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Abstract: This research study utilized artificial intelligence (Al) to detect natural disasters
from aerial images. Flooding and desertification were two natural disasters taken into
consideration. The Climate Change Dataset was created by compiling various open-access
data sources. This dataset contains 6334 aerial images from UAV (unmanned aerial vehicles)
images and satellite images. The Climate Change Dataset was then used to train Deep
Learning (DL) models to identify natural disasters. Four different Machine Learning
(ML) models were used: convolutional neural network (CNN), DenseNet201, VGG16, and
ResNet50. These ML models were trained on our Climate Change Dataset so that their
performance could be compared. DenseNet201 was chosen for optimization. All four ML
models performed well. DenseNet201 and ResNet50 achieved the highest testing accuracies
of 99.37% and 99.21%, respectively. This research project demonstrates the potential of
Al to address environmental challenges, such as climate change-related natural disasters.
This study’s approach is novel by creating a new dataset, optimizing an ML model, cross-
validating, and presenting desertification as one of our natural disasters for DL detection.
Three categories were used (Flooded, Desert, Neither). Our study relates to Al for Climate
Change and Environmental Sustainability. Drone emergency response would be a practical
application for our research project.

Keywords: Al climate change; flooding; desertification; neural networks; CNN; transfer
learning; UAVs; remote sensing; satellite

1. Introduction

In this Section, we will first introduce the topic of climate change, the impact of climate
change and then climate change-related natural disasters. We will then review the relevant
literature on related Al studies. We will discuss the open-access data sources used and
relevant Al studies utilizing this data site. At the end of this Section, we will present the
significance and importance of this research study.

1.1. Introduction on Climate Change

According to the 2021 Intergovernmental Panel on Climate Change (IPCC) report, ev-
ery continent worldwide has exhibited a rise in average temperatures due to anthropogenic
climate change [1,2]. Heat waves, which developed before the Industrial Revolution with
a probability of 1 in 10, will now occur 2.8 times more often and be even hotter than
before [2]. Globally, thirty-seven percent of mortalities due to overheating were caused by
global warming [3]. Climate change has been made more apparent through the intensity
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of extreme weather events such as heatwaves, hurricanes, heavy precipitation, flooding,
etc. [1].

Flooding alone has led to over USD 610 billion in damages [1,4]. Research studies have
demonstrated that the rising intensity of floods has been driven by climate change [1,5-9].
This project addresses the detection of extreme weather, natural disasters, and the resulting
environmental degradation of land by utilizing AI, ML, and DL techniques.

Desertification can be described as the degradation of the land in arid, dry sub-humid,
semi-arid regions due to climate change and other anthropogenic activities [10,11]. Global
warming accelerates desertification [10,12]. The variations in weather patterns caused
by climate change exacerbate desertification [13]. Approximately 25% of the land surface
worldwide is being impacted by desertification [10,11,14]. Research modeling has predicted
that the (moderate—very high) risk of desertification will rise by twenty-three percent before
2100 in their high greenhouse gas emissions scenario [10].

1.2. Current Methods on Impact of Climate Change

Current methods to study the impact of climate change were explored [1,2,10]. Daily
maximum temperature measurements, heatwave duration, and heatwave frequency have
been utilized to measure and predict rising global average temperatures [1]. Clarke et. al.
utilized numerous sources to measure the negative impact from climate change-related
flooding events including insured damage, recorded deaths, precipitation, climate model
simulations, etc. Data from the IPCC report, which is a valuable resource regarding climate
change, were included in their article [2]. Huang et. al. utilized the global desertification
vulnerability index to describe and predict the climate change impacts from desertifica-
tion [10]. Carbon dioxide emissions, gross domestic product, population density, and
population growth were used to calculate the human activity index [10]. Temperature
anomaly, aridity index, and leaf area measurements were utilized to calculate the climate
environment index. Together, the human activity index and the climate environment index
determined the global desertification vulnerability index [10]. The impact of climate change
and desertification was indicated by this index. The current methodology in Al to study
the impact of climate change will be discussed later in Section 1.3.

Before our research study, desertification was not included as a natural disaster for DL
detection. Due to the impending threat of desertification and its ramifications, our project
includes a desertification category among the total categories considered for DL image
classification. Our novel dataset, the Climate Change Dataset, includes 1931 images within
the desertification category.

1.3. Related AI Research Studies

Other research studies have delved into Al detection of such extreme weather events
and natural disasters as flooding, etc. [15-19]. In a study by Daniel Hernédndez et al., their
research group developed an Al pipeline to detect natural disasters such as flooding [15].
Their project enables efficient processing of UAV images. Their study was limited by
the need for manual labeling of test images. Albandari Alsumayt et. al. proposed the
Flood Detection Secure System (FDSS), which utilized drones for image classification
of flooding events while keeping the data secure [16]. Their research study furthers
progress in cybersecurity efforts to secure and decentralize natural disaster monitoring
by UAVs. At that time, the research article was limited by not including the results from
the implementation of their proposal. Naili Suri Intizhami et al. present their flood area
dataset containing images of flooding in Indonesia. Their dataset also includes color-
labeled annotation for computer vision research on flooding identification [17]. Their
research study enables the potential for real-time natural disaster detection from social
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media images. They offer potentially valuable research for computer vision studies. Their
project is limited by the inconsistent image quality of videos on social media. Fatma
S. Alrayes et al. developed their own AISCC-DE2MS technique for emergency disaster
monitoring by drones, which includes encryption and image classification functionality [18].
Their project furthers cybersecurity efforts to secure drone communication during natural
disaster detection. Their study is limited by the dataset used to test their novel technique.
R. Karanyjit et al. introduced their novel dataset, Flood Image (FloodIMG), in combination
with DL techniques to classify flooding events [19]. Their dataset was assembled using the
Internet of Things (IoT) application programming interfaces they developed. Their study’s
natural disaster detection was limited to flooding. Our research project seeks to accurately
detect natural disasters such as flooding and desertification. Desertification has become an
increasingly critical matter, which has rarely been addressed previously in deep learning
Al disaster detection projects from images.

Recent research studies have explored how Al techniques have been applied to the
field of agriculture [20-22]. Malik et. al. studied the impact of climate stress on agriculture
in Jammu, Kashmir, and Ladakh [20]. Their research demonstrated the current methodology
for the impact of climate change on agriculture. Malik et. al. utilized two government
data sources containing data such as maximum/minimum temperatures [20]. Estimates on
agricultural growth were made using the Ricardian method [23]. An LSTM (long short-term
memory)-based neural network was used to predict future climate variabilities [20]. Their
results showed that climate change’s effect on climate variables had a negative impact
on agricultural growth [20]. A resulting decrease in landholdings, also, has a negative
impact on agricultural growth. Seelwal et al. reviewed how DL was utilized for rice disease
diagnosis [21]. Their review selected 69 studies related to rice disease and DL detection.
The most common machine learning model deployed was the CNN. Alkanan and Gulzar
studied Al corn seed disease classification [22]. They furthered Al research in the field of
agriculture. Their study utilized MobileNetV2 for image classification.

1.4. Al in Aerial Imagery

Tools to accurately detect and predict natural disasters are needed to prevent and lower
the resulting property damage along with the number of resulting mortalities. Significant
progress has been made in recent years in Al detection of natural disasters. These methods
often use remote sensing, satellite imagery, and/or unmanned aerial vehicle (UAV) images
in their training dataset [15,16,18,19]. Surveillance tactics are required to notify the public
in adequate time of impending danger from extreme weather events.

For decades now, satellites have been monitoring and providing beneficial observa-
tions of land and sea conditions [24] at moderate resolution and at coarse resolution. In
recent years, research studies have been able to utilize high-resolution satellite images of
less than five meters [25]. UAV imagery has also begun to play an increasing role in Al
research studies in the environmental science/agriculture fields [26-28].

Dilmurat et al. monitored changes in crops through UAV LiDAR and hyperspectral
imaging to accurately forecast maize yield with their H20 Automated Machine Learning
framework [26]. Damini Raniga et al. presented a workflow of Al detection and monitoring
of the health condition of the delicate vegetation in the East Antarctic’s protected area by
utilizing non-invasive UAV images [27]. Andrea Santangeli et al. were able to effectively
combine UAV thermal imaging with Al detection to precisely identify bird nests lying on
agricultural fields with the intent that their tractors should avoid the ground-level bird
nests [28].

UAVs, also known as drones, have been utilized for flood image classification/detection
purposes, as well [15,16,18]. For instance, Daniel Herndndez et al. proposed an Al-based
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pipeline, taking drone images of floods as input, extracting key features, reducing the
complexity of the feature data, grouping unlabeled images by similarity, and then sending
prototypes of the clusters for manual labeling of drone images by natural disaster first
responders [15].

UAV imagery has a higher spatial resolution than satellite imagery and can often offer
greater accuracy in image classification [29]. UAV images have many advantages besides
high-resolution imaging including the ease of transportation and deployment [25]. Drones
can be used during cloudy weather conditions and still produce quality aerial images [30].
UAVs used for Low Altitude Sensing Systems (LARS) offer enhanced flexibility [30]. Drones
cannot yet rival the amount of spatial area that satellites are able to cover but UAV data
could potentially complement and augment satellite data [25].

Several research studies have effectively combined both UAV and satellite remote
sensing imaging for classification/detection purposes [19,25,31]. Dash et al. performed a
controlled study on the effects of herbicide on P. radiata through analysis of both UAV and
satellite remote sensing imaging [25]. Karanjit et al. compiled images of flooding from a
variety of sources: Google Search, Twitter, DOT traffic cameras, GitHub, USGS, etc., with
huge variations in resolution size for Al-driven flood detection [19]. Marx et al. utilized
Landsat satellite data in combination with UAV images of remote areas uncaptured by
high-resolution satellite imagery to document deforestation and reforestation events [31].

1.5. Al Research Utilizing Our Data Source

An open-access data site, Kaggle, has become well-known and utilized in research
studies [32-37]. Kaggle datasets containing medical imaging have been used in disease
detection [32-34,36,37]. Hassan et al. utilized three benchmark datasets to present their
novel multi-stage deep neural network architecture for the detection of Alzheimer’s dis-
ease [32]. Land-use/land-categorization articles have benefited from Kaggle datasets, as
well [38,39]. Kwenda et al. introduce a hybrid approach combining deep neural networks
and ML algorithms trained on the deep globe challenge dataset for the purposes of image
segmentation of satellite images into forest vs. non-forest regions [38]. Natural Learning
Processing (NLP) research has also made use of Kaggle datasets [40]. Kaggle datasets can
be found in cybersecurity research [41]. Amnah Albin Ahmed et al. utilized ensemble
and DL models trained on the Android Ransomware Detection dataset for the detection
of such cyberattacks [41]. Kaggle competitions have even been studied and analyzed in
research journals [35,42]. Souhaib Ben Taieb and Rob J. Hyndman analyzed the approach
used by their team in the Load Forecasting track of the Kaggle Global Energy Forecasting
Competition [42].

This research focuses on Al-based flood detection. Previous studies have utilized
Kaggle datasets for flood detection [17,19]. Naili Suri Intizhami et al. posted one such
open-access dataset [17]. Intizhami et al. utilized images posted on social media of flooding
in South Sulawesi Indonesia [17]. With these images, Intizhami et al. built their own
dataset color annotated with six different classes for use by ML/DL models for image
segmentation purposes [17]. This project trained ML /DL models on our Climate Change
Dataset compiled from various related Kaggle datasets.

1.6. Purpose of Our Research Study

The aim of this project was (1) to harness the capabilities of AI, ML, DL, and Data
Science to tackle complex environmental issues; (2) to utilize existing aerial images to build
AI/ML models to detect natural disasters such as flooding or desertification; and (3) to
demonstrate the ability of AI/ML to be used for humanitarian efforts such as research on
climate change crisis problems. To achieve these goals a dataset was compiled of aerial
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images, machine learning models were built, transfer learning was utilized, and one of our
top-performing ML models was optimized.

We hypothesize that DL image classification techniques can detect climate change-
related natural disasters, such as flooding and desertification, based on aerial images of
the given area with an accuracy surpassing seventy percent. The significance of this study
is due to the increase in the incidence and intensity of climate change-related extreme
weather events and natural disasters. There is a call for a more robust response to natural
disasters. Al detection of natural disasters could be utilized by drone emergency response.
This study contributes to the literature by (1) offering a novel dataset with over 6 K
images, (2) providing DL model optimization techniques, (3) including desertification as a
natural disaster for DL detection purposes, (4) utilizing cross-validation dataset methods,
(5) comparing ML model performance for our dataset, and (5) offering natural disaster
detection methods for drone emergency response purposes.

2. Materials and Methods

In this Section, we will first introduce the dataset we collected for this work, followed
by the data pre-processing, model building, and selections, and then experiment setup and
evaluation metrics.

2.1. Compiling the Climate Change Dataset

We will now explain how our dataset was assembled. Over 6.3 K aerial images from
unmanned aerial vehicles and satellite images were collected and used to form the compiled
Climate Change Dataset, totaling 6334 images. A colleague in Al research recommended
that we try the open-access data site, Kaggle [43]. Multiple datasets from Kaggle [43] were
utilized including Louisiana Flood 2016 [44], FDL_UAV_flood areas [45], Cyclone Wildfire
Flood Earthquake Database [46], Satellite Image Classification [47], Disaster Dataset [48],
Aerial Landscape Images [49], Aerial Images of Cities [50], and Forest Aerial Images for
Segmentation [51].

e  The Louisiana Flood 2016 [44] dataset:

O contained aerial images from the historic flooding that occurred in Southern
Louisiana in 2016. For each image taken during the flood, there was a corre-
sponding image before/after the flood.

O image size: 512 x 360 pixels.

e The FDL_UAV_flood areas [45] dataset:

O contained aerial images of Houston, TX from Hurricane Harvey. The dataset
contains both flooded and unflooded images.
O the image dimensions were approximately 3 K x 4 K pixels.

e  The Cyclone Wildfire Flood Earthquake Database [46]:

O contained videos and images from various natural disasters. We selected
images from the Flood folder. These images were obtained from a Google
search on each natural disaster included in the dataset.

@) the images were of variable sizes.

e  The Satellite Image Classification [47] dataset:

@) was created from sensors and Google Map snapshots.
O images size: 256 x 256 pixels.

e  Disaster Dataset [48]:

O contains images from numerous natural disasters.
@) the images were resized to 224 x 224 pixels.
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e  Aerial Landscape Images [49]:

O curated dataset of aerial landscapes from 2 publicly available data sources,
AID and NWPU-Resisc45 [52,53]. This dataset was intended for the field of
computer vision. Of their 15 total categories, we selected the Desert category.

O image size: 256 x 256 pixels.

e  Aerial Images of Cities [50]:

O urban aerial landscape images compiled from AID [52] and NWPU-Resisc45 [53]
datasets.
O images of size: 256 x 256 pixels.

e  Forest Aerial Images for Segmentation [51]:

O satellite images of forest land cover. Dataset was obtained from Land Cover
Classification Track in DeepGlobe Challenge [51].
O images resized to 256 x 256 pixels.

The Climate Change Dataset contains 3 categories: Flooded, Desert, and Neither.
Both flooding and desertification are climate change-related natural disasters. The Neither
category represents those images that are neither flooding nor desertification. These
8 datasets were found by a search through the Kaggle data site. The datasets with the
most copious and relevant images were selected. Preference was given to more recently
posted datasets. Unless specified above, the datasets listed above mentioned no further
preprocessing steps. Our own preprocessing steps are mentioned below in Section 2.2.

The Flooded category contains over 2 K aerial images of flooded residential areas
(2338 images). Pertinent images for the Flooded category were selected from Louisiana
Flood 2016 [44], FDL_UAV_flooded areas [45], Cyclone Wildfire Flood Earthquake
Database [46], and the Disaster Dataset (subset comprehensive disaster dataset/water
disaster and the disaster dataset final/flood subset) [48]. These datasets were found by
a search of flooded images from the same open-access data site. Preference was given to
larger datasets.

The Desert category contains approximately 2 K aerial images of desert areas (1931 images).
Relevant images for the Desert category were selected from Satellite Image Classification (Desert
subset) [47] and Aerial Landscape Images (Desert subset) [49]. The Satellite Image Classification
dataset [47] was recommended by a colleague in Al research. The Aerial Landscape Images
dataset [49] was found through a search on Kaggle for desert images. Each dataset was chosen
for its numerous images related to the desertification category.

The Neither category contains over 2 K aerial images of non-flooded residential
areas and non-flooded forested areas (2065 images). Table 1 shows the image count
for each data source. Qualifying images were selected from Louisiana Flood 2016 [44],
FDL_UAV_flooded areas [45], Aerial images of Cities (Residential subset) [50], Disasters
Dataset (neutral images subset) [48], and the Forest Aerial Images for Segmentation [51].
Images of unflooded residential images were needed. The Louisiana Flood 2016 [44],
FDL_UAV_flooded areas [45], Aerial images of Cities [50], and the Disasters Dataset [48]
each contained a subset of unflooded residential images. The Aerial Images of Cities
dataset [50] was found via a search on Kaggle for residential areas. The Forest Aerial
Images for Segmentation dataset [51] contained images of non-flooded forest areas. This
dataset was found by a search on the same open-access data site for forest images. These
datasets contributed to the Neither category.
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Table 1. Climate Change Dataset Image Counts.

Total Image

Name of Dataset Flooded Desert Neither

Count
Louisiana Flood 2016 [44] 263 102 0 161
FDL_UAV_flood areas [45] 297 130 0 167
Cyclone, Wildfire, Flood,
Earthquake Database [46] 613 613 0 0
Satellite Image Classification
Disaster Dataset [47] 1131 0 1131 0
Disasters Dataset [48] 1630 1493 0 137
Aerial Landscape Images [49] 800 0 800 0
Aerial Images of Cities [50] 600 0 0 600
Forest Aerial Images for
Segmentation [51] 1000 0 0 1000
Totals 6334 2338 1931 2065

The image dimensions include variable sizes ranging from (224 x 224 pixels) to (over
3 K pixels x over 4 K pixels). Both jpeg and png image formats were used in the dataset.
Representative images can be seen in Figure 1. To avoid an imbalance of classes, we strove
for each category to contain 1/3 of the total images. Our goal was to find at least 6 K relevant
images with 2 K in each of the three categories. Unfortunately, fewer images related to
desertification were found. From preliminary results on a smaller dataset, we found that
the ML models were very precise at identifying the desert category. For this reason, we
allowed the desert category to contain slightly fewer images than the other categories.

DESERT

NEITHER NEITHER

Figure 1. These are example images from the Climate Change Dataset. The example images on top
show an example image from the Flood and Desert category. On the bottom row, the example images
show the corresponding example image from the Neither category.
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2.2. Preprocessing and Model Initiation

Images from the Climate Change Dataset were screened and selected through a
vigorous quality control process. Images were filtered to screen out: non-aerial images,
logos, borders, and extremely blurry images. The datasets were manually perused and
subjected to this quality control screening. Only images related to their appropriate category
remained within the Climate Change Dataset.

During preprocessing, the images from the Climate Change Dataset were resized to
64 x 64 pixels to fit the CNN model we built. The 64 x 64 pixels image size was chosen
for a faster ML run speed. Alternatively, for the transfer learning models, the images were
resized to 224 x 224 pixels instead to fit those models. Next, the dataset was split into
the training set (80%) and testing set (20%). The Climate Change Dataset, following these
preprocessing steps, was then loaded into our 4 ML models.

2.3. VGG16 Network Model

In this Section and in the next few Sections, we will discuss the 4 ML models utilized
in our study. VGG16 [54] was chosen for its reputation as a high-performing ML model for
image classification. VGG refers to the Visual Geometric Group from Oxford University
where Simonyan and Zisserman developed the VGG network model [54]. The VGG-16
model included 3 fully connected layers and 13 convolutional layers. We used the VGG-
16 model pre-trained on the ImageNet dataset [55]. The VGG network model became
well known when the model received one of the top prizes for the ImageNet Large Scale
Recognition Challenge in 2014 [56]. VGG [54] outperformed other ML models during the
image classification challenge through its deep architecture of 16 to 19 weight layers with
small (3 x 3) convolution filters [54]. The VGG16 [54] model architecture can be seen in
Figure 2.

CNN
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Figure 2. These diagrams represent the model architecture of 3 of the ML models used (CNN,
VGG16, ResNet50). The left arrows represent input loading into the ML model. CONV stands for
convolutional layers. POOLING stands for pooling layers (max, average, or global). DATA AUG
stands for a Data Augmentation layer. The purple arrows represent skip connections. The right arrow
represents the output of the ML model.
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2.4. DenseNet201 Network Model

DenseNet [57] was recommended by a colleague in Al research for the ML model’s
high testing accuracy. The DenseNet201 [57] network model is a Dense Convolutional
network. The dense connections lead to higher testing accuracy when compared to other
network models. Each layer of the DenseNet [57] model receives input from all preceding
layers in a feed-forward fashion [57]. Features from the various layers of the DenseNet [57]
model are concatenated together, which encourages the reuse of learned features. These
characteristics of DenseNet’s [57] model architecture have led to DenseNet’s [57] outstand-
ing performance [57]. DenseNet'’s [57] dense connections alleviate the vanishing gradient
problem, as well [57].

DenseNet [57] was further optimized to increase the testing accuracy for natural
disaster detection. Numerous layers were added to the model architecture. These layers
are discussed below. The basic DenseNet201 [57] model architecture and the DenseNet201
Optimized [57] model architecture are shown in Figure 3.

DENSENET 201
0 0 0 0 0
> 2 wx 2z ux 2z 5 5 2z 5= z| -
2> 28 2: 28 23 28 |2: 28 ¢
0 O w3 0 O w3 00 w3 0 O w3 0 w
00 o @ 0 0 o@ 0 0 o @ 0 0 o @ 0 o
Y a o [} Q
DENSENET 201 OPTIMIZED
) =
2 L g 2 w w w
3 253 MWiimZ 2 @
Ié- R 8'.--1 ] ]
e Al = o o o

Figure 3. These diagrams represent the model architecture of 2 of the ML models used (DenseNet201
Basic and DenseNet201 Optimized). The left arrows represent input loading into the ML model.
CONYV stands for convolutional layers. POOLING stands for pooling layers (max, average, or global).
DATA AUG stands for a Data Augmentation layer. DENSENET201 refers to the pre-trained version
of the model. DENSE BLOCK represents several Dense layers with each layer receiving input from
the preceding layer in a feed-forward fashion. The right arrow represents the output of the ML model.

2.4.1. Data Augmentation Layer

Data augmentation increases the diversity of your dataset [58]. This Keras prepro-
cessing experimental layer, called the data augmentation layer, adjusts images for better
testing accuracy of new data. These adjustments increase the variety of images available
from smaller datasets. Zoom, contrast, flip, and brightness are all examples of possible
adjustments that can be made to the images in the dataset. Several random transformations
are applied to the images to accomplish this task. Random contrast and random zoom
transformations were applied to our dataset of images. Random contrast was set to 0.3
and random zoom was set to 0.1. The data augmentation layer is a helpful tool to increase
testing accuracy [58].

2.4.2. Rescaling Layer

A rescaling layer was added to the ML model architecture. The images were normal-
ized by rescaling the original pixel values to values between 0 and 1. The empirical method
was used, which divides the pixel intensity value by 255. Normalizing the pixel intensity
through the empirical method yields higher testing accuracies for ML classification [59].
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2.4.3. Global Average Pooling Layer

A Global Average Pooling (GAP) layer was added to our DenseNet [57] model. The
GAP layer takes the average of the feature map for each category. This layer is useful in
avoiding overfitting [60].

2.4.4. Dropout Layer

The overfitting of neural networks to training data is a serious problem that can be
avoided by the addition of a dropout layer [61]. A dropout layer was added to reduce
overfitting of our DenseNet [57] model to the data. A portion of neurons was excluded
to promote variations in the data. A dropout rate of 0.2 was selected. The dropout layer
enhances the capability of our DenseNet [57] model to generalize new, never seen, data [32].

2.4.5. Fully Connected Layer and Classifier

The fully connected layer (FC) is a key, integral part of convolutional neural net-
works [62]. For shallow CNNS, the FC layer is required since the features found by the last
convolutional layer of a shallow CNN do not cover the entire spatial image [62]. Instead,
only a portion of the overall image is being represented in the feature map. For FC layers,
each neuron in the layer is connected to each neuron in the previous layer enabling high-
level feature extraction [32]. For our DenseNet [57] model, we used 3 FC layers containing
64, 64, and 3 neurons.

Located in the final layer, the SoftMax classifier is crucial for accurate image classifica-
tion. The SoftMax classifier assigns a probability between 0 to 1 for each category, giving
an indication of the confidence level of the model’s prediction [32]. The summation of
probabilities totals 1.

2.5. ResNet50 Network Model

We utilized ResNet [63] in our Python model due to its history of outperforming in
ML challenges. In 2015, the ResNet50 [63] network model received one of the top prizes
in the ImageNet Large Scale Recognition Challenge. The ResNet50 [63] network model is
a CNN containing 50 layers. The vanishing gradient problem leads to higher error rates
in neural networks as the network becomes deeper [64]. This challenge was overcome
with the skip connection technique incorporated into the ResNet50 [63] model. The skip
connection creates a shortcut between layers in order to enable a direct connection to
the output [64]. ResNet50 outperformed many other ML models in image classification
problems by alleviating the vanishing gradient problem [63]. The ResNet50 [63] model
architecture can be seen in Figure 2.

2.6. Transfer Learning Framework

ML models (VGG16 [54], DenseNet201 [57], ResNet50 [63]) pre-trained on the Im-
ageNet dataset [55] were utilized for our ML module. Features learned previously to
make predictions were applied to this new problem of climate change-related natural
disaster detection. The transfer learning framework is visualized in Figure 4. Trans-
fer learning models have been well documented for yielding high testing accuracies on
new datasets [33,51,56,64]. Our Climate Change Dataset was loaded into each of these
pre-trained ML models. New predictions were then made utilizing transfer learning tech-
niques. Three pre-trained ML models were compared: VGG16 [54], DenseNet201 [57],
and ResNet50 [63]. All three transfer learning models were selected for their superior
performance on image classification challenges. The top-performing ML model out of the
numerous pre-trained transfer learning models being compared can often vary dependent



J. Imaging 2025, 11, 32

11 of 23

on the dataset being used. For example, Abu et. al. found DenseNet to perform the best on
their dataset [65] but Yang et. al. found ResNet to perform the best on their dataset [66].

ImageNet

TRANSFER
Learning

DenseNet

Predictions B Predictions A

Figure 4. Transfer Learning Framework.

2.7. Convolutional Neural Network (CNN) Model

We built our own rudimentary convolutional neural network (CNN) for the purpose
of detecting climate change-related natural disasters. A detailed review of layers utilized in
ML models is given in Section 2.4.

2.7.1. CNN Layers

A quick mention of the layers utilized in our CNN model will be revealed in this
Section. The CNN model we built contains the following:

1 rescaling layer;

1 data augmentation layer;
3 convolutional layers;

3 pooling layers;

1 drop-out layer;

3 fully connected (FC) layers.

The final layer utilizes a SoftMax classifier for image classification. The rescaling layer
normalized the image data from the original pixel intensity values into values between
0 and 1. The empirical method was used when the original pixel intensity values were
divided by 255. In the data augmentation layer, we selected random contrast at 0.3 and
random zoom at 0.1. The convolutional layers took an initial input of 64 x 64 x 3 with
ReLU activation. Detailed information on the pooling layers is given below. For the drop-
out layer, we selected 0.4 to reduce overfitting and to improve testing accuracy. The three
FC layers contained 32, 64, and 3 neurons each. Our CNN model architecture can be seen
in Figure 2.
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2.7.2. Pooling Layers

Three pooling layers were added to our CNN model. Average pooling was used
for the first pooling layer. Average pooling calculates the average value for the given
region [67]. Max pooling was used for the last two pooling layers. Max pooling selects
the largest value for the given region. Both average pooling and max pooling are feature
extraction techniques. The pooling layer takes the feature map from the previous layer and
pools the data from small local regions to build a new feature map with reduced spatial
dimension [67].

2.8. Experimental Setup

This Section describes the hardware and software environment used to run the experi-
ments with different ML Python modules. The running of Transfer Learning modules is
memory intensive. For this reason, our ML module was run with Google Colab Tensor
Processing Unit (TPU) high-RAM v2-8 cloud. Google Colab was used for the following:

e  Collaborate online with code/feedback;
e  Accelerate our ML workload with Google GPUs/TPUs;
e  Utilize Google’s cloud computing resources.

The code was written in Python version 3.11.1. TensorFlow, Keras, and Scikit-Learn
ML libraries were installed and utilized throughout our ML module.

2.9. Evaluation Metrics

In this Section, we explain the evaluation metrics used to measure the performance
of our ML models while providing the pertaining formulas, as well [38]. We utilized
the following metrics: Accuracy, Confusion Matrix, Precision, Recall, and F1-Score. The
Confusion Matrix was chosen to visually display the performance of our ML models. The
predicted and actual classifications were compared within the confusion matrices. These
tables show true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). Accuracy calculates the fraction of correct predictions per total predictions made by
the ML model. The accuracy formula is given in Equation (1).

TP+TN
TP+TN+FP+FN

Accuracy = (1)

Recall, also known as sensitivity, calculates the fraction of positives predicted correctly
by the ML model per total actual positives in the batch. The Recall measures the ML model’s
capability of correctly identifying the total actual positive cases. The Recall formula is

expressed in Equation (2).
TP

TP+ FN

Precision calculates the fraction of true positives per total positives predicted by the

Recall = ()

ML model. Precision is a measure of the quality of the ML model’s positive predictions.
The Precision formula is given in Equation (3).

TP

2 .. __
recision TP + FP

)
The F1 score measures an ML model’s performance based on the precision and recall
values. This metric calculates the harmonic mean of the precision and recall values [38].
The F1 Score formula is provided in Equation (4).
Precision x Recall

F18S =2 4
core ¥ Precision + Recall @)
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2.10. Cross-Validation Methods

For cross-validation purposes, one data subset was chosen to be removed from the
larger full dataset. The first dataset left out was the Aerial Landscape Images [49] dataset
from the training set. Altogether, two datasets were utilized for this technique. The second
dataset contained the data subset [49]. For cross-validation purposes, our Python module
was run with a testing set containing the full dataset including the data subset [49], even
though, the ML model was not trained on that particular subset of data. We utilized a cross-
validation technique related to the Leave-One-Out Cross-Validation dataset method [68].

3. Results

In this Section, we provided our experimental results. We began by displaying the
individual performance of our four ML models (VGG16 [54], CNN, ResNet50 [63], and
DenseNet201 [57]) for climate change-related natural disaster detection. A comparison of
the four ML models was made. Optimization techniques were discussed. We demonstrate
how performance was improved with optimization. Finally, we juxtaposed two of our
highest-performing ML models, ResNet50 [63], and DenseNet201 [57]. Testing accuracies
and testing loss were plotted for all four ML models. The testing set was used for validation
purposes. The cross-entropy loss was calculated for the validation loss graphs.

3.1. Individual Model Performance

We demonstrate the performance of each single ML model by visually displaying each
ML model’s testing accuracy, testing loss, and confusion matrix across 70 epochs. We used
a batch size of 64.

3.1.1. VGG16 Performance

Our VGG16 [54] model displayed a relatively high validation accuracy. A final valida-
tion accuracy of 96.13% was reached after 70 epochs, as seen in Figure 5.

Training & Validation Accuracy of VGG16 Training & Validation Loss of VGG16

—— Training Loss
——— — E Validation Loss

0.6 —— Training Accuracy @
Validation Accuracy K]

Accuracy

0.0 0
0 10 20 30 40 50 60 70 o 10 20 30 40 50 60 70

Epoch Epoch

Figure 5. The left figure shows the accuracy curve for our VGG16 model. The right figure shows the
loss curve for our VGG16 model.

The confusion matrix for VGG16 [54] can be seen in Figure 6. Label 0, the Desert
category, showed the highest precision among categories. Less than 4% of the time, when
an image from our Climate Change Dataset was inaccurately predicted, then that image
was most likely from the Neither category, label 2.

In Table 2, the Desert category demonstrated an extremely high precision, recall, and
F1-Score of 0.99. The Neither category had a lower recall and F1-Score of 0.94.
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Figure 6. Confusion matrix for VGG16 after 70 epochs.
Table 2. Evaluation of our VGG16 model image classification results.
Category Precision Recall F1-Score
Desert 0.99 0.99 0.99
Flooded 0.95 0.96 0.95
Neither 0.95 0.94 0.94

3.1.2. DenseNet Performance

Our DenseNet201 [57] Optimized model displayed extremely high validation accuracy
of over 97% at epoch 1. The extremely low testing loss can be seen in Figure 7, as well. Our
DenseNet201 [57] Optimized model reached 99.45% validation accuracy after 70 epochs.

DenseNet Accuracy Plot w0 DenseNet Loss Plot
10 —— Training Set Loss
! ’r"""’_ﬁ 35 —— Testing Set Loss
08 el
25
>
2 06 —— Training Set Accuracy @
E —— Testing Set Accuracy §20
0.4 15
1.0
0.2
0.5
0.0 0.0 = — =
[ 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Number of Epochs Number of Epochs

Figure 7. The left figure shows the accuracy curve for our DenseNet201 Optimized model. The right
figure shows the loss curve for our DenseNet201 Optimized model.

All actual occurrences of label 0, the Desert Category, were accurately predicted by
our DenseNet201 [57] Optimized model. As can be seen in the confusion matrix shown in
Figure 8. Less than 1% of the time, when an image was predicted incorrectly, the image
belonged to the Neither category, label 2.

The flooded category has one of the highest precision scores of 1.0 when classified
by our DenseNet201 [57] Optimized model. Table 3 reveals the extremely high overall
precision, recall, and F1-Scores for our DenseNet201 [57] Optimized model.
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Figure 8. DenseNet201 Optimized model after 70 epochs.

Table 3. Evaluation of our DenseNet201 Optimized model image classification results.

Category Precision Recall F1-Score
Desert 0.99 1.0 1.0

Flooded 1.0 0.99 0.99
Neither 0.99 0.99 0.99

3.1.3. CNN Performance

Our CNN model was trained on our Climate Change Dataset. As can be seen in
Figure 9, our CNN model displayed 94.00% accuracy after 70 epochs.

Training & Validation Accuracy of my CNN s Training & Validation Loss of my CNN
1.00 .

—— Training Loss
3.0 — Validation Loss

25

2.0

Loss

15

10

—— Training Accuracy 0.5
—— Validation Accuracy

T T T T T T T T 0.0 T T T T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Epoch Epoch

Figure 9. The left figure shows the accuracy curve for our CNN model. The right figure shows the
loss curve for our CNN model.

The Desert category, label 0, was predicted by our CNN model with high accuracy,
according to the confusion matrix seen in Figure 10. Six percent of the time, when an
image from our dataset was incorrectly predicted, then that image belonged to the Neither
category, label 2.

According to Table 4, when compared to other categories, our CNN model demon-
strated the highest scores for the Desert category with precision, recall, and Fl-score
reaching 0.99. The Neither category demonstrated a lower score of 0.88 on recall.
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Figure 10. Confusion matrix for our CNN model after 70 epochs.

Table 4. Evaluation of our CNN model image classification results.

Category Precision Recall F1-Score
Desert 0.99 0.99 0.99

Flooded 0.88 0.96 0.92
Neither 0.96 0.88 0.92

3.1.4. ResNet Performance

Our ResNet50 [63] model reached validation accuracies of nearly 100%, as demon-
strated in Figure 11. The final validation accuracy after 70 epochs was 98.74% on a sepa-

rate run.
ResNet Accuracy Plot ResNet Loss Plot
10
—— Training Set Loss
1.0 o=
T — Testing Set Loss
8
0.8 4
> 6
2 0.6 "
c @
3 K}
< 4
0.4
0.2+ 21
—— Training Set Accuracy
—— Testing Set Accuracy \
0.0 T T T T 0 T T T T
[ 10 20 30 40 50 60 70 [ 10 20 30 40 50 60 70

Number of Epochs Number of Epochs

Figure 11. The left figure shows the accuracy curve for our ResNet50 model. The right figure shows
the loss curve for our ResNet50 model.

The Desert category, label 0, was predicted accurately upon each actual occurrence
and every prediction for the desert category was accurate, as well. The confusion matrix in
Figure 12 shows the flawless predictions by our ResNet50 [63] model for the Desert category.

Table 5 confirms that the Desert category has a score of 1.0 for precision, recall, and

F1-Score by our ResNet50 [63] model. The Neither category received a score of 0.98 for
precision, recall, and F1-Score.
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Figure 12. Confusion matrix for our ResNet50 model after 70 epochs.

Table 5. Evaluation of our ResNet50 model image classification results.

Category Precision Recall F1-Score
Desert 1.00 1.00 1.00

Flooded 0.98 0.99 0.98
Neither 0.98 0.98 0.98

3.2. ML Model Comparison

In this Section, we compare and contrast the performance of our four ML models for
the task of climate change-related natural disaster detection. Our ML Python Module was

run over 100 epochs with a batch size of 128. The testing accuracies and testing loss can be
seen in Figure 13.

i i Loss Plot
Validation Accuracy

1.05 —— Testing Set Loss: CNN

5.5 — Testing Set Loss: VGG
—— Testing Set Loss: DenseNet

1.00 —— Testing Set Loss: ResNet

0.80 —— Validation Accuracy: CNN \\J\Vr/\,w\ﬂ\\/,, —— B
— Validation Accuracy: VGG
0.75 —— Validation Accuracy: DenseNet 03
— Validation Accuracy: ResNet MW_A—A
0.70 T T T T T T
0 20 40 60 80 100 00

o 20 40 60 80 100
Epoch Number of Epochs

Figure 13. The left figure shows the accuracy curve for all 4 of our ML models (CNN, VGGI16,
DenseNet201 Optimized, ResNet50). The right figure shows the loss curve for all 4 ML models.

As seen in Table 6, after 100 epochs, our ResNet50 [63] model and our DenseNet201 [57]
Optimized model reached similar high validation accuracies of 99.21% and 98.89% respec-

tively. Our VGG16 [54] model converged to a validation accuracy between our CNN model
and our DenseNet201 Optimized [57] model.
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Table 6. Validation accuracy of our 4 ML models.

ML Model Validation Accuracy
CNN 0.9368
VGG16 [54] 0.9581
DenseNet201 [57] Optimized 0.9889
ResNet50 [63] 0.9921

3.3. Optimization of DenseNet

Our DenseNet201 [57] model performed well during preliminary results from a smaller
dataset and was, therefore, chosen for optimization. The DenseNet201 [57] Optimized
model contained additional layers such as a Rescaling layer and a Data Augmentation
layer. The two ML models, our basic DenseNet201 [57] and our DenseNet201 [57] Op-
timized, were run over 50 epochs with a batch size of 64. The performance of both our
basic DenseNet201 [57] model and our DenseNet201 [57] Optimized model can be seen
in Figure 14. The basic DenseNet201 [57] model, across epochs, converged to a valida-
tion accuracy lower than the optimized DenseNet201 [57] model. The optimized model
with Rescaling and Data Augmentation layers has yielded consistently higher validation
accuracies. The validation loss is much lower for the optimized model, as well.

Validation Accuracy - Loss Plot

— Testing Set Loss: DenseNet

\/\/\/-\W Testing Set Loss: DenseNet Optimized
84

0.6 : 21
—— Validation Accuracy: DenseNet

—— Validation Accuracy: DenseNet Optimized

0.5 - T T T T T 0 T T T T
) 10 20 30 40 50 ) 10 20 30 40 50

Epoch Number of Epochs

Accuracy
Loss

Figure 14. The left figure shows the accuracy curve for our basic DenseNet201 model vs. our
DenseNet201 Optimized model. The right figure shows the loss curve for our basic DenseNet201
model vs. our DenseNet201 Optimized model.

According to Table 7, our DenseNet201 [57] Optimized model yielded a higher valida-
tion accuracy than our basic DenseNet201 [57] model.

Table 7. Validation accuracy of our DenseNet201 model before and after optimization.

ML Model Validation Accuracy Validation Loss
DenseNet201 [57] 0.9755 1.5234
DenseNet201 [57] 09913 0.019

Optimized

3.4. ResNet vs. DenseNet Optimized

In our previous Section 3.2, the ResNet50 [63] model and the DenseNet201 [57] Op-
timized model appeared to perform similarly on the validation accuracy plot. To more
clearly visualize their performance, our ResNet50 [63] model was juxtaposed with our
DenseNet201 [57] Optimized model for a longer run over more epochs. Our ML Python
module was run for 200 epochs with a batch size of 128. The validation accuracies for our
DenseNet201 [57] Optimized model oscillated from approximately 0.987-0.998, as can be
seen in Figure 15. DenseNet201 [57] Optimized demonstrated a lower testing loss and a
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consistently higher testing accuracy when running 200 epochs. The ResNet50 [63] model
converged to a validation accuracy lower than the DenseNet201 Optimized [57] model’s
validation accuracy over the vast majority of the epochs.

Validation Accuracy Loss Plot
1.005 0.45

—— Testing Set Loss: DenseNet Optimized
1.000 0.40 1 —— Testing Set Loss: ResNet

WWMMMMMMWW =
| *

0.985 4

Loss
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0.980 A
0.15 _—

0.975 1
0.970 4 —— Validation Accuracy: DenseNet Optimized 0.05 1
Validation Accuracy: ResNet
0.965 0.00
[ 25 50 75 100 125 150 175 200 [ 25 50 75 100 125 150 175 200

Epoch Number of Epochs

Figure 15. The left figure shows the accuracy curve for our DenseNet201 Optimized model vs. our
ResNet50 model. The right figure shows the loss curve for our DenseNet201 Optimized model vs.
our ResNet50 model.

As can be seen in Table 8, our DenseNet201 [57] Optimized model reached a higher
validation accuracy of 99.37% after 200 epochs.

Table 8. Validation accuracy of our ResNet50 model and our DenseNet201 Optimized model.

ML Model Validation Accuracy
ResNet50 [63] 0.9921
DenseNet201 [57] Optimized 0.9937

3.5. Cross-Validation

In this Section, we cross-validate the performance of our four ML models for the task
of climate change-related natural disaster detection. Our ML Python Module was run over
100 epochs with a batch size of 128. As can be seen in Table 9, the validation accuracies for
all four ML models remained high, with validation accuracies over 95%.

Table 9. Cross-Validation accuracy of our 4 ML models.

ML Model Validation Accuracy
CNN 0.96
VGGL16 [54] 0.97
DenseNet201 [57] Optimized 0.96
ResNet50 [63] 0.97

4. Discussion

Our compiled Climate Change Dataset provided enough images for our ML models
to extract key features in accurately detecting the natural disasters examined in this study.
Our four ML models all performed well at climate change-related natural disaster detection
based on images from our Climate Change Dataset. The four ML models, VGG16, CNN,
DenseNet201 Optimized, and ResNet50, all reached high validation accuracies of 95.81%,
93.68%, 98.89%, and 99.21%, respectively, over 100 epochs. The categories in our dataset
were easy for our ML models to distinguish.

Our DenseNet201 model was selected for optimization techniques such as data aug-
mentation. DenseNet201 was selected due to its superior performance in preliminary
results from a smaller dataset. Validation accuracy increased from 97.55% to 99.13% when
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additional layers were added to DenseNet201 for optimization purposes. The testing set
loss was lower, as well, with cross-entropy loss dropping from 1.5234 to a much lower cross-
entropy loss of 0.0196. Adding a Dropout layer, a Rescaling layer, and a Data Augmentation
layer improved the performance of our DenseNet201 model. Rescaling layers and Data
Augmentation layers have been shown to increase testing accuracies [58,59]. Both Dropout
layers and Data Augmentation layers help prevent overfitting of ML models [58,61].

Although all four ML models performed well at natural disaster detection, ResNet50
and DenseNet201 Optimized yielded higher validation accuracies and appeared to demon-
strate similar performance on the validation accuracy plot (Figure 15). Both ML models
have a model architecture that alleviates the vanishing gradient problem of deeper mod-
els [57,63]. Oluibukun Gbenga Ajayi and John Ashi found that the ML model validation
accuracy showed an increasing upward trend as the number of epochs increases until the
validation accuracy finally converges [69]. We ran the two ML models over a higher epoch
count to compare the two ML models. ResNet50 and DenseNet201 Optimized reached
99.21% and 99.37%, respectively, over 200 epochs. From Figure 15, the DenseNet201 Opti-
mized model consistently yielded higher testing accuracy than the ResNet50 model over
the span of 200 epochs the vast majority of the time. Still, the difference between the two ML
models’ testing accuracy was slight. For ML professionals that prefer validation accuracies
in the 90-97% range, then our VGG16 and our CNN models would suit their purposes
better. Our CNN needed to find the important features and ignore any noise in the data for
accurate DL detection. Therefore, the learning process was gradual for our CNN.

High testing accuracy at the beginning could mean that our other ML models were
overconfident. We were concerned about overfitting occurring from the beginning of our
project. Overfitting can be detected in the loss curves [70]. In the case of overfitting, the
validation loss curve would increase and be much higher than the training loss curve [70].
Our loss curves decline gradually across epochs.

We cross-validated our results. We utilized a cross-validation technique related to
the Leave-One-Out Cross-Validation dataset method [68]. Testing accuracies were still
relatively high. All four ML models obtained a final testing accuracy of over 95%.

For future improvements, more images could be added to our dataset. More categories
could be added, as well. Wildfires could be added to the list of climate change-related
natural disaster categories. To further our research project, our Python module could be
applied to drone emergency response. After the natural disaster is detected, survivors
could be located by the UAV. Aid could then be rendered by programming the UAV to
provide life-saver safety vests to the survivors in the case of a flood. Our study was limited
by the reliance upon the amount of data within our dataset and by the data source. Our
project was also limited in the number of natural disaster types considered for our study.

Our study highlights the power of Al in addressing some of the most pressing en-
vironmental challenges. This project demonstrated how interdisciplinary efforts can be
integrated to find comprehensive solutions to global problems. Our study intended to use
Al for Climate Change and Environmental Sustainability. We are determined to use Al for
the benefit of society, particularly in mitigating the negative effects of climate change.

The Python module is available upon request. Contact the corresponding author.
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