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Abstract

This paper considers a contextual bandit problem involving multiple agents, where
a learner sequentially observes the contexts and the agents’ reported arms, and
then selects the arm that maximizes the system’s overall reward. Existing work in
contextual bandits assumes that agents always truthfully report their arms, which
is unrealistic in many real-life applications. For instance, consider an online
platform with multiple sellers; some sellers may misrepresent product features to
gain an advantage, such as having the platform preferentially recommend their
products to its users. To address this challenge, we propose an algorithm, COBRA,
for contextual bandit problems involving strategic agents that disincentivize their
strategic behavior without using any monetary incentives, while having incentive
compatibility and a sub-linear regret guarantee. Our experimental results also
validate our theoretical results and the different performance aspects of COBRA.

1 Introduction

Contextual bandit (Slivkins, 2019; Lattimore and Szepesvári, 2020) is a sequential decision-making
framework in which a learner selects an arm for a given context to maximize its total reward.
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Figure 1: Example of a contextual bandit problem
with strategic agents: Consider an online platform
recommending service providers (agents) to users
(context) who arrive sequentially. Since service
providers can misreport their private information to
receive favorable recommendations, the platform
must implement a mechanism incentivizing truthful
reporting. With accurate private information, the
platform can recommend the best service provider,
thereby improving the overall user experience.

Unlike traditional multi-armed bandits (Auer
et al., 2002; Garivier and Cappé, 2011;
Agrawal and Goyal, 2012), contextual bandit
algorithms use additional information, such as
user profile, location, and purchase history,
to make more informed and personalized
decisions (Li et al., 2010). Contextual
bandits have many real-life applications in
personalized decision-making, such as online
recommendation systems (Slivkins, 2019),
online advertising (Lattimore and Szepesvári,
2020), and clinical trials (Chow and Chang,
2006; Aziz et al., 2021), where the best
recommendation depends on the context.

Many real-life applications of contextual bandits
involve multiple strategic agents, from which
the learner must select one to recommend based
on the given context. As illustrated in Fig. 1,
consider an online platform with multiple service providers (agents), where the platform must
recommend one provider to a user (context). In such settings, service providers can strategically
misreport their information to influence the platform’s decisions and increase their utilities by
increasing their chances of being recommended (Resnick and Sami, 2007; Zhang et al., 2019).
For example, an online food delivery platform wants to maximize the overall user experience by
selecting and presenting the best restaurant options when a user searches for a specific type of
food. Since users tend to order from restaurants listed at the top of search results (Malaga, 2008),
restaurants are incentivized to misrepresent their menu offerings to appear more prominently for
specific food categories. This misreporting creates a challenge: If users consistently encounter
misleading restaurant listings that do not match their preferences, their experience with the platform
will worsen; in the worst case, they may switch to competing platforms. Similar examples also include
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personalized pricing, where agents manipulate features to influence service prices (Liu et al., 2024);
algorithmic trading, where arms correspond to trading strategies, and rewards depend on evolving
market conditions influenced by external factors such as Twitter feeds, secondary market behavior, and
local trends, which can be misreported (Zeng et al., 2024a); and firms allocating budget-constrained
computing resources to self-interested research teams that might misreport their demand to secure
larger allocations, especially around conference deadlines (Zeng et al., 2024b).

These real-life applications highlight the importance of designing contextual bandit algorithms that
discourage strategic misreporting by agents. However, most existing contextual bandit algorithms
overlook the strategic behavior of agents, which can result in suboptimal agent selection. We bridge
this gap by designing a contextual bandit algorithm that accounts for potential misreporting and
ensures that reporting arm features truthfully is the best (dominant) strategy for agents. Specifically,
this paper answers the following question: How to design an efficient incentive-compatible contextual
bandit algorithm for settings where strategic agents may misreport their true features?
To address this question, we propose a contextual bandit algorithm, COBRA, that discourages strategic
misreporting without relying on any monetary incentives, while having incentive compatibility and
sub-linear regret guarantees under some mild assumptions. Designing incentive-compatible contextual
bandit algorithms presents following key challenges, which we address using novel techniques.

1⃝ Detecting strategic misreporting. Existing contextual bandit algorithms (Slivkins, 2019;
Lattimore and Szepesvári, 2020) typically assume that agents truthfully report the features of their
arms, which may not hold in many practical applications to gain an advantage. Thus, a key challenge is
to reliably identify whether an agent is strategically misreporting arm features to manipulate outcomes.
To overcome this challenge, we introduce a novel method, the Leave-One-Out-based Mechanism
(LOOM) for identifying misreporting agents, which draws inspiration from the Vickrey-Clarke-Groves
(VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) and uses the reported arm features of
other agents to identify the misreporting agent within the contextual bandit setting.

2⃝ Arm-selection under strategic misreporting. Strategic misreporting of arm features introduces
bias into the reward estimator, breaking the theoretical guarantees of existing contextual bandit
algorithm (Kleine Buening et al., 2024). To address this bias in the reward estimator, we first introduce
the notion of an LOOM-compatible contextual bandit algorithm. An LOOM-compatible contextual
bandit algorithm (e.g., algorithms based on upper confidence bound (Abbasi-Yadkori et al., 2011;
Chowdhury and Gopalan, 2017)) can integrate LOOM as a post-processing step after each round
to identify the misreporting agent. This integration ensures that the arm-selection strategy of the
underlying LOOM-compatible contextual bandit algorithm incurs no performance loss when all
agents report truthfully, while adaptively correcting for bias once LOOM identifies a strategic agent.

3⃝ Bounding regret due to strategic misreporting. The arm-selection strategy relies on a reward
estimator that may be biased by using strategically misreported arm features. This bias can lead to the
selection of suboptimal arms, resulting in additional loss from not choosing the optimal arms (i.e.,
increased regret). To quantify this additional regret, we derive high-probability upper bounds on the
estimation error of the reward estimators used by LOOM. These bounds are then used to characterize
the regret incurred by the underlying contextual bandit algorithm when combined with LOOM.

Building on the challenges outlined above and the novel methods we use to tackle them, we summarize
the key contributions of this paper as follows:
• Incentive-compatible mechanism. In Section 3, we introduce LOOM, a novel mechanism for

contextual bandits with strategic agents inspired by the VCG framework. Unlike VCG, LOOM
discourages strategic misreporting without monetary incentives, and we show that truthful agents
are, with high probability, not misidentified as a misreporting agent (see Theorem 1).

• Incentive-compatible contextual bandit algorithm. We propose COBRA in Section 4 that uses
LOOM to disincentivize agents from misreporting. We prove that COBRA achieves Õ(d

√
T )-NE

(i.e., truthfulness leads to an approximate Nash equilibrium) and regret Õ(d
√
T ) when agents

report truthfully (see Theorem 2 for linear and Theorem 3 for non-linear reward function). Under
some mild assumptions, we prove that COBRA has regret at most Õ(d

√
T +

√
NT ) under every

Nash equilibrium (see Theorem 4 for linear and Theorem 5 for non-linear reward function), where
N is the number of agents, d is the dimension of the context vector, and T is the number of contexts.

• Empirical results. In Section 5, our experimental results on contextual bandit instances with
strategic agents corroborate our theoretical results and validate the performance of COBRA.
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1.1 Related Work

This section focuses on the most relevant work to our setting, i.e., strategic multi-armed and contextual
bandits. We discuss related topics, such as contextual bandits and strategic learning, in Section A.1.

Strategic multi-armed bandits. To the best of our knowledge, Braverman et al. (2019) first
studied a strategic variant of the multi-armed bandit problem, considering a scenario in which the
selected arm shares a fraction of its reward with the learner. Within this setting, they designed an
incentive-compatible mechanism. More recently, Yahmed et al. (2024) further built upon Braverman
et al. (2019), proposing an algorithm that rewards arms based on their reported values. Their algorithm
also enjoys desirable properties such as incentive compatibility and sub-linear regret. Additionally,
Yin et al. (2022) studied an online allocation problem that maximizes social welfare under fairness
constraints in a strategic setting. They assume that valuations are unknown to the algorithm but follow
an independent and identical distribution (IID). Their results show that when agents truthfully reveal
their information, the mechanism maximizes social welfare while also achieving a sub-linear regret
guarantee compared to the offline optimal policy. Our mechanism design follows a similar spirit but
is applied to a different problem setting. Moreover, Feng et al. (2020) and Dong et al. (2022) explore
the robustness of bandit learning against strategic manipulation, assuming a bounded manipulation
budget. Esmaeili et al. (2023); Shin et al. (2022) investigate multi-armed bandits with replicas, where
strategic agents can submit multiple copies of the same arm. Kleine Buening et al. (2023) integrate
multi-armed bandits with mechanism design for online recommendations.

Strategic contextual bandits. Our work is closely related to Kleine Buening et al. (2024), which
considers the strategic agents in a linear contextual bandit framework. Their method uses past
allocation history to design agent-specific estimators that detect misreports with high probability,
which may not be practical, particularly when the true reward function is unknown, and there is
no external baseline for comparison. In contrast, our method is inspired by the VCG mechanism
(Vickrey, 1961; Clarke, 1971; Groves, 1973), using the reported arm features of other agents to identify
misreports and supports non-linear reward function. Recent work by Hu and Duan (2025) introduce a
Bayesian contextual linear bandit framework in a similar spirit, with non-repeated agent interactions,
employing a linear programming-based approach to design an incentive-compatible mechanism.
However, our setting significantly differs due to inherent repeated interactions in contextual bandits.

2 Contextual Bandits with Strategic Agents

Contextual bandits. This paper studies a contextual bandit problem with strategic agents who
aim to maximize their utility (i.e., number of pulls) by strategically misreporting their arm’s feature
to the learner, while the learner’s goal is to select the agent for a given context that maximizes the
total reward. Our problem setting differs from standard contextual bandits as the arm features can be
strategically manipulated by the agents to maximize their own utility. Let C be the set of all contexts
and A be the set of all arms of all agents. Let N be the set of all agents and Nt ≤ |N | denote the
number of active agents at time t. For brevity, we use X ⊂ Rd to denote the set of all context-arm
feature vectors, and xt,a = φ(ct, a) ∈ X to represent the feature vector associated for context ct and
arm a ∈ A, where φ : C × A → X is a feature map and ∥x∥22 ≤ L, ∀x ∈ X . At the start of round
t, the environment generates a context ct ∈ C and each agent n ∈ Nt ⊆ N reports arm features,
denoted by a

(n)
t ∈ At ⊂ A, where Nt is the set of active agents in round t and At = {a(n)t }n∈Nt

.
The learner then selects an arm at ∈ At to recommend and observes a stochastic reward, denoted by
yt

.
= f(xt,at) + εt, where yt ∈ R, f : X → R is an unknown reward function, and εt is a zero-mean

R-sub-Gaussian noise. For simplicity, we assume that the agent only reports one arm in each round
so that we can use ‘agent’ and ‘arm’ interchangeably in the paper.1

Strategic manipulations by agents. A strategic agent can misreport the features of their arm by
manipulating them such that the agent is selected more often, thereby maximizing its utility. Let x⋆

t,a
be the true arm feature vector and xt,a be the reported arm feature vector for context ct and arm a.
Although an agent can strategically manipulate the arm feature vector, we assume the observed reward

1Our framework are more general and can also apply to settings where agents can report multiple arms
per round, e.g., sellers offering multiple variants of the same product on an online platform. We also want to
highlight that all agent-related computations can be performed in parallel, as they are independent of one another.
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only depends on the true arm feature vector.2 To maximize the total reward, our aim is to design a
contextual bandit algorithm incorporating an incentive-compatible mechanism that ensures truthful
reporting (i.e., xt,a = x⋆

t,a, ∀t ≥ 1, a ∈ A) is the dominant strategy for all agents.

Incentive-Compatible algorithm. Let σn denote the strategy of agent n ∈ N , which is
history-dependent and maps the true features of their arms to reported features. We use σ−n to denote
the strategies of all agents other than agent n, and σ = (σ1, σ2, . . . , σN ) to represent the full strategy
profile of all agents. We first define what it means for an agent to be truthful.
Definition 1 (Truthful). An agent n ∈ N is said to be truthful if agent reports the true features of
their arms to the learner in each round, i.e., xt,a = x⋆

t,a for all t ≥ 1 and a denotes agent’s arm.

We use σ∗
n to denote the truthful strategy for the agent n and σ∗ = (σ∗

1 , σ
∗
2 , . . . , σ

∗
N ) to represent

the vector of the truthful strategy for all agents. Next, we formally define the utility of an agent n in
our setting. Let ST (n)

.
=
∑T

t=1 1(arm at belongs to agent n) denote the number of times agent n is
selected by the learner up to round T . Each agent’s objective is to maximize the expected number of
ST (n). Therefore, the utility of agent n is given by ua(σ)

.
= E [ST (a) | σ] , where we conditioned

on all agents strategies σ. In the following, we define the notion of ε-Nash equilibrium (NE), in
which no agent has more than ε incentive to deviate from the truthful reporting strategy.
Definition 2 (ε-Nash Equilibrium). Let ε > 0 and T > 0. We say that σ = (σ1, σ2, . . . , σN ) forms
a ε-Nash equilibrium if any deviating strategy σ′

a(̸= σa) for any agent a ∈ A, the following holds:
E
[
ST (a) | σa,σ−a

]
≥ E

[
ST (a) | σ′

a,σ−a

]
− ε.

We next define incentive compatibility for a contextual bandit algorithm in terms of Nash equilibrium.
Definition 3 (Incentive Compatible). A contextual bandit algorithm is incentive compatible if
truthfulness is a Nash equilibrium, i.e., reporting the true arm features maximizes each agent’s utility.

Performance measure. Let a⋆t denote the optimal arm (agent) for context ct having the maximum
expected reward, i.e., a⋆t = argmaxa∈At

f(xt,a). After selecting arm at, the learner incurs a penalty
rt, where rt = f(x⋆

t,a⋆
t
)− f(x⋆

t,at
). Our aim is to learn a sequential policy that selects an arm for a

given context such that the learner’s total penalty for not selecting the optimal arm (or cumulative
regret) is as minimal as possible. However, the performance of the contextual bandit algorithm
depends on the incentive-compatible mechanism for the strategic agents whose strategy profile is
represented by σ = (σ1, . . . , σN ). We use strategic regret as a performance measure of a sequential
policy π for which the agents act according to a Nash equilibrium under policy π. Specifically, for T
rounds and σ ∈ NE(π), the strategic regret of a policy π that selects arm at in the round t is

RT (π,σ)
.
=

T∑
t=1

(
f(x⋆

t,a⋆
t
)− f(x⋆

t,at
)
)
. (1)

A policy π is a good policy if it has sub-linear regret, i.e., limT→∞ RT (π,σ)/T = 0. This implies
that, as T increases, the policy π will eventually start selecting optimal arms for the given contexts.

3 Leave-One-Out-based Mechanism (LOOM)

In the contextual bandit setting, designing an incentive-compatible mechanism that ensures truthful
reporting of arm features by agents is challenging due to limited access to true contexts, the
potential for strategic misreporting, noisy reward feedback, and unknown reward function parameters.
These challenges naturally raise the question: How can we design a mechanism that effectively
incentivizes strategic agents to report truthfully? To overcome this, we propose a method,
Leave-One-Out-based Mechanism (LOOM) for identifying misreporting agents, which is inspired
by the Vickrey-Clarke-Groves (VCG) framework (Vickrey, 1961; Clarke, 1971; Groves, 1973) and
uses the reported arm features of other agents to identify misreporting agent. To identify whether an
agent a is misreporting (i.e., over-reporting arm features to increase its expected reward, such that
f(xt,a) > f(x⋆

t,a)), LOOM uses three key components: 1⃝ a pessimistic estimate of the agent’s total
expected reward, derived from past data of all other agents, 2⃝ an optimistic estimate of the agent

2Sellers can misrepresent product features on the e-commerce platform such that it becomes a top
recommendation. However, it cannot change the actual physical quality and nature of the product.
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total reward, based on the observed rewards when agent a is selected, 3⃝ a statistical test that uses
these estimates to identify if agent a is over-reporting with high probability.

1⃝ Pessimistic estimate of the agent’s total expected reward. Since the true reward function is
unknown, LOOM estimates it using past observations (context-arm features and rewards) from all
agents except agent a, ensuring the estimator is not influenced by agent a. Next, we formally introduce
the notion of a LOOM-compatible contextual bandit algorithm, which refers to a class of algorithms
that can integrate LOOM as a post-processing step after each round to identify the over-reporting
agent. Let Ot denote the past observations from all agents at the beginning of round t and Ot,−a

represent the past observations from all agents except agent a. Let ft and ft,−a represent the estimate
of reward function f using observations Ot and Ot,−a, respectively, at the end of round t.
Definition 4 (LOOM-Compatible Contextual Bandit Algorithm). Any contextual bandit algorithm
A is LOOM-compatible if the following holds: (i) The estimated function fA

t from Ot, with probability
1− δ, satisfies: For any x ∈ X : |fA

t (x)− f(x)| ≤ h(x,Ot). and (ii) The estimated function fA
t,−a

from Ot,−a, with probability 1 − δ, satisfies: For any x ∈ X : |fA
t,−a(x) − f(x)| ≤ h(x,Ot,−a).

Here, the value of h(x, ·) depends on x, past observations (Ot or Ot,−a), and A.

Many contextual bandit algorithms like Lin-UCB (Chu et al., 2011) (as shown in Section 4), UCB-GLM
(Li et al., 2017), IGP-UCB (Chowdhury and Gopalan, 2017), GP-TS (Chowdhury and Gopalan,
2017), Neural-UCB (Zhou et al., 2020), and Neural-TS (Zhang et al., 2021) are LOOM-compatible.
Depending on the problem setting, any suitable LOOM-compatible contextual bandit algorithm can
be used, where arms are selected according to the algorithm’s inherent arm selection strategy, and
LOOM is used to identify strategic agents. The value of h(x,Ot) and h(x,Ot,−a) provide the upper
bounds on the estimated rewards with respect to the true reward function. This value depends on the
problem and the choice of contextual bandit algorithm A and its associated hyperparameters. Note
that the assumptions required by contextual bandit algorithms must also hold in our setting, as they
directly influence the performance of our proposed algorithm through h(x,Ot) and h(x,Ot,−a). See
Table 1 in supplementary material in Section C for different values of h(x,Ot).

Henceforth, we assume that the underlying contextual bandit algorithm is LOOM-compatible and omit
the superscript A in estimators (fA

t and fA
t,−a) superscript for notational simplicity. For any x ∈ X , if

|ft,−a(x) − f(x)| ≤ h(x,Ot,−a) holds with probability 1 − δt,a, then LCBt,−a(x) = ft,−a(x) −
h(x,Ot,−a) is a pessimistic estimates of the expected reward for x, which also holds with probability
1 − δt,a (see Lemma 6 in Section C). We further define LCB(x)

t,a =
∑t

s=1,as=a LCBt,−a(xs,as
) to

denote the pessimistic estimates of the agent a’s total expected reward. We assume that LCB(x)
t,a holds

with probability at least 1− δxt,a (more details are provided in Section C).

2⃝ Optimistic estimate of the agent total reward. Since the observed reward depends only on
the true feature vector, the learner receives a noisy reward, where the noise is sub-Gaussian. Our
following result provides an optimistic estimate of the agent a’s total expected reward.
Lemma 1. Let St(a) be the number of times that agent a is selected until round t, and εs be
R-sub-Gaussian in the observed reward ys, where 1 ≤ s ≤ t. Then, with probability at least 1− δyt,a∑

s≤t,as=a f(x
⋆
s,as

) ≤
∑

s≤t,as=a ys +
√
2R2St(a) log(1/δ

y
t,a).

Proof outline. This result follows from applying Hoeffding inequality to the sum of sub-Gaussian
random variables. The detailed proof with other missing proofs are provided in Section B.

3⃝ Statistical test for finding whether agent is over-reporting. For simplicity, consider the
case where the reward function is known. In this case, we say that an agent is over-reporting if
the total expected reward for reported arm features exceeds the total noiseless expected reward,
i.e.,

∑
s≤t,as=a f(x

⋆
s,as

) >
∑

s≤t,as=a ȳs for any t ≥ 1, where ȳs is the noiseless expected reward.
However, since the reward function is unknown and the observed reward is noisy in practice, we
assess over-reporting using optimistic and pessimistic estimates of the expected rewards. We define
UCB(y)

t,a =
∑

s=1,as=a ys +
√
2St(a) log(1/δ

y
t,a) as the optimistic estimate of the sum of the agent

a’s expected rewards that holds with probability at least 1− δyt,a. Therefore, an agent a over-eporting
the true arm features with probability at least 1− δxt,a − δyt,a if the following condition holds:

LOOM Condition: LCB(x)
t,a > UCB(y)

t,a . (2)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

By eliminating the agent who satisfy Eq. (2) from future rounds, this LOOM condition incentivizes
agents to report truthfully. Our next result shows that when an agent a always reports truthfully, i.e.,
xt,a = x⋆

t,a for all t ≥ 1, it does not get eliminated with high probability at least 1− δxt,a − δyt,a.
Theorem 1. Let agent a reports truthfully. Then, LOOM does not eliminate agent a with high
probability at least 1− δxt,a − δyt,a.

Proof outline. The key idea of the proof is to apply the confidence ellipsoid lemma alongside
high-probability upper bounds on the noisy reward and lower bounds on the expected reward for agent
a’s reported arm features. Additional details are provided in the supplementary material.

Impact of arm feature distribution on LOOM identification. The performance of LOOM depends
on how well the remaining agents represent the distribution of a over-eporting agent’s arm feature,
as captured by the term h(x,Ot,−a) in LCBt,−a(x). If the over-eporting agent’s distribution is well
represented, h(x,Ot,−a) is going to be small, making the over-eporting agent easier to identify;
otherwise, a large h(x,Ot,−a) makes identification harder. This structural property is central to our
setting, as it allows estimating an agent’s expected reward using the past observations from other
agents under the shared reward function f (an illustrative example is provided in Section D.1, along
with discussion of LOOM, including its failure cases, such as heterogeneous agents, multiple strategic
agents, and collusion, as well as its connections to existing work (Kleine Buening et al., 2024)).
Remark 1 (Agent under-reporting.). Agents have no incentive to under-report, as it typically reduces
their likelihood of being selected by the learner. Instead, they are more inclined to over-report to
increase their chances of being selected. However, as noted in (Kleine Buening et al., 2024), there
are some cases where under-reporting may yield a small gain. Our proposed method, LOOM, is
specifically designed to detect over-reporting and does not capture under-reporting. Developing a
mechanism that can reliably detect both under-reporting and over-reporting remains an open problem.

4 Incentive-Compatible Contextual Bandit Algorithm: COBRA

In this section, we present our contextual bandit algorithm, COBRA, which is specifically designed to
ensure strategic agents report truthfully. To bring out our key ideas and results, we restrict our setting
to linear reward functions and later extend our results to non-linear reward functions.

Linear reward function. We first consider the setting where the underlying reward function is
linear, i.e., f(x) = θ⊤⋆ x in which θ⋆ ∈ Rd is the unknown parameter. At the beginning of round
t, the learner observes the randomly generated context ct ∈ C and the set of reported arm features
At. After selecting the arm at, the learner observes stochastic reward yt = θ⊤⋆ xt,at

+ εt, where
xt,at

= φ(ct, at) and εt isR-sub-Gaussian. We estimate the unknown parameter θ⋆ using the available
observations of context-arm features and corresponding rewards at the beginning of round t, denoted by
Ot

.
= {(xs,as , ys)}t−1

s=1, as follows: θ̂t
.
= V −1

t

∑t−1
s=1 xs,asys, where Vt

.
= λId +

∑t−1
s=1 xs,asx

⊤
s,as

,
Id is the d× d identity matrix, and λ > 0 ensures the covariance matrix Vt is positive definite.

Optimistic reward estimate. In the round t, the optimistic reward estimate/ upper confidence bound
(UCB) of any context-arm feature vector x is computed as follows: UCBt,a(x)

.
= θ̂⊤t x+αt ∥x∥V −1

t
,

where θ̂⊤t x denotes the estimated reward for the context x and αt ∥x∥V −1
t

is the confidence bonus

in which αt
.
= R

(
d log

(
1+tL2/λ

δ

)) 1
2

+ λ
1
2S is a slowly increasing function in t and the value of

∥x∥V −1
t

(i.e., weighted l2-norm of vector x with respect to matrix V −1
t ) goes to zero as t increases.

UCB-based algorithm. The upper confidence bound (Li et al., 2010; Chu et al., 2011; Zhou et al.,
2020) is a widely used technique for addressing the exploration-exploitation trade-off in contextual
bandit problems. Our UCB-based algorithm, COBRA (UCB), for linear contextual bandit problems
works as follows. At the start of round t (see Fig. 2), the learner observes the context and reported arm
features xt,a, and then selects an arm at = argmaxa∈At

UCBt,a(x) (Line 5). Importantly, COBRA
(UCB) does not have access to the true arm features or the true reward function parameter θ⋆. As
a result, over-reporting by agents can lead COBRA (UCB) to make suboptimal arm selections. To
address this, we incorporate LOOM (Line 6, more details on how we adapt LOOM to linear contextual
bandits are provided on the next page) to identify the over-reporting agent. By eliminating agents who
satisfy the LOOM condition defined in Eq. (2) from future rounds ensures agents report truthfully.
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COBRA Algorithm for COntextual Bandits with StRAtegic Agents
1: Input: N1: set of agents before the round t = 1, δ ∈ (0, 1), and λ > 0
2: for t = 1, 2, . . . do
3: Observe context xt and then a receive set of arm’s features At reported by agents in Nt.
4: Select an arm at = argmaxa∈At UCBt,a(x)

.
= θ̂⊤t x+ αt ∥x∥V −1

t

5: Observe noisy reward yt.
6: Check LOOM condition in Eq. (2) for each agent in Nt. If it holds for any agent a, then update

Nt+1 = Nt \ {a}.
7: If Nt+1 = ∅, stop and receive 0 reward thereafter.
8: end for

TS-based algorithm. Motivated by the empirical advantages of Thompson Sampling (TS) over
UCB-based bandit algorithms (Chapelle and Li, 2011; Agrawal and Goyal, 2013; Zhang et al.,
2021), we also propose a TS-based variant, COBRA (TS). This algorithm closely mirrors COBRA
(UCB), differing only in the arm selection step (Line 5). To obtain a TS-based reward estimate,
the algorithm first samples a reward function parameter θ̃t ∼ N

(
θ̂t, β

2
t V

−1
t

)
, where N denotes the

normal distribution and βt = R
√
9d log (t/δ) (Agrawal and Goyal, 2013). Using θ̃t, the TS-based

reward estimate, i.e., TSt(xt,a) = x⊤
t,aθ̃t, replaces UCBt(xt,a) when computing the optimistic reward

in Line 5. We compare and demonstrate superior empirical performance of COBRA (TS) in Section 5.

LOOM in COBRA (UCB) and COBRA (TS). To check the LOOM condition defined in Eq. (2),
we need to compute LCBt,a, which requires estimating the reward function parameters using
observations from all agents except agent a. To construct the aforementioned estimate, we exclude
the observations from agent a, which is given as follows: θ̂t,−a = V −1

t,−a

∑t
s=1,as ̸=a xs,asys, where

Vt,−a = λId +
∑t

s=1,as ̸=a xs,as
x⊤
s,as

. We now formally define the pessimistic estimate of the total
expected reward for an agent a as: LCB(x)

t,a =
∑t

s=1,as=a LCBt,−a(xs,as
), where LCBt,−a(xs,as

) =

x⊤
s,as

θ̂t,−a − αt,−a ∥xs,as∥V −1
t,−a

for 1 ≤ s ≤ t, with αt,−a = R
(
d log

(
1+(t+1−St(a))L

2/λ
δ

)) 1
2

+

λ
1
2S and St(a) denoting the number of times agent a has been selected up to round t. Using the

upper bound UCB(y)
t,a =

∑
s≤t,as=a ys +

√
2St(a) log(1/δ

y
t,a) from Lemma 1, we can apply LOOM

condition to identify whether any agent is over-reporting their arm features.

Noisy Reward 
y = f(xt,a) + ϵt

Selects action 
at

Context 
User ct

Action Selection 
Strategy

Contextual 
Bandit Algorithm

{xs, ys}s≥1

(a) Standard Contextual Bandit Algorithm

Noisy Reward 
￼y = f(xt,a) + ϵt

Selects action 
￼at

Context 
User ￼ct

LOOMAction Selection 
Strategy

COBRA: Incentive-Compatible 
Contextual Bandit Algorithm

{xs, ys}s≥1

Active Agents 
￼𝒩t+1

(b) COBRA: Incentive Compatible Contextual Bandit Algorithm

Figure 2: COBRA integrates LOOM as a post-processing step after each interaction round to identify
over-reporting agents in a LOOM-compatible contextual bandit algorithm.

Non-linear reward function. We now consider contextual bandit problems with potentially
non-linear reward functions. COBRA naturally generalizes to this setting by adopting any suitable
LOOM-compatible contextual bandit algorithm to get optimistic reward estimates for context–arm
feature vectors. These estimates are then used to select the best arm for a given context (as in Line 5),
after which LOOM is applied as a post-processing step to identify over-reporting agents.

4.1 NE Guarantee and Regret Analysis

In this section, we derive NE and regret guarantees for COBRA and establish its desirable properties,
including incentive compatibility (i.e., reporting truthfully is the dominant strategy) and a sublinear
regret guarantee. We assume that the agent only over-reports their arm features so that the corresponding
reward is higher, i.e., for all x⋆ ∈ X : f(x) > f(x⋆), where x is the reported arm features for the
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true arm feature x⋆. Notably, we impose no restrictions on how agents report their arm features, aside
from no collusion assumption, which is common in VCG-type mechanisms (Vickrey, 1961; Clarke,
1971; Groves, 1973). Let Õ hide the logarithmic factors and constants. Our next result shows that
when arms report truthfully, COBRA approximately incentivizes truthful behavior and achieves a
regret bound of at most Õ(d

√
T ) under this approximate NE. Next, we present the results for the

linear reward function and then for the non-linear reward function.
Theorem 2 (Linear). When agents report truthfully, being truthful is a Õ(d

√
T )-NE under COBRA.

The regret of COBRA under this approximate NE is at most RT (COBRA,σ⋆) = Õ(d
√
T ).

Let d̃ be the effective dimension associated with contextual bandit problems with non-linear reward
functions. Let A be a LOOM-compatible contextual bandit algorithm for which |ft(x)− f(x)| ≤
h(x,Ot) holds with probability at least 1−δ for anyx ∈ X and

√∑T
t=1 [h(xt,at

,Ot)]
2
= Õ(d̃ log T ).

For notational simplicity, we assume that this bound holds for the algorithm A used by COBRA.
Theorem 3 (Non-linear). Let A be a LOOM-compatible contextual bandit algorithm used by COBRA.
When agents report truthfully, being truthful is a Õ(d̃

√
T )-NE under COBRA. With probability at least

1− δx − δy , the regret of COBRA under this approximate NE is RT (COBRA(A),σ⋆) = Õ(d̃
√
T ).

When multiple agents over-report, all COBRA estimators become biased (Lemma 8 in Appendix) as
the over-reported arm features used for reward function estimation no longer reflect the true distribution.
Our subsequent results hold only under the conditions specified in the following assumptions.
Assumption 1. Let x and x⋆ be the reported and true context-arm feature vector, respectively. Then,
we assume (i) ∀t ≥ 1, a ∈ At : f(xt,a) ≤ UCBt(xt,a), where UCBt(x) = ft(x) + h(x,Ot).
(ii) ∀t ≥ 1, a ∈ At : UCBt(xt,a) ≤ UCBt,−a(xt,a), where UCBt,−a(x) = ft,−a(x) + h(x,Ot,−a).

The first part of assumption states that each agent’s expected true reward for the reported features is
upper bounded by the optimistic reward estimate, UCBt(xt,a), that uses all available context-arm
features to estimate θ⋆. The second assumption says that the optimistic reward estimate, when using all
available context-arm features, is tighter than the optimistic reward estimate when excluding reported
context-arm features of any agent. Additional discussion about these assumptions are provided in
Section D. Next, we prove a strategic regret bound that holds for every NE of the agents.
Theorem 4 (Linear). If Assumption 1 hold then, the regret of COBRA is RT (COBRA,σ) = Õ(d

√
T +√

NT ) for every σ ∈ NE(COBRA). Hence, maxσ∈NE(COBRA) RT (COBRA,σ) = Õ(d
√
T +

√
NT ).

Our next result extends the previous result to the general setting with non-linear reward functions.
Theorem 5 (Non-linear). Let A be a LOOM-compatible contextual bandit algorithm used by COBRA.
If Assumption 1 hold then, the regret of COBRA is RT (COBRA(A),σ) = Õ(d̃

√
T +

√
NT ) for

every σ ∈ NE(COBRA(A)). Hence, maxσ∈NE(COBRA(A)) RT (COBRA(A),σ) = Õ(d̃
√
T +

√
NT ).

Outline of the proofs. The proofs of Theorem 2 and Theorem 4 depend on the LOOM mechanism to
identify agents who are over-reporting. LOOM ensures that optimistic estimates are tightly bounded,
thereby limiting the potential benefit from over-reporting and reinforcing truthfulness as the optimal
strategy for agents. The

√
NT term in Theorem 4 arises due to the strategic nature of the agents who

can exploit initial noisy estimates of COBRA. The detailed proofs are provided in Section B. The
proofs of Theorem 3 and Theorem 5 rely on the LOOM mechanism to identify over-reporting agents.
The remainder of the proof proceeds as before, making use of Definition 4 and Assumption 1.

5 Experiments

In this section, we aim to corroborate our theoretical results and empirically demonstrate the
performance of our proposed algorithm in different strategic contextual bandit problems. We repeat
all our experiments 20 times and show the regret (as defined in Eq. (1)) with a 95% confidence
interval (the vertical line on each curve shows the confidence interval). To demonstrate the different
performance aspects of our proposed algorithm, we have used different synthetic problem instances
(commonly used experiment choices in bandit literature) whose details are as follows.

Experiment setting. We use a dc-dimensional space to generate the sample features of each
context, where context ct is represented by ct = (xct,1, . . . , xct,dc) for t ≥ 1. Similarly, we use a
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dn-dimensional space to generate the sample of each agent’s arm features, where agent n ∈ N is
represented by a

(n)
t =

(
x
(n)
at,1

, . . . , x
(n)
at,dn

)
. The value of i-the feature xct,i (or x(n)

at,i
) is sampled

uniformly at random from (0, 2). To get the context-arm feature vectors for context ct in the round t,
we concatenate the context features ct with all arm feature vectors. For context ct and agent n, the
concatenated feature vector is denoted by xt,n, which is an d-dimensional vector with d = dc + dn.
We select a d-dimensional vector θ⋆ by sampling uniformly at random from (0, 2)d and normalizing
it to have unit l2-norm. In all experiments, we use λ = 0.01, R = 0.1, δ = 0.05, and dc = dn.

Strategic over-reporting. We consider two types of strategic manipulations: (I) Feature adaptation:
The strategic agent updates the arm features it reports based on past selection outcomes using a
finite-difference stochastic gradient ascent update. Specifically, the agent receives a binary feedback
signal: 1 if it was selected in the previous round and 0 otherwise. Agent uses this feedback to
iteratively adjust its reported features to increase the probability of being selected in future rounds. (II)
Systematic over-reporting: To maximize the likelihood of selection, the strategic agent over-reports
its feature vector according to x = (1 + ∆x)x

⋆, where x⋆ denotes the true arm features. The
agent maintains an estimate of the optimal over-reporting factor, ∆̂x, which guides the extent of
over-reporting. More details about these strategic manipulations are provided in Section E.

(a) Linear (Truthful setting) (b) Linear (Agent type I) (c) Linear (Agent type II) (d) Square (Agent type II)

Figure 3: Comparing cumulative regret of COBRA with baselines using different problem instances.

Regret comparison with baselines. We compare the regret of the proposed algorithms with three
baselines: Lin-UCB (Li et al., 2010), Lin-TS (Agrawal and Goyal, 2013), and OptGTM (Kleine Buening
et al., 2024). For our experiments, we consider two reward functions: Linear, f(x) = 5x⊤θ⋆, and
Square, f(x) = 10(x⊤θ⋆)

2. We use 1000 contexts, 5 agents, and dc = dn = 5, resulting in a
context-arm feature dimension of d = 10. We evaluate four problem instances with the same setup,
except using two different types of strategic over-reporting: Agent type I: Feature adaptation with a
learning rate of η = 0.05. Agent type II: Systematic over-reporting, where ∆̂x ∼ N(∆⋆

x, σ
2
∆). Here,

N denotes a normal distribution, ∆⋆
x is the optimal scaling factor such that f((1 + ∆⋆

x)x
⋆) gives the

highest reward among all arms, and σ∆ represents the standard deviation. We assume that only one
agent over-reports, and the maximum perturbation in each round is bounded by ∆max = 1.0.

In Fig. 3a, all agents report truthfully under the Linear reward function. Even in this setting,
our algorithm outperforms the state-of-the-art OptGTM and matches the performance of standard
contextual bandit algorithms (LinUCB and LinTS). As expected, our proposed algorithm COBRA,
based on UCB and TS variants of contextual bandits, outperforms all baselines across different
problem instances with Linear and Square reward functions (Fig. 3b-3d). For the Square reward
function, we estimate it using kernel regression with a polynomial kernel of degree 2. We observe that
the TS-based variants of COBRA consistently outperform their UCB-based counterparts. Additional
experimental results and ablations are provided in Section E.

6 Conclusion
This paper addresses a contextual bandit problem involving strategic agents who may misreport arm
features to increase their own utility. To tackle this challenge, we propose LOOM, a mechanism that
identifies over-reporting agents by leveraging the reported arm features from other agents. Building
on LOOM, we introduce an algorithm, COBRA, for contextual bandit problems with strategic agents.
COBRA disincentivizes strategic behavior without relying on monetary incentives, while ensuring
incentive compatibility and achieving a sub-linear regret guarantee. Our experimental results across
different problem instances further demonstrate the performance advantages of the proposed algorithm.
A few promising directions for future work include incorporating fairness constraints into the arm
selection process, developing better mechanisms capable of reliably detecting both under-reporting
and over-reporting agents, and handling more complex forms of strategic behavior.
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Ethics statement

This work is primarily theoretical, focusing on the design and analysis of algorithms. The proposed
methods do not directly involve human subjects, personal data, or real-world deployments. While
the framework could potentially be applied in systems that interact with users, we emphasize that
ethical considerations, such as fairness, privacy, and informed consent, must be addressed in practical
deployments. Our primary goal is to advance the theoretical understanding of incentive-compatible
contextual bandit algorithms, and we do not anticipate any immediate negative societal impacts.

Reproducibility statement

This paper primarily presents theoretical results, including formal proofs of incentive compatibility
and regret bounds. All assumptions, definitions, and derivations are stated explicitly in the main text
(see Section 4) and the Appendix. The details of our experimental setup are provided in Section 5 and
the Appendix. Additionally, the code used in our experiments has been included in the supplementary
material, enabling full reproduction of the results reported in this paper.
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A Appendix

A.1 Additional related work

Contextual bandits. Contextual bandits (Slivkins, 2019; Lattimore and Szepesvári, 2020) have many
real-life applications, such as online recommendations, advertising, web search, and e-commerce. In
this framework, a learner selects an arm and receives a reward for that choice. Given the potentially
large or infinite set of arms, the mean reward for each arm is typically modeled as an unknown
function, which may be linear (Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Agrawal
and Goyal, 2013), generalized linear model (GLM) (Filippi et al., 2010; Li et al., 2017; Jun et al.,
2017; Verma et al., 2025), or non-linear (Valko et al., 2013; Chowdhury and Gopalan, 2017; Zhou
et al., 2020; Zhang et al., 2021). The learner’s objective is to identify the optimal action as efficiently
as possible, which depends on how tightly the confidence bounds for the reward-function mapping
actions to rewards are defined. Several works have explored various sources of information and side
observations to enhance the learning process (Li et al., 2010; Agrawal and Goyal, 2013; Alon et al.,
2015; Wu et al., 2015; Li et al., 2017; Verma and Hanawal, 2021; Verma et al., 2023).

Strategic learning. There are several works on strategic learning (Liu and Chen, 2016; Freeman
et al., 2020; Gast et al., 2020; Zhang and Conitzer, 2021; Harris et al., 2022; 2023) and strategic
classification (Hardt et al., 2016; Dong et al., 2018; Sundaram et al., 2023). The strategic classification
problem was first introduced in Hardt et al. (2016). The authors considered a sequential game between
a decision-maker selecting a classifier, and a strategic agent who responds by modifying their features.
Chang et al. (2024) address the problem of identifying agents who exhibit the highest degree of
strategic manipulation in their inputs, given a dataset of agents and their observed model inputs in a
offline setting. Our work aligns with this research direction, as it explores the interaction between
a strategic agent and a learning algorithm. However, unlike prior studies where agents interact
with the learner only once to achieve a desired outcome, our setting involves repeated interactions,
forming a repeated game without monetary transactions. Our main contribution is the development
of an incentive-compatible mechanism designed to handle repeated interactions with strategic agents,
specifically tailored for contextual bandit problems.

B Leftover Proofs

B.1 Leftover proofs from Section 3

Lemma 1. Let St(a) be the number of times that agent a is selected until round t, and εs be
R-sub-Gaussian in the observed reward ys, where 1 ≤ s ≤ t. Then, with probability at least 1− δyt,a∑

s≤t,as=a f(x
⋆
s,as

) ≤
∑

s≤t,as=a ys +
√
2R2St(a) log(1/δ

y
t,a).

Proof. Recall, the observed reward in round t is yt = f(x⋆
t,at

) + εt, where εt is R-sub-Gaussian
noise. We want to get the upper bound for the sum of observed rewards in terms of the sum of true
rewards, i.e.,

∑
s≤t,as=a

(
ys − f(x⋆

s,as
)
)
. Note that εs = ys−f(x⋆

s,as
) is a R-sub-Gaussian random

variable. Using Hoeffding inequality for the sum of sub-Gaussian random variables, we get

For any τ > 0, P

 ∑
s≤t,as=a

εs ≥ τ

 ≤ exp

(
− τ2

2R2St(a)

)
.

Setting τ =
√

2R2St(a) log(1/δ
y
t,a), we get

P

 ∑
s≤t,as=a

εs ≥
√

2R2St(a) log(1/δ
y
t,a)

 ≤ δyt,a.

Expanding εs = ys−f(x⋆
s,as

) in the above equation, we can have the following results with probability
at least 1− δyt,a, ∑

s≤t,as=a

ys ≥
∑

s≤t,as=a

f(x⋆
s,as

)−
√

2R2St(a) log(1/δ
y
t,a). (3)
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Similarly, with with probability at least 1− δyt,a,∑
s≤t,as=a

ys ≤
∑

s≤t,as=a

f(x⋆
s,as

) +
√
2R2St(a) log(1/δ

y
t,a). (4)

After re-arrangements of some terms in Eq. (3), the sum of true rewards must be less than the upper
bound of observed rewards with probability at least 1− δyt,a, i.e.,∑

s≤t,as=a

f(x⋆
s,as

) ≤
∑

s≤t,as=a

ys +
√

2R2St(a) log(1/δ
y
t,a).

Theorem 1. Let agent a reports truthfully. Then, LOOM does not eliminate agent a with high
probability at least 1− δxt,a − δyt,a.

Proof. Since all agents report truthfully, for all t ≥ 1, a ∈ At : x⋆ = x. Note that we are
estimating the reward function f using available observations observed context-arm features and
rewards. Recall that we use Ot,−a to denote the observations from all agents except agent a and ft,−a

represents the estimate of reward function f using Ot,−a at the end of round t. Even if other agents
report truthfully, noisy reward feedback may lead to an inaccurate estimator. Let the confidence
ellipsoid |ft,−a(x) − f(x)| ≤ h(x,Ot,−a) hold with probability 1 − δt,a. Then, for any x ∈ X ,
LCBt,−a(x) = ft,−a(x)− h(x,Ot,−a) is the pessimistic estimates of the expected reward for x that
also holds with probability 1− δt,a. Furthermore, f(x) ≥ LCBt,−a(x) (see Lemma 6 in Section C.1
for more details). Using this, for any xt,at

∈ X , we have

f(x⋆
t,at

) = f(xt,at
) ≥ LCBt,−a(xt,at

) =⇒ f(x⋆
t,at

) ≥ LCBt,−a(xt,at
).

Next, we can lower bound the sum of true rewards in terms of the lower confidence bound on estimated
rewards using observed context-arm feature vectors as follows:∑

s≤t,as=a

f(x⋆
s,aa

) ≥
∑

s≤t,as=a

LCBt,−a(xs,as)

=⇒
∑

s≤t,as=a

LCBt,−a(xs,as
) ≤

∑
s≤t,as=a

f(x⋆
s,aa

). (5)

For brevity, we assume the above bound holds with probability at least 1− δxt,a in the round t. Note
that δxt,a can be computed exactly when applying the union bound. Since the true reward is unknown,
we instead first use the upper bound provided in Lemma 1, which holds with probability at least δyt,a,
to modify Eq. (5). We then use the definitions of LCB(x)

t,a and UCB(y)
t,a to get:∑

s≤t,as=a

LCBt,−a(xs,as) ≤
∑

s≤t,as=a

ys +
√
2R2St(a) log(1/δ

y
t,a)

=⇒ LCB(x)
t,a ≤ UCB(y)

t,a . (6)

If the sum of the lower bound of estimated rewards is less than the upper bound of observed rewards
for an agent then that agent is not mis-reporting. However, if any agent violates Eq. (6), i.e.,
LCB(x)

t,a > UCB(y)
t,a , then that agent is not truthful. The probability of failing this LOOM condition is

upper bounded by δxt,a + δyt,a. Since this condition is used as a criterion in COBRA to identify the
strategic agent, COBRA does not eliminate a truthful agent with probability at least 1−δxt,a−δyt,a.

B.2 Leftover proofs from Section 4

The following lemmas are fundamental to the proof of our theoretical results. We follow the following
notation throughout the proof: the arm is represented by a, and −a represents other than arm a’s
estimate. We use ∥x∥A to denote the weighted l2-norm of vector x with respect to matrix A. We next
state the following result that gives the confidence ellipsoid with center at θ̂t or confidence set for the
case when the reward function is linear. We will use this result to prove our bounds in Section 4.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lemma 2. Let δ ∈ (0, 1), λ > 0, R > 0, θ̂t = V −1
t

∑t−1
s=1 xs,as

ys, Vt = λI +
∑t−1

s=1 xs,as
x⊤
s,as

.
Then, with probability at least 1− δ, for all t ≥ 1, θ⋆ lies in the following confidence set:

Ct =

{
θ ∈ Rd :

∥∥∥θ̂t − θ
∥∥∥
Vt

≤ αt

}
, where αt =

(
R

√
d log

(
1 + (tL2/λ)

δ

)
+ λ

1
2S

)
.

Furthermore, with probability at least 1− δ,

∀x ∈ X : θ⊤⋆ x ≤ UCBt(x) = θ̂⊤t x+ αt ∥x∥V −1
t

.

Similarly, with probability at least 1− δ,

∀x ∈ X : θ⊤⋆ x ≥ LCBt(x) = θ̂⊤t x− αt ∥x∥V −1
t

.

Proof. The proof of the first part of the results directly follows from Theorem 2 of Abbasi-Yadkori
et al. (2011). The proof of the second part follows from the first part with some simple algebraic
simplifications as follows:

θ⊤⋆ x− θ̂⊤t x ≤ |θ̂⊤t x− θ⊤⋆ x|

=⇒ θ⊤⋆ x− θ̂⊤t x ≤
∥∥∥θ̂t − θ⋆

∥∥∥
Vt

∥x∥V −1
t

=⇒ θ⊤⋆ x ≤ θ̂⊤t x+ αt ∥x∥V −1
t

=⇒ θ⊤⋆ x ≤ UCBt(x).

Similarly, the last part also follows from the first part with some simple algebraic simplifications as
follows:

|θ̂⊤t x− θ⊤⋆ x| ≤ ∥x∥V −1
t

∥∥∥θ̂t − θ⋆

∥∥∥
Vt

.

After reversing the above inequality, we have

∥x∥V −1
t

∥∥∥θ̂t − θ⋆

∥∥∥
Vt

≥ |θ̂⊤t x− θ⊤⋆ x| ≥ θ̂⊤t x− θ⊤⋆ x

=⇒ ∥x∥V −1
t

∥∥∥θ̂t − θ⋆

∥∥∥
Vt

≥ θ̂⊤t x− θ⊤⋆ x

=⇒ θ⊤⋆ x ≥ θ̂⊤t x−
∥∥∥θ̂t − θ⋆

∥∥∥
Vt

∥x∥V −1
t

=⇒ θ⊤⋆ x ≥ θ̂⊤t x− αt ∥x∥V −1
t

=⇒ θ⊤⋆ x ≥ LCBt(x).

Note that it is possible θ⋆ may not belong to the confidence ellipsoid of θ. However, when all agents
are truthful, i.e., x = x⋆, thereby θ = θ⋆ is trivially satisfied. Recall the following definitions from the
main paper (note that we estimated the ordinary least square (OLS) closed-form solution excluding
the information of agent a):

θ̂t,−a = V −1
t,−a

t−1∑
s=1,as ̸=a

xs,asys, with Vt,−a = λI +

t−1∑
s=1,as ̸=a

xs,asx
⊤
s,as

.

Lemma 3. Let δ ∈ (0, 1), λ > 0, and R > 0. Then, with probability 1− δ,∥∥∥θ̂t,−a − θ⋆

∥∥∥
Vt,−a

≤

(
R

√
d log

(
1 + (t− St(a))L2/λ

δ

)
+ λ

1
2S

)
= αt,−a.

Furthermore, with probability at least 1− δ, the upper bound of θ⊤⋆ x is given by

∀x ∈ X : θ⊤⋆ x ≤ UCBt,−a(x) = θ̂⊤t,−ax+ αt,−a ∥x∥V −1
t,−a

.

Similarly, with probability at least 1− δ, the lower bound of θ⊤⋆ x is given by

∀x ∈ X : θ⊤⋆ x ≥ LCBt,−a(x) = θ̂⊤t,−ax− αt,−a ∥x∥V −1
t,−a

.
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Proof. The first part of the proof follows from Lemma 2 as we are not using observations associated
with agent a, reducing to the standard confidence bound restricted to observations of all agents except
a. The proof of the second part follows from the first part with some simple algebraic simplifications
as follows:

θ⊤⋆ x− θ̂⊤t,−ax ≤ |θ̂⊤t,−ax− θ⊤⋆ x|

=⇒ θ⊤⋆ x− θ̂⊤t,−ax ≤
∥∥∥θ̂t,−a − θ⋆

∥∥∥
Vt,−a

∥x∥V −1
t,−a

=⇒ θ⊤⋆ x ≤ θ̂⊤t,−ax+ αt,−a ∥x∥V −1
t,−a

=⇒ θ⊤⋆ x ≤ UCBt,−a(x).

Similarly, the last part follows from the first part with some algebraic simplifications as follows:

|θ̂⊤t,−ax− θ⊤⋆ x| ≤ ∥x∥V −1
t,−a

∥∥∥θ̂t,−a − θ⋆

∥∥∥
Vt,−a

.

After reversing the above inequality, we have

∥x∥V −1
t,−a

∥∥∥θ̂t,−a − θ⋆

∥∥∥
Vt,−a

≥ |θ̂⊤t,−ax− θ⊤⋆ x| ≥ θ̂⊤t,−ax− θ⊤⋆ x

=⇒ ∥x∥V −1
t,−a

∥∥∥θ̂t,−a − θ⋆

∥∥∥
Vt,−a

≥ θ̂⊤t,−ax− θ⊤⋆ x

=⇒ θ⊤⋆ x ≥ θ̂⊤t,−ax−
∥∥∥θ̂t,−a − θ⋆

∥∥∥
Vt,−a

∥x∥V −1
t,−a

=⇒ θ⊤⋆ x ≥ θ̂⊤t,−ax− αt,−a ∥x∥V −1
t,−a

=⇒ θ⊤⋆ x ≥ LCBt,−a(x).

B.2.1 Proof of Theorem 2

Theorem 2 (Linear). When agents report truthfully, being truthful is a Õ(d
√
T )-NE under COBRA.

The regret of COBRA under this approximate NE is at most RT (COBRA,σ⋆) = Õ(d
√
T ).

Proof. When all agents report truthfully, our algorithm is the same as Lin-UCB (Chu et al., 2011)
with a mechanism for identifying strategic agents that holds with probability 1 − δx − δy. For
completeness, we first prove the regret upper bound of COBRA as follows:

RT (COBRA,σ⋆) =

T∑
t=1

(θ⊤⋆ x
⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

). (7)

Since the true feature vector is the same as the reported context-arm feature vector (i.e., x⋆
t,a = xt,a),

we can start with upper bounding the difference θ⊤⋆ x⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

as follows:

θ⊤⋆ x
⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

= θ⊤⋆ xt,a⋆
t
− θ⊤⋆ xt,at

≤ UCB(xt,a⋆
t
)− θ⊤⋆ xt,at

≤ UCB(xt,at)− θ⊤⋆ xt,at

(
as UCB(xt,a⋆

t
) ≤ UCB(xt,at)

)
= θ̂⊤t xt,at

+ αt ∥xt,at
∥V −1

t
− θ⊤⋆ xt,at

= θ̂⊤t xt,at
− θ⊤⋆ xt,at

+ αt ∥xt,at
∥V −1

t

≤
∥∥∥θ⋆ − θ̂t

∥∥∥
Vt

∥xt,at∥V −1
t

+ αt ∥xt,at∥V −1
t

≤ αt ∥xt,at
∥V −1

t
+ αt ∥xt,at

∥V −1
t

=⇒ θ⊤⋆ x
⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

≤ 2αt ∥xt,at∥V −1
t

. (8)
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Note that θ̂t is an estimator of θ⋆ as the true feature vector is the same as the reported context-arm
feature vector. After using the upper bound given in Eq. (8) into Eq. (7), we get an upper bound on
the regret as follows:

RT (COBRA,σ⋆) = θ⊤⋆ x
⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

≤
T∑

t=1

2αt ∥xt,at
∥V −1

t

= 2

T∑
t=1

αt ∥xt,at∥V −1
t

≤ 2
√
T

√√√√ T∑
t=1

[
αt ∥xt,at∥V −1

t

]2

≤ 2
√
T

√√√√ T∑
t=1

[
αT ∥xt,at

∥V −1
t

]2

= 2
√
T

√√√√α2
T

T∑
t=1

∥xt,at
∥2V −1

t

= 2αT

√
T

√√√√ T∑
t=1

∥xt,at∥
2
V −1
t

≤ 2αT

√
T

√
2 log

det(VT )

det(λId)

=⇒ RT (COBRA,σ⋆) ≤ 2αT

√
2dT log(λ+ TL/d) = Õ(d

√
T ). (9)

The first inequality directly follows from Eq. (8). The second inequality is due to using Cauchy-Schwarz
inequality where third inequality follows from the fact that αt increases with t. The last two
inequalities follow from Lemma 11 and Lemma 10 of Abbasi-Yadkori et al. (2011), respectively, and
αT = Õ(d log T ).

We now prove that being truthful is an approximate Nash equilibrium for COBRA. Recall, ST (a)
denotes the number of times an agent being selected by COBRA, which is given as follows:

ST (a) =

T∑
t=1

1(at = a)

=

T∑
t=1

1(at = a, a⋆t = a) +

T∑
t=1

1(at = a, a⋆t ̸= a)

≥
T∑

t=1

1(a⋆t = a)−
T∑

t=1

1(a⋆t = a, at ̸= a)

≥
T∑

t=1

1(a⋆t = a)−
T∑

t=1

1(at ̸= a⋆t )

=⇒ ST (a) ≥ S⋆
T (a)−

T∑
t=1

1(at ̸= a⋆t ). (10)

To get the lower bound ST (a), we get an upper bound
∑T

t=1 1(at ̸= a⋆t ). Let ∆at
=(

θ⊤⋆ x
⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

)
> 0 for at ̸= a⋆t . We multiply and divide 1(at ̸= a⋆t ) by ∆at

and then
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use inequality in Eq. (8), i.e., ∆at
≤ 2αt ∥xt,at

∥V −1
t

as follows:
T∑

t=1

1(at ̸= a⋆t ) =

T∑
t=1

1(at ̸= a⋆t )
∆at

∆at

≤
T∑

t=1

1(at ̸= a⋆t )
2αt ∥xt,at

∥V −1
t

∆at

(as x⋆
t,a = xt,a)

≤
T∑

t=1

2αt ∥xt,at
∥V −1

t

∆at

=

T∑
t=1

1

∆at

2αt ∥xt,at∥V −1
t

≤

√√√√ T∑
t=1

(
1

∆at

)2 T∑
t=1

(
2αt ∥xt,at∥V −1

t

)2

≤

√√√√ T∑
t=1

(
1

∆at

)2 T∑
t=1

(
2αT ∥xt,at

∥V −1
t

)2

=

√√√√ T∑
t=1

(
1

∆at

)2

√√√√ T∑
t=1

(
2αT ∥xt,at

∥V −1
t

)2

=

√√√√ T∑
t=1

(
1

∆at

)2

√√√√(2αT )
2

T∑
t=1

∥xt,at∥
2
V −1
t

= 2αT

√√√√ T∑
t=1

(
1

∆at

)2

√√√√ T∑
t=1

∥xt,at
∥2V −1

t

≤ 2αT

√√√√ T∑
t=1

(
1

∆at

)2
√

2 log
det(VT )

det(λId)

≤ 2αT

√√√√ T∑
t=1

(
1

∆at

)2√
2d log(λ+ TL/d)

≤ 2αT

√√√√ T∑
t=1

(
1

∆min

)2√
2d log(λ+ TL/d)

≤ 2

∆min
αT

√
T
√

2d log(λ+ TL/d)

=⇒
T∑

t=1

1(at ̸= a⋆t ) ≤
2

∆min

(
R

√
d log

(
1 + (tL2/λ)

δ

)
+ λ

1
2S

)√
2dT log(λ+ TL/d).

Note that ∆min = minat ̸=a⋆
t
∆at . Although using ∆min loosen the upper bound, we use this to get

dependence on T . Let Õ hide the dependence on logarithmic terms, then we have the following
result:

T∑
t=1

1(at ̸= a⋆t ) ≤ Õ
(
d
√
T
)
. (11)

Using this upper bound in Eq. (10), we get the following bound for any agent a ∈ A:

ST (a) ≥ S⋆
T (a)− Õ

(
d
√
T
)
. (12)
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Now we consider the case where an agent a deviates from the truthful strategy. The number of times
an agent being selected by COBRA is given as follows:

ST (a) =

T∑
t=1

1(at = a)

=

T∑
t=1

1(at = a, a⋆t = a) +

T∑
t=1

1(at = a, a⋆t ̸= a)

≤
T∑

t=1

1(a⋆t = a) +

T∑
t=1

1(at = a, a⋆t ̸= a)

≤
T∑

t=1

1(a⋆t = a) +

T∑
t=1

1(at ̸= a⋆t ). (13)

Using Eq. (11) in Eq. (13), we get

ST (a) ≤ S⋆
T (a) + Õ

(
d
√
T
)
. (14)

Combining Eq. (12) and Eq. (14) completes our proof that COBRA is Õ(d
√
T )-NE.

B.2.2 Proof of Theorem 4

To prove Theorem 4, we will use the following result that upper bounds the total amount of regret that
an agent a can exert before being identified by LOOM.
Lemma 4. Let UCBt,−a(xs,a) = θ̂⊤t,−axs,a+αt,−a ∥xs,a∥V −1

t,−a
, where xs,a is the arm feature vector

associated with agent a in the round s. Then, with probability at least 1− δxt,a − δyt,a,∑
s≤t : as=a

(
UCBt,−a(xs,a)− θ⊤⋆ x

⋆
s,a

)
≤

∑
s≤t,as=a

2αt,−a ∥xs,a∥V −1
t,−a

+ 2
√

2R2St(a) log(1/δ
y
t,a).

Proof. Using Eq. (6) with Lemma 3 for linear reward function that holds with probability at least
1− δxt,a, we get:∑
s≤t,as=a

(
θ̂⊤t,−axs,a − αt,−a ∥xs,a∥V −1

t,−a

)
≤

∑
s≤t,as=a

ys +
√

2R2St(a) log(1/δ
y
t,a)

≤
∑

s≤t,as=a

θ⊤⋆ x
⋆
s,a +

√
2R2St(a) log(1/δ

y
t,a)

+
√
2R2St(a) log(1/δ

y
t,a)

=⇒
∑

s≤t,as=a

(
θ̂⊤t,−axs,a − θ⊤⋆ x

⋆
s,a

)
≤

∑
s≤t,as=a

αt,−a ∥xs,a∥V −1
t,−a

+ 2
√

2R2St(a) log(1/δ
y
t,a).

The second inequality follows from Eq. (4) by using upper bound (as the reward function is linear) on∑
s≤t,as=a ys that holds with probability 1 − δyt,a. Now we prove the second part of the result by

replacing θ̂⊤t,−axs,a by UCBt,−a(xs,a)− αt,−a ∥xs,a∥V −1
t,−a

and we get∑
s≤t,as=a

(
UCBt,−a(xs,a)− αt,−a ∥xs,a∥V −1

t,−a
− θ⊤⋆ x

⋆
s,a

)
≤

∑
s≤t,as=a

αt,−a ∥xs,a∥V −1
t,−a

+ 2
√
2R2St(a) log(1/δ

y
t,a)

=⇒
∑

s≤t,as=a

(
UCBt,−a(xs,a)− θ⊤⋆ x

⋆
s,a

)
≤

∑
s≤t,as=a

2αt,−a ∥xs,a∥V −1
t,−a

+ 2
√

2R2St(a) log(1/δ
y
t,a).
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We first restate the main assumptions needed to prove Theorem 4.
Assumption 1. Let x and x⋆ be the reported and true context-arm feature vector, respectively. Then,
we assume (i) ∀t ≥ 1, a ∈ At : f(xt,a) ≤ UCBt(xt,a), where UCBt(x) = ft(x) + h(x,Ot).
(ii) ∀t ≥ 1, a ∈ At : UCBt(xt,a) ≤ UCBt,−a(xt,a), where UCBt,−a(x) = ft,−a(x) + h(x,Ot,−a).

We now have all results that will be used to prove Theorem 4.
Theorem 4 (Linear). If Assumption 1 hold then, the regret of COBRA is RT (COBRA,σ) = Õ(d

√
T +√

NT ) for every σ ∈ NE(COBRA). Hence, maxσ∈NE(COBRA) RT (COBRA,σ) = Õ(d
√
T +

√
NT ).

Proof. Recall At denotes the set of arms’ feature corresponding to the active agents in the round t.
The regret of COBRA for σ ∈ NE(COBRA) is given as follows:

RT (COBRA,σ) =

T∑
t=1

(
θ⊤⋆ x

⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

)
=

T∑
t=1

(
max
a∈At

θ⊤⋆ x
⋆
t,a − θ⊤⋆ x

⋆
t,at

)
. (15)

Under Assumption 1, if COBRA selects at ∈ At : at ̸= a⋆t , we have θ⊤⋆ x
⋆
t,a⋆

t
≤ θ⊤⋆ xt,a⋆

t
≤

UCBt(xt,a⋆
t
) ≤ UCBt(xt,at

). Using θ⊤⋆ x
⋆
t,a⋆

t
≤ UCBt(xt,at

) inequality with Lemma 4, we have

RT (COBRA,σ) =

T∑
t=1

(
θ⊤⋆ x

⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

)
≤

T∑
t=1

(
θ⊤⋆ xt,a⋆

t
− θ⊤⋆ x

⋆
t,at

)
(agents are over-reporting)

≤
T∑

t=1

(
UCBt(xt,a⋆

t
)− θ⊤⋆ x

⋆
t,at

)
(first part of Assumption 1)

≤
T∑

t=1

(
UCBt(xt,at)− θ⊤⋆ x

⋆
t,at

)
(as selected arm is at)

≤
T∑

t=1

(
UCBt,−a(xt,at

)− θ⊤⋆ x
⋆
t,at

)
(second part of Assumption 1)

=

T∑
t=1

1(at = a)
(
UCBt,−a(xt,a)− θ⊤⋆ x

⋆
t,a

)
=

N∑
a=1

∑
t≤T,at=a

(
UCBt,−a(xt,a)− θ⊤⋆ x

⋆
t,a

)

≤
N∑

a=1

 ∑
t≤T,at=a

2αt,−a ∥xt,a∥V −1
t,−a

+ 2
√

2R2St(a) log(1/δ
y
t,a)

 (Lemma 4)

=

N∑
a=1

∑
t≤T,at=a

2αt,−a ∥xt,a∥V −1
t,−a

+

N∑
a=1

2
√

2R2St(a) log(1/δ
y
t,a)

=

T∑
t=1

2αt,−a ∥xt,at∥V −1
t,−a

+

N∑
a=1

2
√

2R2St(a) log(1/δ
y
t,a). (16)

First, we will upper bound the first part of the above inequality, i.e.,
∑T

t=1 αt,−a ∥xt,at∥V −1
t,−a

, as
follows:

T∑
t=1

2αt,−a ∥xt,at
∥V −1

t,−a
≤ 2

√
T

√√√√ T∑
t=1

[
αt,−a ∥xt,at

∥V −1
t,−a

]2
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≤ 2
√
T

√√√√ T∑
t=1

[
αT ∥xt,at

∥V −1
t,−a

]2

= 2
√
T

√√√√α2
T

T∑
t=1

∥xt,at∥
2
V −1
t,−a

= 2αT

√
T

√√√√ T∑
t=1

∥xt,at
∥2V −1

t,−a

= 2αT

√
T

√√√√ T∑
t=1

∥xt,at∥
2
V −1
t,−a

∥xt,at
∥2V −1

t

∥xt,at
∥2V −1

t

= 2αT

√
T

√√√√ T∑
t=1

∥xt,at
∥2V −1

t

∥xt,at∥
2
V −1
t,−a

∥xt,at
∥2V −1

t

≤ 2αTC
√
T

√√√√ T∑
t=1

∥xt,at
∥2V −1

t

≤ 2αTC
√
T

√
2 log

det(VT )

det(λId)

=⇒ RT (COBRA,σ) ≤ 2αTC
√

2dT log(λ+ TL/d) = Õ(d
√
T ). (17)

[[Here, using the fact and Lemma the new bound is in terms of λmin and λmax. Then a Corollary
should be stated where the regret bound is O(T 3/4). The similar thing should be mentioned for the
non-linear counter part.]]

The first inequality is due to using Cauchy-Schwarz inequality, where the second inequality follows from
the fact that αt,−a increases with t. The third inequality follows from Lemma 12 of Abbasi-Yadkori
et al. (2011), by adapting it to our setting. The fourth inequality follows from the fact that there exists an

universal constant C such that C ≥ max
a

√√√√∥xt,at∥2

V
−1
t,−a

∥xt,at∥2

V
−1
t

for all t ≥ 1. The last two inequalities follow

from Lemma 10 and Lemma 11 of Abbasi-Yadkori et al. (2011), respectively, and αT = Õ(d log T ).
For first part of Eq. (16), we have

∑T
t=1 2αt,−a ∥x∥V −1

t,−a
≤ 2αT

√
2dT (1 + C) log(λ+TL/d) from

Eq. (17), and then using the Jensen’s inequality for the second part with the fact that
∑N

a=1 St(a) ≤ T .
Then, we have

RT (COBRA,σ) ≤ 2αTC
√
2dT log(λ+ TL/d) + 2

√
2R2NT log(1/δyt,a)

=⇒ RT (COBRA,σ) ≤ Õ(d
√
T +

√
NT ). (18)

We now prove that being truthful is an approximate Nash equilibrium for COBRA. Recall Eq. (10),
ST (a) denotes the number of times an agent being selected by COBRA, which is given as follows:

ST (a) =

T∑
t=1

1(at = a) ≥ S⋆
T (a)−

T∑
t=1

1(at ̸= a⋆t ). (19)

To get the lower bound ST (a), we get the upper bound
∑T

t=1 1(at ̸= a⋆t ) when any agent can behave
strategically. Recall ∆at

=
(
θ⊤⋆ x

⋆
t,a⋆

t
− θ⊤⋆ x

⋆
t,at

)
≤ UCBt,−a(xt,a) − θ⊤⋆ x

⋆
t,a for at ̸= a⋆t . We

multiply and divide 1(at ̸= a⋆t ) by ∆at
as follows:

T∑
t=1

1(at ̸= a⋆t ) =

T∑
t=1

1(at ̸= a⋆t )
∆at

∆at
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=

N∑
k=1

∑
t≤T,at=a

1(at ̸= a⋆t , at = a)
∆at

∆at

≤
N∑

k=1

∑
t≤T,at=a

1(at ̸= a⋆t , at = a)
UCBt,−a(xt,a)− θ⊤⋆ x

⋆
t,a

∆at

≤
N∑

k=1

∑
t≤T,at=a

UCBt,−a − θ⊤⋆ x
⋆
t,a

∆at

Assuming there exists a ∆min such that ∆min = minat ̸=a⋆
t
∆at , we get

≤ 1

∆min

N∑
k=1

∑
t≤T,at=a

UCBt,−a(xt,a)− θ⊤⋆ x
⋆
t,a

Using Eq. (16) with its upper bound, we have
T∑

t=1

1(at ̸= a⋆t ) ≤
2

∆min

(
2αTC

√
2dT log(λ+ TL/d) + 2

√
2R2NT log(1/δyt,a)

)
=⇒

T∑
t=1

1(at ̸= a⋆t ) ≤ Õ
(
d
√
T +

√
NT

)
. (20)

Using this upper bound in Eq. (19), we get the following bound for any agent a ∈ A:

ST (a) ≥ S⋆
T (a)− Õ

(
d
√
T +

√
NT

)
. (21)

Now, we consider the case where an agent a deviates from the truthful strategy. Recall Eq. (13), the
number of times an agent being selected by COBRA is given as follows:

ST (a) =

T∑
t=1

1(at = a) ≤
T∑

t=1

1(a⋆t = a) +

T∑
t=1

1(at ̸= a⋆t ). (22)

Using Eq. (20) in Eq. (22), we get

ST (a) ≤ S⋆
T (a) + Õ

(
d
√
T +

√
NT

)
. (23)

Combining Eq. (21) and Eq. (23) completes our proof that COBRA is Õ
(
d
√
T +

√
NT

)
-NE.

C Non-linear Reward Function

Table 1: Examples of different h(x,Ot) values for some LOOM-compatible contextual bandit
algorithms, using notations from the original papers.

Contextual bandit algorithm h(x,Ot)

Lin-UCB (Chu et al., 2011)

(
R

√
d log

(
1+ tL2

λ

δ

)
+ λ

1
2S

)
∥x∥V −1

t

GLM-UCB (Li et al., 2017)
√

d
2 log(1 + 2t/d) + log(1/δ)

∥x∥
V

−1
t

κ

IGP-UCB (Chowdhury and Gopalan, 2017)
(√

2(γt−1 + 1 + log(1/δ)) +B
)
σt−1(x)

C.1 Theoretical Results

We first derive results similar to Lemma 2 and Lemma 3 for contextual bandit problems with non-linear
reward functions. For brevity, we ignore A in fA

t and use only ft.
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Lemma 5. Let A be a LOOM-compatible contextual bandit algorithm for which |ft(x)− f(x)| ≤
h(x,Ot) holds with probability at least 1− δ for any x ∈ X . Then, for all t ≥ 1,

1. With probability at least 1− δ,

∀x ∈ X : f(x) ≤ UCBt(x) = ft(x) + h(x,Ot).

2. Similarly, with probability at least 1− δ,

∀x ∈ X : f(x) ≥ LCBt(x) = ft(x)− h(x,Ot).

Proof. The proofs of these results follow directly from the first part of Definition 4. For completeness,
we provide the proof of the first part, which follows from straightforward algebraic simplifications of
|ft(x)− f(x)| ≤ h(x,Ot):

|ft(x)− f(x)| ≤ h(x,Ot)

=⇒ |f(x)− ft(x)| ≤ h(x,Ot)

=⇒ f(x)− ft(x) ≤ h(x,Ot)

=⇒ f(x) ≤ ft(x) + h(x,Ot).

Similarly, the proof of the second part follows with some simple algebraic simplifications of
|ft(x)− f(x)| ≤ h(x,Ot):

|ft(x)− f(x)| ≤ h(x,Ot)

=⇒ ft(x)− f(x) ≤ h(x,Ot)

=⇒ ft(x)− h(x,Ot) ≤ f(x)

=⇒ f(x) ≥ ft(x)− h(x,Ot).

Lemma 6. Let A be a LOOM-compatible contextual bandit algorithm for which |ft,−a(x)− f(x)| ≤
h(x,Ot,−a) holds with probability at least 1− δ for any x ∈ X . Then, for all t ≥ 1,

1. With probability at least 1− δ,

∀x ∈ X : f(x) ≤ UCBt,−a(x) = ft,−a(x) + h(x,Ot,−a).

2. Similarly, with probability at least 1− δ,

∀x ∈ X : f(x) ≥ LCBt,−a(x) = ft,−a(x)− h(x,Ot,−a).

Proof. The proofs of these results follow directly from the second part of Definition 4. For
completeness, we provide the proof of the first part, which follows from straightforward algebraic
simplifications of |ft(x)− f(x)| ≤ h(x,Ot):

|ft,−a(x)− f(x)| ≤ h(x,Ot,−a)

=⇒ |f(x)− ft,−a(x)| ≤ h(x,Ot,−a)

=⇒ f(x)− ft,−a(x) ≤ h(x,Ot,−a)

=⇒ f(x) ≤ ft,−a(x) + h(x,Ot,−a).

Similarly, the proof of the second part follows with some simple algebraic simplifications of
|ft(x)− f(x)| ≤ h(x,Ot):

|ft,−a(x)− f(x)| ≤ h(x,Ot,−a)

=⇒ ft,−a(x)− f(x) ≤ h(x,Ot,−a)

=⇒ ft,−a(x)− h(x,Ot,−a) ≤ f(x)

=⇒ f(x) ≥ ft,−a(x)− h(x,Ot,−a).
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Proof. When all agents report truthfully, our algorithm is the same as contextual bandit algorithm A
with a mechanism for identifying strategic agents that holds with probability at least 1− δx − δy . For
completeness, we first recall the definition the regret of COBRA as follows:

RT (COBRA(A),σ⋆) =

T∑
t=1

(
f(x⋆

t,a⋆
t
)− f(x⋆

t,at
)
)
. (24)

Since the true feature vector is the same as the reported context-arm feature vector (i.e., x⋆
t,a = xt,a),

we can start with upper bounding the difference f(x⋆
t,a⋆

t
)− f(x⋆

t,at
) as follows:

f(x⋆
t,a⋆

t
)− f(x⋆

t,at
) ≤ UCB(xt,a⋆

t
)− f(x⋆

t,at
)

≤ UCB(xt,at
)− f(x⋆

t,at
)

(
as UCB(xt,a⋆

t
) ≤ UCB(xt,at

)
)

= ft(xt,at
) + h(xt,at

,Ot)− f(x⋆
t,at

)

≤ |ft(xt,at)− f(x⋆
t,at

)|+ h(xt,at ,Ot)

≤ h(xt,at ,Ot) + h(xt,at ,Ot)

=⇒ f(x⋆
t,a⋆

t
)− f(x⋆

t,at
) ≤ 2h(xt,at ,Ot). (25)

Note that ft is an estimator of the reward function f as the true feature vector is the same as the
reported context-arm feature vector. After using the upper bound given in Eq. (25) into Eq. (24), we
get an upper bound on the regret as follows:

RT (COBRA(A),σ⋆) =

T∑
t=1

(
f(x⋆

t,a⋆
t
)− f(x⋆

t,at
)
)

≤
T∑

t=1

2h(xt,at
,Ot)

= 2

T∑
t=1

h(xt,at ,Ot)

≤ 2

T∑
t=1

√√√√T

T∑
t=1

[h(xt,at
,Ot)]

2

=⇒ RT (COBRA(A),σ⋆) ≤ 2
√
T

√√√√ T∑
t=1

[h(xt,at ,Ot)]
2
= Õ

(
d̃
√
T
)
. (26)

The first inequality directly follows from Eq. (25). The second inequality is due to using

Cauchy-Schwarz inequality. The last equality is due to
√∑T

t=1 [h(xt,at
,Ot)]

2
= Õ(d̃ log T ).

We now prove that being truthful is an approximate Nash equilibrium for COBRA. Recall, ST (a)
denotes the number of times an agent being selected by COBRA, which is given as follows:

ST (a) =

T∑
t=1

1(at = a)

=

T∑
t=1

1(at = a, a⋆t = a) +

T∑
t=1

1(at = a, a⋆t ̸= a)

≥
T∑

t=1

1(a⋆t = a)−
T∑

t=1

1(a⋆t = a, at ̸= a)

≥
T∑

t=1

1(a⋆t = a)−
T∑

t=1

1(at ̸= a⋆t )
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=⇒ ST (a) ≥ S⋆
T (a)−

T∑
t=1

1(at ̸= a⋆t ). (27)

To get the lower bound ST (a), we get an upper bound
∑T

t=1 1(at ̸= a⋆t ). Let ∆at =(
f(x⋆

t,a⋆
t
)− f(x⋆

t,at
)
)

> 0 for at ̸= a⋆t . We multiply and divide 1(at ̸= a⋆t ) by ∆at
and then

use inequality in Eq. (25), i.e., ∆at
≤ 2h(xt,at

,Ot) as follows:
T∑

t=1

1(at ̸= a⋆t ) =

T∑
t=1

1(at ̸= a⋆t )
∆at

∆at

≤
T∑

t=1

1(at ̸= a⋆t )
2h(xt,at ,Ot)

∆at

(as x⋆
t,a = xt,a)

≤
T∑

t=1

2h(xt,at
,Ot)

∆at

=

T∑
t=1

1

∆at

2h(xt,at ,Ot)

≤
T∑

t=1

1

∆min
2h(xt,at

,Ot)

=
2

∆min

T∑
t=1

h(xt,at
,Ot)

≤ 2

∆min

√
T

√√√√ T∑
t=1

[h(xt,at ,Ot)]
2

=⇒
T∑

t=1

1(at ̸= a⋆t ) ≤ Õ
(
d̃
√
T
)
. (28)

Note that ∆min = minat ̸=a⋆
t
∆at

. Although using ∆min loosen the upper bound, we use this to get
dependence on T . Using this upper bound in Eq. (27), we get the following bound for any agent
a ∈ A:

ST (a) ≥ S⋆
T (a)− Õ

(
d̃
√
T
)
. (29)

Now we consider the case where an agent a deviates from the truthful strategy. The number of times
an agent being selected by COBRA is given as follows:

ST (a) =

T∑
t=1

1(at = a)

=

T∑
t=1

1(at = a, a⋆t = a) +

T∑
t=1

1(at = a, a⋆t ̸= a)

≤
T∑

t=1

1(a⋆t = a) +

T∑
t=1

1(at = a, a⋆t ̸= a)

≤
T∑

t=1

1(a⋆t = a) +

T∑
t=1

1(at ̸= a⋆t ). (30)

Using Eq. (28) in Eq. (30), we get

ST (a) ≤ S⋆
T (a) + Õ

(
d̃
√
T
)
. (31)

Combining Eq. (29) and Eq. (31) completes our proof that COBRA is Õ(d̃
√
T )-NE.
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We need the following result that upper bound the total amount of regret that an agent a can exert
before being identified by LOOM.
Lemma 7. Let UCBt,−a(xs,a) = ft,−a(xs,a) + h(xs,a,Ot,−a), where xs,a is the arm feature vector
associated with agent a in the round s. Then, with probability at least 1− δxt,a − δyt,a,∑

s≤t : as=a

(
UCBt,−a(xs,a)− f(x⋆

s,a)
)
≤

∑
s≤t,as=a

2h(xs,a,Ot,−a) + 2
√
2R2St(a) log(1/δ

y
t,a).

Proof. Using Eq. (6) with Lemma 3 for non-linear reward function that holds with probability at least
1− δxt,a, we get:∑
s≤t,as=a

(ft,−a(xs,a) + h(xs,a,Ot,−a)) ≤
∑

s≤t,as=a

ys +
√
2R2St(a) log(1/δ

y
t,a)

≤
∑

s≤t,as=a

f(x⋆
s,a) +

√
2R2St(a) log(1/δ

y
t,a)

+
√
2R2St(a) log(1/δ

y
t,a)

=⇒
∑

s≤t,as=a

(
ft,−a(xs,a)− f(x⋆

s,a)
)
≤

∑
s≤t,as=a

h(xs,a,Ot,−a) + 2
√
2R2St(a) log(1/δ

y
t,a).

The second inequality follows from Eq. (4) by using upper bound on
∑

s≤t,as=a ys that holds
with probability 1 − δyt,a. Now we prove the second part of the result by replacing ft,−a(xs,a) by
UCBt,−a(xs,a)− h(xs,a,Ot,−a) and we get∑

s≤t,as=a

(
UCBt,−a(xs,a)− h(x,Ot,−a)− f(x⋆

s,as
)
)

≤
∑

s≤t,as=a

h(xs,a,Ot,−a) + 2
√
2R2St(a) log(1/δ

y
t,a)

=⇒
∑

s≤t,as=a

(
UCBt,−a(xs,a)− f(x⋆

s,as
)
)

≤
∑

s≤t,as=a

2h(xs,a,Ot,−a) + 2
√
2R2St(a) log(1/δ

y
t,a).

Theorem 5 (Non-linear). Let A be a LOOM-compatible contextual bandit algorithm used by COBRA.
If Assumption 1 hold then, the regret of COBRA is RT (COBRA(A),σ) = Õ(d̃

√
T +

√
NT ) for

every σ ∈ NE(COBRA(A)). Hence, maxσ∈NE(COBRA(A)) RT (COBRA(A),σ) = Õ(d̃
√
T +

√
NT ).

Proof. Recall At denotes the set of arms’ feature corresponding to the active agents in the round t.
The regret of COBRA for σ ∈ NE(COBRA(A)) is given as follows:

RT (COBRA(A),σ) =

T∑
t=1

(
f(x⋆

t,a⋆
t
)− f(x⋆

t,at
)
)
=

T∑
t=1

(
max
a∈At

f(x⋆
t,a)− f(x⋆

t,at
)

)
. (32)

Under Assumption 1, if COBRA selects at ∈ At : at ̸= a⋆t , we have f(x⋆
t,a⋆

t
) ≤ f(xt,a⋆

t
) ≤

UCBt(xt,a⋆
t
) ≤ UCBt(xt,at

). Using f(x⋆
t,a⋆

t
) ≤ UCBt(xt,at

) inequality with Lemma 7, we have

RT (COBRA(A),σ) =

T∑
t=1

(
f(x⋆

t,a⋆
t
)− f(x⋆

t,at
)
)

≤
T∑

t=1

(
f(xt,a⋆

t
)− f(x⋆

t,at
)
)

(agents are over-reporting)

≤
T∑

t=1

(
UCBt(xt,a⋆

t
)− f(x⋆

t,at
)
)

(first part of Assumption 1)
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≤
T∑

t=1

(
UCBt(xt,at)− f(x⋆

t,at
)
)

(as selected arm is at)

≤
T∑

t=1

(
UCBt,−a(xt,at

)− f(x⋆
t,at

)
)

(second part of Assumption 1)

=

T∑
t=1

1(at = a)
(
UCBt,−a(xt,a)− f(x⋆

t,a)
)

=

N∑
a=1

∑
t≤T,at=a

(
UCBt,−a(xt,a)− f(x⋆

t,a)
)

≤
N∑

a=1

 ∑
t≤T,at=a

2h(xt,a,Ot,−a) + 2
√

2R2St(a) log(1/δ
y
t,a)


=

N∑
a=1

∑
t≤T,at=a

2h(xt,a,Ot,−a) +
N∑

a=1

2
√

2R2St(a) log(1/δ
y
t,a)

=

T∑
t=1

2h(xt,at
,Ot,−a) +

N∑
a=1

2
√

2R2St(a) log(1/δ
y
t,a)

≤ 2
√
T

√√√√ T∑
t=1

[h(xt,at
,Ot,−a)]

2
+ 2

N∑
a=1

√
2R2St(a) log(1/δ

y
t,a)

≤ 2
√
T

√√√√ T∑
t=1

[h(xt,at
,Ot,−a)]

2
+ 2
√

2R2NT log(1/δyt,a)

≤ 2C
√
T

√√√√ T∑
t=1

[h(xt,at ,Ot,a)]
2
+ 2
√
2R2NT log(1/δyt,a)

=⇒ RT (COBRA(A),σ) = Õ
(
d̃
√
T +

√
NT

)
. (33)

The third-last inequality follows from Lemma 7. The second-last inequality is due to using
Cauchy-Schwarz inequality where last inequality follows from Jensen’s inequality with the fact that∑N

a=1 St(a) ≤ T .

We now prove that being truthful is an approximate Nash equilibrium for COBRA. Recall Eq. (27),
ST (a) denotes the number of times an agent being selected by COBRA, which is given as follows:

ST (a) =

T∑
t=1

1(at = a) ≥ S⋆
T (a)−

T∑
t=1

1(at ̸= a⋆t ). (34)

To get the lower bound ST (a), we get the upper bound
∑T

t=1 1(at ̸= a⋆t ) when any agent can behave
strategically. Recall ∆at

=
(
f(x⋆

t,a⋆
t
)− f(x⋆

t,at
)
)
≤ UCBt,−a(xt,a) − f(x⋆

t,a) for at ̸= a⋆t . We
multiply and divide 1(at ̸= a⋆t ) by ∆at

as follows:
T∑

t=1

1(at ̸= a⋆t ) =

T∑
t=1

1(at ̸= a⋆t )
∆at

∆at

=

N∑
k=1

∑
t≤T,at=a

1(at ̸= a⋆t , at = a)
∆at

∆at

≤
N∑

k=1

∑
t≤T,at=a

1(at ̸= a⋆t , at = a)
UCBt,−a(xt,a)− f(x⋆

t,a)

∆at
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≤
N∑

k=1

∑
t≤T,at=a

UCBt,−a − f(x⋆
t,a)

∆at

Assuming there exists a ∆min such that ∆min = minat ̸=a⋆
t
∆at , we get

≤ 1

∆min

N∑
k=1

∑
t≤T,at=a

UCBt,−a(xt,a)− f(x⋆
t,a)

Using Eq. (33) with its upper bound, we have

T∑
t=1

1(at ̸= a⋆t ) ≤
2

∆min

2
√
T

√√√√ T∑
t=1

[h(xt,at
,Ot,−a)]

2
+ 2
√

2R2NT log(1/δyt,a)

 (35)

=⇒
T∑

t=1

1(at ̸= a⋆t ) = Õ
(
d
√
T +

√
NT

)
.

Using this upper bound in Eq. (34), we get the following bound for any agent a ∈ A:

ST (a) ≥ S⋆
T (a)− Õ

(
d̃
√
T +

√
NT

)
. (36)

Now, we consider the case where an agent a deviates from the truthful strategy. Recall Eq. (30), the
number of times an agent being selected by COBRA is given as follows:

ST (a) =

T∑
t=1

1(at = a) ≤
T∑

t=1

1(a⋆t = a) +

T∑
t=1

1(at ̸= a⋆t ). (37)

Using Eq. (35) in Eq. (37), we get

ST (a) ≤ S⋆
T (a) + Õ

(
d̃
√
T +

√
NT

)
. (38)

Combining Eq. (36) and Eq. (38) completes our proof that COBRA is Õ
(
d̃
√
T +

√
NT

)
-NE.

D Discussion about LOOM and Assumption 1

D.1 LOOM-related Discussion

Example showing impact of arm feature distribution on LOOM. To illustrate how arm feature
distribution of agents plays out in our setting, consider the example of an online e-commerce platform
recommending sellers. When multiple sellers offer similar products, such as round-neck T-shirts
priced between $5 and $15, their corresponding arms (i.e., T-shirts) will have similar feature vectors. In
contrast, sellers offering distinct products, such as one selling T-shirts and another selling smartphones,
will likely have arms with very different feature representations. Suppose a seller offers a unique
product, for example, being the only seller of Apple products on the online e-commerce platform. In
that case, there is no incentive to misreport their features, as no competitors exist. Thus, misreporting
becomes strategically beneficial only when sellers offer similar products, in which case their arm
features are drawn from similar distributions, allowing LOOM to identify the misreporting agent.

Failure case of LOOM. The estimators used in LOOM cannot estimate directions orthogonal to the
available observations, e.g., estimating the mean reward of an arm using others in stochastic K-armed
bandits. However, these estimators are used solely to identify strategic agents and do not affect the
arm-selection strategy of the underlying contextual bandit algorithm. As a result, if a over-reporting
agent’s arm features occupy distinct regions of the feature space, LOOM may fail to identify the agent,
but the arm-selection strategy may remain unaffected due to the non-overlapping feature space.

Alternative to complete removal of over-reporting agent. When an agent over-reports its arm
features and is completely eliminated, such an event would be extremely rare in practice. If every
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agent were to persistently misreport, any mechanism prioritizing user experience would eventually
stop recommending such agents, thereby driving the platform’s reward to zero. This outcome is
not a flaw but rather a safeguard preserving user trust: continuing to recommend only strategic,
untrustworthy agents would ultimately diminish both reward and user engagement. An alternative
mechanism is that when an agent systematically over-reports, COBRA flags and temporarily removes
it. This mechanism discourages agents from gaming the system while restoring recommendation
quality and benefiting users and the platform. However, deriving theoretical guarantees for such a
mechanism may be non-trivial.

Agents with multiple arms. Our results generalize to the setting where each agent controls multiple
arms. LOOM maintains individual records of each agent’s reported arm feature vectors and reward
history for their respective arms, hence applying LOOM’s statistical test independently to each agent
is possible. This allows LOOM to identify over-reporting agents whose optimistic/pessimistic reward
gaps exceed the threshold, even if the agent over-reports its different arms in distinct ways. As long as
Assumption 1 holds for each active agent, the regret and approximate equilibrium guarantees continue
to apply. Specifically, the regret bound remains Õ(d

√
T +

√
NT ), where N denotes the number of

agents. For very large number of agents (N ), it may increase computational complexity and affect
regret bounds due to the

√
N term. Note that we can perform all the agents-related computations in

parallel as they are independent of each other.

Sub-optimal agent. We highlight that, for agents with suboptimal arms, truthful reporting and
over-reporting may lead to similar outcomes: either being ignored by the learner or being eliminated.
To address this challenge, a promising direction for future work is to incorporate fairness constraints
into the arm selection, thereby ensuring that even suboptimal agents have a chance of being selected.

D.2 Discussion about Assumption 1

We believe that addressing strategic behavior in a contextual bandit setting without relying on monetary
incentives is a challenging and underexplored problem. There is limited prior work in the literature on
this topic, despite its many practical applications, e.g., online platforms where sellers may attempt to
manipulate the contextual information of their products to gain an advantage. Our key contribution is
the development of an approximately incentive-compatible property inspired by the VCG mechanism.
However, when an agent over-report arm features, all estimators used by LOOM become biased due to
the over-reported arm feature vectors as inputs. It happens because the misreported features distort the
overall feature distribution, creating mismatches between features and their corresponding rewards,
which in turn induces bias in the estimators.

In contextual bandits, estimators (such as those for the reward function parameters) rely on the
assumption that observed features and rewards are generated according to an honest, stationary
process. When agents systematically over-report by deliberately inflating feature values to increase
their selection probability, the samples collected by the algorithm are corrupted: the feature vectors in
the data do not match the ground truth. Our next result demonstrates that over-reported arm features
increase the bias in estimators used by LOOM that take them as input.
Lemma 8 (Biased-ness due over-reporting.). Using over-reported arm features increase the bias in
all estimators used by LOOM that take these arm features as input.

Proof. Without loss of generality, consider a linear reward function with an unknown true parameter
vector θ⋆ ∈ Rd, where d ≥ 1 is the dimension of the context-arm feature vector. At each round t, the
true feature vector associated with agent a is denoted by x⋆

t,a. However, the agent may strategically
misreport their features as xt,a in an attempt to appear more favorable, i.e., that is, to give the
impression of a higher expected reward, satisfying θ⊤⋆ xt,a ≥ θ⊤⋆ x

⋆
t,a Let ηs = θ⊤⋆ xs,as

−θ⊤⋆ x
⋆
s,as

≥ 0
denote the difference in reward between the misreported features and the true features, where as is the
agent selected in round s. Note that ηs = 0 when the agent reports truthfully. The ridge regression
estimator based on the observed data Ht = {(xs,as , ys)}s<t is given by

θ̂t =

(
λI +

∑
s<t

xs,as
x⊤
s,as

)−1(∑
s<t

xs,as
ys

)
,

where λ > 0 is the regularization parameter that ensures the matrix
∑

s<t xs,asx
⊤
s,as

is invertible.
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Since ys = θ⊤⋆ x
⋆
s,as

+ εs, which depends only on the true context-arm feature vector, we can rewrite
it as ys = θ⊤⋆ xs,as

− ηs + εs. Substituting this into the ridge regression estimator, we obtain:

θ̂t =

(
λI +

∑
s<t

xs,asx
⊤
s,as

)−1(∑
s<t

xs,as

(
θ⊤⋆ xs,as − ηs + εs

))
.

Let y′s = θ⊤⋆ xs,as + εs denote the noisy reward for the (possibly misreported) context-arm feature
vector xs,as , generated by the true reward function. Using this notation, we can rewrite the estimator
as:

θ̂t =

(
λI +

∑
s<t

xs,as
x⊤
s,as

)−1(∑
s<t

xs,as
(y′s − ηs)

)
.

Expanding the expression, we obtain:

θ̂t =

(
λI +

∑
s<t

xs,as
x⊤
s,as

)−1(∑
s<t

xs,as
y′s

)
−

(
λI +

∑
s<t

xs,as
x⊤
s,as

)−1(∑
s<t

xs,as
ηs

)
.

Let θ̃t denote the ridge regression estimator computed using the misreported feature vectors {xs,·}s<t

and the corresponding noisy rewards {y′s}s<t, i.e.,

θ̃t =

(
λI +

∑
s<t

xs,as
x⊤
s,as

)−1(∑
s<t

xs,as
y′s

)
.

Then, we can express θ̂t as:

θ̂t = θ̃t −

(
λI +

∑
s<t

xs,as
x⊤
s,as

)−1∑
s<t

(xs,as
ηs) ,

where the term
(
λI +

∑
s<t xs,as

x⊤
s,as

)−1∑
s<t (xs,as

ηs) represents the additional bias introduced
due to the misreporting of features.

Some special cases of Assumption 1. The biased-ness due to over-reported arm features makes
it impossible to derive theoretical guarantees without introducing additional assumptions, such as
Assumption 1. To validate its practicality, we consider the following three cases:

Case 1. All agents report truthfully: When reported features are the same as true features, i.e.,
x = x∗ for all x ∈ X , UCBt(x) is an upper bound of θ⊤∗ x with probability at least 1 − δ (or with
high probability, Lemma 2). As a result, first part of Assumption 1 holds, which is only needed to
prove our Theorem 2, and hence the NE and regret bounds of our proposed algorithm, COBRA, are
improved by a factor of

√
N compared to Theorem 5.1 in Kleine Buening et al. (2024).

Case 2. One agent can over-report while other agents report truthfully and linear reward function: In
Lemma 2, αt is a non-decreasing function of t that grows logarithmically, while ||x||V −1

t
converges at

a rate of 1/
√
t, leading to tighter confidence ellipsoid as t increases. Thus, UCBt(x) is smaller than

UCBt,−a(x) for any x due to the use of additional observations from agent a. However, when an agent
a over-report its features, it leads to biased estimates of θ⋆. Since the agent over-reports, θ̂t becomes a
downward-biased estimator of θ⋆ (Example 4.7 in Wooldridge, in which over-reporting features can
be treated as under-reporting rewards3). As a downward biased estimator leads to under-estimation
with the fact that αt||x||V −1

t
is smaller than αt,−a||x||V −1

t,−a
, UCBt(x) is smaller than UCBt,−a(x)

with high probability. If an agent keeps over-reporting, our proposed method, LOOM, will detect this
behavior and remove the agent from the active selection pool. Consequently, Assumption 1 first part
will hold as the remaining agents are truthful.

Case 3. Multiple agents can over-report: In this case, all estimators used by COBRA become biased,
making it impossible to derive theoretical guarantees without additional constraints. Our Theorem 4

3Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.
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and Theorem 5 hold as long as Assumption 1 is satisfied. Notably, we impose no restrictions on how
agents report their features, aside from no collusion assumption, which is a common assumption in
VCG-type mechanisms (Vickrey, 1961; Clarke, 1971; Groves, 1973).

Relaxing this assumption remains an interesting direction for future work.

Comparison from existing literature. Kleine Buening et al. (2024) use agent-specific estimators
that detect over-reporting in linear contextual bandits. In contrast, our method takes inspiration
from the VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) and uses the observations
associated with other agents to identify the over-reporting of an agent. This key difference leads us to
use LCBt,−a(xt,a) (pessimistic reward estimate using observations of all agents except agent a) while
Kleine Buening et al. (2024) use LCBt,a(xt,a) (pessimistic reward estimate only using observation
associated with agent a) for detection.

Theorem 5.2 of Kleine Buening et al. (2024) holds under their Assumption 2 (holds only for linear
reward functions), which has the following consequence:

f(x∗
t,a∗) ≤ UCBt,a∗

t
(xt,a∗) ≤ UCBt,at

(xt,at
)

(see proof of Lemma E.5 on Page 27 in Kleine Buening et al. (2024)).

In contrast, our assumptions imply the following:

f(x∗
t,a∗) ≤ f(xt,a∗) ≤ UCBt(xt,a∗

t
) ≤ UCBt(xt,at) ≤ UCBt,−a(xt,at)

which gives:

f(x∗
t,a∗) ≤ UCBt(xt,a∗

t
) ≤ UCBt,−at(xt,at) =⇒ f(x∗

t,a∗) ≤ UCBt,−at(xt,at). (39)

Assumption 2 of (Kleine Buening et al., 2024) and our Assumption 1 share a key similarity: they define
the conditions under which some theoretical results hold (their Theorem 5.2 and ours Theorem 4).
These assumptions also lead to similar consequences, i.e., the maximum expected reward in any round
is upper-bounded by the optimistic reward estimate of the selected arm (or agent) computed using
the same agent(s) (i.e., UCBt,at(xt,a) and UCBt,−at(xt,a)) as used in the mechanism for identifying
over-reporting agents. We emphasize that our Assumption 1 is not directly comparable to that of
Kleine Buening et al. (2024), as they provide conditions for the theoretical guarantees of algorithms
based on different underlying mechanisms.

We would like to highlight that detecting over-reporting using only an agent’s own observations may
be ineffective in practice, particularly when the true parameter θ∗ is unknown due to the absence of
any external baseline for comparison. In contrast, our VCG-inspired approach leverages observations
from other agents to identify over-reporting, making it more practical, as the targeted agent cannot
directly influence the detection mechanism.

Furthermore, we extend our analysis to a class of non-linear contextual bandit algorithms, where the
confidence ellipsoid around the unknown parameter θ⋆ satisfies certain assumptions, and LOOM
can be used as a subroutine in linear contextual bandit algorithms to identify strategic agents. This
constitutes a new contribution within this setting.

Equivalence between Assumption 1 and Leave-one-out arm selection strategy. Assumption 1 is
equivalent to replacing the arm selection strategy in Step 5 of our proposed algorithm, COBRA, with
a leave-one-out (LOO) arm selection strategy defined as:

at = argmax
a∈A

UCBt,−a(xt,a),

where UCBt,−a(xt,a) denotes the upper confidence bound computed using a LOO estimator that
excludes the historical data from agent a, i.e., while calculating the UCBvalue for agent a, we use
only the data from other agents. However, the confidence bounds derived from these LOO estimators
are generally looser than those obtained using the data from all agents. We next prove the equivalence
between Assumption 1 and the use of the LOO arm selection strategy.
Lemma 9. When one of the agent over-report, having Assumption 1 results same the regret as using
LOO arm selection strategy.

Proof. For completeness, we first derive the consequences of over-reporting under Assumption 1
(also mentioned at the top of Page 20 in the Appendix) as follows. When an agent over-reports, the
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following inequality holds for the optimal arm xt,a⋆
t

in round t: f(x⋆
t,a⋆

t
) ≤ f(xt,a⋆

t
). Using part 1 of

Assumption 1, i.e., f(xt,a⋆
t
) ≤ UCBt(xt,a⋆

t
), which states that the upper confidence bounds remain

valid even when agents over-report, we obtain:

f(x⋆
t,a⋆

t
) ≤ f(xt,a⋆

t
) ≤ UCBt(xt,a⋆

t
).

Since COBRA selects arm at over a⋆t , i.e., UCBt(xt,a⋆
t
) ≤ UCBt(xt,at

), we obtain:

f(x⋆
t,a⋆

t
) ≤ UCBt(xt,at

).

Using Part 2 of Assumption 1, i.e., UCBt(xt,at) ≤ UCBt,−at(xt,at), we get:

f(x⋆
t,a⋆

t
) ≤ UCBt,−at

(xt,at
). (40)

When we use the LOO arm selection strategy at = argmaxa∈A UCBt,−a(xt,a), the following chain
of inequalities holds under over-reporting:

f(x⋆
t,a⋆

t
) ≤ f(xt,a⋆

t
≤ UCBt,−a⋆

t
(xt,a⋆

t
).

Since arm at is selected, i.e., UCBt,−a⋆
t
(xt,a⋆

t
) ≤ UCBt,−at

(xt,at
), we conclude:

f(x⋆
t,a⋆

t
) ≤ UCBt,−at

(xt,at
). (41)

Note that Eq. (40) and Eq. (41) are equivalent, Assumption 1 and the leave-one-out (LOO) arm
selection strategy lead to the same theoretical consequences, hence having same NE and regret
guarantees.

To obtain an upper bound on the regret, we derive a key result that bounds the difference
UCBt,−at

(xt,at
) − f(xt,a⋆

t
). These results are formalized in Lemma 4 for the linear reward

function and in Lemma 7 for the non-linear case. Importantly, our mechanism, LOOM, ensures that
truthful reporting is a dominant strategy for each agent when all others report truthfully. Therefore,
we do not adopt the LOO arm selection strategy as the default in COBRA, as the LOO strategy
under-performs the standard arm selection strategy currently used in COBRA when all agents report
truthfully. LOOM does not work in cases involving complex strategic behavior by agents, such
as when multiple agents collude or misreport together. Addressing these challenges by designing
new mechanisms will be a promising area of research at the intersection of mechanism design and
contextual bandits. We will leave studying these complex settings to future work, for which our work
can serve as a foundation.

E Additional Experiments and Details

This section provides additional details from Section 5, followed by further experimental results.

Strategic manipulations via feature adaptation. We want to highlight that our proposed algorithm,
COBRA, operates without prior knowledge of the specific nature of these manipulations, which we
model as equivalent to over-reporting. Under the assumption that the agent engages only in strategic
over-reporting, the objective is to identify any such over-reporting behavior. For feature adaptation,
the agent can strategically manipulate and optimize its features against the deployed algorithm using
only binary feedback (whether it was selected or not) in each round as follows: Assume x⋆

n be the
true arm-features of agent n. The agent can over-report a feature x̃ = x⋆

n + η∆, where ∆ ∈ Rd is a
bounded perturbation such that ||∆||2 ≤ ∆max and η is the learning rate. The agent’s goal is to learn
a manipulation strategy ∆ using binary feedback that increases its probability of being selected. To
do so, the agent uses finite-difference stochastic gradient ascent update.

Experiments with non-linear reward. We also compare the performance of our proposed
algorithm, COBRA, for contextual bandit problems with non-linear reward functions. For
this experiment, we adapt problem instances with non-linear reward functions from those
used for linear functions in Section 5. We apply a polynomial kernel of degree 2 to
transform the item-agent feature vectors to introduce non-linearity. The constant terms
(i.e., the 1’s) resulting from this transformation are removed. As an example, a sample
4-d feature vector x = (x1, x2, x3, x4) is transformed into a 14-d feature vector: x′ =
(x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x1x2x3, x1x2x4, x1x3x4, x2x3x4). We also
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remove 1’s, which appear in the transformed samples. As expected, our algorithms COBRA
based on UCB and TS-based contextual nonlinear bandit algorithms (prefixed with ‘n’) outperform
all the baselines (adapted to non-linear setting, also prefixed with ‘n’) as shown in Fig. 4. These
results are observed across various problem instances, where only the reward function is varied while
all other parameters remain unchanged, except for the number of rounds, which is set to T = 2000.
We further observe that COBRA with TS outperforms its UCB-based counterpart.

(a) Linear (Truthful setting) (b) Linear (Agent type I) (c) Linear (Agent type II) (d) Square (Agent type II)

Figure 4: Comparing the cumulative regret of COBRA with different baselines for problem instances
with non-linear reward functions.
Regret of COBRA vs. number of agents (N ) and dimension (d). The number of agents (N) and
dimension of context-agent feature vector (2d) in the contextual bandit problem control the difficulty.
As their values increase, the problem becomes more difficult, making it harder to allocate the context
to the best agent. We want to verify this by observing how the regret of our proposed algorithms
changes while varying N and d in the contextual bandit problem. To see this in our experiments, we
use the linear reward function (i.e., f(x) = 5x⊤θ⋆), 2000 contexts, N = 10 when varying dimension,
d = 20 while varying the number of agents. As shown in Fig. 5a and Fig. 5b, the regret bound of
our COBRA UCB- and TS- based algorithms increases as we increase the number of agents, i.e.,
N = {10, 20, 30, 40, 50}. We also observe the same trend when we increase the dimension of the
context-agent feature vector from d = {5, 10, 15, 20, 25} as shown in Fig. 5c and Fig. 5d. In all
experiments, we also observe that the COBRA TS-based algorithm performs better than its COBRA
UCB-based counterpart (as seen in Fig. 5a-5d by comparing the regret of both algorithms).

(a) Vary agents/arms (UCB) (b) Vary agents/arms (TS) (c) Vary dimension (UCB) (d) Vary dimension (TS)

Figure 5: Cumulative regret of COBRA vs. different values of N and d.
Experiments with two strategic agents. We also conducted additional experiments involving
two type II strategic agents. In these experiments, we control the degree of over-reporting for one
of the two strategic agents as ∆̂x ∼ N(Scale ∗∆⋆

x, σ
2
∆). The results (Fig. 6a–6d) show that as the

controlled over-reporting of the agent increases, the regret of COBRA also increases. The higher
regret is because the strategic behavior becomes harder to detect, and the over-reporting biases the
estimator used in arm selection. For the same settings, we also plot the maximum value of C under
different levels of over-reporting for the two strategic agents. As expected, C grows very slowly with
the number of rounds and remains almost constant, as shown in Fig. 6e–6h.

Regret of COBRA vs. large number of agents (N ) and dimension (d). We conducted additional
experiments to evaluate the performance of our LOOM-based mechanism in higher-dimensional
settings and with larger numbers of strategic agents. Specifically, we considered the following scales:
number of agents N ∈ 100, 200, 300, 400, 500 and feature dimension d ∈ 60, 70, 80, 90, 100. Note
that overall dimension of context-arm feature is 2d. When varying the number of agents, we fixed
the feature dimension to 50 and 100. As expected, the regret of COBRA remains sub-linear as the
number of agents increases (Fig. 7a-7b). Similarly, when varying the feature dimension, we set the
number of agents to 50 and 100. As anticipated, the regret of COBRA increases with the dimension,
since higher-dimensional problems require substantially more samples to estimate the reward function
accurately (Fig. 7c-7d). These results demonstrate the robustness of our theoretical guarantees, even
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(a) Vary agents/arms (UCB) (b) Vary agents/arms (TS) (c) Fix agents/arms (UCB) (d) Fix agents/arms (TS)

(e) Vary agents/arms (UCB) (f) Vary agents/arms (TS) (g) Fix agents/arms (UCB) (h) Fix agents/arms (TS)

Figure 6: Top row: Cumulative regret of COBRA vs. different level of two over-reporting agents.
Bottom row: Maximum value of C vs. different level of two over-reporting agents.

in complex, large-scale environments. For the same settings, we also plot the maximum value of C
under different N and d. As expected, C grows very slowly with the number of rounds and remains
almost constant, as shown in Fig. 7e–7h.

(a) Vary agents/arms (50) (b) Vary agents/arms (100) (c) Vary dimension (50) (d) Vary dimension (100)

(e) Vary agents/arms (50) (f) Vary agents/arms (100) (g) Vary dimension (50) (h) Vary dimension (100)

Figure 7: Top row: Cumulative regret of COBRA vs. different values of N and d. Bottom row:
Maximum value of C vs. different values of N and d. (A) in captions implies either N = A or
d = A.

Computational resources. All the experiments are run on a Apple M3 Pro with 18GB memory.

Time and space complexity of COBRA. The computational complexity of COBRA is comparable
to that of standard contextual bandit algorithms, and it scales efficiently even when agents control
multiple arms, as discussed below:
Time complexity: The overall time complexity is dominated by the underlying estimation procedure,
which is identical to that of standard contextual bandit algorithms. LOOM requires computing a
Leave-One-Out (LOO) estimator for each agent. These LOO estimators are inherently parallelizable,
i.e., one can independently estimate each agent-specific estimator (trained on data excluding agent
i). This parallelism substantially alleviates computational burden, although the total computational
resources required still scale linearly with the number of agents.
Space complexity: The space complexity is likewise similar to standard contextual bandit approaches,
with the main additional overhead arising from maintaining N separate LOO estimators.

34


	Introduction
	Related Work

	Contextual Bandits with Strategic Agents
	Leave-One-Out-based Mechanism (LOOM)
	Incentive-Compatible Contextual Bandit Algorithm: COBRA
	NE Guarantee and Regret Analysis

	Experiments
	Conclusion
	Appendix
	Additional related work

	Leftover Proofs
	Leftover proofs from Section 3
	Leftover proofs from Section 4
	Proof of Theorem 2
	Proof of Theorem 3


	Non-linear Reward Function
	Theoretical Results

	Discussion about LOOM and Assumption 1
	LOOM-related Discussion
	Discussion about Assumption 1

	Additional Experiments and Details

