[∥ 1
N

N∑
i=1

(g̃i
k − gi

k)∥2]+

ηL2

2(1 − β)
1
N

N∑
i=1

E[∥x̄k − xi
k∥2] + η2

(1 − β)2E[∥ 1
N

N∑
i=1

g̃i
k∥2].

We find the bound for E[∥∇F(x̄k)∥2] by rearranging the terms and dividing by C1 = η
2(1−β) − (1−β)

2βL :

E[∥∇F(x̄k)∥2] ≤ 1
C1

(
E[F(z̄k)] − E[F(z̄k+1)]

)
+ C̃2 E[∥ 1

N

N∑
i=1

(g̃i
k)∥2] + C̃3 E[∥z̄k − x̄k∥2]

− C̃6 E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] + C̃4 E[∥ 1

N

N∑
i=1

(g̃i
k − gi

k)∥2] + C̃5

N

N∑
i=1

E[∥x̄k − xi
k∥2]

Where C̃2 =
(

βLη2

2(1−β)3 + η2L
(1−β)2

)
/C1, C̃3 = (1−β)L

2β /C1, C̃4 = η2βL
2(1−β)3 /C1, C̃5 = ηL2

2(1−β) /C1, C̃6 = η
2(1−β) /C1.

Summing over k ∈ {0, 1, . . . , K − 1}:

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1

(
E [F (z̄0)] − E [F (z̄k)]

)
− C̃6

K−1∑
k=0

E

∥∥∥∥∥ 1
N

N∑
i=1

∇fi

(
xi

k

)∥∥∥∥∥
2+ C̃2

K−1∑
k=0

E

∥∥∥∥∥ 1
N

N∑
i=1

g̃i
k

∥∥∥∥∥
2

+ C̃3

K−1∑
k=0

E
[
∥z̄k − x̄k∥2

]
+ C̃4

K−1∑
k=0

E

∥∥∥∥∥ 1
N

N∑
i=1

(
g̃i

k − gi
k

)∥∥∥∥∥
2+ C̃5

K−1∑
k=0

1
N

N∑
l=1

E
[∥∥x̄k − xi

k

∥∥2]

Substituting Lemma 1, Lemma 2, Lemma 3 and Equation. 15 into the above equation, we have:
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K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1

(
E [F (z̄0)] − E [F (z̄k)]

)
−
(

C̃6 − 2C̃2 − 2C̃3
η2β2

(1 − β)4 − C̃5
6η2

(1 − β)2(1 − √
ρ)

)
K−1∑
k=0

E

∥∥∥∥∥ 1
N

N∑
i=1

∇fi

(
xi

k

)∥∥∥∥∥
2+

(
C̃2 + C̃3

η2β2

(1 − β)4

)(
10σ2

N
+ 8ζ2

)
K + 4C̃4

(
σ2

N
+ ζ2

)
K

+ C̃5
14η2(σ2 + ζ2)

(1 − β)2(1 − √
ρ)2 K

Dividing both sides by K and considering the fact that z̄0 = x̄0 and
(

C̃6 − 2C̃2 − 2C̃3
η2β2

(1−β)4 −

C̃5
6η2

(1−β)2(1−√
ρ)

)
≥ 0:

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1K

(
F (x̄0) − F⋆

)
+
(

C̃2 + C̃3
η2β2

(1 − β)4

)(
10σ2

N
+ 8ζ2

)
+ 4C̃4

(
σ2

N
+ ζ2

)
+ C̃5

14η2(σ2 + ζ2)
(1 − β)2(1 − √

ρ)2

≤ 1
C1K

(F (x̄0) − F⋆) +
(

10C̃2 + 10C̃3
η2β2

(1 − β)4 + 4C̃4

)(
σ2

N
+ ζ2

)
+ C̃5

14η2(σ2 + ζ2)
(1 − β)2(1 − √

ρ)2

≤ 1
C1K

(F(x̄0) − F∗) +
(

10C̃2 + 10C̃3
η2β2

(1 − β)4 + 4C̃4

)
(σ2

N
+ ζ2) + C̃5

14η2(σ2 + ζ2)
(1 − β)2(1 − √

ρ)2

Now, we simplify the coefficients:

10C̃2 + 10C̃3
η2β2

(1 − β)4 + 4C̃4 ≤
(

10η2L(η2 + β)
(1 − β)3

)
/C1 = 20η2L2β(η2 + β)

(1 − β)2(ηβL − (1 − β)2)

C̃5
14η2

(1 − β)2 = 14η3L3β

(1 − β)2(ηβL − (1 − β)2)

Now we redefine the coefficients:

C2 = 20η2L2β(η2 + β)
(1 − β)2(ηβL − (1 − β)2)

C3 = 14η3L3β

(1 − β)2(ηβL − (1 − β)2)

Therefore we arrive at the bound given by the theorem. 1:

1
K

K−1∑
k=0

E[||∇F(x̄k)||2] ≤ 1
C1K

(F(x̄0) − F∗) + C2(σ2

N
+ ζ2) + C3

(σ2 + ζ2)
(1 − √

ρ)2 (45)

A.2.3 Discussion on the Step Size

In the proof of Theorem 1, we assumed the following C̃6 − 2C̃2 − 2C̃3
η2β2

(1−β)4 − C̃5
6η2

(1−β)2(1−√
ρ) ≥ 0.

The above equation is true under the following conditions:

(i) C1 > 0

(ii) 1 − 4L

(1 − β)2 η − 6L2

(1 − β)2(1 − √
ρ)η2 ≥ 0
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Solving the first inequality gives us β > 1 − Lη
2 (
√

1 + 4
Lη − 1).

We can simply this further by using the Taylor series approximation i.e., 1
Lη < β < 1 if η > 4

L

Now, solving the second inequality, combining the fact that η > 0, we have then the specific form of η∗

η∗ =
√

4(1 − √
ρ)2 + 6(1 − √

ρ)(1 − β)2 − 2(1 − √
ρ)

6L
.

Therefore, the step size η is defined as

η ≤
√

4(1 − √
ρ)2 + 6(1 − √

ρ)(1 − β)2 − 2(1 − √
ρ)

6L

A.2.4 Proof for Corollary 1

We assume that the step size η is O(
√

N√
K

) and ζ2 is O( 1√
K

). Given this assumption, we have the following

C1 = O(
√

N√
K

), C̃2 = O(
√

N√
K

), C̃3 = O(
√

K√
N

), C̃4 = O(
√

N√
K

), C̃5 = O(1),

This implies that

C2 = O(
√

N√
K

), C3 = O(N

K
)

Now we proceed to find the order of each term in Equation. 45. To do that we first point out that

F(x̄0) − F∗

C1K
= O

( 1√
NK

)
.

For the remaining terms we have,

C2
σ2

N
= O

( 1√
NK

)
, C2ζ2 = O

(√
N

K

)

C3
σ2

(1 − √
ρ)2 = O

(N

K

)
, C3

ζ2

(1 − √
ρ)2 = O

( N

K1.5

)
Therefore, by omitting the constant N in this context, there exists a constant C > 0 such that the overall
convergence rate is as follows:

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ C

(
1√
NK

+ 1
K

+ 1
K1.5

)
, (46)

which suggests when K is sufficiently large, NGM enables the convergence rate of O( 1√
NK

).

A.3 Decentralized Learning Setup

The traditional decentralized learning algorithm (d-psgd) is described as Algorithm. 2. For the decentralized
setup, we use an undirected ring and undirected torus graph topologies with a uniform mixing matrix. The
undirected ring topology for any graph size has 3 peers per agent including itself and each edge has a weight
of 1

3 . The undirected torus topology with 10 agents has 4 peers per agent including itself and each edge has
a weight of 1

4 . The undirected torus topology 20 agents have 5 peers per agent including itself and each edge
has a weight of 1

5 . Finally, Figure 5 depicts the overview of the proposed NGM algorithm. Note that we do
not have step 4 of the Figure 5 in NGMmv algorithm.
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Figure 5: NGM algorithm overview. In the proposed algorithm, (1) each agent computes self-gradients of
model parameters on its own data set; (2) each agent sends its model parameters to its neighbors; (3) each
agent computes the model-variant cross-gradients of its neighbors’ models on its own data set; (4) each agent
receives the data-variant cross-gradients from its neighbors; (5) update the local gradient using the mean
of self-gradients and cross-gradients ; (6) update the model parameter using local SGD step with updated
gradients; (7) and update the model parameter using global gossip averaging step.

Algorithm 2 Decentralized Peer-to-Peer Training (D-PSGD with momentum)
Input: Each agent i ∈ [1, N ] initializes model weights xi

(0), step size η, averaging rate γ, mixing matrix
W = [wij ]i,j∈[1,N ], and Iij are elements of N × N identity matrix.

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for k=0, 1, . . . , K − 1 do
3. di

k ∼ Di // sample data from training dataset.
4. gi

k = ∇xfi(di
k; xk

i ) // compute the local gradients
5. vi

k = βvi
(k−1) − ηgi

k // momentum step
6. x̃i

k = xi
k + vi

k // update the model
7. SENDRECEIVE(x̃i

k) // share model parameters with neighbors N(i).
8. xi

(k+1) = x̃i
k + γ

∑
j∈Ni

(wij − Iij)x̃j
k // gossip averaging step

9. end
10. return
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A.4 CompNGM

The section presents the pseudocode for CompNGM (compressed version of NGMdv) in Algorithm 3. The
NGMdv algorithm at every iteration involves two rounds of communication with the neighbors: 1) communi-
cate the model parameters, and 2) communicate the cross-gradients. This communication overhead can be a
bottleneck in a resource-constrained environment. Hence we propose a compressed version of NGMdv using
Error Feedback SGD (EF-SGD) (Karimireddy et al., 2019) to compress gradients. We compress the error-
compensated self-gradients and cross-gradients from 32 bits (floating point precision of arithmetic operations)
to 1 bit by using scaled signed gradients. The error between the compressed and non-compressed gradient
of the current iteration is added as feedback to the gradients in the next iteration before compression.

Tables. 8, 9, 10 compare the proposed CompNGM with CompCGA and show that our method outperforms
CompCGA. We also analyze the impact of compression on consensus error, validation loss, and validation
accuracy with respect to communication bits in the top panel of Figure. 6. We present the consensus error,
validation loss, and validation accuracy with respect to epochs in the bottom panel of Figure. 6. Note
that epochs are proxies for communication rounds. In Figure. 6 each epoch contains 157 communication
rounds. For the Figure. 6 experiment, we use a step-lr scheduler for the learning rate schedule whereas the
experiments in Tables. 8, 9, 10 use the multistep-lr scheduler. We observe that both for iso-communication
cost and iso-epochs, NGMdv performs better than CompNGM in terms of validation accuracy.

Algorithm 3 Compressed Neighborhood Gradient Mean (CompNGM )
Input: Each agent i ∈ [1, N ] initializes model weights xi

(0), step size η, averaging rate γ, dimension of the
gradient d, mixing matrix W = [wij ]i,j∈[1,N ], NGM mixing weight α, and Iij are elements of N × N identity
matrix.

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for k=0, 1, . . . , K − 1 do
3. di

k ∼ Di // sample data from training dataset
4. gii

k = ∇xfi(di
k; xi

k) // compute the local self-gradients
5. pii

k = gii
k + eii

k // error compensation for self-gradients
6. δii

k = (||pii
k ||1/d)sgn(pii) // compress the compensated self-gradients

7. eii
k+1 = pii

k − δii
k // update the error variable

8. SENDRECEIVE(xi
k) // share model parameters with neighbors N(i)

9. for each neighbor j ∈ {N(i) − i} do
10. gji

k = ∇xfi(di
k; xj

k) // compute neighbors’ cross-gradients
11. pji

k = gji
k + eji

k // error compensation for cross-gradients
12. δji

k = (||pji
k ||1/d)sgn(pji

k ) // compress the compensated cross-gradients
13. eji

k+1 = pji
k − δji

k // update the error variable
14. if α ̸= 0 do
15. SENDRECEIVE(δji

k ) // share compressed cross-gradients between i and j
16. end
17. end
18. g̃i

k = (1 − α)
∑

j∈Ni
wjiδ

ji
k + α

∑
j∈Ni

wijδij
k // modify local gradients

19. vi
k = βvi

(k−1) − ηg̃i
k // momentum step

20. x̃i
k = xi

k + vi
k // update the model

21. xi
(k+1) = x̃i

k + γ
∑

j∈Ni
(wij − Iij)xj

k // gossip averaging step
22. end
23. return
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Table 8: Average test accuracy comparisons for CIFAR-10 with non-IID data using various architectures and
graph topologies. The results are averaged over three seeds where std is indicated.

Method Agents 5layer CNN 5layer CNN VGG-11 ResNet-20
Ring Torus Ring Ring

5 82.00 ± 0.25 - 83.65 ± 0.41 86.73 ± 0.34
CompCGA 10 71.41 ± 0.94 75.95 ± 0.41 73.96 ± 0.31 73.63 ± 0.55

20 68.15 ± 0.79 71.71 ± 0.54 73.72 ± 2.74 66.34 ± 0.98
5 82.91 ± 0.21 - 84.03 ± 0.32 87.56 ± 0.34

CompNGM (ours) 10 74.36 ± 0.42 77.82 ± 0.20 77.02 ± 0.14 78.50 ± 0.98
20 71.46 ± 0.85 73.62 ± 0.74 73.76 ± 0.20 72.62 ± 0.71

Table 9: Average test accuracy comparisons for various datasets with non-IID sampling trained over undi-
rected ring topology. The results are averaged over three seeds where std is indicated.

Method Agents Fashion MNIST CIFAR-100 Imagenette(32x32)
(LeNet-5) (ResNet-20) (MobileNet-V2)

CompCGA 5 90.45 ± 0.34 55.74 ± 0.33 72.76 ± 0.44
10 81.62 ± 0.37 38.84 ± 0.54 59.92 ± 0.72

CompNGM (ours) 5 90.48 ± 0.19 57.51 ± 0.48 72.91 ± 1.06
10 83.38 ± 0.39 43.07 ± 0.32 61.91 ± 2.10

Table 10: Average test accuracy comparisons for AGNews dataset (left side of the table) and full resolution
(224 × 224) Imagenette dataset (right side of the table). The results are averaged over three seeds where std
is indicated.

Method AGNews-BERTmini AGNews-DistilBERTbase Imagenette (224×224)-ResNet-18
Agents = 4 Agents = 8 Agents = 4 Agents = 5

Ring Topology Ring Topology Ring Topology Chain Topology
CompCGA 91.05 ± 0.29 88.91 ± 0.25 93.54 ± 0.03 84.65 ± 0.57 62.93 ± 1.33
CompNGM (ours) 91.24 ± 0.43 89.01 ± 0.13 93.50 ± 0.16 85.44 ± 0.10 62.64 ± 0.85

A.5 Datasets

In this section, we give a brief description of the datasets used in our experiments. We use a diverse set of
datasets each originating from a different distribution of images to show the generalizability of the proposed
techniques.

CIFAR-10: CIFAR-10 (Krizhevsky et al., 2014) is an image classification dataset with 10 classes. The
image samples are colored (3 input channels) and have a resolution of 32 × 32. There are 50, 000 training
samples with 5000 samples per class and 10, 000 test samples with 1000 samples per class.

CIFAR-100: CIFAR-100 (Krizhevsky et al., 2014) is an image classification dataset with 100 classes.
The image samples are colored (3 input channels) and have a resolution of 32 × 32. There are 50, 000
training samples with 500 samples per class and 10, 000 test samples with 100 samples per class. CIFAR-100
classification is a harder task compared to CIFAR-10 as it has 100 classes with very less samples per class
to learn from.

Fashion MNIST: Fashion MNIST (Xiao et al., 2017) is an image classification dataset with 10 classes.
The image samples are in greyscale (1 input channel) and have a resolution of 28 × 28. There are 60, 000
training samples with 6000 samples per class and 10, 000 test samples with 1000 samples per class.

Imagenette: Imagenette (Husain, 2018) is a 10-class subset of the ImageNet dataset. The image samples are
colored (3 input channels) and have a resolution of 224 × 224. There are 9469 training samples with roughly
950 samples per class and 3925 test samples. We conduct our experiments on two different resolutions of

29



Published in Transactions on Machine Learning Research (11/2023)

(a) Consensus error vs Communication
bits

(b) Validation loss vs Communication
bits

(c) Validation accuracy vs Communica-
tion bits

(d) Consensus error vs Epochs (e) Validation loss vs Epochs (f) Validation accuracy vs Epochs

Figure 6: Consensus error, validation loss, and validation accuracy against communication bits (top panel)
and epochs (bottom panel) for training CIFAR-10 (non-IID) on ResNet-20 architecture over a ring topology
with 10 agents.

the Imagenette dataset – a) a resized low resolution of 32 × 32 and, b) a full resolution of 224 × 224. The
Imagenette experimental results reported in Table. 3 use the low-resolution images whereas experimental
results in Table. 4 use the full resolution images.

AGNews: We use AGNews (Zhang et al., 2015) dataset for Natural Language Processing (NLP) task.
This is a text classification dataset where the given text news is classified into 4 classes, namely "World",
"Sport", "Business" and "Sci/Tech". The dataset has a total of 120000 and 7600 samples for training and
testing respectively, which are equally distributed across each class.

A.6 Network Architecture

We replace ReLU+BatchNorm layers of all the model architectures with EvoNorm-S0 (Liu et al., 2020a) as
it was shown to be better suited for decentralized learning on non-IID data (Lin et al., 2021).

5 layer CNN: The 5-layer CNN consists of 4 convolutional with EvoNorm-S0 (Liu et al., 2020a) as an
activation-normalization layer, 3 max-pooling layers, and one linear layer. In particular, it has 2 convolutional
layers with 32 filters, a max pooling layer, then 2 more convolutional layers with 64 filters each followed by
another max pooling layer and a dense layer with 512 units. It has a total of 76K trainable parameters.

VGG-11: We modify the standard VGG-11 (Simonyan & Zisserman, 2014) architecture by reducing the
number of filters in each convolutional layer by 4× and using only one dense layer with 128 units. Each con-
volutional layer is followed by EvoNorm-S0 as the activation-normalization layer and it has 0.58M trainable
parameters.

ResNet-20: For ResNet-20 (He et al., 2016), we use the standard architecture with 0.27M trainable pa-
rameters except that BatchNorm+ReLU layers are replaced by EvoNorm-S0.
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LeNet-5: For LeNet-5 (LeCun et al., 1998), we use the standard architecture with 61, 706 trainable param-
eters.

MobileNet-V2: We use the the standard MobileNet-V2 (Sandler et al., 2018) architecture used for CIFAR
dataset with 2.3M parameters except that BatchNorm+ReLU layers are replaced by EvoNorm-S0.

ResNet-18: For ResNet-18 (He et al., 2016), we use the standard architecture with 11M trainable param-
eters except that BatchNorm+ReLU layers are replaced by EvoNorm-S0.

BERTmini: For BERTmini (Devlin et al., 2018) we use the standard model from the paper. We restrict the
sequence length of the model to 128. The model used in the work hence has 11.07M parameters.

DistilBERTbase: For DistilBERTbase (Sanh et al., 2019) we use the standard model from the paper. We
restrict the sequence length of the model to 128. The model used in the work hence has 66.67M parameters.

(a) NGMdv on IID data (b) NGMdv on non-IID data (c) Non-IID for ring topology

Figure 7: Validation loss for CIFAR-10 dataset trained on a 10 agents ring graph with 5-layer CNN.

A.7 Analysis for 10 Agents

We show the convergence characteristics of the proposed NGMdv algorithm over IID and Non-IID data
sampled from the CIFAR-10 dataset in Figure. 7(a), and 7(b) respectively. For Non-IID distribution, we
observe that there is a slight difference in convergence rate (as expected) with a slower rate for sparser
topology (undirected ring graph) compared to its denser counterpart (fully connected graph). Figure. 7(c)
shows the comparison of the convergence characteristics of the NGMdv technique with the current state-
of-the-art CGA algorithm. We observe that NGMdv has lower validation loss than CGA for the same
decentralized setup indicating its superior performance over CGA. We also plot the model variance and data
variance bias terms for both NGMdv and CGA techniques as shown in Figure. 8(a), and 8(b) respectively.
We observe that both model variance and data variance bias for NGMdv are significantly lower than CGA.

A.8 Resource Comparison

The communication cost, memory overhead, and compute overhead for various decentralized algorithms are
shown in Table. 6. The D-PSGD, QG-DSGDm, and NGMmv algorithms require each agent to communicate
model parameters of size ms with all the ni neighbors for the gossip averaging step and hence has a commu-
nication cost of O(nims). In the case of NGMdv and CGA, there is an additional communication round for
sharing data-variant cross gradients apart from sharing model parameters for the gossip averaging step. So,
both these techniques incur a communication cost of O(2nims) and therefore an overhead of O(nims) com-
pared to D-PSGD. Momentum Tracking also needs additional communication to communicate the tracking
variable. CompNGM compresses the additional round of communication involved with NGMdv from b bits
to 1 bit. This reduces the communication overhead from O(nims) to O( nims

b ).

CGA algorithm stores all the received data-variant cross-gradients in the form of a matrix for the quadratic
projection step. Hence, CGA has a memory overhead of O(nims) compared to D-PSGD. NGMdv does not
require any additional memory as it averages the received data-variant cross-gradients into the self-gradient
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(a) Average L1 norm of ϵ. (b) Average L1 norm of ω.

Figure 8: Average L1 norm of model variance bias and data variance bias for 10 agents trained on CIFAR-10
dataset with 5 layer CNN architecture over an undirected ring topology.

Table 11: Memory overheads for various methods trained on different model architectures with CIFAR-10
dataset over undirected ring topology with 2 neighbors per agent.

Architecture CGA NGMdv CompCGA CompNGM
(MB) (MB) (MB) (MB)

5 layer CNN 0.58 0 0.58 0.60
VGG-11 4.42 0 4.42 4.56

ResNet-20 2.28 0 2.28 2.15

buffer. The compressed version of NGMdv requires an additional memory of O(nims) to store the error
variables eji (refer Algorith. 3). CompCGA also needs to store error variables along with the projection
matrix of compressed gradients. Therefore, CompCGA has a memory overhead of O(nims + nims

b ). Note
that memory overhead depends on the type of graph topology and model architecture but not on the size
of the graph. The memory overhead for different model architectures trained on undirected ring topology is
shown in Table. 11

The computation of the cross-gradients (in both CGA and NGM algorithms) requires ni forward and back-
ward passes through the deep learning model at each agent. This is reflected as O(niB) in the compute
overhead in Table. 6. We assume that the compute effort required for the backward pass is twice that of the
forward pass. CGA algorithm involves quadratic programming projection step (Goldfarb & Idnani, 1983) to
update the local gradients. Quadratic programming solver (quadprog) uses Goldfarb/Idnani dual algorithm.
CGA uses quadratic programming to solve the following (Equation 47 -see Equation 5a in (Esfandiari et al.,
2021)) optimization problem in an iterative manner:

minu
1
2uT GGT u + gT GT u

s.t. u ≥ 0
(47)

where G is the matrix containing cross-gradients, g is the self-gradient, and the optimal gradient direction
g∗ in terms of the optimal solution of the above equation u∗ is g∗ = GT u∗ +g. The above optimization takes
multiple iterations, resulting in compute and time complexity of polynomial(degree≥ 2) order. In contrast,
NGM involves a simple averaging step that requires O(nims) addition operations.

A.9 Communication Cost

In this section we present the communication cost per agent in terms of Gigabytes of data transferred
during the entire training process (refer Tables. 12, 13, 15, 14). The D-PSGD and NGMmv have the lowest
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communication cost (1×). We emphasize that NGMmv outperforms D-PSGD in decentralized learning
over label-wise non-IID data for the same communication cost. NGMdv and CGA have 2× communication
overhead compared to D-PSGD where as CompNGM and CompCGA have 1.03× communication overhead
compared to D-PSGD. The compressed versions of NGMdv and CGA compress the second round of cross-
gradient communication to 1 bit. We assume the full-precision cross-gradients to be of 32-bit precision and
hence the CompNGM reduces the communication cost by 32× compared to NGMdv.

Table 12: Communication costs per agent in GBs for experiments in Table 2 and 8

Method Agents 5layer CNN 5layer CNN VGG-11 ResNet-20
Ring Torus Ring Ring

D-PSGD, 5 17.75 - 270.64 127.19
QG-DSGDm and 10 8.92 13.38 135.86 63.84
NGMmv 20 4.50 6.65 68.48 32.18
Momentum Tracking, 5 35.48 - 541.05 254.27
CGA and 10 17.81 26.72 271.50 127.59
NGMdv 20 8.98 17.95 136.72 64.25
CompCGA 5 18.31 - 279.09 131.16
and 10 9.20 13.79 140.10 65.84
CompNGM 20 4.64 9.28 70.61 33.18

Table 13: Communication costs per agent in GBs for experiments in Table 3 and 9

Method Agents Fashion MNIST CIFAR-100 Imagenette
(LeNet-5) (ResNet-20) (MobileNet-V2)

D-PSGD, QG-DSGDm and 5 17.25 103.74 103.12
NGMmv 10 8.61 51.89 51.60
Momentum Tracking, 5 34.50 207.47 206.23
CGA and NGMdv (ours) 10 17.23 103.79 103.19
CompCGA and 5 17.79 106.98 106.34
CompNGM (ours) 10 8.88 53.52 53.21

Table 14: Communication costs per agent in GBs for experiments in Table 4 and 10(right)
Method Ring topology chain topology
D-PSGD, QG-DSGDm and and NGMmv 501.98 401.59
Momentum Tracking, CGA and NGMdv 1003.96 803.17
CompCGA and CompNGM 517.67 414.14

Table 15: Communication costs per agent in GBs for experiments in Table 4 and 10 (left)

Method BERTmini DistilBERTbase
Agents = 4 Agents = 8 Agents = 4

D-PSGD, QG-DSGDm and NGMmv 234.30 118.20 1410.39
Momentum Tracking, CGA and NGMdv 486.59 236.40 2820.77
CompCGA and CompNGM 241.6 121.89 1454.46

A.10 Hyper-parameters

This section presents the hyper-parameters for the experimental results presented in Sec. 5. All the experi-
ments were run for three randomly chosen seeds. We decay the step size by 10x after 50% and 75% of the
training for all the experiments except for figures. To generate the figures, the simulations are run for 300
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Table 16: Hyper-parameters used for CIFAR-10 with non-IID data using various model architecture presented
in Table 2 and 8

5 Layer CNN VGG-11 ResNet-20
Method Agents Ring Torus Ring Torus

(n) (β, η, γ) (β, η, γ) (β, η, γ) (β, η, γ)
5 (0.0, 0.1, 1.0) − (0.0, 0.01, 1.0) (0.0, 0.1, 1.0)

D-PSGD 10 (0.0, 0.1, 1.0) (0.0, 0.1, 1.0) (0.0, 0.01, 1.0) (0.0, 0.1, 1.0)
20 (0.0, 0.1, 1.0) (0.0, 0.1, 1.0) (0.0, 0.01, 1.0) (0.0, 0.1, 1.0)
5 (0.9, 0.01, 1.0) − (0.9, 0.01, 1.0) (0.9, 0.1, 1.0)

QG-DSGDm 10 (0.9, 0.01, 1.0) (0.9, 0.005, 0.1) (0.9, 0.01, 1.0) (0.9, 0.1, 1.0)
20 (0.9, 0.01, 1.0) (0.0, 0.005, 0.1) (0.9, 0.01, 1.0) (0.9, 0.1, 1.0)
5 (0.0, 0.1, 1.0) − (0.9, 0.01, 1.0) (0.0, 0.1, 1.0)

NGMmv 10 (0.0, 0.1, 1.0) (0.0, 0.1, 1.0) (0.0, 0.01, 1.0) (0.0, 0.1, 1.0)
20 (0.0, 0.1, 1.0) (0.0, 0.1, 1.0) (0.0, 0.01, 1.0) (0.0, 0.1, 1.0)
5 (0.9, 0.01, 1.0) − (0.9, 0.01, 1.0) (0.9, 0.1, 1.0)

Momentum Tracking 10 (0.9, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.1, 1.0)
20 (0.9, 0.01, 1.0) (0.0, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.1, 1.0)
5 (0.9, 0.01, 0.1) − (0.9, 0.1, 0.5) (0.9, 0.1, 1.0)

CGA and NGMdv 10 (0.9, 0.01, 0.5) (0.9, 0.01, 0.1) (0.9, 0.1, 0.5) (0.9, 0.1, 1.0)
20 (0.9, 0.01, 0.5) (0.9, 0.01, 0.1) (0.9, 0.1, 0.5) (0.9, 0.1, 1.0)
5 (0.9, 0.01, 0.1) − (0.9, 0.01, 0.1) (0.9, 0.01, 0.1)

CompCGA and CompNGM 10 (0.9, 0.01, 0.5) (0.9, 0.01, 0.1) (0.9, 0.01, 0.1) (0.9, 0.01, 0.1)
20 (0.9, 0.01, 0.5) (0.9, 0.01, 0.1) (0.9, 0.01, 0.1) (0.9, 0.01, 0.1)

epochs with the StepLR scheduler where the learning rate is decayed by 0.981 after every epoch. We have
used a momentum of 0.9 for all QG-DSGDm, Momentum Tracking, CGA, and NGMdv experiments. How-
ever, for D-PSGD and NGMmv, the momentum is set to either 0.9 or 0.0 based on the validation accuracy.
The averaging rate is always set to 1.0 for the Momentum Tracking algorithm.

Hyper-parameters for CIFAR-10 : All the experiments that involve 5-layer (Table. 2) have stopping
criteria set to 100 epochs. We decay the step size by 10× in multiple steps at 50th and 75th epoch. All the
experiments for the CIFAR-10 dataset trained on VGG-11 and ResNet-20 (Table. 2) have stopping criteria
set to 200 epochs. We decay the step size by 10× in multiple steps at 100th and 150th epoch. Table 16
presents the β, η, and γ corresponding to the momentum, step size, and gossip averaging rate.

Hyper-parameters used for Table. 3: All the experiments in Table. 3 have stopping criteria set to 100
epochs. We decay the step size by 10× in multiple steps at 50th and 75th epoch. Table 17 presents the
β, η, and γ corresponding to the momentum, step size, and gossip averaging rate. For all the experiments
related to Fashion MNIST and Imagenette (low resolution of (32 × 32)), we use a mini-batch size of 32 per
agent. For all the experiments related to CIFAR-100, we use a mini-batch size of 20 per agent. For all the
experiments, we use a mini-batch size of 32 per agent.

Hyper-parameters used for Table. 4 (right): All the experiments in Table. 4 (right) have stopping
criteria set to 100 epochs. We decay the step size by 10× at 50th, 75th epoch. Table 18 (right) presents the
β, η, and γ corresponding to the momentum, step size, and gossip averaging rate. For all the experiments,
we use a mini-batch size of 32 per agent.

Hyper-parameters used for Table. 4 (left): All the experiments in Table. 4 (left) have stopping criteria
set to 3 epochs. We decay the step size by 10× at 2nd epoch. Table 18 (left) presents the β, η, and γ
corresponding to the momentum, step size, and gossip averaging rate. For all the experiments, we use a
mini-batch size of 32 per agent on the AGNews dataset.

Hyper-parameters used for Table. 7: All the experiments in Table. 7 have stopping criteria set to 60
epochs. The initial learning rate is set to 0.01 and is decayed by 10× at 20th, 40th, 54th epoch. For all the
experiments, we use a mini-batch size of 64 per agent. The values used for the learning rate, momentum
coefficient, and averaging rate are presented in Table. 19.
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Table 17: Hyper-parameters used for Table. 3 and 9

Method Agents Fashion MNIST CIFAR-100 Imagenette
(n) (β, η, γ) ( β, η, γ) (β, η, γ)

D-PSGD 5 (0.0, 0.01, 1.0) (0.0, 0.1, 1.0) (0.0, 0.1, 1.0)
10 (0.0, 0.01, 1.0) (0.0, 0.1, 1.0) (0.0, 0.1, 1.0)

QG-DSGDm 5 (0.9, 0.01, 1.0) (0.9, 0.1, 1.0) (0.9, 0.01, 1.0)
10 (0.9, 0.01, 1.0) (0.9, 0.1, 1.0) (0.9, 0.01, 1.0)

NGMmv
5 (0.9, 0.01, 1.0) (0.0, 0.1, 1.0) (0.0, 0.1, 1.0)
10 (0.9, 0.01, 1.0) (0.9, 0.1, 1.0) (0.0, 0.1, 1.0)

Momentum Tracking 5 (0.9, 0.01, 1.0) (0.9, 0.1, 1.0) (0.9, 0.01, 1.0)
10 (0.9, 0.01, 1.0) (0.9, 0.1, 1.0) (0.9, 0.01, 1.0)

CGA and NGMdv
5 (0.9, 0.01, 1.0) (0.9, 0.1, 1.0) (0.0, 0.01, 0.5)
10 (0.9, 0.01, 1.0) (0.9, 0.1, 1.0) (0.0, 0.01, 0.5)

CompCGA and CompNGM 5 (0.9, 0.01, 0.1) (0.9, 0.01, 0.1) (0.0, 0.01, 0.1)
10 (0.9, 0.01, 0.1) (0.9, 0.01, 0.1) (0.0, 0.01, 0.5)

Table 18: Hyper-parameters used for Table. 4 and 10

Method
BERTmini DistilBERTbase Imagenette (ResNet-18)

Agents = 4 Agents = 8 Agents = 4 Ring topology Chain topology
(β, η, γ) ( β, η, γ) ( β, η, γ) (β, η, γ) ( β, η, γ)

D-PSGD (0.0, 0.01, 1.0) (0.0, 0.01, 1.0) (0.0, 0.01, 1.0) (0.0, 0.01, 1.0) (0.0, 0.01, 1.0)
QG-DSGDm (0.9, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.01, 1.0)
NGMmv (ours) (0.0, 0.01, 1.0) (0.0, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.01, 1.0) (0.0, 0.01, 1.0)
Momentum Tracking (0.9, 0.005, 1.0) (0.9, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.01, 1.0) (0.9, 0.01, 1.0)
CGA (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.1)
NGMdv (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.1)
CompCGA (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.1) (0.9, 0.01, 0.1)
CompNGM (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.5) (0.9, 0.01, 0.1) (0.9, 0.01, 0.1)

Table 19: hyperparameters for Table. 7.

Trained for D-PSGD QG-DSGDm NGMmv NGMmv NGMmv NGMdv NGMdv
60 epochs +LM + QGM + LM + QGM
Learning rate (η) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Momentum coefficient (β) 0.0 0.9 0.0 0.9 0.9 0.9 0.9
Averaging rate (γ) 0.5 1.0 0.5 1.0 1.0 1.0 1.0
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