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Abstract

Regularization, whether explicit in terms of a penalty in the loss or implicit in the choice of
algorithm, is a cornerstone of modern machine learning. Indeed, controlling the complexity
of the model class is particularly important when data is scarce, noisy or contaminated, as it
translates a statistical belief on the underlying structure of the data. This work investigates
the question of how to choose the regularization norm ∥·∥ in the context of high-dimensional
adversarial training for binary classification. To this end, we first derive an exact asymptotic
description of the robust, regularized empirical risk minimizer for various types of adversarial
attacks and regularization norms (including non-ℓp norms). We complement this analysis
with a uniform convergence analysis, deriving bounds on the Rademacher Complexity for
this class of problems. Leveraging our theoretical results, we quantitatively characterize the
relationship between perturbation size and the optimal choice of ∥·∥, confirming the intuition
that, in the data scarce regime, the type of regularization becomes increasingly important
for adversarial training as perturbations grow in size.

1 Introduction

Despite all its successes, deep learning still underperforms spectacularly in worst-case situations, when models
face innocent-looking data which are adversarially crafted for eliciting erroneous or undesired outputs. Since
the discovery of these failure modes in computer vision (Szegedy et al., 2014) and their re-discovery, more
recently, in other modalities including text (Zou et al., 2023), considerable effort has been put in designing
algorithms for training models which are robust against these adversarial attacks.

In the context of supervised learning problems, a principled approach consists of appropriately modifying
standard empirical risk minimization: a parametric model is fit by minimizing a worst-case empirical risk,
where “worst-case" refers to an assumed threat model. For example, in computer vision, a threat model of
ℓ∞ perturbations translates the assumption that images whose pixels only differ by a little should share the
same label. Despite its conceptual clarity and proven ability to return robust models, a major drawback of
this method, known as robust empirical risk minimization (RERM) or adversarial training (Goodfellow et al.,
2015a; Madry et al., 2018), is that it often comes with a performance tradeoff, besides being computationally
more intensive than standard ERM. Indeed, it has been observed that model accuracy is often compromised
for better robustness (Tsipras et al., 2019; Zhang et al., 2019). To make matters worse, neural networks
often exhibit a large gap between their robust train and test performances in standard computer vision
benchmarks (Rice et al., 2020).

Many empirical efforts in addressing these statistical limitations of RERM have focused on either increasing
the amount of labeled (Wang et al., 2023) or unlabeled (Carmon et al., 2019; Zhai et al., 2019) data, or on
painstakingly re-imagining several of the design choices of deep learning (such at the loss function (Zhai et al.,
2019), model averaging (Chen et al., 2021; Rebuffi et al., 2021) and more). Despite the apparent empirical
challenges, simple guidelines on how different choices affect the statistical efficiency of RERM are clearly
missing, even in simple models.

In this work, we make a step towards theoretically filling this gap by investigating model selection in RERM,
and how it relates to robust and standard generalization error. In particular, we focus on the oldest model
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selection method: (weight) regularization. Following a large body of work originating in high-dimensional
statistics (Krogh & Hertz, 1991; Seung et al., 1992; Bean et al., 2013a; Thrampoulidis et al., 2018; Aubin
et al., 2020; Vilucchio et al., 2024; 2025), we study this fundamental question asymptotically, when both the
input dimension and the number of training samples grow to infinity while keeping their ratio constant, and
under a Gaussian setting. While it is customary in this literature to study which values of regularization
coefficients yield the best test errors (balancing empirical fitness with model complexity), we instead analyze
the optimality of a type of regularization. A motivation for this comes from a separate line of work in uniform
convergence bounds that stresses the importance of the type of regularization for robust generalization (Yin
et al., 2019; Awasthi et al., 2020; Tsilivis et al., 2024). Borrowing from this line of work, which mainly offers
qualitative bounds, and reinforcing it with new findings, we demonstrate, via sharp asymptotic descriptions
of the errors in (regularized) RERM for a variety of different perturbation and regularization norms, that
regularization becomes increasingly important in RERM as the perturbation strength grows in size. This
allows us to get an exact description of the relationship between optimal type of regularization and strength
of perturbation, and discuss how regularization affects the tradeoff between robustness and accuracy.

To summarize, our main contributions in this work are the following:

1. We derive an exact asymptotic description of the performance of reguralized RERMs for a variety of
perturbation and regularization norms. In addition to the usually studied ℓp, we consider ∥·∥Σ norms
(induced by a positive symmetric matrix Σ), which allow us to separate the effect of a perturbation on
different features of the input.

2. We show uniform convergence bounds for this class of problems (i.e., ∥·∥Σ regularized), by establishing new
results on the Rademacher complexities for several classes of linear hypothesis classes under adversarial
perturbations.

3. Leveraging the theoretical results above, we show that regularizing with the dual norm of the perturbation
can yield benefits in terms of robustness and accuracy, compared to other regularization choices. In
particular, our analysis permits a precise characterization of the relationship between the perturbation
geometry and the optimal type of regularization. It further allows a decomposition of the contribution of
regularization in terms of standard and robust (test) error.

Our results can be seen as positive news. Indeed, the main implication of our work for robust machine
learning practice is that model selection, in the form of either explicit or implicit regularization, plays a more
important role in robust ERM than in standard ERM. In the context of robust deep learning practice, model
selection is often implicit in the choice of architecture, learning algorithm, stopping time, hyperparameters,
etc. Our theoretical analysis in the context of simple adversarial tasks highlights the importance of these
choices, as they can be crucial to the outcome in terms of robustness and performance.

Finally, while typical-case and worst-case analyses usually appear as opposites in the statistical learning
literature, we believe our work nicely illustrates how these two approaches to studying generalization can be
combined in a complementary way to yield precise answers with both explanatory and predictive powers.

1.1 Related work

We discuss here two recent related works, while we defer a more extensive discussion to Appendix A.
Recently, Tanner et al. (2025) derived high dimensional asymptotics for robust binary classification with
ℓ2 regularization, considering perturbations in a general ∥·∥Σ norm. In our work, we study the effect of
regularization, providing exact asymptotics for any combination of ℓp perturbation and regularization norm,
while extending (Tanner et al., 2025) for various ∥·∥A regularization norms (where A is a positive symmetric
matrix). From the perspective of learning theory, Tsilivis et al. (2024) recently highlighted the importance of
the (implicit) regularization in RERM with linear models, by showing the effect of the learning algorithm
and the architecture on the robustness of the final predictor. In our work, we consider, instead, explicit
regularization and more general perturbation (and regularization) geometries.
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In Section 3 we present the technical theorems about the exact asymptotics. In Section 4 we present the
uniform convergence bounds. In Section 5, using the technical tools developed in the previous two sections,
we investigate what regularisation geometry is optimal for robust generalization error.

2 Setting Specification

We consider a binary classification task with training data S = {(xi, yi)}n
i=1, where xi ∈ Rd and yi ∈ {−1,+1}

are sampled independently from a distribution D of the following form:

P (x, y) =
∫
Rd

dw⋆Pout

(
y
∣∣∣ ⟨w⋆,x⟩√

d

)
Pin(x)Pw(w⋆), (1)

where Pin is a probability density function over Rd and Pout : R→ [0, 1] encodes our assumption that the label
is a (potentially non-deterministic) linear function of the input x with teacher weights w⋆ ∈ Rd. Here, we
denote z = ⟨w⋆,x⟩/

√
d as the (normalized) pre-activation. For example, a noiseless problem corresponds to

Pout(y|z) = δ(y− z), while we can incorporate noise by using the probit model: Pout(y|z) = 1/2 erfc (−yz/
√

2τ),
where τ > 0 controls the label noise. We assume that w⋆ ∈ Rd is drawn from a prior distribution Pw.

Given the training data S, our objective is to investigate the robustness and accuracy of linear classifiers
ŷ(ŵ,x) = sign(⟨ŵ,x⟩/

√
d), where ŵ = ŵ(S) are learned from the training data.

We define the robust generalization error as

Erob(ŵ) = E(x,y)∼D

[
max
∥δ∥≤ε

1(y ̸= ŷ(ŵ,x + δ))
]
, (2)

where the pair (x, y) comes from the same distribution as the training data, and ε bounds the magnitude of
adversarial perturbations under a specific choice of norm. The (standard) generalization error is defined as
the rate of misclassification of the learnt predictor

Egen(ŵ) = E(x,y)∼D[1(y ̸= ŷ(ŵ,x))] . (3)

Notice that for ε = 0: Erob(ŵ) = Egen(ŵ) for all ŵ ∈ Rd. We will frequently use the following decomposition
of the robust generalization error into (standard) generalization error and boundary error Ebnd:

Erob(ŵ) = Egen(ŵ) + Ebnd(ŵ), (4)

where Ebnd is defined as follows

Ebnd(ŵ) = E(x,y)∼D

[
1(y = ŷ(ŵ; x)) max

∥δ∥≤ε
1(y ̸= ŷ(ŵ,x + δ))

]
. (5)

As its name suggests, Ebnd is the probability of a sample lying on (or near) the decision boundary, i.e., the
probability that a sample is correctly classified without perturbation but incorrectly classified with it.

2.1 Robust Regularized Empirical Risk Minimization

Direct minimization of the robust generalization error of eq. (2) presents two main challenges: first, the
objective function is non-convex due to the indicator function, and second, we only have access to a finite
dataset rather than the full data-generating distribution. To address these issues, a widely adopted approach,
introduced for the first time by Goodfellow et al. (2015b), is to optimise the robust empirical (regularized)
risk, defined as

L(w) =
n∑

i=1
max

∥δi∥≤ε
g

(
yi
⟨w,xi + δi⟩√

d

)
+ λr̃(w) , (6)

where g : R→ R+ is a non-increasing convex loss function that serves as a surrogate for the 0-1 loss, r̃(w)
is a convex regularization term, and λ ≥ 0 is a regularization parameter. The inner maximization over δi
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models the worst-case perturbation for each data point, constrained by the attack budget ε during training.
Given the dataset S, we estimate the parameters of our model as

ŵ ∈ arg min
w∈Rd

L(w) . (7)

The choice of loss function g, regularization r̃, and parameters ε and λ can significantly impact the model’s
accuracy and robustness.

In practice, eq. (7) is often solved with a first-order optimization method, such as gradient descent. Prior
work (Soudry et al., 2018) has showed that optimizing the unregularized loss without any adversarial
perturbations (eq. (7) for λ, ε = 0) with gradient descent is equivalent to eq. (7) with the euclidean norm
squared as a regularizer, where the free regularizer strength λ corresponds to the time duration of the algorithm
(λ → 0 as the number of iterations goes to ∞). Similar results can be obtained for different first-order
algorithms (Gunasekar et al., 2018) (in particular, when r̃(w) = ∥w∥p

p, this corresponds to the family of
steepest descent algorithms) as well as in the adversarial case (ε > 0) (Tsilivis et al., 2024). Therefore, studying
eqs. (6) and (7) is equivalent to studying the solutions returned by a first-order optimization algorithm.

3 Exact Asymptotics of Robust ERM

Our first technical result is an asymptotic description of the properties of the solution of eqs. (6) and (7)
in the proportional high-dimensional limit, under the assumption of isotropic Gaussian distribution. While
restrictive, this assumption is supported by recent theoretical advances showing that many learning problems
exhibit universality: their asymptotic behavior matches Gaussian predictions even with non-Gaussian data
(Goldt et al., 2022; Loureiro et al., 2021; Hu & Lu, 2023; Montanari & Saeed, 2022; Dandi et al., 2023; Wei
et al., 2022; Pesce et al., 2023; Gerace et al., 2024). While proving such correspondence for our setting is
outside the scope of this work, this suggests our analysis of the Gaussian case can provide valuable insights
into practical adversarial training.

3.1 Results for ℓp norms

First, we consider the setting where the perturbations in eqs. (2) and (6) are constrained in their ℓp norm for
p ∈ (1,∞]. More precisely, we make the following assumptions:
Assumption 3.1 (High-Dimensional Limit). We consider the proportional high-dimensional regime where
both the number of training data n and input dimension d diverge to infinity simultaneously at the same
rate, while maintaining a fixed ratio α := n/d.

Assumption 3.2 (ℓp Norms). Let ∥x∥p = (
∑n

i=1 |xi|p)1/p denote the ℓp norm for p ∈ (1,∞], with p⋆ being
its dual exponent (1/p+1/p⋆ = 1). The adversarial perturbations are constrained by an ℓp norm with parameter
p, while for regularization we consider the function r̃(w) = ∥w∥r

r where r ∈ [1,∞) is a parameter that can
differ from p.
Assumption 3.3 (Scaling of Adversarial Norm Constraint). We suppose that the value of ε scales with the
dimension d such that ε/d1/p⋆ = Od(1).
Assumption 3.4 (Data Distribution). For each i ∈ [n], the covariates xi ∈ Rd are drawn i.i.d. from the data
distribution Pin(x) = Nx(0, Idd). Then the corresponding yi is sampled independently from the conditional
distribution Pout defined in eq. (1). The target weight vector w⋆ ∈ Rd is drawn from a prior probability
distribution Pw which is separable, i.e. Pw(w) =

∏d
i=1 Pw(wi) for a distribution Pw in R with finite variance

Var(Pw) = ρ <∞.

Under these assumptions, our first result states that in the high-dimensional limit, the robust generalization
error associated with the RERM solution in eq. (7) asymptotically depends only on a few deterministic
variables, known as the summary statistics, which can be computed by solving a set of low-dimensional
self-consistent equations.
Theorem 3.5 (Limiting errors for ℓp norm). Let ŵ(S) ∈ Rd denote a solution of the RERM problem in
eq. (7). Then, under Assumptions 3.1 to 3.4, the standard, robust and boundary generalization error of ŵ
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converge in distribution to the following deterministic quantities

Egen(ŵ) = 1
π

arccos
(
m⋆/

√
(ρ+ τ2)q⋆

)
,

Ebnd(ŵ) =
∫ ε

p⋆√
P ⋆√

q⋆

0
erfc

(
− m⋆√

q⋆
ν

√
2(ρ+τ2−m⋆2/q⋆)

)
e− ν2

2√
2π

dν ,

Erob(ŵ) = Egen(ŵ) + Ebnd(ŵ)

where m⋆, q⋆, P ⋆ are the values to which the following summary statistics converge in probability to, i.e.

1
d ⟨w⋆, ŵ⟩ → m⋆ , 1

d∥ŵ∥
2
2 → q⋆ , 1

d∥ŵ∥
p⋆

p⋆ → P ⋆ ,

Remark 3.6. An immediate observation from the above equations is that Egen is monotonically increasing as
a function of the cosine of the angle between teacher and student (m⋆

/
√

ρq⋆), while Ebnd is decreasing. This
has been observed before for boundary based classifiers (Tanay & Griffin, 2016; Tanner et al., 2025).

Theorem 3.5 therefore states that in order to characterize the robust generalization error in the high-
dimensional limit, it is enough to compute three low-dimensional statistics of the RERM solution. Our next
result shows that these quantities can be asymptotically computed without having to actually solve the
high-dimensional minimization problem in eq. (7).
Theorem 3.7 (Self-consistent equations for ℓp norms). Under the same assumptions as Theorem 3.5, the
summary statistics (m⋆, q⋆, P ∗) are the unique solution of the following set of self-consistent equations:

m̂ = αEξ

[∫
R dy ∂ωZ0fg(√qξ, P )

]
q̂ = αEξ

[∫
R dyZ0f

2
g (√qξ, P )

]
V̂ = −αEξ

[∫
R dyZ0∂ωfg(√qξ, P )

]
P̂ = εαp⋆P− 1

p Eξ

[∫
R dyZ0yfg(√qξ, P )

]
,

(8)



m = Eξ

[
∂γZwfw(√qξ, P̂ , λ)

]
q = Eξ

[
Zwfw(√qξ, P̂ , λ)2

]
V = Eξ

[
Zw∂γfw(√qξ, P̂ , λ)

]
P = Eξ

[
Zw∂P̂M λ

V̂
|·|r+ P̂

V̂
|·|p⋆ (

√
q̂ξ

V̂
)
] , (9)

where Zw = Zw(m̂ξ/
√

q̂, m̂/
√

q̂), Z0 = Z0(y,mξ/√q, ρ− m2/q) and ξ ∼ N (0, 1), and:

Z0(y, ω, V ) = Ez∼N (0,1)

[
Pout(y |

√
V z + ω)

]
, Zw(γ,Λ) = Ew∼Pw

[
e− 1

2 Λw2+γw
]
, (10)

fg(ω, P̂ ) =
(
P

V g(y,·−yε
p⋆√

P )(ω)− ω
)
/V, fw(γ, P̂ ,Λ) = P λ

Λ |·|r+ P̂
Λ |·|p⋆

( γ
Λ

)
. (11)

where we indicate the proximal of a function f : R→ R as PV f(·)(ω) and its Moreau envelope withMV f(·)(ω).

Two remarks on these two results are in order.
Remark 3.8. Both results hold for any separable convex regularizer in the definition of the empirical risk
in eq. (6). This is in contrast to many prior works in this field, which primarily consider ℓ2 regularizations.
Remark 3.9. The first four equations (eq. (8)) depend only on the noise distribution and the loss function,
while the second set (eq. (9)) depends on the regularization function and the dual norm of the perturbation.

3.2 Results for Mahalanobis norms

While the ℓp norm is the most frequently discussed in the robust learning literature, ℓp perturbations are
isotropic, treating all covariates equally. Under the isotropic Gaussian Assumption 3.4, this is justified.
However, it can be limiting under more realistic scenarios where the covariates are structured, and for instance
some features are more relevant than others. Recently, Tanner et al. (2025) introduced a model for studying
adversarial training under structured covariates which considers perturbations under a Mahalanobis norm,
allowing to weight the perturbation along different directions. However, the discussion in that work focused
only on ℓ2 regularization.
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Since our goal in this work is to study what is the best regularization choice for a given perturbation geometry,
we now derive asymptotic results akin to the ones of Section 3.1 under any combination of Mahalanobis
perturbation and regularization norm. As before, we start by introducing our assumptions.
Assumption 3.10 (Mahalanobis norms). Given a positive definite matrix Σδ, we consider perturbations
under a Mahalanobis norm ∥x∥Σδ

=
√

x⊤Σδx. Additionally, we consider the regularization function to be
r̃(w) = 1/2 w⊤Σww for a positive definite matrix Σw.
Assumption 3.11 (Structured data). For each i ∈ [n], the covariates xi ∈ Rd are drawn i.i.d. from
the data distribution Pin(x) = Nx(0,Σx). Then the corresponding yi is sampled independently from the
conditional distribution Pout defined in eq. (1). The target weight vector w⋆ ∈ Rd is drawn from a prior
probability distribution w⋆ ∼ Pw = Nw⋆

(0,Σθ), which we assume has limiting Mahalanobis norm given by
ρ = limd→∞ E[ 1

d w⊤
⋆ Σxw⋆].

Assumption 3.12 (Scaling of Adversarial Norm Constraint). The value of ε scales with the dimension d
such that ε/

√
d = O(1).

Assumption 3.13 (Convergence of spectra). We suppose that Σx,Σδ,Σθ,Σw are simultaneously diagonal-
isable. We call Σx = S⊤ diag(ωi)S, Σδ = S⊤ diag(ζi)S and Σw = S⊤ diag(wi)S. We define θ̄ = SΣ⊤

x w⋆/
√
ρ.

We assume that the empirical distributions of eigenvalues and the entries of θ̄ jointly converge to a probability
distribution µ as ∑d

i=1δ
(
θ̄i − θ̄

)
δ(ωi − ω)δ(ζi − ζ)δ(wi − w)→ µ . (12)

Remark 3.14. The simultaneous diagonalizability assumption is equivalent to the matrices having common
principal components (Flury, 1984; 1988), a common framework in multivariate statistics where multiple
covariance matrices share eigenvectors but may have group-specific eigenvalues. This structure arises naturally
in signal processing applications such as blind source separation (Belouchrani et al., 1997; Cardoso &
Souloumiac, 1996) and independent component analysis (Comon, 1994; Hyvärinen & Oja, 2000).

As in Section 3.1, our first result concerns the limiting robust error.
Theorem 3.15 (Limiting errors for Mahalanobis norm). Let ŵ(S) ∈ Rd denote the unique solution of the
RERM problem in eq. (7). Then, under Assumptions 3.1 and 3.10 to 3.13, the standard, robust and boundary
generalization error of ŵ converge in distribution to the following deterministic quantities

Egen(ŵ) = 1
π

arccos
(
m⋆/

√
(ρ+ τ2)q⋆

)
,

Ebnd(ŵ) =
∫ εg

√
P ⋆√
q⋆

0
erfc

(
− m⋆√

q⋆
ν

√
2(ρ+τ2−m⋆ 2/q⋆)

)
e− ν2

2√
2π

dν ,

Erob(ŵ) = Egen(ŵ) + Ebnd(ŵ)

where m⋆, q⋆, P ⋆ are the values to which the following summary statistics converge in probability to, i.e.

w⊤
⋆ Σxŵ

d → m⋆ , ŵ⊤Σxŵ
d → q⋆ , ŵ⊤Σδŵ

d → P ⋆ ,

As in Section 3.1, our next result shows that the summary statistics characterizing the limiting errors can be
obtained from of a set of self-consistent equations.
Theorem 3.16 (Self-Consistent equations for Mahalanobis norm). Under the same assumptions as Theo-
rem 3.15, the summary statistics (m⋆, q⋆, P ∗) are the unique solution of the following set of self-consistent
equations:

m̂ = αEξ

[∫
R dy ∂ωZ0(y,√ηξ, 1− η)fg(√qξ, P )

]
q̂ = αEξ

[∫
R dyZ0(y,√ηξ, 1− η)f2

g (√qξ, P )
]

V̂ = −αEξ

[∫
R dyZ0(y,√ηξ, 1− η)∂ωfg(√qξ, P )

]
P̂ = 2εαP− 1

2 Eξ

[∫
R dyZ0(y,√ηξ, 1− η)yfg(√qξ, P )

] , (13)



m = Eµ

[
m̂θ̄2

λw+V̂ ω+P̂ δ

]
q = Eµ

[
m̂2θ̄2ω+q̂ω2

(λw+V̂ ω+P̂ δ)2

]
V = Eµ

[
ω

λw+V̂ ω+P̂ δ

]
P = Eµ

[
ζ m̂2θ̄2+q̂ω2

(λw+V̂ ω+P̂ δ)2

] , (14)

where µ is the joint limiting distribution for the spectrum of all the matrices from Assumption 3.13.
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Remark 3.17. Notice that the first set of equations is the same as in Theorem 3.7, as they depend only on
the marginal distribution Pout and the loss function.
Remark 3.18 (Interpretation of the self-consistent equations). The self-consistent equations in Theorems 3.7
and 3.16 reduce the high-dimensional optimization problem in eq. (7) to tracking only three scalar statistics
(m⋆, q⋆, P ⋆). These equations, derived via Gordon’s Min-Max theorem, fully characterize the asymptotic
behavior of regularized RERM through the interaction of these quantities at optimality.

While the self-consistent equations in Theorem 3.7 and Theorem 3.16 do not admit a closed-form solution,
they can be efficiently solved using an iteration scheme (Appendix E). Solving them yields precise curves for
the generalization errors of the final predictor as a function of the sample complexity α and regularization
geometry, allowing us to draw conclusions for the interplay between the regularization and perturbation – see
simulations in Section 5.

The details of the proofs of Theorems 3.5, 3.7, 3.15 and 3.16 are discussed in Appendix B. They are based on
an adaptation of Gordon’s Min-Max Theorem for convex empirical risk minimization problems (Thrampoulidis
et al., 2014; Loureiro et al., 2021).

4 Which Regularization to Choose?

Our results in the previous section provide tight predictions on the robust and standard generalization error
of the set of minimizers of the robust (regularized) empirical risk. However, since the self-consistent equations
describing the robust errors are not closed, it is not straightforward to read why some regularizers might
produce better results than others. In this section, we derive complementary uniform convergence bounds
based on the Rademacher Complexity for linear predictors under various geometries. While these bounds
might not be numerically tight, they are distribution-agnostic, and provide a-priori guarantees for the error of
a predictor which are qualitatively useful. We start by introducing concepts in a general way, before deriving
guarantees for the case considered in Section 3.2.

Let H
r̃

be a hypothesis class of linear predictors of restricted complexity, as captured by a function r̃ : Rd → R.
This function r̃ plays the role of a regularizer, as in Section 3. We define:

H
r̃

= {x→ ⟨w,x⟩ : r̃(w) ≤ W2
r̃
}, (15)

where W
r̃
> 0 is an arbitrary upper bound.

Central to the analysis of the generalization error uniformly inside the hypothesis class H
r̃

is the notion of
the (empirical) Rademacher Complexity (Koltchinskii, 2001) of H

r̃
:

R̂S(H
r̃
) = Eσ

 1
n

sup
w:̃r(w)≤W2

r̃

n∑
i=1

σi ⟨w,xi⟩

 , (16)

where the σi’s are either −1 or 1 with equal probability. In the case of robust generalization with respect to
∥·∥-limited perturbations, it suffices to analyse the worst-case Rademacher Complexity of H

r̃
:

R̂S(H̃
r̃
) = Eσ

 1
n

sup
w:̃r(w)≤W2

r̃

n∑
i=1

σi min
∥δi∥≤ε

⟨w,xi + δi⟩

 .
With these ingredients in place, we can state the following bound on the robust generalization gap of any
predictor in H

r̃
.

Theorem 4.1 (Mohri et al. (2012); Awasthi et al. (2020)). For any δ > 0, with probability at least 1− δ over
the draw of the dataset S, for all w ∈ Rd such that r̃(w) ≤ W2

r (eq. (15)), it holds that

Erob(w) ≤ Êrob(w) + 2 R̂S(H̃r) + 3
√

log 2/δ
2n , (17)
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where

Êrob(w) = 1
n

n∑
i=1

max
∥δi∥≤ε

1(yiŷ(w,xi + δi) ≤ 1) (18)

is a robust empirical error.

Theorem 4.1 promises that a tight bound on the worst-case Rademacher complexity of H
r̃

can bound the
(robust) generalization gap of any predictor in H

r̃
. The next proposition realises this goal for the general

class of strongly convex functions r̃. This will permit the study of the cases of Section 3.2.
Proposition 4.2. Let ε, σ > 0. Consider a sample S = {(x1, y1), . . . , (xn, yn)}, and let H

r̃
be the hypothesis

class defined in eq. (15), where r̃ is σ- strongly convex with respect to a norm r∥·∥. Then, it holds:

R̂S(H̃
r̃
) ≤ max

i∈[n] r∥xi∥⋆Wr̃

√
2
σn

+ ε

2
√
n

sup
w:̃r(w)≤W2

r̃

∥w∥⋆, (19)

where r∥·∥⋆, ∥·∥⋆ denote the dual norms of r∥·∥, ∥·∥, respectively.

The proof (Appendix C) leverages a fundamental result on (standard) Rademacher complexities for strongly
convex functions due to Kakade et al. (2008) and a symmetrization argument. This result informs us that the
worst-case Rademacher complexity can decompose into two terms: one which characterizes the standard error
and one that scales with the magnitude of perturbation ε and depends on the dual norm of the perturbation.
Thus, we expect that a regularization which promotes a small second term in the RHS of eq. (19) will likely
mean a smaller robust generalization gap, as ε increases. This can be further elucidated in the following
subcases (proofs appear in Appendix C), for which we already derived exact asymptotics in Section 3.2:

• ∥·∥ = ∥·∥Σδ
and r̃(w) = ∥w∥2

2: this corresponds to perturbations with respect to a a symmetric positive
definite matrix Σδ ∈ Rd×d, while we regularize in the Euclidean norm. In this case, we obtain:
Corollary 4.3. Let ε > 0 and symmetric positive definite Σδ ∈ Rd×d. Then:

R̂S(H̃∥·∥2
2
) ≤

maxi∈[n] ∥xi∥2W2√
n

+ εW2

2
√
n

√
λ−1

min(Σδ).

• ∥·∥ = ∥·∥Σδ
and r̃(w) = ∥w∥2

Σw
: this corresponds to perturbations with respect to a symmetric positive

definite matrix Σδ ∈ Rd×d and regularization with respect to a norm induced by another matrix
Σw ∈ Rd×d. We will analyze the special case where Σδ and Σw share the same set of eigenvectors.
Corollary 4.4. Let ε > 0. Let Σw =

∑d
i=1 αivivT

i and Σδ =
∑d

i=1 λivivT
i , with vi ∈ Rd being

orthonormal. Then:

R̂S(H̃∥·∥2
A

) ≤
WA maxi∈[n] ∥xi∥Σw

−1
√
n

+ εWΣw

2
√
n

√
max
i∈[d]

1
λiαi

. (20)

Hence, we deduce that regularizing the class of linear predictors with Σw = Σ−1
δ , where Σδ is the matrix of

the perturbation norm, can more effectively control the robust generalization error. See C.4 for more details.

Similar results can be derived in the context of ℓp perturbations - see Yin et al. (2019); Awasthi et al. (2020)
and Appendix C. In fact, mirroring our analysis, the robust generalization error there is controlled by the
∥·∥p⋆ norm of the weights. We explore the effect of the regularizer numerically with simulations next.

5 Experiments

Leveraging our exact results from Section 3 and guided by the predictions of Section 4, in this Section we
numerically investigate the role of the regularization geometry in the robustness and accuracy of robust
empirical risk minimizers. Experimental details and further ablation studies are presented in Appendix D,
where we consider experiments on the MNIST dataset (Deng, 2012) and additional ablations for choice of
Σw in the Mahlanobis norms’ case.

8
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Figure 1: (Left) Generalization error of RERMs in the low sample complexity regime under ℓ∞ perturbations
for various choices of regularization. The edge of ℓ1 over other methods stems from the boundary error (Ebnd)
which goes to zero as α→ 0+. Setting: ε = 0.2 with optimally tuned λ. Bullet points with error bars are
RERM simulations for d = 1000 (10 seeds). (Right) Difference between robust generalization errors for
r = 2 and r = 1 as a function of ε and α for ℓ∞ attacks. Green zones correspond to areas where the dual
norm regularization (ℓ1) performs better than ℓ2.
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Figure 2: (Left) Difference between robust generalization error for Σδ perturbations. We see that a
regularization with the dual norm has the best adversarial error for different choices of ε. The points with
the error bars (std) are RERM simulations for d = 1000 (10 random seeds), while the solid lines correspond
to the theoretical predictions. (Right) Robust generalization error of the solution of regularized RERM as
a function of the regularization order r, i.e. r̃(w) = λ∥w∥r

r for various perturbations strengths ε. Sample
complexity α = 1.0. Regularization coefficients λ are optimally tuned. The inside figure shows how the
optimal value of r scales with ε.

5.1 Importance of Regularization in the Scarce Data Regime

First, we consider the setting of Section 3.1, with perturbations constrained in their ℓ∞ norms, for three
different regularizers (ℓ1, ℓ2 and ℓ3 norms). Figure 1 (Left) compares the generalization errors of the solutions
in eq. (7) for the various regularizers and plots them as a function of the sample complexity α. Note that when
α is small (scarce data), the ℓ1 regularized solution (dual norm of ℓ∞) provides better defense against ℓ∞
perturbations. Interestingly, this is due to the fact that the boundary error approaches zero as α→ 0+, only in
the case when r = 1 (same figure, bottom). We analytically explore this phenomenon further in Appendix B.8,
where we analyze the boundary error from Theorem 3.5 and probe its dependence on the overlap parameters
(m⋆, q⋆, P ⋆).

The phase diagram of Figure 1 (Right) further elucidates the difference of the methods as a function of ε.
We display the difference in robust generalization error between ℓ2 and ℓ1 regularized solutions versus attack
budget ε and sample complexity α, with optimally tuned regularization coefficient λ. We observe that ℓ1
outperforms ℓ2 regularization in regions of high ε and low α.

9
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Figure 2 (Left) demonstrates Erob in the structured case of Section 3.2, where the perturbations are
constrained in a Mahalanobis norm ∥·∥Σδ

. We observe that regularizing the weights of the solution with the
dual norm of the perturbation (∥·∥Σ−1

δ
) yields better robustness, while the gap between the various methods

increases as ε grows.

5.2 Optimal Regularization Geometry as a Function of ε

While the previous figures compared the various regularizers r̃(w) as ε grows, it is not clear what exactly
the relationship is between optimal r̃(w) and perturbation strength. In particular, we expect when ε = 0,
ℓ2-regularized solutions to achieve better accuracy, due to the fact that the data are Gaussian. However, it is
not clear how the transition to the dual norm happens.

We examine this relationship in Figure 2 (Right), where we plot the robust generalization error for various
values of perturbation ε and regularization order r for a fixed value of sample complexity α. We observe that,
as the attack strength increases, the order of the optimal regularization smoothly transitions from r = 2 to
r = 1. Hence, there is a regime of perturbation scale ε where neither r = 2 nor r = 1 is optimal, but an order
of r ∈ (1, 2) achieves the least robust test error.

6 Conclusion

We studied the role of regularization in robust empirical risk minimization (adversarial training) for a variety
of perturbation and regularization norms. We derived an exact asymptotic description of the robust and
standard generalization error in the high-dimensional proportional limit, and we showed results for the
(worst-case) Rademacher Complexity of linear predictors in the case of structured perturbations. Phase
diagrams and exact scaling laws, afforded by our analysis, suggest that choosing the right regularization
becomes increasingly important as ε grows, and, in fact, this optimal regularization often corresponds to
the dual norm of the perturbation. Furthermore, our results reveal a curious, smooth, transition between
different optimal regularizations (ℓ2 to ℓ1) with increasing perturbation strength; a phenomenon that has not
yet been captured by any other theoretical work.

It would be interesting for future work to investigate the interplay between regularization and perturbation
geometry in non-linear models, such as the random features model (Mei & Montanari, 2022; Gerace et al.,
2021; Hassani & Javanmard, 2024).
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A Further related Work

Exact asymptotics: Our results on the exact asymptotics of adversarial training build on an established
body of literature that spans high-dimensional probability (Thrampoulidis et al., 2014; 2015; Taheri et al.,
2023), statistical physics (Mignacco et al., 2020; Gerace et al., 2021; Bordelon et al., 2020; Loureiro et al.,
2021; Okajima et al., 2023; Adomaityte et al., 2024; 2023) and random matrix theory (Bean et al., 2013b;
Mai et al., 2019; Liao et al., 2020; Mei & Montanari, 2022; Xiao et al., 2022; Schröder et al., 2023). Our
study is also motivated by recent efforts to understand Gaussian universality (Goldt et al., 2021; Montanari
& Saeed, 2022; Dandi et al., 2023). These works suggest that simple models for the covariates can have a
broad scope in the context of high-dimensional linear estimation, often mirroring real-world datasets. From a
technical perspective, this phenomenon arises due to strong concentration properties in the high-dimensional
regime, which imply certain universality properties of the generalization error with respect to the covariate
distribution (Tao & Vu, 2010; Donoho & Tanner, 2009; Wei et al., 2022; Dudeja et al., 2023).

Adversarial training: Robust empirical risk minimization, i.e. adversarial training, was first introduced
for computer vision applications (Goodfellow et al., 2015a; Madry et al., 2018). A large body of work is
devoted to the study of applied methods for improving its computational (Shafahi et al., 2019; Rice et al.,
2020) and statistical (Zhai et al., 2019; Chen et al., 2021; Wang et al., 2023) properties. Theoretically, robust
training has been considered before in both the case of Gaussian mixture models (Bhagoji et al., 2019; Dan
et al., 2020; Javanmard & Soltanolkotabi, 2022) and linear regression (Raghunathan et al., 2020; Taheri et al.,
2023; Dohmatob & Scetbon, 2024).

Statistical learning theory: The role of regularization in statistical inference traces back to the work
of Tikhonov (1963) and plays a central role in statistical learning theory, directly inspiring general inductive
principles such as Structural Risk Minimization (Vapnik, 1998) and practical methods that realize this
principle, such as SVMs (Cortes & Vapnik, 1995). Uniform convergence bounds, quantities that upper bound
the difference between empirical and expected risk of any predictor uniformly inside a hypothesis class,
were originally stated as a function of the VC dimension of the class (Vapnik & Chervonenkis, 1971). The
Rademacher complexity of the class (Koltchinskii, 2001) is known to typically provide finer guarantees (Kakade
et al., 2008). Several recent papers derive such results in the context of adversarially robust classification for
linear predictors and neural networks (Yin et al., 2019; Awasthi et al., 2020; Xiao et al., 2024).

B Sharp High-Dimensional Asymptotics

Before delving into the technical proofs of Theorems 3.5, 3.7, 3.15 and 3.16, we provide in Table 1 a
comprehensive overview of the notation used throughout the paper and particularly in these proofs. The
table includes both the basic notation for the problem setup and the more specialized symbols that appear
in the asymptotic analysis. We have organized the symbols thematically, starting from the fundamental
quantities (n, d, α) and progressing to the more complex asymptotic statistics (m∗, q∗, P ∗). This reference
should help readers track the various quantities as they appear in the detailed derivations that follow.

We now proceed with the proofs. The first theorem that will be crucial in our subsequent analysis is the Convex
Gaussian MinMax Theorem (CGMT), a powerful tool in high-dimensional probability theory. The CGMT
provides a connection between two seemingly unrelated optimization problems under Gaussian conditioning.
Essentially, it allows us to study the properties of a complex primary optimization problem (PO) by examining
a simpler auxiliary optimization problem (AO). This theorem is particularly valuable in our context as it
enables us to transform intricate high-dimensional problems into more tractable lower-dimensional equivalents,
significantly simplifying our analysis and leading to Theorems 3.7 and 3.16.

The CGMT states that under certain conditions, the probabilistic behavior of the primary optimization
problem involving a Gaussian matrix is upper and lower bounded by the behavior of an auxiliary problem
involving only Gaussian vectors. This powerful result allows us to derive tight probability bounds and
asymptotic predictions for the high-dimensional estimation problems considered in this manuscript.

We state the theorem in full generality.
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Symbol Description
n Number of training samples
d Input dimension
α = n/d Sample complexity (ratio of samples to dimension)
xi ∈ Rd Input features for sample i
yi ∈ {−1,+1} Binary label for sample i
w⋆ ∈ Rd Teacher (true) weight vector
ŵ ∈ Rd Learned weight vector (student)
ε Adversarial perturbation budget
∥ · ∥p ℓp norm, defined as ∥x∥p = (

∑
i |xi|p)1/p

p∗ Dual exponent of p, satisfying 1/p+ 1/p∗ = 1
Erob(ŵ) Robust generalization error
Egen(ŵ) Standard generalization error
Ebnd(ŵ) Boundary error (difference between robust and standard error)
λ Regularization strength parameter
r̃(w) Regularization function
g(·) Surrogate loss function
Pout Output channel (conditional probability of labels)
Pin Input distribution
Pw Prior distribution on teacher weights
Σδ Matrix defining Mahalanobis norm for perturbations
Σw Matrix defining Mahalanobis norm for regularization
m⋆ Asymptotic overlap between teacher and student weights
q⋆ Asymptotic squared ℓ2 norm of student weights
P ⋆ Asymptotic dual norm of student weights

Table 1: Notation Table

Theorem B.1 (CGMT Gordon (1988); Thrampoulidis et al. (2014)). Let G ∈ Rm×n be an i.i.d. standard
normal matrix and g ∈ Rm, h ∈ Rn two i.i.d. standard normal vectors independent of one another. Let Sw,
Su be two compact sets such that Sw ⊂ Rn and Su ⊂ Rn. Consider the two following optimization problems
for any continuous ψ on Sw × Su

C(G) := min
w∈Sw

max
u∈Su

u⊤Gw + ψ(w,u) (21)

C(g,h) := min
w∈Sw

max
u∈Su

∥w∥2g⊤u + ∥u∥2h⊤w + ψ(w,u) (22)

Then the following hold

1. For all c ∈ R we have
P(C(G) < c) ≤ 2P(C(g,h) ≤ c) (23)

2. Further assume that Sw and Su are convex sets, ψ is convex-concave on Sw × Su. Then for all c ∈ R

P(C(G) > c) ≤ 2P(C(g,h) ≥ c) (24)

In particular for all µ ∈ R, t > 0 we have P(|C(G)− µ| > t) ≤ 2P(|C(g,h)− µ| ≥ t).

In our analysis, we will employ a version of the CGMT applied to a general class of generalized linear models,
as proved by Loureiro et al. (2021).

B.1 Notations and Definitions

In this paper, we extensively employ the concepts of Moreau envelopes and proximal operators, pivotal
elements in convex analysis frequently encountered in recent works on high-dimensional asymptotic of convex
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problems (Boyd & Vandenberghe, 2004; Parikh & Boyd, 2014). For an in-depth analysis of their properties,
we refer the reader to the cited literature. Here, we briefly outline their definition and the main properties for
context.
Definition B.2 (Moreau Envelope). Given a convex function f : Rn → R we define its Moreau envelope as
being

MV f(·)(ω) = min
x

[
1

2V ∥x− ω∥2
2 + f(x)

]
. (25)

where the Moreau envelope can be seen as a function MV f(·) : Rn → R.
Definition B.3 (Proximal Operator). Given a convex function f : Rn → R we define its Proximal operator
as being

PV f(·)(ω) = arg min
x

[
1

2V ∥x− ω∥2
2 + f(x)

]
. (26)

where the Proximal operator can be seen as a function PV f(·) : Rn → Rn.
Theorem B.4 (Gradient of Moreau Envelope (Thrampoulidis et al., 2018), Lemma D1). Given a convex
function f : Rn → R, we denote its Moreau envelope by MV f(·)(·) and its Proximal operator as PV f(·)(·).
Then, we have:

∇ωMV f(·)(ω) = 1
V

(
ω − PV f(·)(ω)

)
. (27)

Additionally we will use the following two properties

MV f(·+u)(ω) =MV f(·)(ω + u) , PV f(·+u)(ω) = u + PV f(·)(ω + u) , (28)

which are easy to show from a change of variables inside the minimization.
Definition B.5 (Dual of a Number). We define the the dual of a number a ≥ 0 as being a⋆ as the only
number such that 1/a + 1/a⋆ = 1.

B.2 Assumptions and Preliminary Discussion

We restate here all the assumptions that we make for the problem.
Assumption B.6 (Estimation from the dataset). Given a dataset D made of n pairs of input outputs
{(xi, yi)}n

i=1, where xi ∈ Rd and yi ∈ R we estimate the vector ŵ as being

ŵ ∈ arg min
w∈Rd

n∑
i=1

max
∥δi∥≤ε

g

(
yi

w⊤(xi + δi)√
d

)
+ λr̃(w) , (29)

where g : R → R is a convex non-increasing function, λ ∈ [0,∞) and r̃ : Rd → R a convex regularization
function.
Assumption B.7 (High-Dimensional Limit). We consider the proportional high-dimensional regime where
both the number of training data and input dimension n, d→∞ at a fixed ratio α := n/d.
Assumption B.8 (Regularization functions and Attack Norms considered). We consider consider two
settings for the perturbation norm ∥·∥ and the regularization function r. For the first one, the regularization
function and the attack norm ℓp norms, defined as

∥x∥p =
(

n∑
i=1
|xi|p

)1/p

(30)

for p ∈ (1,∞]. We will refer to the index of the regularization function as r and to the index of the norm
inside the inner maximization as p and we define p⋆ as the dual number of p (definition B.5).

For the second case, both the regularization function and the attack norm are Mahalanobis norms, defined as

∥x∥Σ =
√

x⊤Σx (31)
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for a positive definite matrix Σ. We refer to the index of the matrix of the regularization function as Σw and
to the matrix of the norm inside the inner maximization as Σδ. In this case, we define p = r = 2 (in order to
unify notations) and we will thus talk about p⋆ = r⋆ = 2.

This setting considers most of the losses used in machine learning setups for binary classification, e.g. logistic,
hinge, exponential losses. We additionally remark that with the given choice of regularization the whole cost
function is coercive.
Assumption B.9 (Scaling of Adversarial Norm Constraint). We suppose that the value of ε scales with the
dimension d such that ε p⋆√

d = Od(1).
Assumption B.10 (Data Distribution). We consider two cases of data distribution. Both of them will
rely on the following general generative process. For each i ∈ [n], the covariates xi ∈ Rd are drawn i.i.d.
from a data distribution Pin(x). Then, the corresponding yi is sampled independently from the conditional
distribution Pout. More succinctly, one can write the data distribution for a given pair (x, y) as

P (x, y) =
∫
Rd

dw⋆Pout

(
y

∣∣∣∣∣ ⟨w⋆,x⟩√
d

)
Pin(x)Pw(w⋆), (32)

The target weight vector w⋆ ∈ Rd is drawn from a prior probability distribution Pw.

Our two cases differentiate in the following way. For the first case, we consider Pin(x) = Nx(0, Idd)
and Pw which is separable, i.e. Pw(w) =

∏d
i=1 Pw(wi) for a distribution Pw in R with finite variance

Var(Pw) = ρ <∞.

For the second case, we consider Pin(x) = Nx(0,Σx) and Pw(w) = Nw(0,Σθ).
Assumption B.11 (Limiting Convergence of Spectral Values). We suppose that Σx,Σδ,Σθ,Σw are
simultaneously diagonalisable. We call Σx = S⊤ diag(ωi)S, Σδ = S⊤ diag(ζi)S and Σw = S⊤ diag(wi)S. We
define θ̄ = SΣ⊤

x w⋆/
√
ρ. We assume that the empirical distributions of eigenvalues and the entries of θ̄ jointly

converge to a probability distribution µ as∑d
i=1δ

(
θ̄i − θ̄

)
δ(ωi − ω)δ(ζi − ζ)δ(wi − w)→ µ . (33)

B.3 Problem Simplification

Recall that we start from the following optimization problem:

Φd = min
w∈Rd

n∑
i=1

max
∥δi∥≤ε

g

(
yi

w⊤(xi + δi)√
d

)
+ λr̃(w) , (34)

where r̃(·) is a convex regularization function and g(·) is a non-increasing loss function. The non-increasing
property of g allows us to simplify the inner maximization, leading to an equivalent formulation

Φd = min
w∈Rd

n∑
i=1

g

(
yi

w⊤xi√
d
− ε√

d
∥w∥⋆

)
+ λr̃(w) . (35)

To facilitate our analysis, we introduce auxiliary variables P = ∥w∥p⋆

⋆ /d and P̂ (the Lagrange parameter
relative to this variable), which allow us to decouple the norm constraints. This leads to a min-max formulation

Φd = min
w∈Rd,P

max
P̂

n∑
i=1

g

(
yi

w⊤xi√
d
− ε

p⋆√
d

p⋆√
P

)
+ λr̃(w) + P̂∥w∥p⋆

⋆ − dP P̂ , (36)

where we switched the value of ε for its value without the scaling in d. This reformulation is what will allow
us to apply the CGMT in subsequent steps.

It’s worth noting the significance of the scaling for ε as detailed in Assumption B.9. In the high-dimensional
limit d→∞, it’s essential that all terms in Φd exhibit the same scaling with respect to d. This careful scaling
ensures that our asymptotic analysis remains well-behaved and meaningful in the high-dimensional regime.

19



Under review as submission to TMLR

B.4 Scalarization and Application of CGMT

To facilitate our analysis, we further introduce effective regularization and loss functions, ˜̃r and g̃, respectively.
These functions are defined as

g̃(y, z) =
n∑

i=1
g

(
yizi −

ε
p⋆√
d

p⋆√
P

)
, ˜̃r(w) = r̃(w) + P̂∥w∥p⋆

p⋆ . (37)

A crucial step in our analysis involves inverting the order of the min-max optimization. We can justify
this operation by considering the minimization with respect to w ∈ Rd at fixed values of P̂ and P . This
reordering is valid due to the convexity of our original problem. Specifically, the objective function is convex
in w and concave in P̂ and P , and the constraint sets are convex. Under these conditions, we apply Sion’s
minimax theorem, which guarantees the existence of a saddle point and allows us to interchange the order of
minimization and maximization without affecting the optimal value.

This reformulation enables us to directly apply (Loureiro et al., 2021, Lemma 11). This lemma represents a
meticulous application of Theorem B.1 to scenarios involving non-separable convex regularization and loss
functions. The result is a lower-dimensional equivalent of our original high-dimensional minimization problem
that represent the limiting behavior of the solution of the high-dimensional problem.

Consequently, our analysis now focuses on a low-dimensional functional, which takes the form

Φ̃ = min
P,m,η,τ1

max
P̂ ,κ,τ2,ν

[
κτ1

2 − αLg −
η

2τ2

(
ν2ρ+ κ2)− ητ2

2 − Lr̃
+mν − PP̂

]
(38)

where we have restored the min max order of the problem.

In this expression, g and h are independent Gaussian vectors with i.i.d. standard normal components. The
terms Lg and L

r̃
represent the scaled averages of Moreau Envelopes (eq. (25))

Lg = 1
n
E
[
M τ1

κ g̃(y,·)

(
m
√
ρ

s + ηh

)]
(39)

L
r̃

= 1
d
E
[
M

η
τ2
˜̃r(·)

(
η

τ2
(κg + νw⋆)

)]
(40)

The extremization problem in eq. (38) is related to the original optimization problem in eq. (34) as it can be
thought as the leading part in the limit n, d→∞.

This dimensional reduction is the step that allows us to study the asymptotic properties of our original
high-dimensional problem through a more tractable low-dimensional optimization and thus have in the end a
low dimensional set of equations to study.

It’s important to note that the optimization problem Φ̃ is still implicitly defined in terms of the dimension d
and, consequently, as a function of the sample size n. We introduce two variables

weq = P
η∗
τ∗

2

˜̃r(.)

(
η∗

τ∗
2

(ν∗t + κ∗g)
)
, zeq = P τ∗

1
κ∗ g̃(,,y)

(
m∗
√
ρ

s + η∗h
)

(41)

where (η⋆, τ⋆
2 , P

⋆, P̂ ⋆, κ⋆, ν⋆,m⋆, τ⋆
1 ) are the extremizer points of Φ̃.

Building upon (Loureiro et al., 2021, Theorem 5), we can establish a convergence result. Let ŵ be an optimal
solution of the problem defined in eq. (34), and let ẑ = 1√

d
Xŵ. For any Lipschitz function φ1 : Rd → R, and

any separable, pseudo-Lipschitz function φ2 : Rn → R, there exist constants ϵ, C, c > 0 such that

P
(∣∣∣∣ϕ1

(
ŵ√
d

)
− E

[
ϕ1

(
weq√
d

)]∣∣∣∣ ≥ ϵ) ≤ C

ϵ2
e−cnϵ4

P
(∣∣∣∣ϕ2

(
ẑ√
n

)
− E

[
ϕ2

(
zeq√
n

)]∣∣∣∣ ≥ ϵ) ≤ C

ϵ2
e−cnϵ4

(42)
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It demonstrates that the limiting values of any function depending on ŵ and ẑ can be computed by taking
the expectation of the same function evaluated at weq or zeq, respectively. This convergence property allows
us to translate results from our low-dimensional proxy problem back to the original high-dimensional setting
with high probability.

B.5 Derivation of Saddle Point equations

We now want to show that extremizing the values of m, η, τ1, P, P̂ , ν, τ2, κ lead to the optimal value Φ̃ of eq. (38).
We are going to directly derive the saddle point equations and then argue that in the high-dimensional limit
they become exactly the ones reported in the main text.

We obtain the first set of derivatives that depend only on the loss function and the channel part by taking
the derivatives with respect to m, η, τ1, P to obatin

∂

∂m
: ν = α

κ

nτ1
E

[(
m

ηρ
h− s
√
ρ

)⊤

P τ1
κ g̃(.,y)

(
m
√
ρ

s + ηh
)]

∂

∂η
: τ2 = α

κ

τ1
η − κα

τ1n
E
[
h⊤P τ1

κ g̃(·,y)

(
m
√
ρ

s + ηh
)]

∂

∂τ1
: τ

2
1
2 = 1

2α
1
n
E

[∥∥∥∥ m√ρs + ηh− P τ1
κ g̃(·,y)

(
m
√
ρ

s + ηh
)∥∥∥∥2

2

]
∂

∂P
: P̂ = α

n
∂PE

[
M τ1

κ g̃(y,·)

(
m
√
ρ

s + ηh

)]
(43)

By taking the derivatives with respect to the remaining variables κ, ν, τ2, P̂ we obtain a set of equations
depending on regularization and prior over the teacher weights

∂

∂κ
: τ1 = 1

d
E
[
g⊤P

η
τ2
˜̃r(·)

(
η

τ2
(νw⋆ + κg)

)]
∂

∂ν
: m = 1

d
E
[
w⊤

⋆ P η
τ2
˜̃r(·)

(
η

τ2
(νw⋆ + κg)

)]
∂

∂τ2
: 1

2d
τ2

η
E

[∥∥∥∥ ητ2
(νw⋆ + κg)− P

η
τ2
˜̃r(·)

(
η

τ2
(νw⋆ + κg)

)∥∥∥∥2

2

]
= η

2τ2

(
ν2ρ+ κ2)−mν − κτ1 + ητ2

2 + τ2

2η
m2

ρ

∂

∂P̂
: P = 1

d
∂P̂E

[
M

η
τ2
˜̃r(·)

(
η

τ2
(κg + νw⋆)

)]
(44)

The rewriting of these equations in the desired form in Theorems 3.7 and 3.16 follows from the same
considerations as in (Loureiro et al., 2021, Appendix C.2).

To perform this rewriting the first ingredient we need is the following change of variables

m← m, q ← η2 + m2

ρ
, V ← τ1

κ
, P ← P ,

V̂ ← τ2

η
, q̂ ← κ2 , m̂← ν , P̂ ← P̂ .

(45)

ant the use of Isserlis’ theorem (Isserlis, 1918) to simplify the expectation where Gaussian g, h vectors are
present.

B.5.1 Rewriting of the Channel Saddle Points

To obtain specifically the form implied in the main text we introduce

Z0(y, ω, V ) =
∫ dx√

2πV
e− 1

2V (x−ω)2
δ
(
y − f0(x)

)
, (46)
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where this definition is equivalent to the one presented in eq. (10). The function Z0 can be interpreted as a
partition function of the conditional distribution Pout and contains all of the information about the label
generating process.

B.5.2 Specialization of Prior Saddle Points for ℓp norms

In the case of ℓp norms, we can leverage the separable nature of the regularization to simplify our equations.
The key insight here is that the proximal operator of a separable regularization is itself separable. This
property allows us to treat each dimension independently, leading to a significant simplification of our
high-dimensional problem.

First, due to the separability, all terms depending on the proximal of either g̃ or ˜̃r simplify the n or d at the
denominator. This cancellation is crucial as it eliminates the explicit dependence on the problem dimension,
allowing us to derive dimension-independent equations.

Next, we introduce
Zw(γ,Λ) =

∫
dwPw(w)e− Λ

2 w2+γw, (47)

which, in turn, leads in the form shown in eq. (9).

B.5.3 Specialization of Prior Saddle Points for Mahalanobis norms

In the case of Mahalanobis norm, the form of the proximal of the effective regularization function is specifically

P
V ˜̃r(·)

(ω) = arg min
z

[
λz⊤Σwz + P̂z⊤Σδz + 1

2V ∥z − ω∥2
2

]
= 1
V

(
2P̂Σδ + 2λΣw + 1

V

)−1
ω (48)

By substituting this explicit form into the equations from eq. (44), we obtain a set of simplified equations
that still depends on the dimension

m = 1
d

tr
[
m̂Σ⊤

x θ0θ⊤
0 Σx

(
λΣw + P̂Σδ + V̂Σx

)−1
]

q = 1
d

tr
[(
m̂2Σ⊤

x θ0θ⊤
0 Σx + q̂Σx

)
Σx

(
λΣw + P̂Σδ + V̂Σx

)−2
]

V = 1
d

tr
[
Σx

(
λΣw + P̂Σδ + V̂Σx

)−1
]

P = 1
d

tr
[(
m̂2Σ⊤

x θ0θ⊤
0 Σx + q̂Σx

)
Σδ

(
λΣw + P̂Σδ + V̂Σx

)−2
]

(49)

The final step involves taking the high-dimensional limit of these equations. Here, we leverage our assumptions
about the trace of the relevant matrices to further simplify the expressions so that they only depend on the
limiting distribution µ from Assumption B.11.

Specifically, the assumptions on the trace allow us to replace certain high-dimensional operations with scalar
quantities, effectively reducing the dimensionality of our problem. This dimensionality reduction is crucial for
obtaining tractable equations in the high-dimensional limit. In the end we obtain the equations in eq. (14).

B.6 Different channels and Prior functions

We want to show how the different functions Z0,Zw look like for some choices of output channel and prior in
the data model. For the case of a probit output channel, we have by direct calculation

Z0(y, ω, V ) = 1
2 erfc

(
−y ω√

2(V + τ2)

)
(50)
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For the case of a channel of the form y = sign(z) +
√

∆∗ξ, one has that

Z0(y, ω, V ) = Ny (1,∆⋆) 1
2

(
1 + erf

(
ω√
2V

))
+Ny (−1,∆⋆) 1

2

(
1− erf

(
ω√
2V

))
(51)

For the choices of the prior over the teacher weights, we have for a Gaussian prior that

Zw(γ,Λ) = 1√
Λ + 1

eγ2/2(Λ+1) (52)

or for sparse binary weights
Zw(γ,Λ) = ρ+ e− Λ

2 (1− ρ) cosh(γ) (53)

B.7 Error Metrics

To derive the form of the generalization error the procedure is the same as detailed in Aubin et al. (2020) or
in Mignacco et al. (2020, Appendix A). We report here the final form being

Egen = 1
π

arccos
(

m√
(ρ+ τ2)q

)
(54)

To derive the form for the boundary error one can proceed in the same way as (Gerace et al., 2021, Appendix D)
and obtain

Ebnd =
∫ ε

p⋆√
P /

√
q

0
erfc

− m
√
q
λ

1√
2(ρ+ τ2 − m2

q )

e− 1
2 λ2

√
2π

dλ (55)

We are also interested in the average teacher margin defined as

E
[
yw⊤

⋆ x
]

(56)

which can be expressed as a function of the solutions of the saddle point equations as follows:√
2
π

√
ρ√

1 + τ2

ρ

(57)

B.8 Asymptotic in the low sample complexity regime

This section examines the asymptotic behavior of our model in the regime of low sample complexity. Our
analysis is motivated by numerical observations of the overlaps m, q, P, V in the small α regime, as illustrated
in Figure 3.

Based on these observations, we propose a general scaling ansatz for the overlap parameters (solutions of the
equations presented in Theorems 3.7 and 3.16) as functions of the sample complexity α

m⋆ = m0α
δm , q⋆ = q0α

δq , V ⋆ = V0α
δV , P ⋆ = P0α

δP , (58)

where the values with a zero subscript do not depend on α and the exponents are all positive. We focus on
the noiseless case τ = 0.

We are interested in the expansion of the generalization error and the boundary error, keeping only the most
relevant terms in the limit α→ 0+. For the generalization error we have

Egen = 1
π

arccos
(

m⋆

√
ρq⋆

)
= 1

2 −
m0

π
√
ρq0

αδm− δq
2 + o

(
αδm−δq/2

)
(59)
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Figure 3: Scaling of the overlap parameters in the low sample complexity regime for p =∞, ε = 0.3, ρ = 1
and λ = 10−3. The numbers presented in the legends are the linear fit in log-log scale of the dashed part.

and for the boundary error a similar expansion leads to

Ebnd =
∫ p⋆√

P ⋆

q⋆

0
erfc

(
− m⋆

√
q⋆ ν√

2(ρ− (m⋆)2/q⋆)

)
e− ν2

2
√

2π
dν (60)

= εg
p⋆√
P0√

2πq0
αδP /p⋆−δq/2 + θ0

2πα
2δP /p⋆+δm−2δq + o(ακ) (61)

where κ = max(δP /p
⋆ − δq/2, 2δP /p

⋆ + δm − 2δq).

Numerical simulations reveal a clear distinction in the low α regime between cases where the regularization
parameter r = p⋆ and r ̸= p⋆. Figure 3 illustrates this difference for a fixed regularization parameter λ. We
identify two scenarios that characterize the behavior of the leading term in the boundary error expansion

When δP /p
⋆ > δq/2 : This occurs when p⋆ = r = 1. In this case, the leading term has a positive exponent,

causing it to vanish as α→ 0.

When δP /p
⋆ = δq/2 : This scenario arises when r ̸= p⋆ = 1. Here, the exponent of the leading term

becomes zero, resulting in a constant term independent of α.

Notably, in all cases we’ve examined, the second terms in both the generalization error and boundary error
expansions consistently approach zero in the limit of low sample complexity.

C Rademacher Complexity Analysis

This appendix contains detailed proofs of the remaining results presented in the paper. For the reader’s
convenience, we restate each statement before its proof.
Proposition C.1. Let ε, σ > 0. Consider a sample S = {(x1, y1), . . . , (xn, yn)}, and let H

r̃
be the hypothesis

class defined in eq. (15). Then, it holds:

R̂S(H̃
r̃
) ≤ max

i∈[n] r∥xi∥⋆Wr̃

√
2
σn

+ ε

2
√
n

sup
w:̃r(w)≤W2

r̃

∥w∥⋆, (62)

where r∥·∥⋆, ∥·∥⋆ denote the dual norm of r∥·∥, ∥·∥, respectively.
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Proof. We have:

R̂S(H̃
r̃
) = Eσ

 1
n

sup
h∈H

r̃

n∑
i=1

σi min
∥x′

i
−xi∥≤ε

yih(x′
i)


= Eσ

 1
n

sup
h∈H

r̃

n∑
i=1

σiyi ⟨w,xi⟩ − ε∥w∥⋆

 (Def. of dual norm)

≤ Eσ

 1
n

sup
h∈H

r̃

n∑
i=1

σiyi ⟨w,xi⟩

+ Eσ

 1
n

sup
h∈H

r̃

n∑
i=1
−εσi∥w∥⋆

 (Subadditivity of supremum)

= R̂S(H
r̃
) + ε

2Eσ

[∣∣∣∣∣ 1n
n∑

i=1
σi

∣∣∣∣∣
]

sup
w:̃r(w)≤W2

r̃

∥w∥⋆. (Symmetry of σ)

(63)

For the first term, i.e. the “clean” Rademacher Complexity, we plug in (Kakade et al., 2008, Theorem 1). By
Jensen’s inequality, we have for the second term:

Eσ

[∣∣∣∣∣ 1n
n∑

i=1
σi

∣∣∣∣∣
]
≤

√√√√√Eσ

( 1
n

n∑
i=1

σi

)2
 = 1√

n
, (64)

which concludes the proof.

Corollary C.2. Let ε > 0. Then:

R̂S(H̃∥·∥2
2
) ≤

maxi∈[n] ∥xi∥2W2√
n

+ εW2

2
√
n

√
λ−1

min(Σδ). (65)

Proof. Leveraging Proposition 4.2, the first term of the RHS follows from the fact that the squared ℓ2 norm
is 1-strongly convex (w.r.t itself). For the second term, we have that the dual norm of ∥·∥Σδ

is given by
∥·∥Σ−1

δ
=
√〈

w,Σ−1
δ w

〉
. Then, it holds:

sup
w:∥w∥2

2≤W2
2

∥w∥⋆ = sup
w:∥w∥2

2≤W2
2

∥w∥Σ−1
δ

=W2 sup
w:∥w∥2≤1

∥w∥Σ−1
δ

=W2

√
λmax(Σ−1

δ ),

(66)

where the last equality follows from Courant–Fischer–Weyl’s min-max principle.

Corollary C.3. Let Σw =
∑d

i=1 αivivT
i and Σδ =

∑d
i=1 λivivT

i , with vi ∈ Rd being orthonormal. Then:

R̂S(H̃∥·∥2
A

) ≤
WA maxi∈[n] ∥xi∥Σ−1

w√
n

+ εWA

2
√
n

√
max
i∈[d]

1
λiαi

. (67)
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Proof. For the worst-case part, we have:

sup
w:∥w∥2

Σw
≤W2

A

∥w∥Σ−1 =WA sup
w:∥w∥Σw ≤1

√〈
w,Σ−1

δ w
〉

=WA sup
w:∥w∥Σw ≤1

√√√√ d∑
i=1

λ−1
i ⟨w,vi⟩2

=WA sup
w:∥w∥Σw ≤1

√√√√ d∑
i=1

λ−1
i

αi
αi ⟨w,vi⟩2

≤ WA sup
w:∥w∥Σw ≤1

√√√√max
i∈[d]

λ−1
i

αi

d∑
i=1

αi ⟨w,vi⟩2

=WA sup
w:∥w∥A≤1

√
max
i∈[d]

λ−1
i

αi
∥w∥Σw =WA

√
max
i∈[d]

λ−1
i

αi
.

(68)

On the other hand, for w = 1√
αj

vj where j ∈ arg maxi∈[d]
λ−1

i

αi
, it is ∥w∥Σw = 1 and also ∥w∥Σ−1

δ
=√

maxi∈[d]
λ−1

i

αi
, so the above bound is tight.

Remark C.4. Note that the previous result, and in particular inequality 68, implies that in order to most
effectively control the robust error, we better select Σw = Σ−1

δ . To see this, consider a particular ground
truth w⋆ ∈ Rd, and let H be the smallest hypothesis class that contains hypothesis w⋆ for a given geometry
Σw, that is: H = {x 7→ ⟨w,x⟩ : ∥w∥Σw ≤ ∥∥w⋆∥Σw∥}. Then, from 68, we have:

ϵ∥w⋆∥Σw

2
√
n

√
max
i∈[d]

1
λiαi

≥ ϵ

2
√
n
∥w⋆∥Σ−1

δ
, (69)

where equality holds for all w⋆ if and only if Σw ∝ Σ−1
δ . In particular, if Σw = Σ−1

δ , then the above term
becomes ϵ

2
√

n
∥w⋆∥Σ−1

δ
, and cannot be improved further without excluding w⋆ from the class H.

C.1 Worst-case Rademacher complexity for ℓp norms

Awasthi et al. (2020) provides the following bound on the worst-case Rademacher complexity of linear
hypothesis classes constrained in their ℓr norm.
Theorem C.5. Theorem 4 in (Awasthi et al., 2020) Let ϵ > 0 and p, r ≥ 1. Define H

r̃
= {x 7→ ⟨w,x⟩ :

∥w∥r ≤ 1}. Then, it holds:

R̂S(H̃r) ≤ R̂S(H) + ϵ
max(d1− 1

r − 1
p , 1)

2
√
n

. (70)

The bound above suggests regularizing the weights in the ℓr norm, r = p
p−1 , for effectively controlling the

estimation error of the class.

D Parameter Exploration

This section presents the experimental details for all the figures in the main text and explore the model
parameters in greater detail. For implementation details of our numerical procedures, please refer to
Appendix E.
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Figure 4: Robust error as a function of the regularization order r for two different p⋆. By increasing the value
of ε we have that the optimal value r⋆ gets close to p⋆.

D.1 Settings for Main Text Figures

All figures in the main text utilize the logistic loss function, defined as g(x) = log(1 + exp(−x)). Below, we
detail the specific parameters for each figure.

Figure 1 (Left) We optimize the regularization parameter λ for each curve. Parameters: ϵ = 0.2, noiseless
regime (τ = 0). Data points represent averages over 10 distinct data realizations with dimension
d = 1000, varying sample size n to adjust α. Error bars indicate one standard deviation from the
mean.

Figure 2 (Right) Generated in the noiseless case (τ = 0) with optimal regularization parameter λ. We
optimize robust error for regularizations r = 2 and r = 1 independently, then compute their difference.

Figure 2 (Left) We employ a Strong Weak Feature Model (SWFM) as defined in Tanner et al. (2025).
This model implements a block structure on all covariances (Σx, Σδ, Σθ, and Σw), with block sizes
relative to dimension d denoted by ϕi for block i. We use two equal-sized feature blocks, totaling
d = 1000. All matrices are block diagonal, with each block being diagonal. The values for each
matrix are as follows

Σx Σδ Σθ Case Σw = Σδ Case ℓ2 Case Σw = Σ−1
δ

First Block 1 1 1 1 1 2.5
Second Block 1 2.5 1 2.5 1 1

All matrices are trace-normalized, with ε values as specified in the figure. Again error bars indicate
the deviation from the mean.

Figure 2 (Right) We optimize the regularization parameter λ in the noiseless case (τ = 0), with α = 1.
The inset is generated by conducting r sweeps for 10 distinct ε values. Each sweep comprises 50
points, with the minimum determined using np.argmin.

D.2 Additional Parameter Exploration and Dataset Choice

We now present some additional exploration of the model in some different regimes.

Figure 4 These figures display theoretical results for attack perturbations constrained by ℓ2 (Left) and ℓ3/2

(Right) norms. We vary ε as shown and use the noiseless regime (τ = 0). Parameters: α = 0.1,
optimal λ. Each sweep comprises 50 points, with minima determined using np.argmin. Points on
the curves indicate the minimum for each ε value.
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Figure 5: Robust error, generalization error and boundary error for different choices of regularization geometry
r as a function of the sample complexity α. We see that the value of the errors increases with ε.
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Figure 6: Robust generalization error as a function of regularization order r for fixed versus optimized
regularization strength λ. The comparison illustrates that the impact of λ optimization does not change
qualitatively the behavior of the optimal regularization geometry r⋆ as ε increases.

Figure 5 This figure illustrates generalization metrics as a function of α for various regularization geometries.
We present results for two attack strengths: ε = 0.1 (Left) and ε = 0.3 (Right). Both use optimal λ
values. This figure can be compared to Figure 1 (Left).

Figure 6 Both panels show robust generalization error versus regularization geometry r, with α = 0.1. The
right panel optimizes regularization strength λ, while the left uses a fixed value λ = 10−4.
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Figure 7: Generalization error and robust generalization error as a function of sample complexity α for
MNIST binary classification (0 vs 1) with ℓ∞ adversarial training. The optimal regularization is r = 1
(matching the attack norm), consistent with theoretical predictions from Section 5. Despite the non-Gaussian
data distribution, the empirical results align closely with high-dimensional asymptotic theory.
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Figure 8: Robust generalization error as a function of sample complexity α for the Mahalanobis model defined
in Section 3.2 and a sweep in different regularization matrices. We see that interpolating from the value of
Σw = Σδ to Σw = Σ−1

δ decreases the value of the error.

Figure 7 Empirical validation on MNIST binary classification (digits 0 vs 1). We train a linear classifier
via ℓ∞ adversarial training eqs. (6) and (7), where MNIST images are flattened to xµ ∈ R784 and
normalized element-wise to [0, 1] (i.e. xµ 7→ xµ/255). Labels are mapped to yµ ∈ {±1}. The ridge
parameter is fixed at λ = 10−3 across all experiments. We evaluate the population adversarial
error eq. (2) and standard generalization error eq. (3) via the empirical version of the expectation
with ntest = 1000 samples from the test set. Results are shown as a function of the sample complexity
ratio α = n/d where d = 784 is kept fixed. Two attack budgets are considered: ε = 1.0 (Left) and
ε = 2.0 (Right). We compare different regularization norms r ∈ {1, 2,∞} to identify the optimal
choice matching the attack geometry.

Figure 8 We study the behaviour of the robust generalization error for more choices of regularization matrix
Σw for the model defined in Section 3.2. This model implements a block structure on all covariances
(Σx, Σδ, Σθ, and Σw). We use two equal-sized feature blocks. All matrices are block diagonal, with
each block being diagonal. The values for each matrix are as follows

Σx Σδ Σθ Σw

First Block 1 1 1 σ1
w

Second Block 1 5 1 σ2
w

All matrices are trace-normalized, with ε values as specified in the figure. We vary the values of σ1
w

and σ2
w and keep λ = 10−3, ε = 0.1 fixed.

E Numerical Details

The self-consistent equations from Theorems 3.7 and 3.16 are written in a way amenable to be solved via
fixed-point iteration. Starting from a random initialization, we iterate through both the hat and non-hat
variable equations until the maximum absolute difference between the order parameters in two successive
iterations falls below a tolerance of 10−5.

To speed-up convergence we use a damping scheme, updating each order parameter at iteration i, designated
as xi, using xi := xiµ+ xi−1(1− µ), with µ as the damping parameter.

Once convergence is achieved for fixed λ, hyper-parameters are optimized using a gradient-free numerical
minimization procedure for a one dimensional minimization.

For each iteration, we evaluate the proximal operator numerically using SciPy’s (Virtanen et al., 2020) Brent’s
algorithm for root finding (scipy.optimize.minimize_scalar). The numerical integration is handled with
SciPy’s quad method (scipy.integrate.quad), which provides adaptive quadrature of a given function over
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a specified interval. These numerical techniques allow us to evaluate the equations and perform the necessary
integrations with the desired accuracy.

Regarding the computer hardware all the experiments have been run on consumer grade hardware, specifically
MacStudio M2 Ultra 2022, and none of the run took more than 1 day of CPU time.
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