
Under review as a conference paper at ICLR 2024

CAN EUCLIDEAN SYMMETRY HELP IN
REINFORCEMENT LEARNING AND PLANNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

In robotic tasks, changes of reference frames do not affect the underlying physics
of the problem. Isometric transformations, including translations, rotations, and
reflections, collectively form the Euclidean group. In this work, we study rein-
forcement learning and planning tasks that have Euclidean group symmetry. We
show that MDPs with continuous symmetries have linear approximations that sat-
isfy steerable kernel constraints, which are widely studied in equivariant machine
learning. Guided by our theory, we propose an equivariant model-based RL algo-
rithm algorithm, which is based on sampling-based MPPI for continuous action
spaces. We test our proposed equivariant TD-MPC algorithm on a set of standard
RL benchmark tasks. Our work shows that equivariant methods can give a great
boost in performance on control tasks with continuous symmetry.

1 INTRODUCTION

Robot decision-making tasks often involve the movement of robots in two or three-dimensional
Euclidean space. Different reference frames can be used to model the robot and environment, but
the underlying physics of the system must be independent of the choice of reference frame (Einstein,
1905). The set of all such reference frame transformations is called the Euclidean group E(d). In this
work, we show that utilizing the Euclidean frame symmetry inherent in many robotic planning and
control problems allows for the design of more efficient learning algorithms. The use of symmetry
in decision-making has been studied in model-free and model-based reinforcement learning (RL),
planning, optimal control, and other related fields (Ravindran & Barto, 2004; Zinkevich & Balch,
2001; van der Pol et al., 2020a; Mondal et al., 2020; Wang et al., 2021; Zhao et al., 2022b). Despite
this, there is no unified theory of how symmetry can be utilized to develop better RL or planning
algorithms for robotics applications.

In many problems in robotics, we are interested in the Markov Decision Process (MDP) that de-
scribes a robot moving in 2D or 3D space. Motivated by the study of geometric graphs and ge-
ometric deep learning (Bronstein et al., 2021), we define Geometric MDPs as the class of MDPs
that correspond to the decision process of a robot moving in Euclidean space. The question that we
aim to answer is: Can Euclidean symmetry guarantee benefits in (model-based) RL algorithms? To
answer it, we aim to first formally describe what “benefits” mean and how symmetry enables them,
then show a model-based RL algorithm that is developed with the guidance of the theory.

To begin, we present a theoretical framework that studies the linearized dynamics of geometric
MDPs and shows that the matrices that appear in linearized dynamics are G-steerable kernels (Cohen
& Welling, 2016d). Using recent results on parameterizations of steerable kernels (Lang & Weiler,
2020b), we show that the steerable kernel solution significantly reduces the number of parameters
needed to specify the linearized dynamics. We can use it to predict parameter reduction for tasks
with geometric structure. The reduction is infinite for continuous tasks with continuous symmetry,
such as moving 2D particle.

Inspired by the theoretical results which show that equivariant versions of linearized model-based
approaches contain a smaller number of parameters than general models, we propose an equivariant
sampling-based model-based RL algorithm for Geometric MDPs. It is based on Model Predictive
Path Integral (MPPI); we propose a strategy that enforces symmetry on the sampling process: if the
input state is rotated, the output action should be rotated accordingly, as demonstrated in Figure 1.

1



Under review as a conference paper at ICLR 2024

Input

Original

Transformed
(Rotation)

Input

Action

Action

Figure 1: Illustration of equivariance in the proposed sampling-based planning algorithm a0 = plan(s0): if
the input state is rotated, the output action should be rotated accordingly. This requires the learned functions
are G-equivariant or G-invariant networks and a special sampling strategy, introduced in our method.

Our method extends the prior work from (1) planning on 2D grids with value-based planning (Zhao
et al., 2022b) and (2) model-free equivariant RL (van der Pol et al., 2020b; Wang et al., 2021) to
continuous state and action spaces. We take inspiration from geometric deep learning (Bronstein
et al., 2021) and consider the features in neural networks to transform under Euclidean symmetry.
Our algorithm is constructed to be equivariant with respect to changes of the reference frame, which
is usually known beforehand. We evaluate the proposed algorithm on DeepMind Control suite
and MetaWorld continuous-control tasks and show its sample efficiency against non-equivariant
methods, which demonstrates the benefits of equivariance in model-based RL with sampling-based
planning (MPPI) and the value of our theory.

Our contributions can be summarized as follows: (i) We define a class of MDPs that correspond
to the movement of a physical agent in two or three dimensional Euclidean space (“Geometric
MDPs”). (ii) By analyzing the linearization of Geometric MDPs, our theory shows a reduction in
the number of free parameters in the ground-truth linearized dynamics and optimal control policy.
(iii) Motivated by our theory, we propose a sampling-based model-based RL algorithm that leverages
Euclidean symmetry for Geometric MDPs. (iv) Our empirical results demonstrate the effectiveness
of our method in solving MDPs on control tasks with continuous symmetries.

2 PROBLEM STATEMENT: SYMMETRY AND CHOICE OF REFERENCE FRAME

To theoretically study how symmetry benefits in solving MDPs, we describe the source of symmetry
and define a class of MDPs that has symmetry constraints and can be linearized.

2.1 GEOMETRIC STRUCTURE IN MDP

The set of all isometric changes of reference frame form the Euclidean symmetry group E(d) (Bron-
stein et al., 2021; Weiler & Cesa, 2021; Lang & Weiler, 2020b). Any subgroup of E(d) can be
expressed in semi-direct product form as

(
Rd,+

)
⋊ G, where G is the stabilizer group of ori-

gin and the action on a vector x includes a translation part t and rotation/reflection part g, i.e.,
x 7→ (tg) · x := gx+ t (Lang & Weiler, 2020b).

To transform an MDP (to a different reference frame), we require the MDP to have the group G-
action on both the state and action space (Zhao et al., 2022b; Wang et al., 2021; van der Pol et al.,
2020b). This definition unifies different types of prior work and allows the state and actions spaces
to be a any spaces equipped with a G-action (van der Pol et al., 2020b; Wang et al., 2021; Zhao
et al., 2022b; Teng et al., 2023). The compact group G ≤ GL(d) can be any group, including the
group of proper 3D transformations SO(3) or finite subgroups like the icosahedral group or cyclic
groups (Brandstetter et al., 2021). We define a class of MDPs with geometric structure, extending a
previously studied discrete case (Zhao et al., 2022b).

Definition 1 (Geometric MDP) A Geometric MDP (GMDP) M is an MDP with a (compact)
symmetry group G ≤ GL(d) that acts on the state and action space. It is written as a tuple
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Figure 2: Illustration of MDPs with underlying geometric structure, e.g., a 2D particle moving or a path
planing problem, which have 2D rotation groups G that have G-action on the MDP state and action space.

⟨S,A, P,R, γ,G, ρS , ρA⟩. The state and action spaces S,A have (continuous) group actions that
transform them, defined by ρS and ρA.

The symmetry properties in MDPs are specified by equivariance and invariance of the transition
and reward functions respectively (Zinkevich & Balch, 2001; Ravindran & Barto, 2004; van der Pol
et al., 2020a; Wang et al., 2021; Zhao et al., 2022b; 2023a):

∀g ∈ G,∀s, a, s′, P (s′ | s, a) = P (g · s′ | g · s, g · a) (1)
∀g ∈ G,∀s, a, R(s, a) = R(g · s, g · a) (2)

where g acts on the state and action spaces by group representations ρS and ρA respectively. For
example, the standard representation ρstd(g) of SO(2) assigns each rotation g ∈ SO(2) a 2D rotation
matrix R2×2, while the trivial representation ρtri(g) assigns identity 11×1 to all g.

Continuous G-action. Compared to prior work, we additionally require continuous group action
·G : G × X → X and find it gives promising theoretical results, which is optional for implemen-
tation. If the G-actions on S and A are continuous1, there is an interesting geometric interpretation
based on fiber bundle theory (Husemöller, 2013). The linearized dynamics of a system are much
more constrained2 (i.e., have fewer free parameters) when the system has continuous G-action. See
Appendix D for more detail.

Examples. We list some examples in the Table 1 to demonstrate that the definition covers previous
work (a homogeneous space, a group, or any other space as long as equipped with a G-action
(van der Pol et al., 2020b; Wang et al., 2021; Zhao et al., 2022b; Teng et al., 2023)) and what
symmetry could bring. We list the symmetry group G, the state and action spaces S, A, and provide
how symmetry G reduces the space via quotient S/G and how “large” a group G can relate different
states in that MDP via orbit Gx. We provide detailed explanation in Appendix B.4.

2.2 RELATED TOPICS

We discuss geometric graphs and the use of symmetry in reinforcement learning. For further dis-
cussion, please see Appendix B.

Geometric graphs. Our definition of GMDP is closely related to the concept of geometric graphs
(Bronstein et al., 2021; Brandstetter et al., 2021), which model MDPs as state-action connectivity
graphs. Previous works studied algorithmic alignments and dynamic programming on geometric
graphs (Xu et al., 2019; Dudzik & Veličković, 2022). We propose extending this concept to include
additional geometric structures by embedding the MDP into a geometric space such as R2 or R3. In
discussion of GMDP, we focus on 2D and 3D Euclidean symmetry (Lang & Weiler, 2020b; Brand-
stetter et al., 2021; Weiler & Cesa, 2021), with the corresponding symmetry groups of E(2) and
E(3), respectively. The relation between equivariant message passing and dynamic programming /
value iteration on geometric MDPs is discussed in Section 3.

Symmetry in MDPs. Symmetry in decision-making tasks has been explored in previous works on
MDPs and control, with research on symmetry in MDPs with no function approximation (Ravindran
& Barto, 2004; Ravindran & Barto; Zinkevich & Balch, 2001) and symmetry in model-free (deep)

1If the group G is additionally a compact Lie group, there exists a map p : S × A 7→ B that projects
the state-action space S × A to a lower dimensional base space B (Cohen et al., 2020b). The existence and
smoothness of the projection p can be established using principal bundle theory.

2Continuous symmetries correspond to conservation laws, while discrete (non-differentiable) symmetries
do not have corresponding conservation laws (Zee, 2016).
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Table 1: Examples of geometric MDPs. G denotes the MDP symmetry group. S denotes the MDP
state space. A denotes the MDP action space. We can quantitatively measure the savings obtained
by exploiting equivariance. “Images” refers to panoramic egocentric images Z2 → RH×W×3. ◦
denotes group element composition. We list the quotient space S/G to give intuition on savings. The
Gx = {g · x | g ∈ G} column shows the G-orbit space of S ( ∼= denotes isomorphic equivalence).

ID G S A S/G Gx Task

1 C4 Z2 C4 Z2/C4 C4 2D Path Planning (Tamar et al., 2016)
2 C4 Images C4 Z2/C4 C4 2D Visual Navigation (Zhao et al., 2022b)

3 SO(2) R2 R2 R+ S1 2D Continuous Navigation
4 SO(3) R3 × R3 R3 R+ × R3 S2 3D Free particle (with velocity)
5 SO(3) R3 ⋊ SO(3) R3 × R3 R+ × R3 S2 Moving 3D Rigid Body
6 SO(2) SO(2) R2 {e} S1 Free Particle on SO(2) ∼= S1 manifold
7 SO(3) SO(3) R3 {e} S2 Free Particle on SO(3) (Teng et al., 2023)
8 SO(2) SE(2) SE(2) R2 S1 Top-down grasping (Zhu et al., 2022)
9 SO(2) (S1)2 × (R2)2 R2 S1 × (R2)2 S1 Two-arm manipulation (Tassa et al., 2018)

RL using equivariant policy networks (van der Pol et al., 2020a; Mondal et al., 2020; Wang et al.,
2021). Additionally, the use of symmetry in value-based planning on a 2D grid is analyzed by Zhao
et al. (2022b). We extend this line of work by focusing on MDPs with continuous state and action
spaces and sampling-based planning/control algorithms.

3 THEORY: WHY IS SYMMETRY USEFUL IN GEOMETRIC MDPS?

The goal of this section is to provide theoretical guidance on assessing the potential benefits of
symmetry in a Geometric MDP for a Reinforcement Learning (RL) algorithm, particularly when
planning using learned dynamic models.

3.1 PROPERTIES OF GEOMETRIC MDPS

In RL, the optimal policy mapping is G-equivariant (Ravindran & Barto, 2004). To incorporate
symmetry constraints, a strategy is to constrain the entire policy mappingto be equivariant: at =
policy(st) (van der Pol et al., 2020b; Wang et al., 2021; Zhao et al., 2022b; 2023a), as shown
in Figure 1. Many model-based RL algorithms rely on iteratively applying Bellman operations
(Sutton & Barto, 2018). Thus, we first show that symmetry G in a Geometric MDP (GMDP) results
in G-equivariant Bellman operator, which indicates that we can constrain the iterative process in
model-based RL algorithms to be G-equivariant to exploit symmetry. Additionally, for GMDPs3,
a specific instance of DP-based algorithm, value iteration, can be connected with geometric graph
neural network (Bronstein et al., 2021). These properties do not require linearization and do not
require continuous group actions.

Theorem 1 The Bellman operator of a GMDP is equivariant under Euclidean group E(d).

Theorem 2 For a GMDP, value iteration resembles E(d)-equivariant geometric message passing.

We provide proofs and derivation in Appendix D. This is an extension to the theorems in (Zhao et al.,
2022b) on 2D discrete groups, where they showed that value iteration is equivariant under discrete
subgroups of the Euclidean group: discrete translations, rotations, and reflections. We generalize
this result to groups of the form of

(
Rd,+

)
⋊G, where G is continuous4.

3.2 LINEARIZING GEOMETRIC MDPS: G-STEERABLE KERNEL CONSTRAINTS

3For non-geometric graphs, Dudzik & Veličković (2022) show the equivalence between dynamic program-
ming on a (general non-geometric) MDP and a message-passing GNN.

4For the translation part, one may use relative/normalized positions or induced representations (Cohen et al.,
2020b; Lang & Weiler, 2020b).
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The dynamics function in GMDPs is generally nonlinear. In this subsection5, we derive the iterative
linearization of dynamics of GMDPs to get G-equivariant linear maps. We focus on the lineariza-
tion for two reasons: (1) if infinitesimal group actions on state-action space exists, the symmetry
of the nonlinear GMDP is equivalent to G-steerable constraints of the linear dynamics, (2) the lin-
earized dynamics is connected to LQR and is easier to analyze, such as the dimensions of the (linear)
dynamics function, policy function, and more.

Iterative Linearization. We assume the dynamics is deterministic f : S × A → S and iteratively
linearize f at each step. It is naturally connected to time-varying iterative Linear Quadratic Regula-
tor (iLQR). We highlight the linearization procedure of f(st,at), where matrices A and B depend
arbitrarily on time step t. Later, we assume that it only depends on state and action (st,at).

Original: st+1 = f(st,at) → Linearized at step t: st+1 = At · st +Bt · at (3)

Theorem 3 If a Geometric MDP has an infinitesimal G-action on the state-action space S ×A, the
linearized dynamics is also G-equivariant: the matrix-valued functions A : S × A → RdS×dS and
B : S ×A → RdS×dA satisfy G-steerable kernel constraints.

Under infinitesimal symmetry transformation g ≈ 1G ∈ G, the state and action spaces transform as
s 7→ ρS(g) · s,a 7→ ρA(g) · a where ρS and ρA are representations of the group G. Additionally,
the dynamics must satisfy,

ρS(g) · f(s,a) = f(ρS(g) · s, ρA(g) · a) (4)
Let us consider the linearized problem at point p = (s0,a0). Assuming that the state and control
do not change too drastically over a short period of time and that the time-varying A and B only
depend on the linearization point p but not other factors, we can approximate the true dynamics as

st+1 = A(p) · st +B(p) · at, A : S ×A → RdS×dS , B : S ×A → RdS×dA . (5)
Now, linearizing f and using the symmetry constraint, the matrix-valued functions A(p) and B(p)
must satisfy the constraints

∀g ∈ G, A(g · p) = ρS(g)A(p)ρS(g
−1), B(g · p) = ρS(g)B(p)ρA(g

−1) (6)

Figure 3: A schematic showing how a matrix-valued
kernel A : X → R2×2 is constrained by the SO(2)-
steerable kernel constraints on a set of orbits A(g ·
p) = ρout(g)A(p)ρin(g

−1). This example is further
explained in Appendix D.

so that A is a G-steerable kernel with input and
output representation ρS , and B has input type
ρS and output type ρA. The kernel constraints
relate A(p) and B(p) at different points. We use
the Figure 3 to demonstrat the idea. On each orbit
(left), the constraints can be solved exactly: the
matrices on same orbits (same colors) are related
and have explicit parameterization given in Lang
& Weiler (2020a). Thus, these matrices can be
spanned on a basis (denoted by K) and live in a
smaller “base” space B = X/G with a certain
form A↓ : B → R2×2.

Benefits for control. Symmetry further enables better control. We can further show that the policy
and value function can be parameterized with fewer parameters based on the discrete algebraic
Riccati equation (DARE) for time-varying LQR problem.

Theorem 4 The LQR feedback matrix in a⋆t = −K(p)st and value matrix in V = s⊤t P (p)st are
G-steerable kernels, or matrix-valued functions: K : S×A → RdA×dS and P : S×A → RdS×dS .

What tasks are suitable for Euclidean equivariance? We find tasks that have dominated global
Euclidean symmetry (change of reference frame) and less local symmetry can have relatively better
parameter reduction, shown in Table 1. Tasks with more kinematic constraints make them harder to
exploit Euclidean equivariance. For examples, for kinematic chains, it inherently has local coordi-
nates, which makes it harder to use Euclidean symmetry w.r.t. the global reference frame. To better
exploit symmetry there, it needs to explicitly consider constraints, such as the case in position-based
(Tsai, 2017) or particle-based dynamics (Han et al., 2022).

5For simplicity, the theory omits an encoder from the state to latent space enc : S → Z in TD-MPC and
MuZero style algorithms. In implementation, we follow TD-MPC that uses a learned encoder, which, when
paired with an equivariant downstream network, helps learn symmetric representations. (Park et al., 2022).
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Interpretation and Examples. The theory means that the linearized dynamics must satisfy a
more restrictive set of conditions to be G-equivariant compared to the full, non-linear dynamics. It
gives us a theoretical estimation of free parameters for each task, as well as improvement of sample
efficiency when using (Jedra & Proutiere, 2021). We discuss further examples and computation
of reduced dimensions in Appendix D. A toy example that illustrates how symmetry reduces the
number of free parameters is moving a 3D particle (3D PointMass, Example 4 in Table 1): the
matrix A(p) (for p ∈ S × A) will have dimension 6 × 6 but can be decomposed to 2 × 2 blocks
of 3 × 3 sub-matrices, each only with 3 free parameters. Thus, for each orbit p, A(p) and B(p)
only have 4 × 3 = 12 free parameters. Additionally, on a given orbit, A(p) and B(p) have explicit
forms as shown in Figure 3. In summary, G-equivariance constrains the number of parameters in
the dynamics and policy functions, enabling more sample-efficient learning.

4 SYMMETRY IN SAMPLING-BASED MODEL-BASED RL ALGORITHMS

In this section, after confirming the effectiveness of symmetry in planning, we develop an equivariant
model-based RL algorithm for continuous action spaces to exploit continuous symmetry. To plan
in continuous spaces, we require sampling-based methods such as MPPI (Williams et al., 2015;
2017b), extending them to preserve equivariance. We build on prior work (Zhao et al., 2022b) that
used value-based planning on a discrete state space Z2 and discrete group D4, extending this work
to the continuous case. The idea is to ensure that the algorithm at = plan(st) produces the same
actions up to transformations, i.e., it is G-equivariant: g · at ≡ g · plan(st) = plan(g · st), as
shown in Figure 1. The principle is applicable for MDPs with other symmetry groups.

4.1 COMPONENTS

We use TD-MPC (Hansen et al., 2022) as the backbone of our implementation and introduce their
procedure and demonstrate how to incorporate symmetry into sampling-based planning algorithms.

• Planning with learned models. We use the MPPI (Model Predictive Path Integral) control method
(Williams et al., 2015; 2016; 2017a;b), as adopted in TD-MPC (Hansen et al., 2022). We sample
N trajectories with horizon H using the learned dynamics model, with actions from a learned
policy, and estimate the expectation of total return.

• Training models. The learnable components in equivariant TD-MPC include: an encoder that
processes input observation, dynamics and reward networks that simulate the MDP, and
value and policy networks that guide the planning process.

• Loss. The only requirement is that loss is G-invariant. The loss terms in TD-MPC include value-
prediction MSE loss and dynamics/reward-consistency MSE loss, which all satisfy invariance.

4.2 INTEGRATING SYMMETRY

Zhao et al. (2022b) consider how the Bellman operator transforms under symmetry transformation.
For sampling-based methods, one needs to consider how the sampling procedure changes under
symmetry transformation. Specifically, under a symmetry transformation, differently sampled tra-
jectories must transform equivariantly. This is shown in Figure 1. The equivariance of the transition
model in sampling-based approches to machine learning has also been studied in (Park et al., 2022).
There are several components that need G-equivariance, and we discuss them step-by-step and il-
lustrate them in Figure 1.

1. dynamics and reward model. In the definition of symmetry in Geometric MDPs (and sym-
metric MDPs (Ravindran & Barto, 2004; van der Pol et al., 2020b; Zhao et al., 2022b)) in Equa-
tion 1, the transition and reward functions are G-equivariant and G-invariant respectively. There-
fore, in implementation, the transition network is deterministic and uses a G-equivariant MLP,
and the reward network is constrained to be G-invariant. Additionally, in implementation, plan-
ning is typically performed in latent space, using a latent dynamics model f̄(z,a) = z′. To do
this, we require a G-equivariant encoder h : S → Z , satisfying ρZ(g) · h(s) = h(ρS(g) · s). We
omit the encoder in our description below for notational simplicity.
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2. value and policy model. The optimal value function produces a scalar for each state and
is G-invariant, while the optimal policy function is G-equivariant (Ravindran & Barto, 2004). If
we use G-equivariant transition and G-invariant reward networks in updating our value function
T [Vθ] =

∑
a Rθ(s,a)+γ

∑
s′ Pθ(s

′|s,a)Vθ(s
′), the learned value network Vθ will also satisfy

the symmetry constraint. Similarly, we can extract an optimal policy from the value network,
which is also G-equivariant (van der Pol et al., 2020b; Wang et al., 2021; Zhao et al., 2022b).

3. MPC procedure. We consider equivariance in the MPC procedure in two parts:
sample trajectories from the MDP using learned models, and compute their returns,
return(sample(s, θ)). We discuss the invariance and equivariance of it in the next subsection.

We list the equivariance or invariance conditions that each network needs to satisfy. Alternatively, for
scalar functions, we can also say they transform under trivial representation ρ0 and are thus invariant.
All modules are implemented via G-steerable equivariant MLPs: ρout(g) · y = ρout(g) · MLP(x) =
MLP(ρin(g) · x).

fθ : S ×A → S : ρS(g) · fθ(st,at) = fθ(ρS(g) · st, ρA(g) · at) (7)
Rθ : S ×A → R : Rθ(st,at) = Rθ(ρS(g) · st, ρA(g) · at) (8)
Qθ : S ×A → R : Qθ(st,at) = Qθ(ρS(g) · st, ρA(g) · at) (9)
πθ : S → A : ρA(g) · πθ(· | st) = πθ(· | ρS(g) · st) (10)

4.3 EQUIVARIANCE OF MPC

We analyze how to constrain the underlying MPC planner to be equivariant. We use MPPI
(Model Predictive Path Integral) (Williams et al., 2015; 2017a), which has been used in TD-
MPC for action selection. An MPPI procedure samples multiple H-horizon trajectories {τi}
from the current state st using the learned models. We use sample to refer to the procedure:
τi ≡ sample(st; fθ, Rθ, Qθ, πθ) = (st,at, st+1,at+1, . . . , st+H). Another procedure return
computes the accumulated return, evaluating the value of a trajectory for top-k trajectories:

return(τ) = Eτ

[
γHQθ (sH ,aH) +

H−1∑
t=0

γtRθ (st,at)

]
= Eτ [U(s1:H ,a1:H−1)] (11)

A trajectory is transformed element-wise by a transformation g: g · τi = (g · st, g · at, g · st+1, g ·
at+1, . . . , g · st+H). However, since µ and σ in action sampling are not state-dependent, the MPPI
sample does not exactly preserve equivariance: rotating the input does not deterministically guar-
antee a rotated output.

We propose a strategy to fix it. We consider the simplified case with a single time step, so the sam-
pling draws N actions from a random Gaussian distribution N (µ, σ2I), denoted as A = {ai}Ni=1.
The return is simply Q(s, a). Assuming we only select the best trajectory (K = 1), we require the
following procedure to be equivariant: a0 = argmaxa Q(s0, a). In other words, if we rotate state
g · s0, the selected action is also rotated g · a0. Thus, a simple strategy is to augment the action
sampling with G: GA = {g · ai | g ∈ G}Ni=1. We indicate that sampling strategy as G-sample.

Proposition 5 The return procedure is G-invariant, and the G-augmented G-sample proce-
dure that augment A using transformation in G is G-equivariant when K = 1.

We further explain in Appendix E. In summary, for sampling and computing return, they satisfy the
following conditions, indicating that the procedure return(G-sample(s, θ)) is invariant, i.e.,
not changed under group transformation for any g. We use return(τi) to indicate the return of a
specific trajectory τi and g · τi to denote group action on it.

G-sample : st, θ 7→ τi : g · τi ∼ G-sample(g · st; fθ, Rθ, Qθ, πθ) (12)
return : τi 7→ R : return(τi) = return(g · τi) (13)

5 EVALUATION: SAMPLING-BASED PLANNING

In this section, we present the setup and results for our proposed sampling-based planning algorithm:
equivariant version of TD-MPC. The additional details and results are available in Appendix F.

7



Under review as a conference paper at ICLR 2024

Figure 4: Tasks used in experiments: (1) PointMass in 2D, (2) Reacher, (3) Customized 3D version of
PointMass with multiple particles to control, and (4) MetaWorld task to reach an object with gripper.

0 200000 400000
Interaction Steps

0

200

400

600

800

Av
g 

Ep
iso

de
 R

et
ur

n

Point Mass 2D

0 200000 400000
Interaction Steps

0

200

400

600

800

1000
Reacher Easy

0 200000 400000
Interaction Steps

0

200

400

600

800

1000
Reacher Hard

0.00 0.25 0.50 0.75 1.00
Interaction Steps ×105

0

1000

2000

3000

4000

5000
MetaWorld Reach (Centered)

(Non-equivariant) TD-MPC D8-equivariant D4-equivariant C8-equivariant

Figure 5: Results on 2D PointMass, Reacher, and MetaWorld Reach task.

Tasks. We verify the algorithm on a few selected and customized tasks using DeepMind Control
suite (DMC) (Tassa et al., 2018), visualized in Figure 4. One task is 2D particle moving in R2,
PointMass. We customize tasks based on it: (1) 3D particle moving in R3 (disabled gravity),
and (2) 3D N -point moving that has several particles to control simutaneously. The goal is to move
particle(s) to a target position. We also experiment with tasks on a two-link arm, Reacher (easy
and hard), where the goal is to move the end-effector to a random position in a plane. Reacher
Easy and Hard are top-down where the goal is to reach a random 2D position. If we rotate the
MDP, the angle between the first and second links is not affected, i.e., it is G-invariant. The first joint
and the target position are transformed under rotation, so we set it to ρ1 standard representation (2D
rotation matrices). The complete state and action representations are given in Table 1. The system
has O(2) rotation and also reflection symmetry, hence we use D8 and D4 groups.

We also use MetaWorld tabletop manipulation (Yu et al., 2019). The action space is 3D gripper
movement (∆x,∆y,∆z) and 1D openness. The state space (1) gripper position, (2) 3D position
plus 4D quaternion of at most 2 relevant objects, (3) 3D randomized goal position, depending on
tasks. If we consider tasks with gravity, the MDP itself should exhibit SO(2) symmetry about the
gravity axis. We make the origin at workspace center and the gripper initialized at the origin, so the
task respects rotation equivariance around the origin.

Experimental setup. We compare against the non-equivariant version of TD-MPC (Hansen et al.,
2022). Here, we by default make all components equivariant as described in the algorithm section.
In Sec F.3, we include ablation studies for disabling or enabling each equivariant component. The
training procedure follows TD-MPC (Hansen et al., 2022). We use the state as input and for equiv-
ariant TD-MPC, we divide the orignal hidden dimension by

√
N , where N is the group order, to

keep the number of parameters roughly equal between the equivariant and non-equivariant versions.
We mostly follow the original hyperparameters except for seed_steps. We use 5 random seeds
for each method.

Algorithm setup: equivariance. We use discretized subgroups in implementing G-equivariant
MLPs with the escnn package (Weiler & Cesa, 2021), which are more stable and easier to imple-
ment than continuous equivariance. For the 2D case, we use O(2) subgroups: dihedral groups D4

and D8 (4 or 8 rotation components), or rotation group C8 (45◦ rotations). For the 3D case, we use
the Icosahedral and Octahedral groups, which are finite subgroups of SO(3) with orders 60 and 24
respectively.

Results. In Figures 5 and 6, we show the reward curves and demonstrate that our equivariant meth-
ods can reach near-optimal performance 2x or 3x faster in terms of training interaction steps for
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Figure 6: Results on a set of customized 3D N -ball PointMass tasks, with N = 1, 2, 3, and customized a
3D PointMass with smaller target.

several tasks. Recall the examples of Geometric MDPs, our theory not only motivates the algorithm
design, but also gives an estimation of what tasks can benefit from (continuous) symmetry. The
results justify the theoretical estimation on improvement of sample efficiency: less free parameters
result in better regret bound and faster learning, as shown for LQR (Jedra & Proutiere, 2021).

In terms of the actual results, the default PointMass 2D version seems easy to solve, while the
D8-equivariant version learns slightly faster. For Reacher, as shown in Figure 5, D8 outperforms
the non-equivariant TD-MPC by noticeable margins, especially on the Hard domain. D4 is slightly
worse than D8 but still better than the baseline. The rightmost subfigure shows a MetaWorld task
Reach, which is to reach a button on a desk using the parallel gripper. We add SO(2) equivariance
to the algorithm about the gravity axis and evaluate the C8 and D8-equivariant versions, which both
give more efficient learning.

On Reacher tasks, we also compare against a planning-free baseline by removing MPPI planning
with the learned model and only keep policy learning, shown in Fig 11, which is effectively similar
to the DDPG algorithm (Lillicrap et al., 2016).

We design a set of harder 3D versions of PointMass and use SO(3) subgroups to implement 3D
equivariant versions of TD-MPC, using Icosahedral- and Octahedral-equivariant MLPs. Figure 6
shows N = 1, 2, 3 balls in 3D PointMass, and the rightmost figure shows 1-ball 3D version with
smaller target (0.02 compared to 0.03 in N -ball version). We find the Icosahedral (order 60) equiv-
ariant TD-MPC always learns faster and uses fewer samples to achieve best rewards, compared to
the non-equivariant version. The Octahedral (order 24) equivariant version also performs similarly.
The best absolute rewards in the 1-ball case is interestingly lower than 2- and 3-ball casees, which
may be caused by higher possible return due to the presence of 2 or 3 balls that can reach the goal.

With higher-order 2D discrete subgroups, the performance plateaus but computational costs in-
crease, so we use up to D8. We also find TD-MPC is especially sensitive to a hyperparameter
seed_steps that controls the number of warmup trajectories. In contrast, our equivariant version
is robust to it and sometimes learn better with less warmup. In the shown curves, we do not use
warmup across non-equivariant and equivariant ones and present additional results in Appendix F.

6 CONCLUSION AND DISCUSSION

In conclusion, we underscore the value of Euclidean symmetry in model-based RL algorithms. We
define a subclass of MDPs, Geometric MDPs, prevalent in robotics, which exhibit additional struc-
ture. The linearized approximation of these MDPs adheres to steerable kernel constraints, substan-
tially reducing parameter space. Drawing from this, we developed a model-based RL algorithm,
utilizing Euclidean symmetry, that outperforms standard techniques in common RL benchmarks.
This is the first method considering the importance of equivariance in sampling-based RL methods.
It contributes to a deeper understanding of symmetry in RL algorithms and offers insights for future
research. However, our theory and experience also show that while Euclidean symmetry can bring
significant savings in parameters, it does not always offer practical benefits for some tasks with lo-
cal coordinates. For instance, locomotion tasks do not greatly benefit from it. Also, our approach
assumes the symmetry group is known, typically determined by the robot workspace dimension,
usually 3D.
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