
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HINT MARGINALIZATION FOR IMPROVED REASONING
IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have exhibited an impressive capability to per-
form reasoning tasks, especially if they are encouraged to generate a sequence
of intermediate steps. Reasoning performance can be improved by suitably com-
bining multiple LLM responses, generated either in parallel in a single query, or
via sequential interactions with LLMs throughout the reasoning process. Existing
strategies for combination, such as self-consistency and progressive-hint-prompting,
make inefficient usage of the LLM responses. We present Hint Marginalization, a
novel and principled algorithmic framework to enhance the reasoning capabilities
of LLMs. Our approach can be viewed as an iterative sampling strategy for forming
a Monte Carlo approximation of an underlying distribution of answers, with the
goal of identifying the mode — the most likely answer. Empirical evaluation on
several benchmark datasets for arithmetic reasoning demonstrates the superiority
of the proposed approach.

1 INTRODUCTION

As Large Language Models (LLMs) have increased in size, they have demonstrated increasing rea-
soning abilities (Brown et al., 2020), despite not being explicitly trained to reason (Wei et al., 2022a).
In particular, Chain-of-Thought (CoT) prompting has become standard for eliciting these abilities,
either through few-shot examples (Wei et al., 2022b) or via a triggering sentence such as “Let’s think
step by step” (Kojima et al., 2022). Nevertheless, although LLMs often produce correct reasoning
steps, they struggle with higher-level planning (Saparov and He, 2022), motivating researchers to
explore strategies to remedy this deficiency. An effective solution is to sample several chains-of-
thoughts and take the most common answer as the final vote, an approach called Self-Consistency
(CoT+SC) (Wang et al., 2023). However, despite its impressive empirical performance, the gains
quickly plateau on many benchmarks, often with no improvement after five samples (Aggarwal et al.,
2023). Thus, a more complex reasoning strategy appears necessary.

One promising direction involves encouraging LLMs to iteratively refine their reasoning, like humans
often do (Shinn et al., 2023; Li et al., 2023; Gou et al., 2023; Madaan et al., 2023). However, Huang
et al. (2024) demonstrate that the capability and effectiveness of LLMs’ self-correction is largely
overstated in the existing literature due to the use of oracle labels for determining stopping crite-
ria (Shinn et al., 2023), unfair experimental protocols (Du et al., 2023), and sub-optimal initial prompt
design (Madaan et al., 2023). Moreover, the review/feedback prompts employed in these approaches
are often long and complex, and include detailed, intricate, hand-crafted examples, tailored for
specific domains or benchmarks. In spite of such extensive prompt engineering, Huang et al. (2024)
observe that most of these approaches perform worse than self-consistency in a fair evaluation setting.

In this paper, we propose a novel iterative strategy called Hint Marginalization (HM) that offers a
more principled and practical way of reasoning with refinement. We consider a setting where we can
conduct LLM calls sequentially or in parallel. Our method does not make major changes to the initial
prompt in later calls, and we do not need extensive prompting effort to invoke an LLM’s review of
the previous answers. The process starts by constructing an initial distribution of answers using CoT.
In subsequent rounds, we present the unique answers from the previous round to the LLM as hints in
the prompt. This leads to a new collection of answers, which we use to refine the answer distribution
via a marginalization process. By maintaining a distribution and performing marginalization, we
reduce sampling variance and make more efficient usage of the LLM calls.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We make the following contributions:

• We introduce a novel iterative hint-based refinement strategy for reasoning with LLMs, with the
key differentiator that the method maintains and updates a distribution over answers. Our work
highlights that an LLM can indeed derive benefit from self-reflecting on distributions of its past
answers when attempting arithmetic reasoning tasks, without a need to resort to extensive prompt
design or hand-crafted examples.

• Via multiple experiments with GPT-3.5 Turbo (Brown et al., 2020), GPT-4 Turbo (OpenAI et al.,
2024), and the cost efficient GPT-4o-mini, we show that Hint Marginalization leads to improved
arithmetic reasoning performance compared to state-of-the-art baselines for the same number of
LLM calls and comparable token cost. We conduct experiments carefully to ensure there is no
evaluation bias in favour of methods that employ refinement. Notably, out of 18 experimental
scenarios (3 LLMs, six datasets), we observe a statistically significant increase in accuracy in 14.

• We show in the experiments that previous hint-based strategies such as Progressive-Hint-Prompting
(PHP) Zheng et al. (2023) can be combined successfully with our method. In experiments that
ensure fair evaluation, PHP combined with Self Consistency (PHP+SC) often struggles to outper-
form the much simpler SC. In contrast, when combined with our approach, the resultant PHP+HM
procedure achieves statistically significant accuracy improvements in most experimental settings.

2 PROBLEM STATEMENT

Let x be a question or a task in natural language, described in one or more sentences. Its true answer
is denoted y, which can take different forms depending on the context, such as a number, a True/False
boolean variable, or an option (a)/(b)/(c) from a multiple-choice set. Potentially, we have access
to a (small) set of triplets I={(xj , zj , yj)}Kj=1 corresponding to semantically-similar questions xj ,
answers yj , and rationales zj . Each rationale zj is a sequence of short sentences that describe the
step-by-step reasoning process leading to the answer yj .

We assume that we can query the LLM in series or in parallel. Our task is to design a strategy
for prompting the LLM and combining the responses to provide an answer ŷ for the question x.
Performance is measured in terms of the average accuracy of the response, i.e., E[1(ŷ = y)] for the
indicator function 1.

3 METHODOLOGY

When presented with the question, an LLM produces a random answer ỹ, drawn from an internal
distribution that is dependent on the prompt and the LLM’s parameters. To avoid notational clutter, we
suppress these dependencies and denote this distribution by p(ỹ|x). This distribution is analytically
intractable but one can sample from it directly by prompting the LLM and subsequently collecting its
answer.

The reasoning ability of the LLM, i.e., the probability of producing the correct answer, is improved
by careful construction of the prompt. For example, an encouragement to produce an explana-
tion/rationale in the form of a sequence of short sentences to describe the step-by-step reasoning
process has been shown to ameliorate LLMs’ performance significantly compared to direct prompt-
ing (Wei et al., 2022b). We denote the provided rationale as z, so the response of the LLM is a pair
(z, ỹ). If rationale-annotated in-context examples are available, then reasoning can be improved by
incorporating in the prompt a (small) set in the form of triplets I={(xj , zj , yj)}Kj=1.

Viewing the LLM response as a sample from the distribution, we can hypothesize that, if the LLM is
capable of effective reasoning for the presented question, the mode of the distribution is most likely
to be the correct answer. We would therefore like to extract the mode. One approach is to sample,
either in parallel or sequentially, multiple LLM responses (each containing a rationale and answer).
We can then select the answer corresponding to the Monte Carlo estimate of the mode by taking a
majority vote over the sampled responses (Wang et al., 2023).

It has been observed that LLM output can be improved via a refinement or self-reflection pro-
cess (Zheng et al., 2023; Wu et al., 2024; Li et al., 2023; Madaan et al., 2023; Park et al., 2023). In
this process, the LLM is provided with its previous response, and asked to take it into account, or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

criticize it, before producing a refined response. One form of refinement is to provide the previous
answer as a hint (“The answer is close to” or “The answer is probably”).

This observation is the cornerstone of our proposed methodology. Rather than seeking the mode of
the original distribution p(ỹ|x), we construct a sequence of distributions {pr(ỹ|x)}r>1, where each
successive distribution in the sequence is constructed via a refinement process using samples from the
previous distribution, as the number of interactions with the LLM, r, grows. This refinement process
involves marginalization over the LLM’s previous answers, which are used as hints in the current
iteration. We initialize p1(ỹ|x) = p(ỹ|x), i.e., we start with the distribution of answers obtained
from the first interaction with the LLM at r = 1. Our hypothesis is that the probability of the correct
answer, pr(y|x), increases with r, so the mode of a distribution later in the sequence, i.e., r > 1, is
more likely to be correct than the mode of p(ỹ|x).

3.1 INTUITION

We now provide an example to illustrate why marginalizing over hints should make the mode of the
inference distribution more likely to be the correct answer. Suppose that we are presented with a
binary question x with answer, say, y = 1, and let us say that the probability of the correct answer,
with no hints, is initially relatively low, p(ỹ=1|x) = 0.4. However, when we provide the correct
answer as a hint, the LLM is much more likely to answer correctly, p(ỹ=1|x,Hint(y=1)) = 0.8.
Hinting at the incorrect answer 0 also strongly tilts the LLM towards that answer, but crucially, with
slightly less probability, p(ỹ=0|x,Hint(y=0)) = 0.6. This is not unexpected or unusual, because it
is often easier to see the truth of a statement in hindsight (or verify rather than solve unaided). With
our proposed hint marginalization procedure, the updated distribution of the answer would be:

p2(ỹ=1|x) = p1(ỹ=1|x)p(ỹ=1|x,Hint(y=1)) + p1(ỹ=0|x)p(ỹ=1|x,Hint(y=0))

= 0.4× 0.8 + (1− 0.4)× (1− 0.6)

= 0.56 > 0.4.

Not only is the probability higher than before, but crucially, the mode of the distribution now aligns
with the right answer (y = 1).

More generally, this augmentation will be observed whenever the flow of probability mass into
the correct answer exceeds the flow of probability mass out of the correct answer. The flow out is
p1(ỹ=y|x)(1− p(ỹ=y|x,Hint(y))), whereas the flow in is

∑
y′ ̸=y p1(ỹ=y′|x)p(ỹ=y|x,Hint(y′)).

Since we expect p1(ỹ=y|x,Hint(y))) to be close to 1, the flow out is likely to be small. By
contrast, we might anticipate that when the LLM is presented with an incorrect hint, it can often
ignore it to a large extent. Let us assume that p(ỹ=y|x,Hint(y′)) > cp1(ỹ=y|x) for all y′ for
some positive constant c < 1. Then the flow in exceeds cp1(ỹ=y|x)(1 − p1(ỹ=y|x)). Thus, if
p(ỹ=y|x,Hint(y))) > 1− c(1− p1(ỹ=y|x)), the mass assigned to the correct answer will increase.
For example, consider p1(ỹ=y|x)) = 0.4 and c = 0.3. Then we need p(ỹ=y|x,Hint(y))) >
1−0.3× (1−0.4) = 0.82.

We also note that repeated application of this procedure is further advantageous, which motivates the
iterative version of our algorithm. We formalize this intuition into a general procedure and provide an
algorithm for approximating these distributions next.

3.2 HINT MARGINALIZATION

Our approach, as the name suggests, updates the distribution of answers via marginalization over the
answers obtained at the previous iteration. We denote the conditional probability of yielding ỹ as
the answer for the task x with a hint y′ by p(ỹ|x,Hint(y′)). We define a sequence of distributions
{pr(ỹ|x)}r>1, where two successive distributions are related as follows:

pr+1(ỹ|x) =
∫

p(ỹ|x,Hint(y′))pr(y
′|x) dy′ . (1)

The integral is replaced by a sum when ỹ is discrete, e.g., for multiple-choice questions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2'nd round

Q: x

LLM

LLM with hint 16

1'st round
 answers

1'st round
answer distribution

2'nd round
 answers

marginalization
of hints

2'nd round
answer distribution

...

LLM with hint 18

LLM with hint 17

Hint marginalized
2'nd round answer

distribution

1'st round

Figure 1: Illustration of one iteration of our proposed method, Hint Marginalization (HM). At its
initialization, a distribution of answers is obtained from the LLM via multiple queries. In each
subsequent iteration, new answers are sampled by providing each distinct old answer as a hint in
the prompt. The resulting samples are then accordingly weighted by the probability of the hints for
marginalization.

3.3 IMPLEMENTATION

We now outline the steps for performing one iteration of Hint Marginalization. As a concrete example,
Figure 1 illustrates the procedure of approximating p2(ỹ|x) from p1(ỹ|x) in detail. Since neither
p(ỹ|x,Hint(y′)) nor pr(ỹ|x) can be computed analytically, we need to resort to a Monte Carlo
approach for estimating pr+1(ỹ|x).
Suppose, at the end of the r-th iteration, pr(ỹ|x) is approximated as follows:

pr(ỹ|x) ≈
M∑

m=1

ωmδ(ỹ − ym) , (2)

where δ(·) is the Kronecker delta function, {ym}Mm=1 is the set of distinct answers, and ωm is the
estimated probability of obtaining the answer ym under the distribution pr(·|x). For example, in
Figure 1, at r = 1, we have M = 3 distinct answers y1 = 16, y2 = 17, and y3 = 18, with estimated
probabilities ω1 = 1

4 , ω
2 = 1

2 , and ω3 = 1
4 respectively. If the correct answer y = 18, then the

LLM’s current answer ŷ = 17, based on the estimated mode of p1(ỹ|x), is incorrect.

Assuming a sampling budget of Br+1, which denotes the maximally allowed number of answers to
be sampled at the (r+1)-th iteration, we modify, for each m = 1, . . . ,M , the prompt by appending
ym as the hint, and sample ⌊Br+1

M ⌋ answers subsequently. This forms the following Monte Carlo

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

approximation:

p(ỹ|x,Hint(y = ym)) ≈
Lm∑
ℓ=1

ω̄ℓ,mδ(ỹ − yℓ,m) . (3)

Here, {yℓ,m}Lm

ℓ=1 are the Lm distinct answers extracted from the ⌊Br+1

M ⌋ answers and ω̄ℓ,m is the
estimated probability of having yℓ,m as the answer conditioned on the hint ym. In Figure 1, the total
budget for r = 2, i.e. B2 = 9, the number of distinct answers for different hints are L1 = 2, L2 = 3,
and L3 = 1. For the hint y1 = 16, the estimated conditional probabilities of the answers y1,1 = 15
and y2,1 = 16 are ω̄1,1 = 1

3 and ω̄2,1 = 2
3 respectively.

Using equations 2 and 3, we can approximate equation 1 as follows:

pr+1(ỹ|x) ≈
M∑

m=1

Lm∑
ℓ=1

ωmω̄ℓ,mδ(ỹ − yℓ,m) , (4)

=

N∑
n=1

ω̄nδ(ỹ − ȳn) . (5)

Here, N is the number of distinct answers among {yℓ,m}Lm,M
ℓ=1,m=1. The probability of having ȳn as

the answer is estimated as:

ω̄n =

M∑
m=1

Lm∑
ℓ=1

ωmω̄ℓ,m1(yℓ,m = ȳn) . (6)

From Figure 1, we observe that at r = 2, we have N = 4, the distinct answers are ȳ1 = 15, ȳ2 =
16, ȳ3 = 17, and ȳ4 = 18. As shown in eq. 6, the probability of obtaining ȳ4 = 18 is ω̄4 =
(24 ×

1
3) + (14 × 1) = 5

12 . We observe that the probability of obtaining the correct answer is increased
in one round of HM.

We can stop this procedure by applying a variety of stopping criteria. For example, we can stop
(i) after a fixed number of iterations (when r>R); or (ii) based on a predefined sampling budget

Bmax (when r>R, for R such that
∑R

p=1
Bp⩽Bmax<

∑R+1

p=1
Bp); or (iii) when the estimate of the

mode of pr(y|x) remains the same for two successive iterations. Algorithm 1 provides a pseudocode
description.

Algorithm 1 Hint Marginalization (HM)

1: Input: task x
2: Hyperparameters: sampling budget Bmax > 0, number of iterations R > 1 and {Br > 0}Rr=1

such that
∑R

r=1 Br = Bmax

3: Output: answer ŷ, approximations of {pr(ỹ|x)}Rr=1

4: for r = 0 : R− 1 do
5: if r = 0 then
6: Sample B1 answers from p1(·|x).
7: Approximate p1(ỹ|x) using eq. 2.
8: else
9: for m = 1 : M do

10: Sample ⌊Br+1

M ⌋ answers from p(·|x,Hint(ym)) in order to form a Monte carlo approxi-
mation, as shown in eq. 3.

11: end for
12: Approximate pr+1(ỹ|x) using eqs. 5 and 6.
13: end if
14: Find the mode of the approximated pR(ỹ|x) and assign it to ŷ.
15: end for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 DISCUSSION

Intuitively, some hints are more promising or useful than others for solving a given reasoning task.
Our HM framework naturally defines the usefulness of a hint y′ at the end of r-th iteration by the
numerical value of pr(y′|x), and subsequently weights the answers generated using the hint y′ at the
(r+1)-th iteration by this value, while updating the distribution of answers in eq. 1.

We also note that the HM framework is agnostic to the choice of prompts and is generally applicable
to any advanced prompting techniques, since those methods combined with SC can be used for
initializing p1(ỹ|x) for subsequent Hint Marginalization. Our contribution is thus orthogonal to
prompt engineering approaches.

4 EXPERIMENTAL RESULTS

4.1 BENCHMARKS

We evaluate the proposed HM algorithm on six arithmetic benchmark datasets: AddSub (Hosseini
et al., 2014), consisting of math word problems requiring addition and/or subtraction for solution;
MultiArith (Roy and Roth, 2015), containing math problems requiring multiple reasoning steps for
solutions; SingleEQ (Koncel-Kedziorski et al., 2015), consisting of questions which can be solved
using a single equation; SVAMP (Patel et al., 2021), containing math word problems of varying
structures; GSM8K (Cobbe et al., 2021), consisting of grade school level math word problems; and
AQuA (Ling et al., 2017), containing algebraic word problems. In summary, AddSub and SingleEq
contain easier problems, whereas the tasks in MultiArith, SVAMP, GSM8K, and AQuA are more
challenging since they require multi-step reasoning for a solution. Although these arithmetic problems
are relatively simple for humans, LLMs often struggle in solving these types of problems (Patel et al.,
2021). All these benchmarks are available under open-source licenses 1.

4.2 MODELS

We use three different language models: GPT-3.5 Turbo (Brown et al., 2020), which is fine-tuned
using RLHF (GPT-3 based model, unreleased number of parameters), its upgraded version GPT-4
Turbo (OpenAI et al., 2024), and the more recent cost-efficient GPT-4o-mini. All of these models are
closed-source, but can be publicly accessed using the OpenAI API at https://openai.com/api.

4.3 BASELINES AND EXPERIMENTAL SETTING

We compare our approach to few-shot CoT (Wei et al., 2022b), its combination with SC (Wang et al.,
2023), PHP (Zheng et al., 2023), and PHP+SC. We refer to the proposed algorithm as CoT+HM,
since the same few-shot prompt as CoT is employed to initialize our approach. For relatively cheaper
LLMs, GPT-3.5 Turbo and GPT-4o-mini, we also consider another variant of our method called
PHP+HM, where the initial answer distribution is obtained from several PHP provided answers
(i.e., PHP+SC). Whenever results are available for other recent iterative refinement methods such as
Self-Refine (Madaan et al., 2023), CRITIC (Gou et al., 2023), repeated introspection (Self-Convinced
prompting (Zhang et al., 2023a)), Multi-Agent (Debate) (Du et al., 2023), and multi-agent multi-
model round table conference (ReConcile (Chih-Yao Chen et al., 2023)), we compare HM with them
as well. However, as indicated by Huang et al. (2024) and confirmed by our experimental results,
these approaches are significantly outperformed by CoT+SC. So, we do not run these methods for the
other datasets and/or LLMs, if the results are not available in the corresponding papers. We conduct
our experiments on an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz, and access the GPT models
through the OpenAI API.

For a fair comparison with CoT+SC, which requires sampling of multiple CoTs, we ensure that the
proposed HM use a comparable number of CoTs. We use a total budget of Bmax=40 sampled CoTs
in two iterations of CoT+HM, with B1=5, B2=15, and B3=20. We allocate more CoTs to the later
iterations (r > 1), since we need to estimate p(ỹ|x, y′) for multiple values of the hint y′. Since, we
initialize p1(ỹ|x) with CoT+SC, increasing the number of CoTs does not contribute substantially to

1CC-BY-4.0 [AddSub; SingleEQ], Apache 2.0 [MultiArith; AQuA] and MIT [SVAMP; GSM8K].

6

https://openai.com/api

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Mean and standard error of accuracy (in %) of few-shot arithmetic reasoning. The highest
accuracy among all competing algorithms using the same LLM is marked in bold and is shown
in red, blue, and orange for GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o-mini respectively. The
second-best accuracy in those cases is marked with an underline and is shown in light red, light blue,
and light orange respectively. The highest accuracy is marked with an asterisk if the difference from
the second-best accuracy is statistically significant.

LLM Algorithm AddSub MultiArith SingleEQ SVAMP GSM8K AQuA

G
PT

-3
.5

Tu
rb

o

CoT 91.4±1.4 97.8±0.6 97.0±0.7 81.9±1.2 78.2±1.1 58.3±3.1
PHP 91.6±1.4∗ 99.2±0.4 97.6±0.7 83.4±1.2 83.2±1.0 59.1±3.1

CoT+SC 91.1±1.4 99.0±0.4 97.6±0.7 85.1±1.1 83.2±1.0 69.3±2.9
PHP+SC 90.6±1.5 98.8±0.4 97.4±0.7 83.3±1.2 85.2±1.0 64.2±3.0

Self-Refine - - - - 75.1 -
CRITIC - - - 83.3 78.2 -

Self-Convinced 79.3 - - 84.9 81.5 62.0
Multi-Agent (Debate) - - - - 85.0±3.5 -

ReConcile - - - - 85.3±2.2 66.0±0.8

CoT+HM 91.6±1.4∗ 99.7±0.2∗ 98.0±0.6 86.2±1.1∗ 87.5±0.9 70.5±2.9∗
PHP+HM 91.4±1.4 99.3±0.3 98.4±0.5∗ 85.9±1.1 88.6±0.9∗ 70.5±2.9∗

G
PT

-4
Tu

rb
o CoT 96.5±0.9 98.3±0.5 96.5±0.8 92.3±0.8 86.4±0.9 83.9±2.3

PHP 96.5±0.9 98.5±0.5 97.4±0.7 93.3±0.8 91.4±0.8 83.9±2.3
CoT+SC 96.2±1.0 98.8±0.4 97.0±0.8 93.4±0.8 88.5±0.9 85.8±2.2∗
PHP+SC 95.9±1.0 98.8±0.4 96.9±0.8 93.9±0.8 91.1±0.8 82.7±2.3

CoT+HM 96.5±0.9 98.8±0.4 98.6±0.5∗ 94.6±0.7∗ 94.6±0.6∗ 84.3±2.3

G
PT

-4
o-

m
in

i CoT 92.9±1.3 98.8±0.4 94.5±1.0 93.5±0.8 91.5±0.8 78.7±2.5
PHP 93.9±1.2 98.8±0.4 95.3±0.9 93.6±0.8 93.2±0.7 78.7±2.6

CoT+SC 92.9±1.3 98.8±0.4 95.1±1.0 94.0±0.8 93.6±0.7 82.7±2.4
PHP+SC 92.9±1.3 98.8±0.4 95.1±1.0 93.4±0.8 93.4±0.7 84.3±2.3

CoT+HM 94.4±1.2 98.8±0.4 95.7±0.9 94.1±0.7 94.3±0.6∗ 84.6±2.3
PHP+HM 96.5±0.9∗ 98.8±0.4 98.4±0.6∗ 94.3±0.7∗ 94.3±0.6∗ 85.0±2.2∗

improved performance at r = 1 (Aggarwal et al., 2023). For PHP+HM, we perform one round of
hint marginalization with B1=20 and B2=20.

For the CoT+SC algorithm, we sample exactly 40 CoTs (as in (Wang et al., 2023)) to report its
performance. On the other hand, generating one answer from PHP requires at least 2 interactions, but
the exact number of CoTs cannot be known beforehand. So, in order to ensure a fair comparison, we
collect PHP answers in the PHP+SC algorithm until the total number of LLM calls matches that of
CoT+HM. This ensures that PHP+SC has an inference time comparable to that of CoT+HM. Except
for CoT and PHP, which use greedy decoding, a temperature of 0.7 is used for all sampling based
approaches, following the experimental settings of (Wang et al., 2023; Zheng et al., 2023). The
answer extraction and cleansing is carried out by following the same steps laid out by Kojima et al.
(2022). Additionally, for all datasets except AQuA (where the answers are multiple choice between
A-E), we use a 3’rd decimal rounding off of LLM answers and ‘ground truth’ before comparing
them. This fixes some questions in most of those five datasets for all competing algorithms (e.g. the
‘true’ answer is 0.066666, but the LLM’s answer is 0.067), where the LLM’s answer is essentially
correct, but is declared incorrect due to a rounding error. We measure the accuracy of the answer
as the performance metric. CoT employs the same 4-shot prompt for AQuA and the same 8-shot
prompt for all other datasets, as designed by Wei et al. (2022b). PHP and PHP+SC also use the same
base prompts to obtain the initial answer(s). Example prompts for all algorithms can be found in
Section 8.2 of the Appendix.

4.4 RESULTS

We summarize the experimental results in Table 1. For each dataset and LLM, we conduct a Wilcoxon
signed rank test between the top two algorithms and declare their difference statistically significant
at the 5% level. As we use more recent versions of the GPT models than in the original articles of
CoT+SC (Wang et al., 2023) and PHP (Zheng et al., 2023), the results are not directly comparable,
but are broadly in line with their reported numbers. We observe that for all LLMs, with or without

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2 3 4 6 8 120.000
0.125
0.250
0.375
0.500
0.625
0.750

Pr
ob

ab
ilit

y
of

 A
ns

we
r CoT+SC

2 3 4 6 8 12

PHP+SC

2 3 4 6 8 12

CoT+HM (r = 1)

2 3 4 6 8 12

CoT+HM (r = 2)

2 3 4 6 8 12

CoT+HM (r = 3)

Figure 2: The estimated probabilities of different answers from CoT+SC, PHP+SC, and CoT+HM
(using GPT-3.5 Turbo) for an example from GSM8K dataset.
Question: The ice cream parlor was offering a deal, buy 2 scoops of ice cream, get 1 scoop free.
Each scoop cost $1.50. If Erin had $6.00, how many scoops of ice cream should she buy? Answer: 6.

SC, PHP achieves higher accuracy than CoT prompting in most cases, demonstrating the advantage
of using the LLMs’ answers as hints. The superior accuracy of CoT+SC compared to the greedy
decoding of CoT for the majority of datasets showcases the strong empirical performance of SC,
arising due to the consideration of diverse reasoning paths. PHP+SC emerges as a close competitor
to CoT+SC in most cases, although the relative accuracy gain compared to PHP is much lower, since
PHP in itself is a strong baseline. Since PHP+SC does not consistently outperform CoT+SC, we can
conclude that the incorporation of hints alone is insufficient to achieve better reasoning accuracy.

Our approach, CoT+HM, considerably outperforms CoT+SC in most cases. The PHP+HM variant
performs comparably to CoT+HM on GPT-3.5 Turbo but shows improved performance on GPT-4o-
mini. This shows that our HM approach is generally applicable, as it can be combined with different
prompting methods for initialization, and it is not overly sensitive to the choice of hyperparameters.

One benchmark that deviates from this pattern is AQuA on GPT-4 Turbo, where the best performing
procedure is CoT+SC. This might be due to the fact that AQuA is the only multiple-choice question-
answering benchmark among the six, and the employed hinting prompt “The answer is close to a)”
makes less sense for these types of questions. Further research on how to better extend PHP’s hinting
prompt to these types of problems might be valuable. In addition, all methods perform only as well
as (or even worse than) a vanilla few-shot CoT and PHP on AddSub for both GPT-3.5 Turbo and
GPT-4 Turbo models, possibly indicating the fact that the gains to be had using advanced methods on
a dataset containing relatively simple questions are rather limited.

Figure 2 shows the estimated probabilities of different answers of an example question from GSM8K
for all sampling based algorithms using GPT-3.5 Turbo. We observe that, while both CoT+SC and
PHP+SC fail to reason correctly, the proposed CoT+HM outputs the correct answer at both r=2
and 3, although its initial distribution (computed using CoT+SC with B1=5 samples) does not have
a mode at the correct answer. More interestingly, CoT+SC cannot fix the error even if the budget
increases to 40 from 5. On the contrary, the proposed CoT+HM utilizes the additional inference
cost effectively to increase the probability of the correct answer at each iteration, demonstrating the
usefulness of performing HM in multiple iterations.

While Figure 2 shows that CoT+HM has a higher probability of the correct answer for a specific
example question, a dataset-level investigation is necessary to determine whether this phenomenon is
general. To that end, we restrict ourselves to only the ‘difficult’ questions in these benchmarks. If a
question is solved correctly by all algorithms in Table 1, we categorize it as ‘easy’. A question that
is not ‘easy’ is termed ‘difficult’. All easy questions are subsequently removed from the datasets2.
For all ‘difficult’ questions, we rank CoT+SC, PHP+SC, and CoT+HM in terms of the probability
they assign to the correct answer. The stacked-histograms of these ranks for all six datasets using
GPT-4o-mini are shown in Figure 3. We observe that the proposed CoT+HM achieves the lowest rank
based on the probability of correct answer across all ‘difficult’ questions for all datasets more often,
outperforming both CoT+SC and PHP+SC. This demonstrates that CoT+HM has higher probability
of the correct answer compared to its competitors for most of these ‘difficult’ questions, which

2Since in each of these datasets, the majority of the questions are ‘easy’, all of CoT+SC, PHP+SC, and
CoT+HM methods assign a very high probability on the correct answers for them. In order to bring out the
differences among these algorithms, we only focus on the ‘difficult’ questions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

a) AddSub b) MultiArith c) SingleEQ

d) SVAMP e) GSM8K f) AQuA

Figure 3: Histogram of ranks of the algorithms (highest probability of the correct answer results
in the lowest rank) for the ‘difficult’ questions from all six datasets using GPT-4o-mini

supports our intuition, presented in Section 3.1. Similar results are obtained for the other two LLMs
(see Appendix 8.9).

5 RELATED WORK

Our proposed method can be situated within a larger literature that aims to improve LLMs’ reasoning
ability through iterative refinement of chains-of-thought. These works primarily differ in the strategy
used to refine the reasoning.

In Progressive Hint Prompting (PHP) (Zheng et al., 2023), chains-of-thought are repeatedly generated,
each time providing the previous answers as hints to the LLM. However, it is unlikely that all the
hints are equally useful for solving the task, and this approach does not have any mechanism for
differential treatment of hints. Two subsequent works propose alternative prompts to steer the answer
away from, rather than closer to, the hint. Progressive Rectification Prompting (Wu et al., 2024)
proposes a prompt of the form “The answer is likely not <hint>”, whereas Deliberate-then-Generate
(Li et al., 2023) assumes an error was committed and asks the LLM to identify and correct the mistake.
Our method could likely be adapted to those variants by replacing PHP’s hinting prompt by their
criticism prompt in our procedure. Also closely related to PHP and our work is Hint-before-Solving
Prompting (Fu et al., 2024), which triggers the LLM to generate a “hint” before solving a problem.
These hints are key ideas that can be used to solve a problem, such as a mathematical formula or
a general direction. Unlike PHP or our work, however, there is no iterative aspect where the hints
depend on previous attempts at answering the question. Contrary to our work, none of these methods
target the refinement of the distribution of answers.

Besides these works that aim to iteratively improve answers, there is a growing literature of works
that seek to achieve the same goal more explicitly using verbal criticism, at the cost of increased
complexity. Self-Refine (Madaan et al., 2023) incorporates a prompt where the LLM self-criticizes
its answer, before being queried again with this reflection. Generative Agents (Park et al., 2023) uses
a similar procedure, albeit in the context of an agent interacting with an environment. CRITIC (Gou
et al., 2023) is a more general framework, where the criticism prompt can make use of external tools
like a web search engine to offer grounded corrections. In a different direction, Self-Convinced
Prompting (Zhang et al., 2023a) and Reflexion (Shinn et al., 2023) expand on Self-Refine by
adding extra modules such as a separate answer encoder, or separating the evaluation and self-
reflection dimensions of criticism into separate modules. Other related approaches include multi-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

round debate (Du et al., 2023) and consensus via weighted voting mechanism (Chih-Yao Chen
et al., 2023). Recent studies have, however, cast doubt on the ability of LLMs to self-criticize
effectively (Huang et al., 2024; Tyen et al., 2023), leading researchers to consider using a separately
trained LLM as the critic.

REFINER (Paul et al., 2023) fine-tunes a separate critic by supervised learning on examples perturbed
by hand-designed rules and GPT-3.5 Turbo. Retroformer (Yao et al., 2023) and RL4F (Akyürek
et al., 2023) consider fine-tuning of the critic using reinforcement learning instead, which allows for
a more precise alignment with the task of improving answers. As applied to chain-of-thought, these
methods have in common that they offer a procedure that takes a chain-of-thought and analyzes it to
produce an improved version with a potentially different answer. A crucial difference between these
methods and our approach is that these algorithms generate a sequence of chains-of-thought, whereas
we propose to refine the distribution of answers.

Finally, our work can be seen within the greater context of trying to improve chain-of-thought
reasoning within large language models. In existing work, several directions for improving CoTs
are considered, including construction of better prompts to aid the LLM in reasoning (Fu et al.,
2023; Zhang et al., 2023b), fine-tuning with CoTs (Zelikman et al., 2022) so that the LLMs learn to
reason, and effective exploration strategies for multi-hop reasoning (Besta et al., 2023; Yao et al.,
2023). A recent survey by Chu et al. (2023) provides a comprehensive overview of these techniques.
Our contribution is orthogonal to these prompting techniques since we consider improving the
distribution of answers iteratively rather than focusing on individual CoTs. Novel variants of HM can
be constructed by using these methods for initialization.

6 LIMITATIONS

Our Hint Marginalization approach relies on hints having an impact on the answers provided by the
LLM. Our focus was not on prompt design, so in our experiments, we employed the hint structure
employed by (Zheng et al., 2023): “The answer is close to <hint>”. While this hint can be effective
for arithmetic reasoning tasks, it is less suitable for other types of answers, such as proper names or
options for a multiple choice questions (e.g. AQuA). This motivates research into a more general
strategy for effectively structuring the prompt to guide an LLM towards a known or likely answer,
while allowing some flexibility to navigate to other answers.

In terms of computation, although the LLM calls in each round of our method can be performed in
parallel, the rounds themselves must be performed sequentially. In settings where there is no bound
on how many LLM calls can be executed in parallel, CoT+SC can thus make more effective use of
the parallelism to reduce latency.

7 CONCLUSION

This work presents a novel algorithmic approach, Hint Marginalization, to enable an LLM to solve a
reasoning task by iteratively refining its inference distribution. The proposed algorithm addresses the
issue of the diminishing marginal utility of extra LLM calls for Self-Consistency. Hint Marginalization
focuses on the distribution over the answers at each stage and assigns weights to the hints accordingly,
concentrating on promising hints. The marginalization procedure improves sample efficiency. The
experimental results, over a range of arithmetic benchmarks and several LLM variants, provide strong
evidence that the approach leads to improved reasoning for the same budget of LLM calls, compared
to Self-Consistency and other state-of-the-art refinement approaches.

The work can be extended in several directions. Our experiments focus on arithmetic reasoning tasks,
and employ a hint in the prompt that is most suitable for such tasks. For other types of problems,
alternative hint structures are more natural, and likely to lead to better performance. For example,
in tasks that require a verbal response, the prompt could incorporate “verbal criticism”, based on
one of the approaches detailed in Section 5. In the current version of the procedure, we assign the
same number of LLM calls to each unique answer from the previous round. Investigating more
efficient strategies to allocate LLM calls non-uniformly to different hints could be another worthwhile
direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

P. Aggarwal, A. Madaan, Y. Yang, and Mausam. Let’s sample step by step: Adaptive-consistency for
efficient reasoning and coding with LLMs. In Proc. Conf. Empirical Methods in Natural Language
Process., 2023.

V. Agrawal, P. Singla, A. Singh Miglani, S. Garg, and A. Mangal. Give me a hint: Can LLMs take a
hint to solve math problems? arXiv e-prints, arXiv:2410.05915, 2024.

A. F. Akyürek, E. Akyürek, A. Madaan, A. Kalyan, P. Clark, D. Wijaya, and N. Tandon. RL4F:
Generating natural language feedback with reinforcement learning for repairing model outputs.
arXiv preprint arXiv:2305.08844, 2023.

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, L. Gianinazzi, J. Gajda, T. Lehmann, M. Pod-
stawski, H. Niewiadomski, P. Nyczyk, and T. Hoefler. Graph of thoughts: Solving elaborate
problems with large language models. arXiv e-prints arXiv:2308.09687, 2023.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners. In Proc. Adv. Neural Inf. Process. Syst., 2020.

J. Chih-Yao Chen, S. Saha, and M. Bansal. ReConcile: Round-table conference improves reasoning
via consensus among diverse LLMs. arXiv e-prints, arXiv:2309.13007, 2023.

Z. Chu, J. Chen, Q. Chen, W. Yu, T. He, H. Wang, W. Peng, M. Liu, B. Qin, and T. Liu. A survey
of chain of thought reasoning: Advances, frontiers and future. arXiv preprint arxiv:2309.15402,
2023.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch. Improving factuality and reasoning in
language models through multiagent debate. arXiv e-prints, arXiv:2305.14325, 2023.

J. Fu, S. Huangfu, H. Yan, S.-K. Ng, and X. Qiu. Hint-before-solving prompting: Guiding LLMs to
effectively utilize encoded knowledge. arXiv e-prints, arXiv:2402.14310, 2024.

J. Fu, S. Huangfu, H. Yan, S.-K. Ng, and X. Qiu. Hint-before-solving prompting: Guiding LLMs to
effectively utilize encoded knowledge. arXiv preprint arXiv:2402.14310, 2024.

Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot. Complexity-based prompting for multi-step
reasoning. In Proc. Int. Conf. Learn. Representations, 2023.

Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, N. Duan, and W. Chen. Critic: Large language models
can self-correct with tool-interactive critiquing. arXiv preprint arXiv:2305.11738, 2023.

M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman. Learning to solve arithmetic word
problems with verb categorization. In Proc. Conf. Empirical Methods in Natural Language
Process., 2014.

J. Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, and D. Zhou. Large language models
cannot self-correct reasoning yet. In Proc. Int. Conf. Learn. Representations, 2024.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot
reasoners. In Proc. Adv. Neural Inf. Process. Syst., pages 22199–22213, 2022.

R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal, O. Etzioni, and S. D. Ang. Parsing algebraic
word problems into equations. Trans. Assoc. Comput. Linguist., pages 585–597, 2015.

B. Li, R. Wang, J. Guo, K. Song, X. Tan, H. Hassan, A. Menezes, T. Xiao, J. Bian, and J. Zhu.
Deliberate then generate: Enhanced prompting framework for text generation. arXiv preprint
arXiv:2305.19835, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

W. Ling, D. Yogatama, C. Dyer, and P. Blunsom. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. In Proc. Conf. Empirical Methods in
Natural Language Process., 2017.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye,
Y. Yang, et al. Self-refine: Iterative refinement with self-feedback. In Proc. Adv. Neural Inf. Process.
Syst., 2023.

OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Al-
tenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu,
H. Bao, M. Bavarian, J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bog-
donoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman, T. Brooks, M. Brundage, K. Button,
T. Cai, R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis,
D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H. W. Chung, D. Cum-
mings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan,
S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N. Felix, S. P.
Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogineni, G. Goh,
R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu, Y. Guo, C. Hal-
lacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey, W. Hickey, P. Hoeschele,
B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang, H. Jin,
D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, Łukasz Kaiser, A. Kamali, I. Kanitscheider, N. S.
Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim, Y. Kim, J. H. Kirchner, J. Kiros, M. Knight,
D. Kokotajlo, Łukasz Kondraciuk, A. Kondrich, A. Konstantinidis, K. Kosic, G. Krueger, V. Kuo,
M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. Litwin,
T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning, T. Markov, Y. Markovski,
B. Martin, K. Mayer, A. Mayne, B. McGrew, S. M. McKinney, C. McLeavey, P. McMillan,
J. McNeil, D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin, V. Monaco,
E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély, A. Nair, R. Nakano, R. Nayak,
A. Neelakantan, R. Ngo, H. Noh, L. Ouyang, C. O’Keefe, J. Pachocki, A. Paino, J. Palermo,
A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov, A. Peng, A. Perelman,
F. de Avila Belbute Peres, M. Petrov, H. P. de Oliveira Pinto, Michael, Pokorny, M. Pokrass,
V. H. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh,
C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder, M. Saltarelli,
T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Selsam, K. Sheppard,
T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin, K. Slama,
I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such, N. Summers, I. Sutskever, J. Tang,
N. Tezak, M. B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek,
J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J. Wang, A. Wang, B. Wang,
J. Ward, J. Wei, C. Weinmann, A. Welihinda, P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Will-
ner, C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo,
K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao, T. Zheng, J. Zhuang,
W. Zhuk, and B. Zoph. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2024.

J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative agents:
Interactive simulacra of human behavior. In Proc. ACM Symp. User Interface Software and
Technology, 2023.

A. Patel, S. Bhattamishra, and N. Goyal. Are NLP models really able to solve simple math word
problems? In Proc. Conf. North Amer. Chapter of the Associ. Comput. Linguist.: Human Language
Technologies, 2021.

D. Paul, M. Ismayilzada, M. Peyrard, B. Borges, A. Bosselut, R. West, and B. Faltings. Refiner:
Reasoning feedback on intermediate representations. arXiv preprint arXiv:2304.01904, 2023.

S. Roy and D. Roth. Solving general arithmetic word problems. In Proc. Conf. Empirical Methods in
Natural Language Process., 2015.

A. Saparov and H. He. Language models are greedy reasoners: A systematic formal analysis of
chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language agents with
verbal reinforcement learning. In Proc. Adv. Neural Inf. Process. Syst., 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

G. Tyen, H. Mansoor, P. Chen, T. Mak, and V. Cărbune. LLMs cannot find reasoning errors, but can
correct them! arXiv preprint arXiv:2311.08516, 2023.

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. In Proc. Int. Conf.
Learn. Representations, 2023.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou,
D. Metzler, et al. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682,
2022a.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. In Proc. Adv. Neural Inf. Process. Syst.,
2022b.

Z. Wu, M. Jiang, and C. Shen. Get an A in math: Progressive rectification prompting. In Proc. AAAI
Conf. Artif. Intell., 2024.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. arXiv e-prints, arXiv:2305.10601, 2023.

W. Yao, S. Heinecke, J. C. Niebles, Z. Liu, Y. Feng, L. Xue, R. Murthy, Z. Chen, J. Zhang, D. Arpit,
et al. Retroformer: Retrospective large language agents with policy gradient optimization. arXiv
preprint arXiv:2308.02151, 2023.

E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman. STaR: Bootstrapping Reasoning With Reasoning.
arXiv e-prints, arXiv:2203.14465, 2022.

H. Zhang, M. Cai, X. Zhang, C. J. Zhang, R. Mao, and K. Wu. Self-convinced prompting: Few-shot
question answering with repeated introspection. arXiv preprint arXiv:2310.05035, 2023a.

Z. Zhang, A. Zhang, M. Li, and A. Smola. Automatic chain of thought prompting in large language
models. In Proc. Int. Conf. Learn. Representations, 2023b.

C. Zheng, Z. Liu, E. Xie, Z. Li, and Y. Li. Progressive-hint prompting improves reasoning in large
language models. arXiv preprint arXiv:2304.09797, 2023.

8 APPENDIX

8.1 HINTING PROMPT FROM ZHENG ET AL. (2023)

A typical arithmetic reasoning question is presented in Table 2, where the chain-of-thought yielded
the incorrect answer y = 21. In Table 3, the PHP hinting prompt is applied to this same question
with the hints y′ = 4, 7, yielding a chain-of-thought with the correct answer y = 6.

Table 2: Example problem taken from Zheng et al. (2023).

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?

A: There are 21 trees in the Grove today. Grove workers are done planting trees. So 21 trees were
planted in the Grove.

8.2 EXAMPLES OF FULL PROMPTS

We provide examples of full prompts for CoT in Table 4, PHP in Table 5 and our method CoT+HM
in Table 6. As CoT+SC and PHP+SC are simply sampled versions of CoT and PHP, the prompts are
identical as in those cases. The base examples are taken from Zheng et al. (2023).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 3: Demonstration of the hinting prompt from Zheng et al. (2023), as applied to the example
problem from Table 2. Additions are highlighted in blue.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today? (Hint: The
answer is near to 4, 7).

A: We know the Answer Hints: 4, 7. With the Answer Hints: 4, 7, we will answer the question.
There are 15 trees originally. Then there were 21 trees after the Grove workers planted some more.
So there must have been 21 - 15 = 6 trees that were planted. The answer is 6.

Table 4: An example of a CoT prompt with 4 few-shot examples.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?
A: There are 15 trees originally.Then there were 21 trees after the Grove workers planted some
more. So there must have been 21 - 15 = 6 trees that were planted. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot?
A: There are originally 3 cars. Then 2 more cars arrive. Now 3 + 2 = 5 cars are in the parking lot.
The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left
in total?
A: Originally, Leah had 32 chocolates and her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39 pieces left in total. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
A: Jason had 20 lollipops originally. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now?
A:

8.3 VALIDITY OF OUR ASSUMPTIONS

In order to motivate HM in Section 3.1, we considered a hypothetical question x, whose answer
ỹ ∈ {0, 1} is binary and the true answer is 1. We define α=p1(ỹ=1|x), and γ=p(ỹ=0|x,Hint(y=1))
and δ=p(ỹ=1|x,Hint(y=0)).

We assumed that γ is very small and δ > 0. Both of these assumptions are empirically supported by
analysis of obtained results from the PHP (Zheng et al., 2023) technique.

As an example, using GPT-4 Turbo on the entire GSM8K dataset, the empirical frequency of obtaining
an incorrect answer conditioned on an immediate correct hint is 0.0179. This suggests that assuming
γ to be very small is justified. On the other hand, the empirical frequency of obtaining a correct
answer conditioned on a previous incorrect hint is 0.3159, which supports the assumption of having a
strictly non-zero value for δ. Similar results are obtained for other datasets and LLMs examined in
our experiments.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: An example of a PHP prompt with 4 few-shot examples. The few-shot questions are provided
true answer, while the test question is provided with the history so far, in this case y′ = 7, 11, 8.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today? (Hint: The
answer is near to 6).
A: We know the Answer Hints: 6. With the Answer Hints: 6, we will answer the question. There
are 15 trees originally. Then there were 21 trees after the Grove workers planted some more. So
there must have been 21 - 15 = 6 trees that were planted. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot? (Hint: The answer is near to 5).
A: We know the Answer Hints: 5. With the Answer Hints: 5, we will answer the question. There
are originally 3 cars. Then 2 more cars arrive. Now 3 + 2 = 5 cars are in the parking lot. The
answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left
in total? (Hint: The answer is near to 39).
A: We know the Answer Hints: 39. With the Answer Hints: 39, we will answer the question.
Originally, Leah had 32 chocolates and her sister had 42. So in total they had 32 + 42 = 74. After
eating 35, they had 74 - 35 = 39 pieces left in total. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny? (Hint: The answer is near to 8).
A: We know the Answer Hints: 8. With the Answer Hints: 8, we will answer the question. Jason
had 20 lollipops originally. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12
= 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now? (Hint: The answer is near to 7, 11, 8).
A:

8.4 EXPERIMENTAL RESULTS USING LLAMA

We have conducted experiments with two Llama-family LLMs: the weaker Llama-3-8b-instruct and
the very capable Llama-3-70b-instruct. In order to reduce the API cost of the experiments, we restrict
running the more expensive 70B model to only the three most difficult benchmarks.

From the results in Table 7, we observe that using Llama-3-8b-instruct, the relative advantage of
PHP over CoT is diminished in comparison to the GPT models. This suggests that weaker LLMs,
such as Llama-3-8b-instruct, which often have relatively poor instruction following capability, cannot
utilize the hint effectively for solving the reasoning task, highlighting the inadequacy of sophisticated
prompting for weaker LLMs. In this setting, the effect of the quality of approximation of the initial
distribution of HM becomes important for obtaining a good reasoning accuracy and PHP+HM
outperforms CoT+HM in most cases. Except for GSM-8K, PHP+HM either outperforms CoT+SC
or obtains comparable performance on all other datasets. On the contrary, for a strongly capable
Llama-3-70b-instruct model, both CoT+HM and PHP+HM perform well.

8.5 RESULTS ON THE MATH DATASET

In Table 8, we have included results for the MATH dataset, which is a much more challenging
mathematical reasoning dataset. For several sub-disciplines (Geometry, Intermediate algebra, Pre-
calculus), the state-of-the-art performance (without using extreme computation and a very long
inference time) is in the range of 50-65 percent, suggesting that LLMs still find these problems very
difficult to solve. The proposed HM approach leads to a performance improvement in 5 out of 7
settings.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: An example of a CoT+HM prompt with 4 few-shot examples. The few-shot questions
are provided with true answers as hints, while the test question is provided with one of the distinct
answers obtained during the interaction with the LLM in the previous iteration. In this case, y′ = 8.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today? (Hint: The
answer is near to 6).
A: We know the Answer Hints: 6. With the Answer Hints: 6, we will answer the question. There
are 15 trees originally. Then there were 21 trees after the Grove workers planted some more. So
there must have been 21 - 15 = 6 trees that were planted. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot? (Hint: The answer is near to 5).
A: We know the Answer Hints: 5. With the Answer Hints: 5, we will answer the question. There
are originally 3 cars. Then 2 more cars arrive. Now 3 + 2 = 5 cars are in the parking lot. The
answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left
in total? (Hint: The answer is near to 39).
A: We know the Answer Hints: 39. With the Answer Hints: 39, we will answer the question.
Originally, Leah had 32 chocolates and her sister had 42. So in total they had 32 + 42 = 74. After
eating 35, they had 74 - 35 = 39 pieces left in total. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny? (Hint: The answer is near to 8).
A: We know the Answer Hints: 8. With the Answer Hints: 8, we will answer the question. Jason
had 20 lollipops originally. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12
= 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now? (Hint: The answer is near to 8).
A:

Table 7: Mean and standard error of accuracy (in %) of few-shot arithmetic reasoning. The highest
accuracy among all competing algorithms using the same LLM is marked in bold and is shown in red
and blue for Llama-3-8b-instruct and Llama-3-70b-instruct respectively. The second-best accuracy
in those cases is marked with an underline and is shown in light red and light blue respectively.

LLM Algorithm AddSub MultiArith SingleEQ SVAMP GSM8K AQuA

L
la

m
a-

3-
8b

-
in

st
ru

ct

CoT 88.9±1.6 96.7±0.7 90.0±1.3 83.5±1.2 76.6±1.2 51.2±3.1
PHP 90.4±1.5 94.7±0.9 91.1±1.3 86.4±1.1 76.8±1.2 57.1±3.1

CoT+SC 91.1±1.4 98.0±0.6 94.5±1.0 90.4±0.9 85.0±1.0 59.4±3.1

CoT+HM 92.9±1.3 96.8±0.7 94.9±1.0 90.1±0.9 82.3±1.1 60.0±3.0
PHP+HM 92.9±1.3 97.8±0.6 95.1±1.0 90.4±0.9 84.2±1.1 66.1±3.0

L
la

m
a-

3-
70

b-
in

tr
uc

t

CoT - - - 91.2±0.9 93.2±0.7 72.8±2.8
PHP - - - 91.9±0.9 93.3±0.7 73.2±2.8

CoT+SC - - - 92.6±0.8 94.2±0.6 78.0±2.6

CoT+HM - - - 93.1±0.8 94.2±0.6 79.9±2.5
PHP+HM - - - 92.7±0.8 94.6±0.6 78.7±2.6

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Mean and standard error of accuracy (in %) of reasoning on the Math dataset using GPT-4o-
mini. The highest accuracy among all competing algorithms is marked in bold and the second-best
accuracy in those cases is marked with an underline.

Algorithm Algebra Counting and
Probability Geometry Intermediate

Algebra
Number
Theory Prealgebra Precalculus

CoT 88.5±0.9 73.4±2.0 55.1±2.3 51.5±1.6 76.3±1.8 86.9±1.1 49.1±2.1
PHP 90.2±0.9 75.3±2.0 55.9±2.3 52.3±1.7 78.1±1.8 87.6±1.1 51.1±2.1

CoT+SC 93.9±0.7 82.9±1.7 64.7±2.2 58.1±1.7 83.5±1.6 91.2±1.0 51.3±2.1

CoT+HM 94.1±0.7 81.0±1.8 64.1±2.2 58.3±1.7 82.0±1.7 91.2±1.0 51.5±2.1
PHP+HM 94.8±0.6 80.6±1.8 65.3±2.2 58.9±1.6 85.4±1.5 90.7±1.0 52.0±2.1

8.6 RESULTS FOR THE ‘DIFFICULT’ QUESTIONS

In order to demonstrate the advantage of CoT+HM more clearly, we restrict ourselves to only
the ‘difficult’ questions in the six arithmetic benchmarks. If a question is solved correctly by all
algorithms in Table 9, we categorize it as ‘easy’. A question which is not ‘easy’ is termed ‘difficult’.
All easy questions are subsequently removed from the datasets to compute the accuracies only on the
difficult questions. From Table 9, we observe that the relative accuracy gains offered by the proposed
CoT+HM algorithm are more substantial in most cases.

Table 9: Mean and standard error of accuracy (in %) of few-shot arithmetic reasoning for the ‘difficult’
questions. The highest accuracy among all competing algorithms using the same LLM is marked in
bold and is shown in red, blue, and orange for GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o-mini
respectively. The second-best accuracy in those cases is marked with an underline and is shown in
light red, light blue, and light orange respectively. The highest accuracy is marked with an asterisk
if the difference from the second-best accuracy is statistically significant.

LLM Algorithm AddSub MultiArith SingleEQ SVAMP GSM8K AQuA

G
PT

-3
.5

Tu
rb

o CoT 46.0±6.3 51.9±9.6 73.7±5.8 36.5±2.9 37.1±2.2 30.7±3.7
PHP 47.6±6.2∗ 81.5±7.4 78.9±5.4 41.8±2.9 51.3±2.3 32.0±3.7

CoT+SC 44.4±6.3 77.8±7.9 78.9±5.4 47.7±3.0 51.3±2.3 49.0±4.0
PHP+SC 41.3±6.3 74.1±8.4 77.2±5.6 41.4±2.9 57.2±2.3 40.5±4.0

CoT+HM 47.6±6.3∗ 92.6±5.1∗ 82.5±5.1∗ 51.6±3.0∗ 63.8±2.2∗ 51.0±4.0∗

G
PT

-4
Tu

rb
o CoT 77.8±5.3 63.0±9.3 68.4±6.2 73.0±2.6 60.7±2.3 73.2±3.6

PHP 77.8±5.3 66.7±9.2 77.2±5.5 76.5±2.5 75.2±2.0 73.2±3.6
CoT+SC 76.2±5.4 74.1±8.4 73.7±5.8 76.8±2.5 66.7±2.2 76.5±3.5∗
PHP+SC 74.6±5.4 74.1±8.5 71.9±5.9 78.6±2.4 74.3±2.1 71.2±3.6

CoT+HM 77.8±5.3 74.1±8.4 87.7±4.4∗ 81.1±2.3∗ 84.4±1.7∗ 73.9±3.5

G
PT

-4
o-

m
in

i CoT 55.6±6.2 74.1±8.5 50.9±6.6 77.2±2.5 75.4±2.0 64.7±3.9
PHP 61.9±6.2 74.1±8.4 57.9±6.6 77.5±2.5 80.3±1.9 64.7±3.8

CoT+SC 55.6±6.3 74.1±8.4 56.1±6.6 78.9±2.4 81.6±1.8 71.2±3.7
PHP+SC 55.6±6.3 74.1±8.5 56.1±6.5 76.8±2.5 80.9±1.9 73.9±3.5

CoT+HM 65.1±6.1∗ 74.1±8.4 61.4±6.4∗ 79.3±2.4∗ 83.6±1.7∗ 74.5±3.5∗

8.7 OTHER BIG-BENCH TASKS BEYOND ARITHMETIC REASONING

We provide results for “Date Understanding” and “Object Tracking”, which are problems sets
involving quantitative (but not strictly mathematical or arithmetic) reasoning.

From the results in Table 10, we observe that PHP still outperforms CoT, demonstrating the utility of
hinting beyond the arithmetic tasks. The proposed CoT+HM offers an improvement in accuracy over
the baselines for both of these datasets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 10: Mean and standard error of accuracy (in %) of reasoning for Date Understanding and
Object Tracking tasks using GPT-4o-mini. The highest accuracy among all competing algorithms is
marked in bold and the second-best accuracy in those cases is marked with an underline.

Algorithm Date
Understanding

Object
Tracking

CoT 91.9±1.4 96.4±0.7
PHP 93.5±1.3 97.7±0.5

CoT+SC 93.8±1.3 96.7±0.7

CoT+HM 94.6±1.2 98.0±0.5

8.8 DISCUSSION ON THE INTUITION OF USING HINTS

As Zheng et al. (2023) note, hinting allows humans to check their answers and improve upon their
previous solution to a given problem. We conjecture that in selecting its arithmetic answer, the LLM
assigns attention to the hint and in particular, its understanding of the phrase “close to x” provides
additional bias towards selecting a number that is closer to the suggested hint.

Additional support for the benefit of hinting is presented by (Fu et al., 2024). In their work, the LLM
is encouraged via in-context examples to prepare a hint before solving the problem. The developed
hints are more general than those we employ in our work, but the performance improvement in
reasoning is indicative of the potential value of a hint in directing an LLM towards a good solution.
Further evidence is provided by (Agrawal et al., 2024). In their work, a hint is generated using
a weaker LLM. This is observed to yield a performance improvement over multiple math-based
reasoning datasets.

8.9 ADDITIONAL RESULTS FOR COMPARING PROBABILITY OF CORRECT ANSWER

Figure 3 in the main paper shows that in comparison to CoT+SC and PHP+SC using GPT-4o-mini,
CoT+HM assigns higher probability to the correct answers for most of the ‘difficult’ questions across
all datasets. Figures 4 and 5 demonstrate that the same trend holds for both GPT-3.5-Turbo and
GPT-4-Turbo LLMs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

a) AddSub b) MultiArith c) SingleEQ

d) SVAMP e) GSM8K f) AQuA

Figure 4: Histogram of ranks of the algorithms (highest probability of the correct answer results
in the lowest rank) for the ‘difficult’ questions from all six datasets using GPT-3.5 Turbo

a) AddSub b) MultiArith c) SingleEQ

d) SVAMP e) GSM8K f) AQuA

Figure 5: Histogram of ranks of the algorithms (highest probability of the correct answer results
in the lowest rank) for the ‘difficult’ questions from all six datasets using GPT-4 Turbo

19

	Introduction
	Problem Statement
	Methodology
	Intuition
	Hint Marginalization
	Implementation
	Discussion

	Experimental results
	Benchmarks
	Models
	Baselines and Experimental Setting
	Results

	Related work
	Limitations
	Conclusion
	Appendix
	Hinting Prompt from zheng2023progressive
	Examples of full prompts
	Validity of Our Assumptions
	Experimental Results using Llama
	Results on the Math dataset
	Results for the `difficult' questions
	Other big-bench tasks beyond arithmetic reasoning
	Discussion on the intuition of using hints
	Additional Results for Comparing Probability of Correct Answer

