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Abstract
Network pruning is used to reduce inference la-
tency and power consumption in large neural net-
works. However, most existing methods strug-
gle to accurately assess the importance of indi-
vidual weights due to their inherent interrelat-
edness, leading to poor performance, especially
at extreme sparsity levels. We introduce Hyper-
flows, a dynamic pruning approach that estimates
each weight’s importance by observing the net-
work’s gradient response to the weight’s removal.
A global pressure term continuously drives all
weights toward pruning, with those critical for ac-
curacy being automatically regrown based on their
flow, the aggregated gradient signal when they are
absent. We explore the relationship between final
sparsity and pressure, deriving power-law equa-
tions similar to those found in neural scaling laws.
Empirically, we demonstrate state-of-the-art re-
sults with ResNet-50 and VGG-19 on CIFAR-10
and CIFAR-100.

1. Introduction
Overparameterization has become the norm in modern deep
learning to achieve state-of-the-art performance (Neyshabur
et al., 2019; Allen-Zhu et al., 2019; Li et al., 2018). Despite
clear benefits for training, this practice also increases com-
putational and memory costs, complicating deployment on
resource-constrained devices such as edge hardware, IoT
platforms, and autonomous robots (Shi et al., 2016; Li et al.,
2019). Recent theoretical and empirical findings suggest
that sparse subnetworks extracted from large dense models
can match or exceed the accuracy of their dense counterparts
(Frankle & Carbin, 2019; Zhou et al., 2019; Ma et al., 2021;
Lee et al., 2019; De Jorge et al., 2021; Cho et al., 2023; Yite
et al., 2023; Frantar et al., 2024; Wang et al., 2023) and even
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outperform smaller dense models of equal size (Ramanujan
et al., 2020; Li et al., 2020; Zhu & Gupta, 2018). These
results have created interest in network pruning as a strategy
to identify minimal, high-performing subnetworks.

Pruning has a rich history (LeCun et al., 1989; Mozer &
Smolensky, 1988; Thimm & Hoppe, 1995) and continues to
prove valuable for real-time applications (Han et al., 2016;
Jongsoo et al., 2017; Wang et al., 2019). Recent methods
have significantly advanced the field by resorting to a va-
riety of strategies, from heuristics, gradient methods and
Hessian-based criteria (Han et al., 2015; 2016; LeCun et al.,
1992; Singh & Alistarh, 2020; Bellec et al., 2018) to dy-
namic pruning approaches (Liu et al., 2020; Cho et al., 2023;
Savarese et al., 2020; Kusupati et al., 2020; Wortsman et al.,
2019) or combinations thereof. However, the strong interde-
pendencies between weights remain a challenge (Jin et al.,
2020; Templeton et al., 2024; Lee et al., 2019; De Jorge
et al., 2021; Louizos et al., 2017), as they complicate the
task of determining each weight’s absolute importance.

Given this gap, we ask: Can we rigorously quantify a
weight’s importance for model accuracy, while account-
ing for the inherent interrelatedness among neural network
weights?

Inspired by the well-known insight that the value of some-
thing is not truly known until it is lost, we introduce Hyper-
flows, a dynamic pruning method which determines weight
importance by first removing it. Each weight θi will be
pruned if its associated flow parameter ti is negative. The
value of ti will follow the direction of |θi|, as their gradients
are strongly correlated, while a global pressure term L−∞
will push all t values towards −∞. When an important
weight θi is pruned, the network will attempt to increase
ti. If the aggregated gradient over multiple iterations of ti,
which we call flow, is larger than the aggregated pressure,
the removed weight will be restored, otherwise it will remain
pruned. By allowing this process to happen concurrently on
all weights multiple times, the network’s topology becomes
noisy, disentangling the restoration process from a specific
configuration and therefore providing a good approximation
for weight importance.

We analyze the relationships between sparsity and pres-
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sure, obtaining power-law dependencies similar to those
of known scaling laws in neural networks (Hestness et al.,
2017; Kaplan et al., 2020; Henighan et al., 2020; Rosenfeld
et al., 2020; Gordon et al., 2021; Hernandez et al., 2021;
Zhai et al., 2021; Hoffmann et al., 2022).

Our method is able to improve over baseline performance
for Resnet-50 and VGG-19 on CIFAR-10 for sparsities up to
98%, exceeding current state of the art method and proving
the ability of Hyperflows to preserve accuracy.

Summarizing, our key contributions are:

• We introduce Hyperflows, a dynamic pruning method
aiming to quantify weight importance by developing
the notions of flow and pressure.

• We set a new state-of-the-art benchmark, achieving
better accuracy than existing methods in empirical val-
idation, across several networks and datasets.

• We explore the mathematical relationships between
pressure and sparsity, finding power-laws similar to
those in neural scaling laws.

2. Related work
Research on neural network pruning has a relatively old
history, with some methods going back decades and lay-
ing the groundwork for modern approaches. Early tech-
niques, such as (LeCun et al., 1989) and (LeCun et al.,
1992), utilized Hessian-based techniques and Taylor expan-
sions to identify and remove unimportant specific weights,
while Mozer & Smolensky (1988) employed derivatives to
remove whole units, an early form of structured pruning.
These initial studies demonstrated the feasibility of reduc-
ing network complexity without significantly compromising
performance. An influential overview (Thimm & Hoppe,
1995) concluded that magnitude pruning was particularly ef-
fective, a paradigm that since then has been widely adopted
(Han et al., 2016; Frankle & Carbin, 2019; Zhou et al., 2019;
Evci et al., 2020; Kusupati et al., 2020; Han et al., 2015).

The existence of highly effective subnetworks builds
upon these foundational theoretical studies, with the Lottery
Ticket Hypothesis (Frankle & Carbin, 2019) being a good
example. Magnitude pruning is used to demonstrate that
there exists a mask which, if applied at the start of train-
ing, produces a sparse subnetwork capable of matching the
performance of the original dense network after training, if
the initialization is kept unmodified. Subsequent research
has further validated this concept by showing that these
subnetworks produced by masks, even without any training,
achieve significantly higher accuracy than random chance
(Zhou et al., 2019), reaching up to 80% accuracy on MNIST.
Moreover, training these masks instead of the actual weight

values can result in performance comparable to the origi-
nal network (Ramanujan et al., 2020; Zhou et al., 2019),
suggesting that neural network training can occur through
mechanisms different from weight updates, including the
masking of randomly initialized weights. Other studies have
attempted to identify the most trainable subnetworks at ini-
tialization. Lee et al. (2019) use gradient magnitudes as
a way to identify trainable weights, while Savarese et al.
(2020) employ L0 regularization along with a sigmoid func-
tion that gradually transitions into a step function during
training, enabling continuous sparsification. These findings
indicate that the specific values and even the existence of
certain weights may be less critical than previously believed.

Dynamic pruning differs from classical heuristics by find-
ing sparse networks during training and allowing the model
to adjust itself. Some methods use learnable parameters, e.g.
Kusupati et al. (2020) train magnitude thresholds for each
layer in the network to determine which weights will be
pruned. Other works, like that of Cho et al. (2023), do not
have any learnable parameters, learning instead a weight dis-
tribution whose shape will determine which and how many
weights are pruned. Yet another class of L0 regularization
techniques (Savarese et al., 2020; Louizos et al., 2018) try
to maximize the number of removed weights. Hyperflows
aligns with the dynamic pruning paradigm by enabling con-
tinuous pruning of weights based on dynamically updated
parameters. However, unlike most methods that rely on
instantaneous gradients or fixed thresholds, Hyperflows in-
troduces a novel mechanism that assesses each weight’s
importance through an aggregate gradient signal over multi-
ple iterations.

Pruning based on gradient values is another prominent
approach, often overlapping with dynamic methods, which
enables the assessment of weight properties in relation to
the loss function. Lee et al. (2019) and De Jorge et al. (2021)
assess the trainability of subnetworks by analyzing initial
gradient magnitudes relative to the loss function. AutoPrune
(Xiao et al., 2019) introduces handcrafted gradients that in-
fluence training, while Dynamic Pruning with Feedback
(Lin et al., 2020) uses gradients during backpropagation to
recover pruned weights with high trainability, preserving
accuracy. Evci et al. (2020) use gradient and weight mag-
nitudes to determine which weights to prune and to regrow.
Liu et al. (2022) build upon these concepts, by employing
a zero-cost neuroregeneration scheme, which prunes and
regrows the same number of weights, effectively keeping
the sparsity constant while growing accuracy. Our method
uses gradients magnitudes to approximate the importance
of a weight when it is pruned, which proves to be effective,
since gradients are correlated with the loss of features in-
duced by the pruning that weight. Hyperflows distinguishes
itself from other methods by utilizing gradient magnitudes
to evaluate the importance of weights after the moment of
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their pruning. Instead of predefining which weights are
(un)important based solely on instantaneous gradients or
single-stage evaluations, Hyperflows identifies a weight’s
significance based on the aggregated impact its removal has
on the network’s performance.

3. Hyperflows
The main idea of our method is to assess the contribution of
individual weights in a neural network by first pruning them
and evaluating the resulting impact on performance across
various network topologies. This is achieved by introducing
a learnable parameter ti near each weight θi which decides
if θi is active or pruned. When a necessary weight is pruned,
the gradient of its associated ti, ∂L

∂ti
, termed weight flow,

increases ti, which regrows the weight. Flow is strongly
correlated with the decrease in performance when the weight
is removed, thereby serving as a good approximation for its
importance. An L−∞ penalty, defined below in (7), is used
to push t values towards pruning and control the overall
sparsity. As compression occurs, the remaining weights
will have increased importance, by capturing the features
lost from the permanently pruned weights, leading to larger
flows. We analyze this effect in Appendix B.

3.1. Preliminaries

Consider a neural network defined as a function:

f : X × θ → Y,

where X is the input space, Y is the output space, and
θ ⊆ Rd denotes the weight vector.

Given a training set {(xj , yj)}Jj=1, learning the parameters
θ amounts to minimizing a loss function:

min
θ

J∑
j=1

ℓ
(
f(xj , θ), yj

)
,

so that f(xj , θ) aligns with yj .

We define the topology of the neural network T as a binary
vector T ∈ {0, 1}d where T i ∈ {0, 1} represents whether
weight θi is pruned or not. We denote a family of topologies
as {Tk}Kk=1, with K its cardinality. Thus, the loss of a
network with topology T is:

L(T ) =
J∑

j=1

ℓ
(
f(xj , θ ⊙ T ), yj

)
,

where ⊙ is the Hadamard product. Note that L(T ) depends
on θ.

For each parameter θi, we introduce a learnable scaler ti
to which we refer as flow parameter. We denote with t the

vector of flow parameters. Vector t is used to generate the
topology T with T i = H(ti), where:

H(ti) =

{
1 if ti > 0,

0 if ti ≤ 0.

Thus, if ti > 0 then θi is active, otherwise (ti ≤ 0), θi is
pruned. We denote with T \ {θi} a topology T for which
we set T i = 0 and define the change in L(T ) when θi is
removed as:

∆L(T \ {θi}) = L(T \ {θi})− L(T ).

We use a global penalty term L−∞ to push all ti values
towards −∞, which we discuss in detail in Section 3.2. Our
goal is to find a topology Tf and set of weights θ such that
the following loss is minimal:

J (T ) = L(T ) + L−∞(t). (1)

3.2. Weight Flow

Since the optimal topology T ∗ is initially unknown, any
metric for the importance of θi measured on the initial topol-
ogy T0 might not be relevant for T ∗. For this reason, weight
importance is evaluated multiple times during training. We
present an importance metric, called flow, tied to a specific
topology T , and then extend it to a family of topologies
{Tk}Kk=1. We begin by defining the gradient:

G(θi, T ) =
∂L(T )
∂ti

,∀ti ∈ R. (2)

Importantly, the sign of the gradient G(θi, T ) always fol-
lows the direction of |θi| (proof in Appendix A.2). If θi
increases or decreases in magnitude, then ti will correspond-
ingly increase or decrease.

In our method, G(θi, T ) takes two different meanings based
on whether ti > 0 or ti ≤ 0. We first define the meaning in
the case ti ≤ 0 as flow for one topology:

F(θi, T ) =

{
G(θi, T ) ti ≤ 0,

0 ti > 0.
(3)

When θi is pruned (ti ≤ 0) from topology T , a correspond-
ing ∆L(T \{θi}) will occur. If ∆L(T \{θi}) > 0, then the
pruning of θi leads to an increase in the loss, and increasing
|θi| from 0 back to the original will reduce the loss again.
Otherwise, if ∆L(T \ {θi}) ≤ 0, increasing |θi| will not
reduce the loss. Therefore, any parameter whose gradient
depends on changes in |θi| will have its value increased
only if the pruned weight was important. Overall, F(θi, T )
will create large positive changes in ti for important pruned
weights, regrowing them (proof in Appendix A.1).
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For the case ti > 0, we define:

M(θi, T ) =

{
0 ti ≤ 0,

G(θi, T ) ti > 0.
(4)

Minimizing the loss function does not inherently correlate
with weight magnitude increases. ThereforeM(θi, Tk) will
represent changes in magnitude over training. Pruning will
be encouraged for weights whose magnitude decreases, and
be resisted for those whose magnitudes are increasing (proof
in Appendix A.2).

All the functions involved in backpropagation must be differ-
entiable, but H is not. Since F(θi, T ) should only depend
on the importance of θi and not the value of ti, we choose a
straight-through estimator for the gradient ∂H

∂ti
= 1, which

is also used forM(θi, T ) and therefore for the overall gra-
dient G(θi, T ).

In practice, we analyze weight behaviour over several
topologies. Extending equations (3) and (4) to a family
of topologies we obtain the aggregated flow and the average
change of the weight magnitude respectively:

F(θi, {Tk}Kk=1) =
1

K
·

K∑
k=1

F(θi, Tk), (5)

M(θi, {Tk}Kk=1) =
1

K
·

K∑
k=1

M(θi, Tk). (6)

To drive t values towards −∞, we employ an “L−∞” loss
called pressure, formulated as:

L−∞(t) =
1

d
· γ ·

d∑
i=1

ti, (7)

where γ is a scalar used to control sparsity and d the number
of weights in the network. From this point forward, any
reference about an increase or decrease in pressure will
refer to an increase or decrease in γ.

It is important to explore how L(T ) and L−∞(t) interact
with t values in (1). For multiple iterations R of training,
we get:

R∑
r=1

∂(L(Tr) + L−∞(t))

∂ti
=

R∑
r=1

(G(θi, Tr) +
γ

d
), (8)

where Tr is the topology at iteration r. At each iteration,
a weight can either be pruned or active, therefore, we can
partition a weight’s state during training between pruned
and active stages. A stage Sf , f ∈ {1, . . . , F} is a series of
consecutive iterations for which our weight is in the same
state. Each Sf has a duration of Df , starting at iteration
sf and ending at ef . We denote by S+

f the stages when a
weight is present and S−

f those when the weight is pruned.

We define gradients taking place during a stage S+
f and S−

f

as:

∇S+
f =

ef∑
r=sf

(
M(θi, Tr) +

γ

d

)
, (9)

∇S−
f =

ef∑
r=sf

(
F(θi, Tr) +

γ

d

)
. (10)

Note that it is not possible to have two consecutive stages
with the same weight state and all weights are present at the
start of training. We partition the set of all stages into two
{S+

1 , S+
3 , ...} and {S−

2 , S−
4 , ...}. We refer to the transition

between stages as implicit regrowth. We do not know in
which partition the final stage SF will be until training ends.
Equation (8) becomes:

R∑
r=1

(G(θi, Tr)+
γ

d
) = ∇S+

1 +∇S−
2 +...+∇S{+or−}

F . (11)

Sf Sf+1 Sf+2

t > 0 t <= 0 t > 0

Figure 1. A weight’s state can be partitioned into pruned (ti > 0)
and active (ti ≤ 0) stages. We represent with blue arrows the
flow, which appears only for pruned stages, and with red lines the
pressure, which appears for all stages.

The partition in stages is illustrated in Figure 1. Analyz-
ing what happens at an individual level for each ∇Si, by
rearranging (9) and (10), we get:

∇S+
f = Df ·

(
M(θi, {Tr}

ef
r=sf ) +

γ

d

)
, (12)

∇S−
f = Df ·

(
F(θi, {Tr}

ef
r=sf ) +

γ

d

)
. (13)

For S−
f , if F(θi, {Tr}

ef
r=sf ) +

γ
d > 0, then the overall

change in ti will be negative, keeping the weight pruned.
Otherwise, if F(θi, {Tr}

ef
r=sf ) +

γ
d < 0 then ti will be in-

creased. In other words, all weights will be pushed towards
pruning by the pressure and regrown if the flow is greater
than the pressure.

Weights can be deemed unimportant in Tr and become rele-
vant later in Tr+q . However, if a weight is pruned at Tr, the
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pressure will continue to push its t value towards −∞ for
q+1 iterations, making it difficult to regrow. To control this
effect, in practice we apply the loss only on t values which
are above a certain threshold T .

L̂−∞(t) = γ ·
d∑

i=1

ti ·H(T − ti). (14)

3.3. Neural pruning laws

We investigate how the pruning pressure scaler γ, the num-
ber of training epochs, and the network architecture shape
the evolution of sparsity. These insights lay the foundation
for our γ scheduler, introduced later, that can reach a target
sparsity in any desired training time.

(0) Sparsity Convergence for a Fixed γ. As sparsity in-
creases, the overall flow of the weights will become larger.
We ask the following question: Given a fixed γ, will the
network converge to a final sparsity s? Moreover, does this
mapping from γ to s follow any relationship? In Figure 3,
we test the existence of convergence empirically by run-
ning LeNet-300 on MNIST and ResNet-50 on Cifar-10. We
allow each network to train for 300 to 1000 epochs with
a constant γ pressure and observe the results. We do this
with two different optimizers for t values, SGD and Adam.
Our findings suggest that there is no one curve that fits the
decrease in parameters for both optimizers, but the final
convergence point is the same regardless of the optimizer
used.

1 10 100 500 1000 2000
Iteration

100%

10%

1%

0.1%

Sp
ar

sit
y 

(%
)

LeNet300 + Adam + High LR
LeNet300 + Adam + Low LR
LeNet300 + SGD + Low LR
ResNet18 + Adam + Low LR
ResNet18 + SGD + Low LR

Figure 2. Convergence for fixed γ. We can observe that for each
case there is a certain point at which weights are not pruned any-
more or offer an extremely high amount of resistance

An important observation is that the final convergence point
sc is influenced by the θ learning rate η. If η is high, con-
vergence happens in a larger number of epochs (1000 in our
experiments), at a higher sparsity. If η is low, convergence
happens sooner 300 epochs, to a lower sparsity.

(1) Relationship Between γ and Final Sparsity. Assum-
ing that all networks have a sparsity they converge to for a
fixed γ, is there a relationship between γ and its associated
final sparsity? Can we predict for a new γ the final sparsity
a network will converge to? We modify the previous experi-
ment, to run the networks 300 epochs for several values of
γ between 2−15 and 210. Our empirical results suggest a
power-law relationship:

ln(s) = ln(c)− α0 · ln(γ)− α1 · (ln(γ))2, (15)

where constants, c, α0, α1 depend on dataset and network
architecture.

10 4 10 3 10 2 10 1 100 101 102

100%

10%

1%

0.1%

0.01%

0.001%

Fin
al

 S
pa

rs
ity

 (%
)

LeNet300 Adam
LeNet300 SGD
LeNet300 Fit
ResNet50 Adam
ResNet50 SGD
ResNet50 Fit

Figure 3. Relation between γ and final sparsity, showing several
curves that can be fitted by our power-law formula. Notice how
different optimzers converge to the same points. One particularity
of SGD is that for low values of pressure the networks takes longer
to converge, which is why a few outliers appear in the top part
diagram.

3.4. Pressure Scheduler

Our findings from Section 3.3 suggest that for any sparsity
we desire, there will be a certain fixed γ which produces
that sparsity after a fixed number of epochs. However, in
practical applications, this γ cannot be known from the start,
since it would require running the method several times
to find out the power-law curve. To solve this issue, we
propose a dynamic scheduler that adjusts γ at each epoch,
driving the network along a desired sparsity trajectory.

The goal of our scheduler, given a function that maps each
iteration to a sparsity f(e) : [0, R] → [0, 100], is to adjust
γ such that the sparsity of the network after e epochs s(e)
will be equal to the desired sparsity s(e) = f(e). Since
epochs increase linearly while the relationship between γ
and sparsity is non-linear, we need our adjustments to γ at
each epoch to also be non-linear.

We choose γ = pα as our γ function, where p is adjusted as
described in Algorithm 1, α is chosen as a hyperparameter

5
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and u is a constant. We find values of α ∈ [1.5, 2.0] to
be well suited for both stable and accurate pruning. We
use inertia terms p+ and p− to account for the need of
potentially larger changes in γ for small α values. Our
scheduler is able to reach the desired sparsity within a 10%
margin of error. Ideally, the training time should be infinite
and the changes in γ as small as possible, to allow for more
controlled pruning. In practice, we find optimal training
time for pruning to be somewhere between T/2 and 2T ,
where T is the original training time needed for the network
to converge.

Algorithm 1 Pressure Scheduler

1: Input: Epoch e, sparsity curve f(e), current sparsity
s(e), update u (constant), α

2: Internals: positive inertia p+, negative inertia p−, both
initialized with 0.

3: if f(e) < s then
4: p← p+ u+ p+
5: p+ ← p+ + u

4
6: p− ← 0
7: else if f(e) > s then
8: p← p− u− p−
9: p− ← p− + u

4
10: p+ ← 0
11: end if
12: Return: pressure γ = pα

3.5. Regrowth Stage

One of the main features of our method is the noise created
by removal and regrowth of weights, which leads to the
disentangling of weight from specific topology. However,
this noise is harmful for convergence. For this reason, we
introduce a regrowth-only stage at the end, whose purpose
is to allow the weights to converge as well as to stabilize the
network topology. Specifically, we eliminate the regulariza-
tion term, setting γ to 0 and therefore allowing only weight
regrowth. In order to limit the number of regrown weights
and add only the most important lost weights, we introduce
a decay of de for the learning rate ηt, where d represents a
constant and e represents the epoch number.

Despite the number of parameters regrown being hard to
control, we can adjust the flow parameters learning rate
ηt, as well as the decay d to constraint or promote the re-
activation of weights. Although the absolute number of
parameters being regrown is small, the gains in accuracy are
significant. For example, we can gain up to 8% accuracy on
Imagenet dataset with a net increase in remaining parame-
ters of 0.5%, from 4.0% to 4.5%. Generally, the regrowth
phase should be scheduled for between one-quarter to one-
third of the total training time to allow adequate reactivation

and stabilization of essential weights.

4. Experimental Results
We conducted experiments with Hyperflows to demonstrate
its effectiveness in achieving high sparsity levels while main-
taining accuracy across various neural network architectures
and datasets. Since Hyperflows quantifies the importance
of each weight, we evaluate it for post-training pruning
scenario, as weights need to hold significance within the
network before starting the pruning process.

We compare Hyperflow with state-of-the-art pruning meth-
ods such as GraNet (Liu et al., 2022), RigL (Evci et al.,
2020), GMP (Trevor Gale, 2019) and Synflow (Hidenori
et al., 2020). We run GraNet and GMP individually using
two setups. In the first setup, we use their reported best con-
figurations for training networks from scratch. In the second
setup, we initialize them with the same baseline network as
ours and determine the optimal learning rate for this specific
setting. We generally observe that their reported learning
rates are also optimal for the post-training scenario. We use
the same training budget of 160 epochs and keep all other
configurations intact, to ensure no unintentional degradation
occurs. We mark all the methods run individually with ∗.
For the methods we do not run, we use the results reported
in (Liu et al., 2022) and (Kusupati et al., 2020).

We evaluate Hyperflows on the following combinations of
networks and datasets: LeNet-300 on MNIST, ResNet-50
on CIFAR-10/100, VGG19 on CIFAR-10/100 and ResNet-
50 on ImageNet-1K. Details on the training setups, archi-
tectures and datasets are summarized in Appendix D. Un-
less otherwise stated, all experiments were conducted three
times, with results expressed as mean ± standard deviation.
The experiments were conducted on a system equipped with
3 RTX 4090 GPUs. Ablation studies are presented in Ap-
pendix B. Our findings indicate that Hyperflows consistently
outperforms state-of-the-art pruning methods, achieving
higher sparsity levels with comparable or better accuracy
across multiple datasets and architectures.

4.1. CIFAR-10 / 100

We evaluate the performance of Hyperflows on CIFAR-10
and CIFAR-100 using ResNet-50 and VGG-19 architectures.
CIFAR-10 is a simpler benchmark with fewer classes, mak-
ing it a smaller challenge compared to CIFAR-100, which
has a larger number of classes and fewer images per class.
This makes CIFAR-100 more prone to instability during
training and a more rigorous test for pruning methods. Re-
sults are presented in Table 1.

A key feature of Hyperflows is the intentional introduction
of noise during pruning. While this leads to performance
fluctuations, it enhances resilience to pruning and supports
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Table 1. Comparison of classification accuracy (%) on CIFAR-10 and CIFAR-100 datasets at different pruning ratios (90.0%, 95.0%,
98.0%). Results are reported for VGG-19 and ResNet-50 architectures using various pruning methods, including Hyperflows. Bold values
represent the best performance for each setting. We consider significant results to have at least 0.25% accuracy difference from the other
methods. Otherwise, we will report multiple best performing methods if it is the case.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90.0% 95.0% 98.0% 90.0% 95.0% 98.0%

VGG-19 (Dense) 93.85 ± 0.06 73.44 ± 0.09

SNIP 93.63 93.43 92.05 72.84 71.83 58.46
GraSP 93.30 93.04 92.19 71.95 71.23 68.90
STR 93.73 93.27 92.21 71.93 71.14 69.89
SIS 93.99 93.31 93.16 72.06 71.85 71.17
SynFlow 93.35 93.45 92.24 71.77 71.72 70.94
RigL 93.38±0.11 93.06±0.09 91.98±0.09 73.13±0.28 72.14±0.15 69.82±0.09
GMP∗ 93.82 ± 0.15 93.84 ± 0.14 92.34 ± 0.13 73.57 ± 0.20 73.39 ± 0.11 72.78 ± 0.07
GraNet∗ (si = 0) 93.87 ± 0.05 93.84 ± 0.16 93.87 ± 0.11 74.08 ± 0.10 73.86 ± 0.04 73.00 ± 0.18
Hyperflows (ours) 94.05 ± 0.17 94.15 ± 0.14 93.95 ± 0.18 74.37 ± 0.21 74.18 ± 0.15 72.9 ± 0.05

ResNet-50 (Dense) 94.72 ± 0.05 78.32 ± 0.08

SNIP 92.65 90.86 87.21 73.14 69.25 58.43
GraSP 92.47 91.32 88.77 73.28 70.29 62.12
STR 92.59 91.35 88.75 73.45 70.45 62.34
SIS 92.81 91.69 90.11 73.81 70.62 62.75
SynFlow 92.49 91.22 88.82 73.37 70.37 62.17
RigL 94.45±0.43 93.86±0.25 93.26±0.22 76.50±0.33 76.03±0.34 75.06±0.27
GMP∗ 94.81 ± 0.05 94.89 ± 0.1 94.52 ± 0.12 78.39 ± 0.18 78.38 ± 0.43 77.16 ± 0.25
GraNet∗ (si = 0) 94.69 ± 0.08 94.44 ± 0.01 94.34 ± 0.17 79.09 ± 0.23 78.71 ± 0.16 78.01 ± 0.20
Hyperflows (ours) 95.41 ± 0.12 95.15 ± 0.11 95.26 ± 0.13 79.58 ± 0.18 79.23 ± 0.16 77.7 ± 0.08

an effective regrowth phase, achieving state-of-the-art ac-
curacy. Further analysis of these fluctuations is provided in
Appendix B.

On CIFAR-10, Hyperflows achieves above-baseline perfor-
mance for all sparsity levels (10%, 5%, and 2%) for both
VGG-19 and ResNet-50, making it the only method to do
so. Accuracy differences between Hyperflows and the next
best method are generally within 1% or less. For VGG-
19, Hyperflows outperforms GraNet∗ at 90% sparsity by
0.18% and GMP∗ by 0.23%. At 98% sparsity, the differ-
ence with GMP∗ increases to 1.61%. For ResNet-50, Hy-
perflows maintains a consistent 0.7% accuracy advantage
over GraNet∗ across all sparsity levels. Additionally, we
study layer-wise sparsity for ResNet-50 on CIFAR-10 at
extreme sparsity levels (99.74%, 99.01%, 98.13%) and ana-
lyze weight distributions under extreme compression. We
observe that exreme sparsity significantly alters the distribu-
tion of weights, results are detailed in Appendix C.1.

On CIFAR-100, Hyperflows achieves the best performance
in 4 out of 6 benchmarks. In the remaining 2 cases, it is
slightly behind GraNet∗, with differences of 0.1% and 0.3%.
Notably, GraNet∗ benefits significantly from loading the

baseline network first, gaining nearly 2% accuracy points
for ResNet-50 compared to their reported results. Hyper-
flows outperforms all methods, including GraNet∗, at 90%
and 95% sparsity by 0.5% accuracy points. Other methods,
such as SIS (Verma & Pesquet, 2021), STR (Kusupati et al.,
2020), GraSP (Chaoqi Wang & Grosse, 2020), and SynFlow
(Hidenori et al., 2020), suffer significant accuracy degrada-
tion at 98% sparsity, dropping to 70%± 2 for VGG-19 and
62%± 0.5 for ResNet-50.

4.2. ImageNet-2012

To evaluate the scalability and effectiveness of Hyperflows
in large-scale settings, we conducted experiments on the
ImageNet-2012 dataset using the ResNet-50 architecture.
The complexity and size of this dataset provide a rigor-
ous test for pruning methods, especially at high sparsity
levels. Table 2 summarizes the comparison between Hy-
perflows and other prominent pruning techniques, including
GraNet (Liu et al., 2022), RigL (Evci et al., 2020), GMP
(Trevor Gale, 2019), and STR (Kusupati et al., 2020). No-
tably, Hyperflows maintains higher accuracy across extreme
sparsity levels, demonstrating its robustness and effective-
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ness in preserving model performance despite significant
pruning.

Table 2. Comparison of Top-1 accuracy (%), number of param-
eters (Params), and sparsity levels (%) for ResNet-50 on the
ImageNet-2012 dataset using various pruning methods, includ-
ing GMP, DNW, RigL, GraNet, STR, and Hyperflows. Results are
reported at sparsity levels of 90%, 95%, and 96.5%.

Method Top-1 Acc (%) Params Sparsity (%)

ResNet-50 77.01 25.6M 0.00

GMP 73.91 2.56M 90.00
DNW 74.00 2.56M 90.00
RigL 73.00 2.56M 90.00

GraNet 74.50 2.56M 90.00
STR 74.31 2.49M 90.23

Hyperflows 74.40 2.54M 90.11

GMP 70.59 1.28M 95.00
DNW 68.30 1.28M 95.00

GraNet 72.30 1.28M 95.00
RigL 70.00 1.28M 95.00
STR 70.40 1.27M 95.03

Hyperflows 72.44 1.13M 95.58

RigL 67.20 0.90M 96.50
STR 67.22 0.88M 96.53

GraNet 70.5 0.90M 96.50
Hyperflows 70.91 0.92M 96.42

At 96.5% sparsity, Hyperflows achieves a Top-1 accuracy of
70.91%, surpassing RigL and STR by 3% accuracy, while
GraNet has similar performance at 70.51%. At 95% spar-
sity, Hyperflows achieves a Top-1 accuracy of 72.14%, sig-
nificantly outperforming GMP (70.59%), DNW (68.30%),
RigL (70.00%), and STR (70.40%), while GraNet falls
behind by 0.14%. At 90% sparsity, Hyperflows achieves
74.40% accuracy closely matching GraNet (74.50%) and
STR (74.31%).

Furthermore, we conducted an analysis on the weight his-
tograms of ResNet-50 on ImageNet to study the difference
in weight distribution under two settings measured at same
sparsities during pruning and regrowth stages. The results
are shown in Appendix C.1, where we observe a shift in
the weight distributions and a decrease in the number of
non-zero weights during the pruning phase.

4.3. LeNet-300

We utilize LeNet-300 for our experiments due to its sim-
plicity and manageability, which make it an ideal choice for
examining various aspects of our method. By applying our
flow metric to eliminate non-essential weights, we progres-
sively increase the sparsity of LeNet-300 up to 99.85% and

investigate which remaining weights in the first layer are
crucial for classification. As shown in Figure 4, the areas
essential for classification become evident, with the margin
being pruned across all levels of sparsity. The dataset uses
only normalization, with no additional transformations ap-
plied. Additionally, in Appendix C.2, we track the number
of weight flips per iteration during training, and visual-
ize how gradient flow contributes to reactivating important
weights.

99
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5%

99
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%
99
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%

99
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99
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Figure 4. The pixels utilized during inference for various sparsified
LeNet-300 networks. The first column shows the masks, with
white pixels indicating those used at inference, while the first row
presents the original, unmasked images.

5. Discussion & Conclusion
We introduced Hyperflows, a theoretical framework around
the idea of weight importance along with the notions of pres-
sure and flow. We studied the relationships between flow,
pressure and the final sparsity of a neural network, which we
termed neural pruning laws. Based on these laws, we devel-
oped a pressure scheduler, allowing us to indirectly control
sparsity, as opposed to pruning or regrowing a fixed number
of weights. Furthermore, we achieved state-of-the-art results
on benchmarks such as CIFAR-10 and CIFAR-100, overall
demonstrating the potential of Hyperflows, from both an
empirical and theoretical perspective. In future work, we
aim to explore whether the constants in the pruning laws
exhibit any properties that hold across multiple networks
and datasets. Furthermore, it would be interesting to adapt
Hyperflows to other problems and architectures, such as
Reinforcement Learning and Large Language Models.

Impact Statement
This work’s dynamic pruning approach can significantly
reduce the computational and energy costs of deep learning
models, making large networks more efficient and accessi-
ble for a wider range of applications. By achieving extreme
sparsity with minimal accuracy loss, it could enable real-
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time or low-resource usage in domains like healthcare or
edge AI, while also lowering the overall environmental im-
pact of machine learning.
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A. Analysis
A.1. The Role of Weight Importance in Generating Stronger Flows

In this section, we provide theorethical groundings for the correlation between weight importance and the magnitude of the
corresponding flow within the Hyperflows framework. To this end, i.e. we analyse why important weights induce stronger
flows within the Hyperflows framework, we analyze the relationship between weight importance and the resulting gradient
feedback. Specifically, we show that if pruning a weight θi leads to a larger increase in the loss function compared to pruning
another weight θj , then the flow of θi is larger than that of θj .

To assess the significance of a specific weight, we measure the change in loss induced by pruning the weight. Formally, a
weight θi is considered more important than a weight θj if:

∆L(T \ {θi}) > ∆L(T \ {θj}), where ∆L(T \ {θi}) = L
(
T \ {θi}

)
− L(T ).

Note that we make the assumption that all weights have a positive importance value, i.e. ∆L(T \ {θi}) > 0.

F(θi, T ) =

{
∂L(T )
∂ti

if ti ≤ 0,

0 otherwise.
(16)

Proposition A.1. If ∆L(T \ {θi}) > ∆L(T \ {θj}), then the flow F(θi, T ) exceeds F(θj , T ) in magnitude:∣∣∣∣∂L(T )∂ti

∣∣∣∣ >

∣∣∣∣∂L(T )∂tj

∣∣∣∣ .
Proof. Consider two weights θi and θj with flow parameters ti and tj , respectively. Let δ > 0 be a small perturbation
applied to the flow parameters such that pruning a weight involves decrementing its parameter by δ, ensuring tk − δ ≤ 0 for
k ∈ {i, j}. This results in the topology changes T \ {θi} and T \ {θj}.

We analyze how the pruning of each of the two weights affects the loss function L(T ):

1. Pruning θi: When θi is pruned, the topology changes to T \ {θi}. Using a first-order Taylor expansion around T , the
change in loss due to pruning θi is approximated by:

L(T \ {θi})− L(T ) ≈ −δ ·
∂L(T )
∂ti

+O(δ2).

2. Pruning θj: Similarly, pruning θj results in the topology T \ {θj} and the corresponding change in loss due to pruning
θj is approximated by:

L(T \ {θj})− L(T ) ≈ −δ ·
∂L(T )
∂tj

+O(δ2).

Given the assumption that pruning θi induces a larger increase in loss compared to pruning θj :

∆L(T \ {θi}) > ∆L(T \ {θj}),

substituting the approximations yields: ∣∣∣∣−δ · ∂L(T )∂ti

∣∣∣∣ > ∣∣∣∣−δ · ∂L(T )∂tj

∣∣∣∣ .
Since δ > 0 is a constant, this simplifies to: ∣∣∣∣∂L(T )∂ti

∣∣∣∣ > ∣∣∣∣∂L(T )∂tj

∣∣∣∣ .
Thus, the above inequality directly translates to:

|F(θi, T )| > |F(θj , T )| .
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A.2. Influence of Weight Magnitude and Direction on Flow Parameters

To observe the relationship between the magnitude and direction of θi and its flow parameter ti, ti > 0, we analyze the
partial derivatives of the loss function L with respect to both θi and ti. We consider the following derivatives:

∂L
∂ti

=
∂L
∂α
· ∂α
∂H
· ∂H
∂ti

=
∂L
∂α
· θi · I · 1,

∂L
∂θi

=
∂L
∂α
· ∂α
∂θi

=
∂L
∂α
·H(ti) · I

where α = θi ·H(ti) · I and H(ti) = 1.

Proposition A.2. The sign of ∂L(T )
∂ti

is influenced by both the gradient of the loss with respect to θi and the value of θi.

Specifically, the update direction of ti is determined by the product θi · ∂L(T )
∂θi

.

Proof. From the expression for ∂L(T )
∂ti

, we observe that:

∂L
∂ti

= θi ·
∂L
∂θi

,∀ti > 0.

Table 3 showcases the implications based on the sign and magnitude of θi .

Table 3. Implications Based on the Sign of θi
Weight Type Derivative ∂L

∂θi
Change in θi Gradient ∂L

∂ti
Effect on ti Implication

θi > 0 Positive θi ↓ Positive ti ↓ Reinforces pruning
θi > 0 Negative θi ↑ Negative ti ↑ Promotes regrowth
θi < 0 Positive |θi| ↑ Positive ti ↑ Promotes regrowth
θi < 0 Negative |θi| ↓ Negative ti ↓ Reinforces pruning

B. Ablation Studies
B.1. Factors influencing flow F(θi, T )

We begin by analyzing how the flow value F(θi, T ) is influenced by factors other than the learning rate ηt. Our findings
from Section 3.3, suggest that weight learning affects the behavior of flow, by changing the final convergence point a network
will reach for the same constant pressure γ. We study this effect in the case of LeNet-300. We run the network for 1000
epochs for three different learning rates of 0.005, 0.0005 and 0.00005, with no schedulers used and the same constant γ.
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Figure 5. MNIST convergence for constant γ = 1 for
different learning rates

Our findings are summarized in Figure 5, which shows that increasing
weight learning rate ηθ leads to smaller flows and convergence at
higher sparsities.

Given the impact of θ learning rate on network convergence, we
study the influence of high and low learning rates on our pruning and
regrowth phases. In our experiments, we study three setups on ResNet-
50 CIFAR-10. In the first two experiments, we study how constant
learning rates across the entire pruning and regrowth process affect
sparsity and regrowth. We choose a high learning rate of 0.01 and a
low learning rate of 0.0001. For our third experiment, we start with
the high learning rate which is then decayed using cosine annealing
to a low learning rate until the end of regrowth. For all three studies
we let our scheduler guide the network towards the same sparsity rate
of 1%. However, we observe significant differences in the regrowth
stage. For the first experiment, regrowth does not occur at all, with
more weights being pruned even after the pressure is set to 0, while
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for the low learning rate, the performance initially degrades, but is followed by a substantial regrowth stage where the
number of remaining parameters increases by 60%. For the third experiment performance does not degrade as much as for
the low learning rate and the regrowth is done in a more controlled way, experiencing an increase in remaining parameters
of 35%. The results are illustrated in Figure 6.
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Figure 6. The impacts of weights learning rate on pruning and sparsity

Lastly, we study how weight flow is affected by weight decay. Being directly applied on the weights, weight decay acts on
both pruned and present weights. If a weight has been pruned in the first epochs on the training, weight decay will keep
making it smaller and smaller, in this way diminishing its flow. We run similar experiments to the ones before, with a
learning rate of 0.01, decayed during training to 0.0001, both with and without the standard weight decay. As expected, we
observe in Figure 7 that regrowth without weight decay if more ample. We run this experiment five times, and note that each
time the pattern illustrated in the figure remain consistent.
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Figure 7. Effect of weight decay on the regrowth process

B.2. Weights ηθ and pruning

Given the large impact ηθ has on flow, we explore its implications for producing an optimal pruning setup for Hyperflows.
We run three experimental setups on ResNet-50 CIFAR-10 similar to the ones before. For each one of them, we select
a starting learning rate, which is then decayed during training to 0.0001 to ensure convergence. For this setup, we run
experiments using ηθ = 0.1, 0.01, 0.0001. We analyze the results from the perspective of accuracy after pruning, noise,
regrowth and final accuracy. We find that the third setup is the most effective for Hyperflows.

We observe that each of the four studied aspects has a relationship with the learning rate. The noise is increased as initial
learning rate increases, accuracy at the end of pruning is decreased the most for low learning rates and the highest for large
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Figure 8. Training evolution for different learning rate configurations.

learning rates. We obtain the highest final accuracy for higher learning rates and the regrowth phase is diminished the higher
the learning rate. These relationships hold and can be easily seen in Figure 8

B.3. ηt values and regrowth

We analyze regrowth behavior for several values of ηt. At regrowth stage, we scale ηt with 5, 10, 20, 30 for VGG-19
CIFAR-100 to observe the behavior of regrowth stage. Our findings are summarized in Figure 9. As ηt increases so does
the number of regrown weights. However, we note that after a point, generally about an increase of 50% in remaining
parameters, the effects of regrowth start to be diminished and starts introducing noise in the performance, while also
regrowing more weights.
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Figure 9. How differently scaled ηt affect regrowth

C. Extended experiments
C.1. Layerwise sparsity levels & Weight Histograms

In this section, we examine the layer-wise sparsity observed for ResNet-50 on CIFAR-10 across the following pruning
rates: 99.75%, 99.01%, and 98.13%. As illustrated in Figure 13, the overall sparsity hierarchy is maintained, displaying a
decreasing trend in sparsity from the initial layers down to the final layer, where this pattern is interrupted. We hypothesize
that earlier layers retain more weights due to their critical role in feature extraction, while deeper layers can sustain higher
levels of pruning without significantly impacting overall performance. Notably, the penultimate layer experiences the highest
degree of pruning, which means that it contains higher redundancy or less critical weights for performance. Furthermore, by
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analyzing the weight histograms for ResNet-50 with sparsity levels of 99.01% and 99.74% in Figure 11, we observe the
influence of sparsity on the weight distributions. High sparsity levels significantly alter weight distributions, demonstrating
that extreme pruning not only reduces the number of active weights but also changes the underlying weight dynamics within
the network.

The histograms in Figure 12 illustrates the differences in weight distributions between the pruning and regrowth stages
on ImageNet with ResNet-50 at approximately 4.23% remaining weights. In the pruning stage, weights are more evenly
distributed across the range of [−0.4, 0.4], with a noticeable dip near zero, reflecting the removal of low-magnitude weights.
In contrast, during regrowth stage the weight distribution shifts significantly, showing a sharp clustering of weights around
zero, indicating the reactivation of low-magnitude weights during this process. This change in distribution correlates with a
notable performance gap: the regrowth stage achieves 72.4% accuracy, while the pruning stage reaches only 66.13%, we
consider the cause of this to be the fact that during the pruning process the small magnitude weights are pruned and during
the regrowth phase we recover from these weights the ones that improve performance the most.

C.2. Weight flips & Implicit regrowth

Implicit regrowth serves as the main source of noise in our network, promoting diverse topologies throughout the training
process. In Figure 10, we identify patterns in flip frequency, such as the lower number of flips at the start of training. This
behavior is anticipated, as pruning a critical weight early on allows its features to be more readily absorbed by other weights.
Around iteration 14, we notice a plateau followed by a brief decline in weight flips, which we attribute to the network
stabilizing during this phase.

As training progresses and the number of parameters declines, the per-weight flip frequency continues to increase, while
the overall flip frequency remains relatively steady, resulting in a continue increase of the per-weight flip frequency. The
regrowth phase is marked by a sharp decrease in the total number of flips as the network stabilizes and the learning rate of
flow parameters diminishes toward zero. This pattern is visible between iterations 70 and 130, alongside a gradual increase
in the number of parameters.
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Figure 10. Frequency of Flips: The blue histogram represents the percentage of remaining parameters on a logarithmic scale, while
the orange histogram illustrates the ratio of parameter flips per iteration relative to the total number of network parameters, also on a
logarithmic scale. In our figure, one iteration is equivalent to the aggregation of 100 actual training iterations. We aggregate iterations to
present the flip data in a more manageable way.

In Figure 10 we can observe the behavior of flow in relation to the gradients of t values. Two specific type of weights emerge,
as we stated in the methodology Section 3.2. Note that negative values of the gradients translate into positive updates for t
values and vice-versa. The first type of weight can be seen in the top-left and bottom-right diagrams in Figure 14, where
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Figure 11. Weight values histograms of ResNet-50 on CIFAR-10 at Different Sparsity Levels. Top 99.75% sparsity, bottom 99.1% sparsity.
We can observe a reshape of weight distributions
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Figure 12. Weight Histograms: The upper figure depicts ResNet-50 during the pruning phase, achieving an accuracy of 66.13%. In
contrast, the lower figure shows ResNet-50 in the regrowth phase, attaining an accuracy of 70.51%. Both phases maintain approximately
99.56% sparsity on ImageNet.
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Figure 13. Per-layer sparsity for ResNet-50 CIFAR-10. We present 3 levels of sparsity: 99.74%, 99.01% and 98.13%.
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Figure 14. Gradient values over time corresponding to four remaining weight of a pruned network. The blue values represent gradients
while ti > 0, while red values represent gradients for ti ≤ 0. We can observe that red gradients, if they exist for that weight, have an
average with very high magnitude, which is the flow F(θi, T ), while positive gradients M(θi, T ) are much smaller, but in some cases
big enough to oppose pressure for several iterations.
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the gradientM(θi, T ) does not oppose significant pressure for ti > 0. This leads to the weight being pruned multiple
times, which coincides, with large negative values in the gradient, which push ti back over 0. The second type of weight, as
common as the first one, does not get pruned at all. In this case,M(θi, T ) averaged over several iterations, attempts to
increase the magnitude of the weight, therefore increasing ti at the same time, which leads to the weight not being pruned at
all. We can see that in this case the overall magnitude of the gradients is below −1.5, which in our experiment was enough
to resist pressure.

D. Training setup and reproducibility
In this section, we summarize the details regarding hyperparameters, optimizers and initializers used in our experiments.

Table 4. Comparison of experimental settings and results across various datasets (CIFAR-10, CIFAR-100, MNIST, and ImageNet-1K)
using different neural network architectures. We make our notation as follows: w represent relation to weights, t represents relation to
pruning values, p, ps and pe represent pruning stage, pruning start and end, r , rs and re regrowth stage, regrowth stage start and end. η
is learning rate, S scheduler and O optimizer. For example ηw

ps represents the learning rate of θ values and the beginning of pruning
state, and ηt

p represents the learning of t values during pruning stage. For flow params, we usea constant ηt for pruning stage, while for
regrowth we employ a exponential decay given by λt

r . For weights, we use a cosine annealing decay from the start to the end of pruning
and naother cosine decay from the start of regrowth to the end of it. We find it useful to have a discontinuity when transitioning from
pruning to regrowth, as it helps with training.

Dataset CIFAR-10 CIFAR-100 MNIST ImageNet-1K

Network ResNet-50 VGG19 ResNet-50 VGG19 LeNet-300 ResNet-50
Acc (%) 93.0 ± 0.5 94.0 ± 0.4 93.0 ± 0.6 72.0 ± 1.2 75.0 ± 1.1 72.0 ± 1.3

Batch size 128 128 128 128 128 1024

ηwps 0.1 0.1 0.1 0.1 0.001 0.1
ηwpe 0.003 0.003 0.003 0.003 0.001 0.003
ηwrs 0.001 0.001 0.001 0.001 0.001 0.001
ηwre 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001

Ow SGD SGD SGD SGD ADAM SGD
Swp Cosine Cosine Cosine Cosine Cosine Cosine
Swr Cosine Cosine Cosine Cosine Cosine Cosine

ηtp 0.001 0.001 0.001 0.001 0.001 0.001
ηtrs 0.01 0.01 0.01 0.01 0.001 0.01

λt
r 0.75 0.75 0.75 0.75 0.75 0.75
Str LambdaLR LambdaLR LambdaLR LambdaLR LambdaLR LambdaLR

Ot ADAM ADAM ADAM ADAM ADAM ADAM

Initialization Kaiming Kaiming Kaiming Kaiming Xavier Kaiming

Epochs 160 160 160 160 60 120
#Prune end 100 100 100 100 30 90
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