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Abstract

Jointly estimating camera poses and mapping
scenes from RGBD images is a fundamental
task in simultaneous localization and mapping
(SLAM). State-of-the-art methods employ 3D
Gaussians to represent a scene, and render these
Gaussians through splatting for higher efficiency
and better rendering. However, these methods
cannot scale up to extremely large scenes, due
to the inefficient tracking and mapping strategies
that need to optimize all 3D Gaussians in the
limited GPU memories throughout the training
to maintain the geometry and color consistency
to previous RGBD observations. To resolve this
issue, we propose novel tracking and mapping
strategies to work with a novel 3D representation,
dubbed view-tied 3D Gaussians, for RGBD
SLAM systems. View-tied 3D Gaussians is a
kind of simplified Gaussians, which is tied to
depth pixels, without needing to learn locations,
rotations, and multi-dimensional variances. Tying
Gaussians to views not only significantly saves
storage but also allows us to employ many more
Gaussians to represent local details in the limited
GPU memory. Moreover, our strategies remove
the need of maintaining all Gaussians learnable
throughout the training, while improving render-
ing quality, and tracking accuracy. We justify
the effectiveness of these designs, and report
better performance over the latest methods on the
widely used benchmarks in terms of rendering
and tracking accuracy and scalability. Please
see our project page for code and videos at
https://machineperceptionlab.github.io/VTGauss-
ian-SLAM-Project.
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1. Introduction
SLAM is an important task in computer vision (Keetha
et al., 2024; Zhu et al., 2022), 3D reconstruction (Wang
et al., 2023; Hu & Han, 2023), and robotics (Adamkiewicz
et al., 2022). SLAM methods resolve the computational
problem of mapping unknown environments while tracking
camera locations. Traditional SLAM methods usually use
RGB or RGBD images to sense 3D surroundings and track
spatial relationships among different frames. The resulting
3D maps are usually represented by 3D point clouds, which
are discrete and not friendly to downstream applications
that require continuous geometry representations, such as
geometry modeling, editing, and virtual reality.

Due to the continuity and the ability to represent arbi-
trary topology and appearance, neural representations have
been employed with differentiable rendering in SLAM sys-
tems (Zhang et al., 2023; Xinyang et al., 2023; Teigen et al.,
2023; Sandström et al., 2023b; Sucar et al., 2021; Wang
et al., 2023). Previous methods (Zhang et al., 2023; Xinyang
et al., 2023; Teigen et al., 2023; Hu & Han, 2023) learn
neural radiance fields (NeRF) (Mildenhall et al., 2020), a
continuous implicit function modeling scene geometry and
appearance, enabling image rendering for scene mapping
and camera tracking. More recently, 3DGS (Kerbl et al.,
2023) was proposed for high-quality and real-time rendering,
which also provides a novel perspective for time-sensitive
SLAM problems (Matsuki et al., 2024; Huang et al., 2024b;
Yan et al., 2024; Yugay et al., 2023; Sandström et al., 2024).
3DGS can efficiently render 3D Gaussians that model radi-
ance fields explicitly using differentiable rasterization which
is faster than the ray tracing in NeRF. However, maintaining
numerous 3D Gaussians to cover the whole scene while
ensuring color and geometry consistency across previous
frames often leads to poor rendering in tracking and map-
ping. This obstacle makes 3DGS still hard to scale up to
extremely large scenes in SLAM, remaining the challenge of
improving the rendering quality, tracking accuracy, and scal-
ability of 3DGS in tracking cameras and mapping scenes.

To overcome this challenge, we propose an RGBD SLAM
system with splatting view-tied 3D Gaussians. Our method
introduces a novel point-based volume representation,
dubbed view-tied 3D Gaussians, to represent the color and
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Figure 1. Overview. (a) and (c) are tracking strategies, while (b) and (d) are mapping strategies. Please refer to Sec. 3.1 for more details.

geometry of the scene, dedicated to reducing storage but
pursuing better rendering quality. Different from the origi-
nal 3D Gaussians (Kerbl et al., 2023), we tie a 3D Gaussian
to each pixel on the depth, which makes their positions only
determined by depth and camera poses, without a need of
learning and storing their locations and also the density con-
trol. Meanwhile, we simplify an ellipsoid 3D Gaussian as a
sphere, without saving rotations and multi-dimensional vari-
ances as well, which saves more storage for initiating even
more Gaussians for describing more details. With view-tied
3D Gaussians, our novel tracking and mapping strategies
can be conducted in rendering and optimizing the Gaussians
that are merely related to the most recent views, rather than
all Gaussians in the scene. These benefits enable us to use
many more Gaussians to represent each frame, just keep the
most relevant Gaussians in the limited GPU memories, and
remove the need of maintaining the consistency of scene
representations to keyframes. This ability scales up the size
of scenes that we can handle and also significantly improves
the rendering quality, even if just using simplified Gaussians.
Our visual and numerical evaluations show our advantages
over the latest methods. Our main contributions are listed
below.

• We propose view-tied Gaussian splatting that signifi-
cantly reduces storage but improves rendering quality
with 3DGS in SLAM.

• We introduce a novel RGBD SLAM algorithm with
view-tied Gaussian splatting. Our tracking and map-
ping strategies remove the need of holding and optimiz-
ing all Gaussians in memory throughout the training,
which improves the scalability of 3DGS in SLAM.

• We report the state-of-the-art results on widely used
benchmarks over the latest 3DGS-based SLAM.

2. Related Work
Multi-view Reconstruction. Recent multi-view recon-
struction methods aim to learn neural implicit represen-
tations (Park et al., 2021; Müller et al., 2022; Rückert et al.,
2021; Sara Fridovich-Keil and Alex Yu et al., 2022; Zhu
et al., 2022; Azinović et al., 2022; Wang et al., 2022a; Bozic

et al., 2021; Zou et al., 2022; Sun et al., 2021; Li et al.,
2023) from multi-view images through volume rendering.
Besides RGB images, we can also leverage depth (Yu et al.,
2022; Azinović et al., 2022; Zhu et al., 2022; Zhang et al.,
2024c) and normals (Yu et al., 2022; Wang et al., 2022b;
Guo et al., 2022; Patel et al., 2024) as rendering supervi-
sion to infer more geometry details. With the emergence of
3DGS (Kerbl et al., 2023; Moenne-Loccoz et al., 2024), we
can learn implicit representations or accurate depth maps for
reconstruction (Zhang et al., 2024b; Huang et al., 2024a; Yu
et al., 2024; Wolf et al., 2024; Fan et al., 2024; Zhang et al.,
2024a; Charatan et al., 2023; Lin & Li, 2024; Chen et al.,
2024). However, these methods require accurate camera
poses, which differs from SLAM methods a lot.

SLAM with Volume Rendering. With multi-view con-
sistency, multi-view stereo (MVS) (Schönberger & Frahm,
2016; Schönberger et al., 2016) estimate dense depth maps
from multiple RGB images. With the demand for novel view
synthesis, recent SLAM methods render depth maps and
estimate continuous implicit representations (Zhang et al.,
2023; Xinyang et al., 2023; Teigen et al., 2023; Sandström
et al., 2023b; Sucar et al., 2021; Wang et al., 2023; Sand-
ström et al., 2023a;b; Hu et al., 2023). They use RGBD
images as rendering supervision, and learn implicit repre-
sentations through learning radiance fields. Some other
methods also leverage priors like segmentation priors (Kong
et al., 2023; Haghighi et al., 2023), depth fusion priors (Hu
& Han, 2023), or object-level priors (Kong et al., 2023),
which improve the performance in tracking and mapping.

SLAM with 3D Gaussian Splatting. Because of the ren-
dering efficiency and higher rendering quality, more recent
methods used 3DGS to differentially render images (Keetha
et al., 2024; Matsuki et al., 2024; Huang et al., 2024b; Yan
et al., 2024; Yugay et al., 2023; Sandström et al., 2024).
Although these methods adopt different tracking and map-
ping strategies, they need to maintain all Gaussians covering
the scene in the limited GPU memories and optimize all
Gaussians throughout the training to keep color and geom-
etry consistency to all previous views. This fact limits the
number of Gaussians that they can use and makes it hard
to scale up to extremely large scenes. Unlike these meth-
ods, our method employed simplified Gaussians, without

2



VTGaussian-SLAM: RGBD SLAM for Large Scale Scenes with Splatting View-Tied 3D Gaussians

storing locations, rotations, or multi-view variances, saving
more room for more Gaussians to represent either more de-
tails or larger scenes. Our view-tied Gaussians combine the
advantages of Gaussian representations in current SLAM
systems (Keetha et al., 2024; Yugay et al., 2023).

More complicated systems (Liso et al., 2024; Zhu et al.,
2024; Bruns et al., 2024; Sandström et al., 2024) also lever-
age loop closure in the optimization. However, detecting
loop closures among views needs pretrained priors and is
sensitive to image quality, which also differs from ours.

Gaussian Alignment. Aligning 3D Gaussians to some
entities was also employed in some other works (Yinghao
et al., 2024; Zhang et al., 2024a; Gao et al., 2024; Luiten
et al., 2024; Seidenschwarz et al., 2024; Zakharov et al.,
2024). Gaussians in these methods are either not related to
camera positions or with many attributes. Instead, our view-
tied Gaussians relate Gaussians’ positions with the camera
poses and use simplified attributes, dedicated to improving
the efficiency and scalability of SLAM systems.

3. Methods
3.1. Overview

Fig. 1 illustrates our tracking and mapping strategies. We
organize view-tied 3D Gaussians from several consecutive
frames as a section so that we can keep as many Gaussians
as the GPU memory allows to represent a local area, access
these Gaussians more efficiently, and more importantly, en-
able more robust completion of missing depth by utilizing
neighboring frames’ depth. In each section, we mark the
first frame as a head to differentiate it from regular frames
for different Gaussian initialization strategies in mapping.

With view-tied Gaussians, we manage to keep learnable
Gaussians that are the most relevant to the latest frame in
the GPU memory. This ability removes the need of main-
taining a list of keyframes and optimizing all Gaussians rep-
resenting the scene to maintain their spatial and appearance
consistency to all keyframes, which are widely employed
in the latest SLAM systems (Wang et al., 2023; Hu & Han,
2023; Keetha et al., 2024; Zhu et al., 2022), leading to the
key of scaling up to much larger scenes.

For tracking the latest frame, we select Gaussians in a sec-
tion, render them from the camera pose initialized by the
constant speed assumption, and optimize the pose by min-
imizing rendering errors to the latest frame. If the latest
frame is the head of a new section in Fig. 1 (a), we select
the Gaussians in a certain section in front according to the
visibility. These selected Gaussians maintain the spatial
consistency in a long view sequence and reduce the error cu-
mulation. If the latest frame is not a head but a regular frame
in the current section in Fig. 1 (c), we select the Gaussians

in this section for renderings with higher quality.

For mapping the scene using the latest frame, if the latest
frame is the head of a new section in Fig. 1 (b), we initialize
Gaussians by centering them at all pixels with valid depth
values. If the latest frame is not a head but a regular frame in
an existing section in Fig. 1 (d), we only initialize Gaussians
as a complement in areas where pixels have valid depth
values and the existing Gaussians in the current section
cannot cover. Fig. 3 visualizes the view-tied Gaussians
initialized at both the head frame and the following regular
frames in a section. We learn these Gaussians to maintain
their color and geometry consistency to all frames in the
same section and some previous frames with overlaps.

3.2. View-tied Gaussians

Our view-tied Gaussians aim to achieve memory efficiency
in SLAM, which enables us to improve the rendering quality
by using many more Gaussians to represent local details.
Specifically, we simplify an ellipsoid Gaussian g into a
sphere, which only includes a color c ∈ R1×3, a radius as
the variance r ∈ R1, and an opacity o ∈ R1, and removes
the 4-dimensional rotation, the 3-dimensional location, the
other 2-dimensional variances from the original 3D Gaus-
sians, saving 64.3% (9/14) storage in total.

We remove the need of learning and storing locations by ty-
ing a Gaussian g at each pixel with a valid depth value on the
depth map. We center g at the 3D location back-projected
from the depth value. Thus, the positions of Gaussians are
only determined by the depth and the corresponding camera
pose, which can be adjusted in the camera tracking proce-
dure. For the i-th frame with a RGB Vi and a depth map
Di, we will initialize Gaussians {gi

j} on Di.

Since there may be missing depth values on some depth
maps, we organize Gaussians from every N neighboring
frames into a section Sk, so that we can use Gaussians from
neighboring frames to cover the missing area on one specific
depth map in the same section. Based on the concept of sec-
tions, we only optimize Gaussians in one section containing
the latest view, and frozen Gaussians in other sections. This
not only enables us to use more Gaussians to represent local
details, but also removes the need to maintain the appear-
ance and geometry consistency to all the previous frames or
keyframes. This is a key to improving our rendering quality,
leading to better performance in tracking and mapping, and
scaling up to larger scenes.

3.3. Tracking Cameras

We will estimate the camera pose pi of the latest frame
{Vi,Di} first. When tracking cameras, we keep all Gaus-
sians in the scene fixed, and merely optimize the pose pi by
minimizing rendering errors with respect to {Vi,Di}.
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Figure 2. Illustration of selecting overlapping section. We show Gaussian centers and colors in each section.

Figure 3. Initialization of view-tied Gaussians in a section.

If the latest frame {Vi,Di} is a head starting a new section
Sk, we select one section So in front of Sk, and render
Gaussians in So into a RGB V ′

i and a depth D′
i using the

pose pi. We optimize pi to minimize rendering errors,

min
pi

αWi||Vi − V ′
i ||1 + βWi||Di −D′

i||1, (1)

where {V ′
i ,D

′
i} = splat({g}o ∈ So,pi) are rendered im-

ages by splatting {g}o in section So using the camera pose
pi, Wi is a mask which removes pixels either without depth
values or uncovered by the rendering of {g}o or invisible to
sections So, and α and β are balance parameters.

Otherwise, if the latest frame {Vi,Di} is a regular frame in
the current section Sk, we will optimize the camera pose pi

using the same equation above but rendering the Gaussians
{g}k in the current section Sk into {V ′

i ,D
′
i}.

Figure 4. Issue of pose error cumulation.

This design aims
to find a balance
between the
rendering quality
and the spatial
consistency of
the current sec-
tion to previous
frames in a long
image sequence.
Obviously, ren-
dering Gaussians in the same section will produce better
renderings since neighboring frames usually have larger
overlaps with the latest frame. Although better renderings
are helpful for more accurate camera pose estimations,
the higher accuracy is merely meaningful relative to the
neighboring frames, resulting in a significant cumulation
of pose errors relative to the whole camera trajectory. We

illustrate this issue in Fig. 4, where we use Gaussians
in the current section and render pretty good images for
tracking. At each frame out of a 2000 frame video, the
average error of relative pose to the previous frame is
pretty small, while the average error relative to the whole
trajectory is getting larger and larger. To resolve this issue,
we maintain the spatial consistency of the current section
by rendering Gaussians {g}o in a certain previous section
So for tracking the head frame while rendering Gaussians
{g}k in the same section Sk for tracking regular frames.

Selecting Overlapping Section So. In each section, we
select a section So for the head frame in terms of overlap
and visibility. We first set up an overlap candidate view list
with an interval of N1 frames. For a head frame {Vi,Di},
we project the depth Di from the initialized pose to each
one frame in the overlap candidate view list. We count the
number of visible points to each candidate view, and select
the candidate views that have more visible points than a
threshold γ. We eventually select the most front 3 sections
containing at least one of the selected candidate views. We
use the most front as a criterion to relieve the impact caused
by the error cumulation.

Then, we adopt a pre-tracking strategy to finalize the se-
lection. We use each one of the 3 sections to conduct the
tracking for several iterations, respectively. We eventually
select a section that produces the minimum rendering er-
ror as So. Here, we do not splat Gaussians from all the 3
sections together for rendering since multiple sections are
seldom learned together in the mapping procedure, which
may degenerate rendering quality. Fig. 2 illustrates the 3
section candidates selected for a head frame, where all the
3 sections are highly related to the head frame. We finally
render Gaussians in section 73 to track the head frame.

Visibility Check. We determine the visibility of a 3D point
to a specific view if its projected depth is within 1% of the
interpolated depth at its projection on the depth map. For
visibility to a section So with Wi in Eq. 1, we consider the
head frame, the frame in the middle, and the last frame in
So to calculate three visibility masks. We use the union
of these three visibility masks as the visibility mask to a
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section. Please see Fig. 10 for more details.

3.4. Mapping Scenes

We initialize Gaussians and learn attributes of Gaussians in
the mapping procedure. In each section, we first initialize
Gaussians at all pixels on the depth map at the head frame,
and then complement Gaussians at pixels uncovered by
the current Gaussians’ renderings on regular frames. To
maintain the appearance and geometry consistency to frames
in both the same section and nearby overlapping sections,
we adopt different strategies to learn Gaussian attributes.

If the latest frame {Vi,Di} is a head frame starting a new
section Sk, we use the Gaussians {g}k initialized on the
latest frame, the Gaussians {g}k−1 in the previous sec-
tion Sk−1, and the Gaussians {g}o in the section So hav-
ing the largest overlaps with the latest frame to render
{V ′

i ,D
′
i} = splat([{g}k, {g}k−1, {g}o],pi). We mini-

mize the rendering errors with respect to observations,

min
{g}k

ρ||Vi−V ′
i ||1+τLS(Vi,V

′
i )+σUi||Di−D′

i||1, (2)

where LS is the SSIM loss, Ui is a mask which removes pix-
els without valid depth values, ρ, τ , σ are balance weights.
Only {g}k are learnable, and all other Gaussians are fixed.
This rendering can maintain the appearance and geometry
consistency to the nearby overlapping sections.

Otherwise, if the latest frame {Vi,Di} is a regular frame
in the current section Sk, we first splat the Gaussians {g}k
in the current section into silhouette images to find the un-
covered area where we initialize Gaussians. Then, we splat
{g}k to render from a random view pj of {Vj ,Dj} that
is in front of {Vi,Di} in this section, i.e., {V ′

j ,D
′
j} =

splat({g}k,pj), where {Vj ,Dj} ∈ Sk and j ≤ i. We still
use Eq. 2 to optimize {g}k, where we select a random view
as a rendering target to maintain the appearance and geome-
try consistency to frames in the same section. We visualize
the rendered images during mapping a head frame in Fig. 5,
where the rendering error is progressively minimized.

3.5. Bundle Adjustment

We also conduct bundle adjustment to jointly estimate the
camera pose and learn Gaussians when mapping the head
frame in each section. We still use the Eq. 2 in the opti-
mization, but also back-propagate gradients to update the
camera pose of the head frame. We do not use bundle ad-
justment on each regular view in a section for stabilizing
the optimization in both tracking and mapping.

4. Experiments and Analysis
We only report average results in this section, evaluations
on each scene can be found in the supplementary materials.
Please also watch our video for more renderings.

Figure 5. Illustration of optimizing view-tied Gaussians initialized
on a head frame. Error maps are shown at different iterations.

Implementation Details. For neighboring views in a sec-
tion Sk, we choose N = 40 on Replica (Straub et al., 2019),
N = 30 on TUM-RGBD (Sturm et al., 2012), N = 30 or
N = 50 on ScanNet (Dai et al., 2017a), and N = 100 on
ScanNet++ (Yeshwanth et al., 2023), according to image
resolutions and mapping iterations. During tracking, we use
every 5 frames as a candidate view for overlapping section
selection, i.e. N1 = 5. Specifically, when mapping a regu-
lar frame in an existing section Sk, we will choose 0.5 as
a mask threshold to determine if current Gaussians in Sk

cover a pixel, if they do not, we will initialize a Gaussian as
a complement. To work with depth and RGB images with
different quality and resolutions, we set ρ = 0.8, τ = 0.2,
and σ = 1.0 to balance the mapping loss terms while we
set {α, β} = {0.5, 0.025} on Replica, {0.5, 1.0} on TUM-
RGBD and ScanNet++, {0.5, 0.9} on ScanNet to balance
the tracking loss terms. More details of hyperparameters are
provided in the supplementary materials.

Dataset and Metrics. We conduct evaluations on several
widely used benchmarks, including Replica (Straub et al.,
2019), TUM-RGBD (Sturm et al., 2012), ScanNet (Dai
et al., 2017a), and ScanNet++ (Yeshwanth et al., 2023).
Here Replica is a synthetic dataset with high-fidelity 3D
reconstruction of indoor scenes. We evaluate on the widely
used RGBD sequence from eight scenes captured by Su-
car (2021) with accurate trajectories. TUM-RGBD, Scan-
Net, and ScanNet++ are real-world datasets. Note that Scan-
Net++ is not a dataset designed for SLAM tasks, some
sudden large motions are occurring in the DSLR-captured
sequences, we follow previous methods (Yugay et al., 2023;
Zhu et al., 2024) and only employ the first 250 frames of
each scene in evaluations, which present smooth trajectories.

We evaluate the accuracy of estimated cameras at each
frame and the rendering quality from either the observed
or unobserved view angles. For tracking accuracy, we
use the root mean square absolute trajectory error (ATE
RMSE) (Sturm et al., 2012) as a metric. Regarding render-
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Figure 6. Visual comparisons in reconstruction on Replica.

Table 1. Tracking comparisons in ATE RMSE ↓ [cm] on Replica. ∗ denotes use of pre-trained data-driven priors.

Neural Implicit Fields 3D Gaussian Splatting

Methods NICE-SLAM DF-Prior Vox-Fusion ESLAM Point-SLAM Loopy-SLAM∗ SplaTAM GS-SLAM Gaussian-SLAM LoopSplat∗ CG-SLAM∗ Ours

Avg. 1.95 1.81 0.65 0.63 0.52 0.29 0.36 0.50 0.31 0.26 0.27 0.28

Figure 7. Error map comparisons in rendering on Replica.

ing quality, we measure PSNR, SSIM (Wang et al., 2004),
and LPIPS (Zhang et al., 2018). Similar to (Sandström et al.,
2023a; Liso et al., 2024; Zhu et al., 2024; Yugay et al., 2023),
all the rendering metrics are computed by rendering the full
resolution images along the estimated trajectory every 5
frames. Additionally, we also obtain the meshes of scenes
by marching cubes (Lorensen & Cline, 1987) following a
similar procedure in (Sandström et al., 2023a). Then we
measure the reconstruction performance with F1-score, the
harmonic mean of the Precision (P) and Recall (R), using a
distance threshold of 1 cm for all evaluations. We also use
the depth L1 metric to measure the rendered mesh depth
error at sampled novel views as in (Zhu et al., 2022).

Baselines. We compare our method with the latest
RGBD SLAM methods, including NeRF-based RGBD
SLAM methods: NICE-SLAM (Zhu et al., 2022), Vox-
Fusion (Yang et al., 2022), ESLAM (Johari et al., 2023),
DF-Prior (Hu & Han, 2023), Co-SLAM (Wang et al., 2023),
and Point-SLAM (Sandström et al., 2023a), and 3DGS-
based RGBD SLAM methods: SplaTAM (Keetha et al.,
2024), MonoGS (Matsuki et al., 2024), GS-SLAM (Yan
et al., 2024), and Gaussian-SLAM (Yugay et al., 2023).
Note that Point-SLAM (Sandström et al., 2023a) requires
ground truth depth images as an input to guide sampling
when rendering, which is an unfair advantage compared
to other methods. Moreover, relying on data-driven priors,
such as pre-trained NetVLAD models (Arandjelović et al.,
2016), in loop closure detection and visibility check, SLAM

Table 2. Rendering results in PSNR ↑, SSIM ↑, and LPIPS ↓ on
three Datasets. ∗ denotes use of pre-trained data-driven priors.

Dataset Replica TUM ScanNet
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Neural Implicit Fields
NICE-SLAM 24.42 0.809 0.233 14.86 0.614 0.441 17.54 0.621 0.548
Vox-Fusion 24.41 0.801 0.236 16.46 0.677 0.471 18.17 0.673 0.504
ESLAM 28.06 0.923 0.245 15.26 0.478 0.569 15.29 0.658 0.488
Point-SLAM 35.17 0.975 0.124 16.62 0.696 0.526 19.82 0.751 0.514
Loopy-SLAM∗ 35.47 0.981 0.109 12.94 0.489 0.645 15.23 0.629 0.671

3D Gaussian Splatting
SplaTAM 34.11 0.970 0.100 22.80 0.893 0.178 19.14 0.716 0.358
Gaussian-SLAM 42.08 0.996 0.018 25.05 0.929 0.168 27.70 0.923 0.248
LoopSplat∗ 36.63 0.985 0.112 22.72 0.873 0.259 24.92 0.845 0.425

Ours 43.34 0.996 0.012 30.20 0.972 0.062 31.10 0.961 0.108

methods with pose graph optimizations Loopy-SLAM (Liso
et al., 2024) and LoopSplat (Zhu et al., 2024), and CG-
SLAM (Hu et al., 2024) usually reported higher tracking
accuracy, which however is not a fair experimental setting
to most SLAM methods without using priors.

4.1. Comparisons

Results on Replica. We first report our results on 8 scenes
in Replica. We compare with the state-of-the-art NeRF-
based and GS-based SLAM methods in camera tracking in
Tab. 1, mapping scenes with rendered images in Tab. 2, and
reconstruction in Tab. 3.

Tab. 1 shows that our method can estimate camera poses
more accurately than state-of-the-art NeRF-based methods,
such as NICE-SLAM (Zhu et al., 2022), DF-Prior (Hu &
Han, 2023), and Point-SLAM (Sandström et al., 2023a),
due to higher quality renderings produced by view-tied
Gaussians. Our view-tied Gaussians also show advan-
tages over the original Gaussians used in SplaTAM (Keetha
et al., 2024), Gaussian-SLAM (Yugay et al., 2023), and
GS-SLAM (Yan et al., 2024) in terms of using much more
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Table 3. Reconstruction results in D-L1 [cm] ↓ and F1 [%] ↑ on Replica. ∗ denotes use of pre-trained data-driven priors.

Neural Implicit Fields 3D Gaussian Splatting

NICE-SLAM Vox-Fusion ESLAM Co-SLAM Point-SLAM Loopy-SLAM∗ SplaTAM GS-SLAM Gaussian-SLAM LoopSplat∗ Ours

D-L1↓ 2.97 2.46 1.18 2.59 0.44 0.35 0.72 1.16 0.68 0.51 0.53
F1↑ 43.9 52.2 79.1 69.7 89.8 90.8 86.1 70.2 88.9 90.4 90.0

Table 4. Tracking comparisons in ATE RMSE ↓ [cm] on TUM-RGBD. ∗ denotes use of pre-trained data-driven priors.

Neural Implicit Fields 3D Gaussian Splatting

Methods NICE-SLAM Vox-Fusion Point-SLAM Loopy-SLAM∗ SplaTAM GS-SLAM Gaussian-SLAM LoopSplat∗ CG-SLAM∗ Ours

Avg. 13.3 10.3 3.0 2.9 3.3 3.7 2.9 2.3 2.0 2.6

NICE-SLAM SplaTAM Gaussian-SLAM Ours GT

Figure 8. Visual comparisons in rendering on TUM-RGBD.

Gaussians to represent local details in a more efficient man-
ner, leading to better renderings to compare with the obser-
vations during tracking. However, relying on data-driven
priors, LoopSplat (Zhu et al., 2024) reported more accurate
camera tracking in terms of average accuracy, while our
method does not need any priors.

Due to the ability of using more Gaussians to describe local
details, our method produces the best rendered images, as
shown in Tab. 2. Error map comparisons in Fig. 7 highlight
our rendering quality, which is much better than others,
especially in areas with sudden color changes. Because
of better renderings, our methods also produce the most
accurate reconstruction in Tab. 3. We follow the previous
method (Sandström et al., 2023a) to render depth maps from
the estimated camera poses, and fuse these depth maps into
a TSDF for reconstruction. Visual comparisons in Fig. 6
show that we can recover more accurate geometry details.

Results on TUM-RGBD. We report our results on the TUM-
RGBD dataset in camera tracking in Tab. 4 and rendering
in Tab. 2. We follow previous methods (Zhu et al., 2022;
Keetha et al., 2024; Yugay et al., 2023; Liso et al., 2024;
Zhu et al., 2024; Sandström et al., 2023a) and evaluate our
method on the 3 widely used scenes in TUM-RGBD.

Comparisons in camera tracking in Tab. 4 show that GS-
based methods estimate camera poses more accurately than
NeRF-based methods. Although the input RGBD observa-

tions are not in high resolution and with good quality, our
method still produces the best tracking accuracy. Regard-
ing the rendering, our view-tied Gaussians show even more
advantages over the other methods in Tab. 2. Visual com-
parisons in Fig. 8 highlight our improvement over the other
methods. Compared to previous GS-based SLAM methods,
our method can use many more Gaussians tied at each pixel
on depth images to fit sudden color change without needing
to maintain the consistency of Gaussians over the whole
scene to a set of keyframes throughout the training, which
enables Gaussians to focus more on local details.

Results on ScanNet. Our evaluations in camera tracking
and mapping scenes with rendering views are reported in
Tab. 5 and Tab. 2, respectively. We produce the most accu-
rate tracking performance in terms of average performance.
Based on the camera poses, our method also significantly
improves the rendering quality on ScanNet, as shown in
Fig. 9. The rendering improvement also justifies our advan-
tages of using view-tied Gaussians on real-captured scenes.
Besides good ability of recovering appearance details, with
motion blur and low image quality in real images, our view-
tied Gaussians can also limit these negative impact just on
several neighboring views but not on all Gaussians in the
scene during mapping.

NICE-SLAM SplaTAM Gaussian-SLAM Ours GT

Figure 9. Visual comparisons in rendering on ScanNet.
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(a) Visi-Head (b) Visi-Middle (c) Visi-Last (d) Visibility (e) Projection (f) Visi.∩Proj. (g) Rendered RGBD with Mask s

Figure 10. Visualization of visibility and Gaussian projections on a head frame during tracking in a section.

Figure 11. Visualization of Gaussian centers with colors in the selected overlapping section for tracking (a) head frames and (b) regular
frames. The Gaussian centers nearby are shown without color.

Table 5. Tracking comparisons in ATE RMSE ↓ [cm] on ScanNet. ∗ denotes use of pre-trained data-driven priors.

Neural Implicit Fields 3D Gaussian Splatting

Methods NICE-SLAM Vox-Fusion Point-SLAM Loopy-SLAM∗ SplaTAM Gaussian-SLAM LoopSplat∗ CG-SLAM∗ Ours

Avg. 10.7 26.9 12.2 7.7 11.9 15.4 7.7 8.1 11.3

Table 6. Tracking comparisons in ATE RMSE↓ [cm] on ScanNet++. ∗ denotes use of pre-trained data-driven priors.

Neural Implicit Fields 3D Gaussian Splatting

Methods Point-SLAM ESLAM Loopy-SLAM∗ SplaTAM Gaussian-SLAM LoopSplat∗ Ours

Avg. 511.24 22.14 113.63 89.41 2.68 2.05 1.55

Results on ScanNet++. We report tracking results on the
widely used 5 scenes in ScanNet++ in Tab. 6. Compared to
GS-based methods, our methods can estimate more accu-
rate camera poses thanks to the more accurate renderings.
Regarding novel view synthesis, please refer to our supple-
mentary materials for more details.

4.2. Ablation Studies and Analysis

We justify the effectiveness of each design on synthetic
and real scenes in Replica (Straub et al., 2019) and TUM-
RGBD (Sturm et al., 2012).

3D Gaussians. We conduct experiments to highlight the
effect of view-tied Gaussians in Tab. 7. We replace our
Gaussians with ellipsoid Gaussians with either fixed (“aniso
+ w/ VT”) or learnable locations (“aniso + w/o VT”). We
also show the effect of learnable locations with our simpli-

fied Gaussians (“iso + w/o VT”). Without tying Gaussians
to depth maps, we need to store Gaussian locations, which
limits the number of Gaussians we can use, degenerating
the rendering quality. The comparisons show that our view-
tied Gaussians not only significantly reduce the size of each
Gaussian (number of parameters) but also achieve good
rendering quality with our tracking and mapping strategies.

Section Length. The number of frames in a section is also a
factor impacting the performance. Tab. 8 shows that too few
or too many frames in one section will degenerate the perfor-
mance if we do not adjust other parameters like optimization
iterations during tracking or mapping. Too few frames will
increase the possibility of cumulating camera pose errors
while changing into the next section. Instead, too many
frames will need more iterations during mapping to learn
Gaussians well. We cannot use a large number of Gaussians
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Table 7. Ablation study on attributes of 3D Gaussians (aniso: anisotropic Gaussians, iso: isotropic Gaussians, VT: view-tied Gaussians).

Metric aniso + w/o VT aniso+ w/ VT iso + w/o VT iso + w/ VT (Ours)

PSNR↑ [dB] 37.62 38.46 36.73 39.95
ATE RMSE ↓ [cm] 19.60 25.65 21.45 0.22

Param./Gaussian 14 11 8 5

Table 8. Ablation study on the length of section S, overlap selecting strategy, and visible mask.

Length of section S Overlap section selecting strategy Visibility mask

Metric 20 40 (Ours) 60 80 100 nearest largest multiple Ours w/o w/ (Ours)

PSNR↑ [dB] 39.92 39.95 39.34 38.87 38.56 38.52 38.74 38.03 39.95 30.40 30.51
ATE RMSE ↓ [cm] 0.25 0.22 0.23 0.26 0.24 0.30 0.34 0.28 0.22 6.8 4.4

Table 9. Runtime and Memory Usage on Replica.

Method NICE-SLAM Point-SLAM SplaTAM Gaussian-SLAM Ours

Tracking/Frame(s) 1.06 1.11 2.70 0.83 1.92
Mapping/Frame(s) 1.15 3.52 4.89 0.93 2.43

Total Num of Gaussians - - 5832K 32592K 97823K
Max Num of Gaussians - - 5832K 1983K 2664K

if setting the length of the section as 1, which degenerates
the rendering and tracking performance. We visualize some
overlapping sections during tracking in Fig. 11.

Overlapping Section Selection Strategy. Our strategy of
selecting overlapping sections is also important for good
renderings in tracking the head frame. Our selection based
on visibility and preference to the most front sections signifi-
cantly reduces the impact of pose error cumulation. We com-
pare this strategy with selecting the nearest section (“near-
est”), the section with the largest overlaps (“largest”), or
multiple sections (“multiple”) that add the nearest section to
the selection we selected. The comparisons in Tab. 8 show
that our selection strategy achieves the best performance.

Visibility. We consider visibility in both tracking and map-
ping to reduce the error brought by unseen or occluded areas.
Using no visibility in the loss function will degenerate the
performance, as shown in Tab. 8, since the error in the un-
seen area will not be minimized by adjusting camera poses
or optimizing Gaussian attributes. We visualize the visibility
masks and projection masks in Fig. 10. The visibility masks
of a head frame to the first, the middle, and the last frame in
the selected overlapping section are shown in Fig. 10 (a)-(c),
respectively. The overall visibility to the overlapping section
is the union of these 3 visibility masks in Fig. 10 (d). The
silhouette produced by projections of Gaussians in the same
section is shown in Fig. 10 (e). We use the intersection of
visibility mask and silhouette mask in Fig. 10 (f) to weight
rendered RGBD images in Fig. 10 (g).

Runtime, Storage, and Scalability. We report the average

time for tracking and mapping one frame in Tab. 9 on a
single NVIDIA RTX4090. Our runtime is comparable to
other GS-based methods. Regarding the number of Gaus-
sians, we show a great advantage over other methods. We
can initiate many more Gaussians over the whole scene than
other GS-based methods for better rendering. Meanwhile,
around each frame, we still have good control of the num-
ber of Gaussians so that we can maximize the usage of the
limited GPU memory, which finds a good balance between
scalability and limited hardware resources. This enables
us to handle much larger scenes in more frames with more
Gaussians than other SLAM methods.

5. Conclusion
We propose VTGaussian-SLAM to improve the perfor-
mance of SLAM with 3D Gaussian splatting in terms of
rendering quality, tracking accuracy, and scalability. We
showed that our view-tied Gaussians can significantly save
storage so that we can maintain a large amount of these
Gaussians in the limited GPU memory for either higher
rendering quality or larger areas. Our tracking and map-
ping strategies take good advantage of these benefits, which
allows us to merely maintain and optimize Gaussians that
contribute to the most recent views a lot. This ensures the
high rendering quality for the latest views, and leads to
more accurate camera tracking and mapping. We justified
the effectiveness of each design and reported visual and
numerical evaluations to illustrate our advantages over the
latest SLAM methods.
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Supplementary Material
In this supplementary material, we will cover more details
about the implementation and results on each scene. Addi-
tionally, we also show more results regarding Novel View
Synthesis on ScanNet++ (Yeshwanth et al., 2023).

A. Implementation Details

We implemented VTGaussian-SLAM in Python using the
PyTorch framework, and ran all experiments on NVIDIA
RTX4090 GPUs. During mapping, we will initialize view-
tied Gaussians from input RGBD images. Following
(Keetha et al., 2024), we initialized the radius of each Gaus-
sian r using the following equation:

r =
DGT

f
, (3)

Here DGT is the ground-truth depth, and f is the focal
length. As for the learning rate of 3D Gaussians, we set
lrcolor = 0.0025 for the color, lrradius = 0.005 for the
radius, and lropacity = 0.05 for the opacity separately. For
camera tracking, we initialize the pose using the constant
speed assumption on Replica (Straub et al., 2019), TUM-
RGBD (Sturm et al., 2012), and ScanNet (Dai et al., 2017a).
Specifically, on ScanNet++ (Yeshwanth et al., 2023), since
it is not a dataset originally designed for SLAM tasks, some
sudden large motion changes are occurring in the DSLR-
captured sequences, we follow previous methods (Zhu et al.,
2024; Yugay et al., 2023) to utilizing multi-scale RGBD
odometry (Park et al., 2017) to help the pose initialization
if the rendering error with the pose initialized by constant
speed assumption is 50 times larger than the average of
the rendering loss for previous frames after the tracking
optimization. We set the learning rate of pose to lrrot =
0.0004 and lrtrans = 0.002 on Replica, lrrot = 0.002
and lrtrans = 0.002 on TUM-RGBD and ScanNet, and
lrrot = 0.001 and lrtrans = 0.01 on ScanNet++ separately.
Additionally, we set the overlapping threshold γ = 0.26 on
TUM-RGBD, and γ = 0.24 on ScanNet and ScanNet++
separately.

B. More Results

Per-scene Results. We present more detailed results
on each scene in Replica (Straub et al., 2019), TUM-
RGBD (Sturm et al., 2012), ScanNet (Dai et al., 2017a),
and ScanNet++ (Yeshwanth et al., 2023). Replica is a syn-
thetic dataset, whereas TUM-RGBD, ScanNet, and Scan-
Net++ are real-world datasets. TUM-RGBD were captured
using an external motion capture system, while ScanNet
uses poses from BundleFusion (Dai et al., 2017b), and Scan-
Net++ utilizes a laser scan to register the images for ac-
quiring corresponding camera poses. We follow previous
methods (Keetha et al., 2024; Yugay et al., 2023; Matsuki

et al., 2024; Zhu et al., 2024; Wei & Leutenegger, 2024;
Li et al., 2024) and conduct experiments on three scenes
of TUM-RGBD, six scenes of ScanNet, and five scenes
of ScanNet++ ((a) b20a261fdf, (b) 8b5caf3398, (c)
fb05e13ad1, (d) 2e74812d00, (e) 281bc17764) to
evaluate our performance.

We report numerical comparisons in camera tracking in each
scene in Replica (Straub et al., 2019) in Tab. 10, in TUM-
RGBD (Sturm et al., 2012) in Tab. 11, in ScanNet (Dai
et al., 2017a) in Tab. 13, and in ScanNet++ (Yeshwanth
et al., 2023) in Tab. 15. The comparisons show that our
methods can estimate more accurate camera poses in most
scenes.

Moreover, we report reconstruction comparisons in each
scene in Replica (Straub et al., 2019) in Tab. 19. We uti-
lize depth L1 and F1-score as metrics to evaluate the mesh
obtained by marching cubes (Lorensen & Cline, 1987) fol-
lowing a similar procedure in (Sandström et al., 2023a).
Compared to the latest methods, our methods can recover
more accurate geometry, although Point-SLAM (Sandström
et al., 2023a) requires ground truth depth images as input
to guide sampling when rendering, which is an unfair ad-
vantage compared to other methods. Specifically, we also
show visual comparisons regarding camera tracking and
reconstruction in Fig. 12. Please refer to our supplementary
video for more details of this comparison.

We also report comparisons in rendering in each scene from
the training views in Replica (Straub et al., 2019), TUM-
RGBD (Sturm et al., 2012), ScanNet (Dai et al., 2017a), and
ScanNet++ (Yeshwanth et al., 2023) separately. Due to our
view-tied strategy, there will be more 3D Gaussians used for
rendering, which leads to better rendering quality compared
to the latest methods as shown in Tab. 18, Tab. 12, Tab. 14,
and Tab. 16.

Large-scale scenes Results. We additionally report our
performance on extremely large scenes, such as city-level
scenes in KITTI (Geiger et al., 2012). Since many moving
objects exist in KITTI sequences, we only select part of
the sequences to evaluate our tracking and rendering perfor-
mance in Tab. 20 and Tab. 21. The comparisons show that
our methods can estimate more accurate camera poses with
high quality rendering performance. Meanwhile, we report
memory consumption on KITTI in Tab. 21. Each method
uses the most Gaussians until no improvement can be made.
We use a little bit more memory, but we manage to use more
Gaussians to produce much better rendering.

C. Novel View Synthesis

We evaluate the performance in novel view synthesis on
ScanNet++ (Yeshwanth et al., 2023). The testing views in
ScanNet++ are from held-out views, which are much dif-
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ferent from the training views. To evaluate PSNR on all
test views, we use a post-processing step after training is
finished. In post-processing, we use all training views to re-
fine all trained sections {Sk}. Specifically, for each training
view, we find all its overlapping sections and refine all these
sections using this view. Compared to the latest methods
(Zhu et al., 2024; Yugay et al., 2023), which take 10K itera-
tions to refine their global map, our refinement only needs
1K iterations for novel view synthesis. In testing, given a
novel view, we will find all overlapping sections Sk, and
concatenate all these sections to render the novel view im-
age. Tab. 17 shows that our methods can obtain comparable
novel view synthesis results to the latest methods. We also
show qualitative rendering results of the training views in
Fig. 13 and novel view synthesis in Fig. 14.

D. More analysis and visualization

D.1. NOISE DEPTH

Our view-tied Gaussians can also resist the impact brought
by noise in depth. Although Gaussians are fixed at depth
with noise, Gaussian splatting is flexible enough to overfit
the current frame and neighboring frames by tuning other
attributes like color, opacity, and shape. Our results show
that depth noises do not significantly impact the rendering
performance. Meanwhile, we try to optimize the position
of Gaussians along the ray direction, but we do not find an
obvious improvement in rendering performance. We report
additional results in Tab. 22. We also report a visual com-
parison using either fixed Gaussians or movable Gaussians
(along the ray) in Fig. 15.

D.2. ISSUE OF POSE ERROR CUMULATION

Here we present the effectiveness of our tracking strategy.
As shown by average pose accuracy (ATE RMSE) in Fig. 16
(a) and (b), using overlapping selection for rendering in
tracking can prevent the estimated camera pose from drifting
away from the trajectory caused by the error cumulation.
The absolute pose error at each frame is shown in Fig. 16 (c)
and (d). Since our method can render pretty good images,
we produce small pose errors relative to the previous view
in Fig. 16 (e) and (f).

D.3. VISUALIZATION OF 3D GAUSSIANS

Fig. 18 visualizes optimized 3D Gaussians. Our methods
can initialize much denser 3D Gaussians to represent the
whole scene due to the view-tied strategy. With more 3D
Gaussians, our methods can render more realistic images.

We also report a comparison of different kinds of Gaussians
in Fig. 17. We employ the same number of Gaussians, but
highlight the performance of our Gaussians in rendering
with different specifications, such as using ellipsoid Gaus-

sian (“Aniso.”) and learnable Gaussian locations (“w/o VT”).
The comparison shows that our Gaussians can produce the
minimum rendering errors.

Many more advantages can be shown with our estimated
camera poses during mapping in Fig. 19. Our method can
recover more details of the scene and produce more accurate
renderings.

E. Code

Please see our project page for code at
https://machineperceptionlab.github.io/VTGaussian-
SLAM-Project.

F. Video

We present more visualization in our video, such as visual
comparisons and visualization of the optimization. Please
watch our video for more details.
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Figure 12. Visual comparisons in camera tracking on Replica. We also show error maps on reconstructions. Please refer to our video for a
more complete comparison during scanning.

Table 10. Tracking performance comparisons in ATE RMSE ↓ [cm] on Replica (Straub et al., 2019). ∗ indicates methods relying on
pre-trained data-driven priors.

Method Rm0 Rm1 Rm2 Off0 Off1 Off2 Off3 Off4 Avg.

Neural Implicit Fields
NICE-SLAM (Zhu et al., 2022) 1.69 2.04 1.55 0.99 0.90 1.39 3.97 3.08 1.95
DF-Prior (Hu & Han, 2023) 1.39 1.55 2.60 1.09 1.23 1.61 3.61 1.42 1.81
Vox-Fusion (Yang et al., 2022) 0.27 1.33 0.47 0.70 1.11 0.46 0.26 0.58 0.65
ESLAM (Johari et al., 2023) 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63 0.63
Point-SLAM (Sandström et al., 2023a) 0.61 0.41 0.37 0.38 0.48 0.54 0.72 0.63 0.52
Loopy-SLAM∗ (Liso et al., 2024) 0.24 0.24 0.28 0.26 0.40 0.29 0.22 0.35 0.29

3D Gaussian Splatting
SplaTAM (Keetha et al., 2024) 0.31 0.40 0.29 0.47 0.27 0.29 0.32 0.55 0.36
GS-SLAM (Yan et al., 2024) 0.48 0.53 0.33 0.52 0.41 0.59 0.46 0.70 0.50
Gaussian-SLAM (Yugay et al., 2023) 0.29 0.29 0.22 0.37 0.23 0.41 0.30 0.35 0.31
LoopSplat∗ (Zhu et al., 2024) 0.28 0.22 0.17 0.22 0.16 0.49 0.20 0.30 0.26
CG-SLAM∗ (Hu et al., 2024) 0.29 0.27 0.25 0.33 0.14 0.28 0.31 0.29 0.27

Ours 0.22 0.26 0.19 0.28 0.26 0.34 0.25 0.43 0.28
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Table 11. Tracking performance comparisons in ATE RMSE ↓ [cm] on TUM-RGBD (Sturm et al., 2012). ∗ indicates methods relying on
pre-trained data-driven priors.

Method fr1/desk fr2/xyz fr3/office Avg.

Neural Implicit Fields
NICE-SLAM (Zhu et al., 2022) 4.3 31.7 3.9 13.3
Vox-Fusion (Yang et al., 2022) 3.5 1.5 26.0 10.3
Point-SLAM (Sandström et al., 2023a) 4.3 1.3 3.5 3.0
Loopy-SLAM∗ (Liso et al., 2024) 3.8 1.6 3.4 2.9

3D Gaussian Splatting
SplaTAM (Keetha et al., 2024) 3.4 1.2 5.2 3.3
GS-SLAM (Yan et al., 2024) 3.3 1.3 6.6 3.7
Gaussian-SLAM (Yugay et al., 2023) 2.6 1.3 4.6 2.9
LoopSplat∗ (Zhu et al., 2024) 2.1 1.6 3.2 2.3
CG-SLAM∗ (Hu et al., 2024) 2.4 1.2 2.5 2.0

Ours 2.4 1.1 4.4 2.6

Table 12. Rendering performance comparison in PSNR ↑, SSIM ↑, and LPIPS ↓ on TUM-RGBD (Sturm et al., 2012). ∗ indicates methods
relying on pre-trained data-driven priors.

Method Metric fr1/desk fr2/xyz fr3/office Avg.

Neural Implicit Fields

NICE-SLAM (Zhu et al., 2022)
PSNR↑ 13.83 17.87 12.89 14.86
SSIM↑ 0.569 0.718 0.554 0.614
LPIPS↓ 0.482 0.344 0.498 0.441

Vox-Fusion (Yang et al., 2022)
PSNR↑ 15.79 16.32 17.27 16.46
SSIM↑ 0.647 0.706 0.677 0.677
LPIPS↓ 0.523 0.433 0.456 0.471

ESLAM (Johari et al., 2023)
PSNR↑ 11.29 17.46 17.02 15.26
SSIM↑ 0.666 0.310 0.457 0.478
LPIPS↓ 0.358 0.698 0.652 0.569

Point-SLAM (Sandström et al., 2023a)
PSNR↑ 13.87 17.56 18.43 16.62
SSIM↑ 0.627 0.708 0.754 0.696
LPIPS↓ 0.544 0.585 0.448 0.526

Loopy-SLAM∗ (Liso et al., 2024)
PSNR↑ - - - 12.94
SSIM↑ - - - 0.489
LPIPS↓ - - - 0.645

3D Gaussian Splatting

SplaTAM (Keetha et al., 2024)
PSNR↑ 22.00 24.50 21.90 22.80
SSIM↑ 0.857 0.947 0.876 0.893
LPIPS↓ 0.232 0.100 0.202 0.178

Gaussian-SLAM (Yugay et al., 2023)
PSNR↑ 24.01 25.02 26.13 25.05
SSIM↑ 0.924 0.924 0.939 0.929
LPIPS↓ 0.178 0.186 0.141 0.168

LoopSplat∗ (Zhu et al., 2024)
PSNR↑ 22.03 22.68 23.47 22.72
SSIM↑ 0.849 0.892 0.879 0.873
LPIPS↓ 0.307 0.217 0.253 0.259

Ours
PSNR↑ 27.09 33.01 30.50 30.20
SSIM↑ 0.959 0.982 0.974 0.972
LPIPS↓ 0.085 0.038 0.063 0.062
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Table 13. Tracking performance comparisons in ATE RMSE ↓ [cm] on ScanNet (Dai et al., 2017a). ∗ indicates methods relying on
pre-trained data-driven priors.

Method 0000 0059 0106 0169 0181 0207 Avg.

Neural Implicit Fields
NICE-SLAM (Zhu et al., 2022) 12.0 14.0 7.9 10.9 13.4 6.2 10.7
Vox-Fusion (Yang et al., 2022) 68.8 24.2 8.4 27.3 23.3 9.4 26.9
Point-SLAM (Sandström et al., 2023a) 10.2 7.8 8.7 22.2 14.8 9.5 12.2
Loopy-SLAM∗ (Liso et al., 2024) 4.2 7.5 8.3 7.5 10.6 7.9 7.7

3D Gaussian Splatting
SplaTAM (Keetha et al., 2024) 12.8 10.1 17.7 12.1 11.1 7.5 11.9
Gaussian-SLAM (Yugay et al., 2023) 24.8 8.6 11.3 14.6 18.7 14.4 15.4
LoopSplat∗ (Zhu et al., 2024) 6.2 7.1 7.4 10.6 8.5 6.6 7.7
CG-SLAM∗ (Hu et al., 2024) 7.1 7.5 8.9 8.2 11.6 5.3 8.1

Ours 17.8 8.7 11.8 10.5 10.6 8.6 11.3

Table 14. Rendering performance comparison in PSNR ↑, SSIM ↑, and LPIPS ↓ on ScanNet (Dai et al., 2017a). ∗ indicates methods
relying on pre-trained data-driven priors.

Method Metric 0000 0059 0106 0169 0181 0207 Avg.

Neural Implicit Fields

NICE-SLAM (Zhu et al., 2022)
PSNR↑ 18.71 16.55 17.29 18.75 15.56 18.38 17.54
SSIM↑ 0.641 0.605 0.646 0.629 0.562 0.646 0.621
LPIPS↓ 0.561 0.534 0.510 0.534 0.602 0.552 0.548

Vox-Fusion (Yang et al., 2022)
PSNR↑ 19.06 16.38 18.46 18.69 16.75 19.66 18.17
SSIM↑ 0.662 0.615 0.753 0.650 0.666 0.696 0.673
LPIPS↓ 0.515 0.528 0.439 0.513 0.532 0.500 0.504

ESLAM (Johari et al., 2023)
PSNR↑ 15.70 14.48 15.44 14.56 14.22 17.32 15.29
SSIM↑ 0.687 0.632 0.628 0.656 0.696 0.653 0.658
LPIPS↓ 0.449 0.450 0.529 0.486 0.482 0.534 0.488

Point-SLAM (Sandström et al., 2023a)
PSNR↑ 21.30 19.48 16.80 18.53 22.27 20.56 19.82
SSIM↑ 0.806 0.765 0.676 0.686 0.823 0.750 0.751
LPIPS↓ 0.485 0.499 0.544 0.542 0.471 0.544 0.514

Loopy-SLAM∗ (Liso et al., 2024)
PSNR↑ - - - - - - 15.23
SSIM↑ - - - - - - 0.629
LPIPS↓ - - - - - - 0.671

3D Gaussian Splatting

SplaTAM (Keetha et al., 2024)
PSNR↑ 19.33 19.27 17.73 21.97 16.76 19.8 19.14
SSIM↑ 0.660 0.792 0.690 0.776 0.683 0.696 0.716
LPIPS↓ 0.438 0.289 0.376 0.281 0.420 0.341 0.358

Gaussian-SLAM (Yugay et al., 2023)
PSNR↑ 28.54 26.21 26.26 28.60 27.79 28.63 27.70
SSIM↑ 0.926 0.934 0.926 0.917 0.922 0.914 0.923
LPIPS↓ 0.271 0.211 0.217 0.226 0.277 0.288 0.248

LoopSplat∗ (Zhu et al., 2024)
PSNR↑ 24.99 23.23 23.35 26.80 24.82 26.33 24.92
SSIM↑ 0.840 0.831 0.846 0.877 0.824 0.854 0.845
LPIPS↓ 0.450 0.400 0.409 0.346 0.514 0.430 0.425

Ours
PSNR↑ 31.51 30.60 31.27 32.02 29.60 31.58 31.10
SSIM↑ 0.957 0.974 0.975 0.962 0.954 0.946 0.961
LPIPS↓ 0.131 0.080 0.074 0.091 0.145 0.124 0.108
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Table 15. Tracking performance comparisons in ATE RMSE ↓ [cm] on ScanNet++ (Yeshwanth et al., 2023). ∗ indicates methods relying
on pre-trained data-driven priors.

Method a b c d e Avg.

Neural Implicit Fields
Point-SLAM (Sandström et al., 2023a) 246.16 632.99 830.79 271.42 574.86 511.24
ESLAM (Johari et al., 2023) 25.15 2.15 27.02 20.89 35.47 22.14
Loopy-SLAM∗ (Liso et al., 2024) - - 25.16 234.25 81.48 113.63

3D Gaussian Splatting
SplaTAM (Keetha et al., 2024) 1.50 0.57 0.31 443.10 1.58 89.41
Gaussian-SLAM (Yugay et al., 2023) 1.37 5.97 2.70 2.35 1.02 2.68
LoopSplat∗ (Zhu et al., 2024) 1.14 3.16 3.16 1.68 0.91 2.05

Ours 2.79 1.50 0.96 1.18 1.31 1.55

Table 16. Rendering performance comparison in PSNR ↑ on ScanNet++ (Yeshwanth et al., 2023). ∗ indicates methods relying on
pre-trained data-driven priors.

Method a b c d e Avg.

3D Gaussian Splatting
SplaTAM (Keetha et al., 2024) 28.02 27.93 29.48 19.65 28.48 26.71
Gaussian-SLAM (Yugay et al., 2023) 30.06 30.02 31.15 28.75 31.94 30.38
LoopSplat∗ (Zhu et al., 2024) 30.15 30.08 30.04 28.94 31.78 30.20

Ours 32.84 31.02 32.44 31.43 33.38 32.22

Table 17. Novel View Synsthesis performance comparison in PSNR ↑ on ScanNet++ (Yeshwanth et al., 2023). ∗ indicates methods
relying on pre-trained data-driven priors.

Method a b c d e Avg.

3D Gaussian Splatting
SplaTAM (Keetha et al., 2024) 23.95 22.66 13.95 8.47 20.06 17.82
Gaussian-SLAM (Yugay et al., 2023) 26.66 24.42 15.01 18.35 21.91 21.27
LoopSplat∗ (Zhu et al., 2024) 25.60 23.65 15.87 18.86 22.51 21.30

Ours 25.55 24.25 16.94 18.59 21.95 21.46
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Table 18. Rendering performance comparisons in PSNR ↑, SSIM ↑, and LPIPS ↓ on Replica (Straub et al., 2019). ∗ indicates methods
relying on pre-trained data-driven priors.

Method Metric Rm0 Rm1 Rm2 Off0 Off1 Off2 Off3 Off4 Avg.

Neural Implicit Fields

NICE-SLAM (Zhu et al., 2022)
PSNR↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-Fusion (Yang et al., 2022)
PSNR↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41
SSIM↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

ESLAM (Johari et al., 2023)
PSNR↑ 25.25 27.39 28.09 30.33 27.04 27.99 29.27 29.15 28.06
SSIM↑ 0.874 0.89 0.935 0.934 0.910 0.942 0.953 0.948 0.923
LPIPS↓ 0.315 0.296 0.245 0.213 0.254 0.238 0.186 0.210 0.245

Point-SLAM (Sandström et al., 2023a)
PSNR↑ 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49 35.17
SSIM↑ 0.974 0.977 0.982 0.983 0.986 0.960 0.960 0.979 0.975
LPIPS↓ 0.113 0.116 0.111 0.100 0.118 0.156 0.132 0.142 0.124

Loopy-SLAM∗ (Liso et al., 2024)
PSNR↑ - - - - - - - - 35.47
SSIM↑ - - - - - - - - 0.981
LPIPS↓ - - - - - - - - 0.109

3D Gaussian Splatting

SplaTAM (Keetha et al., 2024)
PSNR↑ 32.86 33.89 35.25 38.26 39.17 31.97 29.70 31.81 34.11
SSIM↑ 0.98 0.97 0.98 0.98 0.98 0.97 0.95 0.95 0.97
LPIPS↓ 0.07 0.10 0.08 0.09 0.09 0.10 0.12 0.15 0.10

SGS-SLAM (Li et al., 2024)
PSNR↑ 32.50 34.25 35.10 38.54 39.20 32.90 32.05 32.75 34.66
SSIM↑ 0.976 0.978 0.981 0.984 0.980 0.967 0.966 0.949 0.973
LPIPS↓ 0.070 0.094 0.070 0.086 0.087 0.101 0.115 0.148 0.096

GS-SLAM (Yan et al., 2024)
PSNR↑ 31.56 32.86 32.59 38.70 41.17 32.36 32.03 32.92 34.27
SSIM↑ 0.968 0.973 0.971 0.986 0.993 0.978 0.970 0.968 0.975
LPIPS↓ 0.094 0.075 0.093 0.050 0.033 0.094 0.110 0.112 0.082

MonoGS (Matsuki et al., 2024)
PSNR↑ 34.83 36.43 37.49 39.95 42.09 36.24 36.70 36.07 37.50
SSIM↑ 0.954 0.959 0.965 0.971 0.977 0.964 0.963 0.957 0.960
LPIPS↓ 0.068 0.076 0.075 0.072 0.055 0.078 0.065 0.099 0.070

Gaussian-SLAM (Yugay et al., 2023)
PSNR↑ 38.88 41.80 42.44 46.40 45.29 40.10 39.06 42.65 42.08
SSIM↑ 0.993 0.996 0.996 0.998 0.997 0.997 0.997 0.997 0.996
LPIPS↓ 0.017 0.018 0.019 0.015 0.016 0.020 0.020 0.020 0.018

LoopSplat∗ (Zhu et al., 2024)
PSNR↑ 33.07 35.32 36.16 40.82 40.21 34.67 35.67 37.10 36.63
SSIM↑ 0.973 0.978 0.985 0.992 0.990 0.985 0.990 0.989 0.985
LPIPS↓ 0.116 0.122 0.111 0.085 0.123 0.140 0.096 0.106 0.112

CG-SLAM∗ (Hu et al., 2024)
PSNR↑ 33.27 - - - - - 34.60 - -
SSIM↑ - - - - - - - - -
LPIPS↓ - - - - - - - - -

Ours
PSNR↑ 39.95 43.06 43.13 46.88 47.20 42.14 40.99 43.35 43.34
SSIM↑ 0.992 0.996 0.996 0.998 0.997 0.996 0.996 0.996 0.996
LPIPS↓ 0.014 0.013 0.014 0.009 0.009 0.012 0.013 0.015 0.012
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Figure 15. Visual comparisons on fixed Gaussians or movable Gaussians (along the ray) in rendering on Replica. We provide rendering
results, including RGB error maps and depth error maps rendered by using either our view-tied Gaussians or movable Gaussians along
the ray. Additionally, we provide a 2D visualization of the optimized movable Gaussians (blue: movement backward along the ray, red:
movement forward along the ray. Furthermore, we provide a 3D visualization of the optimized movable Gaussians (gray: central points of
Gaussians fixed at depth, red: central points of Gaussians optimized along the ray).

Table 19. Reconstruction performance comparison in Depth L1 [cm]↓ and F1 [%] ↑ on Replica (Straub et al., 2019). ∗ indicates methods
relying on pre-trained data-driven priors.

Method Metric Rm0 Rm1 Rm2 Off0 Off1 Off2 Off3 Off4 Avg.

Neural Implicit Fields

NICE-SLAM (Zhu et al., 2022) Depth L1 [cm]↓ 1.81 1.44 2.04 1.39 1.76 8.33 4.99 2.01 2.97
F1 [%] ↑ 45.0 44.8 43.6 50.0 51.9 39.2 39.9 36.5 43.9

Vox-Fusion (Yang et al., 2022) Depth L1 [cm]↓ 1.09 1.90 2.21 2.32 3.40 4.19 2.96 1.61 2.46
F1 [%] ↑ 69.9 34.4 59.7 46.5 40.8 51.0 64.6 50.7 52.2

ESLAM (Johari et al., 2023) Depth L1 [cm]↓ 0.97 1.07 1.28 0.86 1.26 1.71 1.43 1.06 1.18
F1 [%] ↑ 81.0 82.2 83.9 78.4 75.5 77.1 75.5 79.1 79.1

Co-SLAM Depth L1 [cm]↓ 0.99 0.82 2.28 1.24 1.61 7.70 4.65 1.43 2.59
F1 [%] ↑ 77.7 74.2 69.3 75.2 75.2 54.3 56.8 75.3 69.7

Point-SLAM (Sandström et al., 2023a) Depth L1 [cm]↓ 0.53 0.22 0.46 0.30 0.57 0.49 0.51 0.46 0.44
F1 [%] ↑ 86.9 92.3 90.8 93.8 91.6 89.0 88.2 85.6 89.8

Loopy-SLAM∗ (Liso et al., 2024) Depth L1 [cm]↓ 0.30 0.20 0.42 0.23 0.46 0.60 0.37 0.24 0.35
F1 [%] ↑ 91.6 92.4 90.6 93.9 91.6 88.5 89.0 88.7 90.8

3D Gaussian Splatting

SplaTAM (Keetha et al., 2024) Depth L1 [cm]↓ 0.43 0.38 0.54 0.44 0.66 1.05 1.60 0.68 0.72
F1 [%] ↑ 89.3 88.2 88.0 91.7 90.0 85.1 77.1 80.1 86.1

GS-SLAM (Yan et al., 2024) Depth L1 [cm]↓ 1.31 0.82 1.26 0.81 0.96 1.41 1.53 1.08 1.16
F1 [%] ↑ 62.9 79.9 66.8 80.0 81.6 66.0 59.2 65.0 70.2

Gaussian-SLAM (Yugay et al., 2023) Depth L1 [cm]↓ 0.61 0.25 0.54 0.50 0.52 0.98 1.63 0.42 0.68
F1 [%] ↑ 88.8 91.4 90.5 91.7 90.1 87.3 84.2 87.4 88.9

LoopSplat∗ (Zhu et al., 2024) Depth L1 [cm]↓ 0.39 0.23 0.52 0.32 0.51 0.63 1.09 0.40 0.51
F1 [%] ↑ 90.6 91.9 91.1 93.3 90.4 88.9 88.7 88.3 90.4

Ours Depth L1 [cm]↓ 0.48 0.28 0.61 0.41 0.48 0.62 0.86 0.53 0.53
F1 [%] ↑ 90.7 91.7 90.7 93.0 90.8 88.3 87.5 87.0 90.0
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Table 20. Tracking performance comparisons in ATE RMSE ↓ [m] on KITTI (Geiger et al., 2012).

Sequence Gaussian-SLAM SplaTAM LoopSplat Ours

00 3.02 58.83 2.22 2.06

01 77.51 84.45 74.47 29.01

05 128.88 80.39 117.43 7.74

10 10.60 43.82 11.39 4.54

Table 21. Rendering performance comparisons in PSNR ↑ on KITTI (Geiger et al., 2012).

Sequence Gaussian-SLAM SplaTAM LoopSplat Ours

00 15.51 9.82 15.82 28.54

01 15.95 12.89 14.69 30.33

05 16.22 26.48 15.98 28.19

10 15.58 25.58 14.58 27.59

Peak GPU Use (GiB) 2.74 22.37 3.56 4.79

Table 22. Impact of depth noise and movability of Gaussians on the rendering performance in PSNR ↑, SSIM ↑, and LPIPS ↓ on
Replica (Straub et al., 2019).

Metric 10% pixels w/ noises 20% pixels w/ noises 30% pixels w/ noises Gaussians movable along ray Ours(w/o additional noises & fix)

PSNR↑ 43.41 43.40 43.29 42.89 43.06

SSIM↑ 0.996 0.996 0.996 0.995 0.996

LPIPS↓ 0.015 0.015 0.015 0.020 0.013
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Replica: office4 TUM-RGBD: fr3/office

(a)

(f)

(c) (d)

(e)

(b)

Figure 16. Comparison on w/ or w/o overlap selection when track-
ing.

Figure 17. Comparisons of different kinds of Gaussians (with the
same number). Our view-tied Gaussians in the 3rd column can
recover more accurate RGB color and depth in renderings, while
the ellipsoid Gaussians in the 1st column and sphere Gaussians in
the 2nd column produce worse rendering quality with adjustable
Gaussians. Please refer to our video for a complete comparison of
optimization.

Figure 18. Visualization of optimized 3D Gaussians.

Figure 19. Visual comparisons of rendered images and depths. We
also show error maps (large rendering errors are shown in red).
Please refer to our video for more visual comparisons of rendered
images.
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