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ABSTRACT

We propose a nonnegative tensor decomposition with focusing on the relation-
ship between the modes of tensors. Traditional decomposition methods assume
low-rankness in the representation, resulting in difficulties in global optimization
and target rank selection. To address these problems, we present an alternative
way to decompose tensors, a many-body approximation for tensors, based on an
information geometric formulation. A tensor is treated via an energy-based model,
where the tensor and its mode correspond to a probability distribution and a ran-
dom variable, respectively, and many-body approximation is performed on it by
taking the interaction between variables into account. Our model can be globally
optimized in polynomial time in terms of the KL divergence minimization, which
is empirically faster than low-rank approximations keeping comparable recon-
struction error. Furthermore, we visualize interactions between modes as tensor
networks and reveal a nontrivial relationship between many-body approximation
and low-rank approximation.

1 INTRODUCTION

Tensors are generalization of vectors and matrices. Data in various fields such as neuroscience (Erol
& Hunyadi, 2022), bioinformatics (Luo et al., 2017), signal processing (Cichocki et al., 2015),
and computer vision (Panagakis et al., 2021) are often stored in the form of tensors, and features
are extracted from them. Tensor decomposition and its non-negative version (Shashua & Hazan,
2005) are popular methods that extract features by approximating tensors by the sum of products
of smaller tensors. These smaller tensors are often called factors. It usually tries to minimize the
difference between the tensor reconstructed from obtained factors and an original tensor, called the
reconstruction error.

In most of tensor decomposition approaches, a low-rank structure is typically assumed, where a given
tensor is approximated by a linear combination of a small number of bases. Such decomposition
requires the following two information. First, it requires the structure, which specifies the type of
decomposition such as CP decomposition (Hitchcock, 1927) and Tucker decomposition (Tucker,
1966). In recent years, tensor networks (Cichocki et al., 2016) have been introduced, which can
intuitively and flexibly design the structure including tensor train decomposition (Oseledets, 2011),
tensor ring decomposition (Zhao et al., 2016), and tensor tree decomposition (Murg et al., 2010).
Second, it requires the rank value, the number of bases used in the decomposition. Since larger ranks
increase the capability of the model while increasing the computational cost, the user is required
to find the appropriate rank in this tradeoff problem. Since the above tensor decomposition via
minimization of the reconstruction error is non-convex, which causes initial value dependence (Kolda
& Bader, 2009, Chapter 3), the problem of finding an appropriate setting of the low-rank structure is
highly nontrivial in practice as it is hard to locate the cause if the decomposition does not perform
well. As a result, to find proper structure and rank, the user often needs to perform decomposition
multiple times with various settings, which is time and memory consuming.

Instead of the low-rank structure that has been the focus of attention in the past, in this paper,
we propose a novel formulation of tensor decomposition, called many-body approximation, that
focuses on the relationship among modes of tensors. We determine the structure of decomposition
based on the existence of the interactions between modes. The proposed method requires only the
decomposition structure naturally determined by the interactions between the modes and does not
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require the rank value, which traditional decomposition methods also require and often suffer to
determine.

To describe interactions between modes, we follow the standard strategy in statistical mechanics
that uses an energy functionH(·) to treat interactions and considers the corresponding distribution
exp (H(·)). This model is known to be an energy-based model in machine learning, which has
been used in Legendre decomposition (Sugiyama et al., 2018; 2016) that decomposes tensors via
convex optimization. Technically, it finds factors of a tensor by treating a tensor as a probability
distribution and enforcing some of its natural parameters to be zero. We point out that interactions
in the energy functionH(·) can be represented using natural parameters of distribution, and we can
successfully formulate many-body approximation as a special case of Legendre decomposition by
setting some of natural parameters to be zero. The advantage of this approach is that many-body
approximation can be also achieved by convex optimization that minimizes the Kullback–Leibler
(KL) divergence (Kullback & Leibler, 1951). Our approach, describing interactions between modes
using energy functions, is different from existing methods that focus on interactions between mode
matrices (Vasilescu & Terzopoulos, 2002; Vasilescu, 2011) or block tensors (Vasilescu et al., 2021).

Furthermore, we introduce a way of representing tensor interactions, which visualizes the presence or
absence of interactions between modes. We discuss the correspondence between our representation
and the tensor network and point out that an operation called coarse-grained transformation (Levin &
Nave, 2007), in which multiple tensors are viewed as a new tensor, reveals unexpected relationship
between the proposed method and existing methods such as tensor ring and tensor tree decomposition.

We summarize our contribution as follows:

• By focusing on the interaction between modes of tensors, we introduce an alternative rank-
free tensor decomposition, many-body approximation. This decomposition is realized by
convex optimization.

• We present a way of describing tensor many-body approximation, interaction representation,
a diagram that shows interactions within a tensor. This diagram can be transformed into
tensor networks, which tells us the relationship between many-body approximation and
existing low-rank approximation.

• We empirically show that many-body approximation is faster than low-rank approximation
with competitive reconstruction errors.

2 TENSOR MANY-BODY APPROXIMATION

Our proposal, tensor many-body approximation, is based on the formulation of Legendre decomposi-
tion for tensors. We first review Legendre decomposition and its optimization in Section 2.1. We
introduce interactions between modes and its visual representation to prepare for many-body approxi-
mation in Section 2.2. Using interactions between modes, we define many-body approximation in
Section 2.3. Finally, we transform the interaction representation into a tensor network and point out
the connection between many-body approximation and existing low-rank decomposition methods in
Section 2.4.

In the following discussion, we consider D-order non-negative tensors whose size is (I1, . . . , ID).
We assume the sum of all elements in P is 1 for simplicity, while this assumption can be eliminated
using the general property of Kullback–Leibler (KL) divergence, λDKL(P,Q) = DKL(λP, λQ),
for any real number λ.

2.1 REMINDER TO LEGENDRE DECOMPOSITION AND ITS OPTIMIZATION

Legendre decomposition is a method to decompose a non-negative tensor by regarding the tensor
as a discrete distribution and representing it with a limited number of parameters. We describe a
non-negative tensor P using natural parameters θ = (θ1,...,1, . . . , θI1,...,ID ) and its energy function
H as

Pi1,...,iD = exp (Hi1,...,iD ), Hi1,...,iD =

i1∑
i′1=1

· · ·
iD∑

i′D=1

θi′1,...,i′D , (1)
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where θ1,...,1 has a role of normalization. Here it is clear that a tensor corresponds to a distribution
whose sample space is its index set; that is, the value of each element is regarded as the probability of
realizing the corresponding index (Sugiyama et al., 2017).

As we can see in equation 1, we can uniquely identify tensors from natural parameters θ. We can
compute the natural parameter θ from a given tensor as

θi1,...,iD =

I1∑
i′1=1

· · ·
ID∑

i′D=1

µ
i′1,...i

′
D

i1,...,iD
logPi′1,...,i

′
D

(2)

using the Möbius function µ : S×S → {−1, 0,+1}, where S is the set of indices, defined inductively
as follows:

µ
i′1,...,i

′
D

i1,...,iD
=


1 if id = i′d for all d ∈ {1, . . . , D},
−
∏D

d=1

∑i′d−1
jd=id

µj1,...jD
i1,...,iD

else if id ≤ i′d for all d ∈ {1, . . . , D},
0 otherwise.

The above modelling for non-negative tensors is an instance of the log-linear model on
posets (Sugiyama et al., 2017). Since distribution described by equation 1 belongs to the exponential
family, we can also identify each tensor by expectation parameters η = (η1,...,1, . . . , ηI1,...,ID ) using
the Möbius inversion formula as

ηi1,...,iD =

I1∑
i′1=i1

· · ·
ID∑

i′D=iD

Pi′1,...,i
′
D
, Pi1,...,id =

I1∑
i′1=1

· · ·
ID∑

i′D=1

µ
i′1,...,i

′
d

i1,...,id
ηi′1,...,i′d . (3)

See Supplemental Materials for examples of the above calculation. Since distribution is determined
by specifying either θ-parameters or η-parameters, they form two coordinate systems called the
θ-coordinate system and the η-coordinate system, respectively. By using the dual flatness, Legendre
decomposition achieves convex optimization as shown in the following.

2.1.1 OPTIMIZATION

Legendre decomposition approximates a tensor by setting some θ values to be zero, which corresponds
to dropping some parameters for regularization. Let B be the set of indices of θ parameters that are
not imposed to be 0. Then Legendre decomposition coincides with a projection of a given nonnegative
tensor P onto the subspace B = {θ | θi1,...,iD = 0 if (i1, . . . , iD)/∈B}.
Let us consider projection of a given tensor P onto B. The space of probability distributions is not a
Euclidean space. Therefore, it is necessary to consider geometry of probability distributions, which
is studied in information geometry. It is known that a subspace with linear constraints on natural
parameters θ is flat, called e-flat (Amari, 2016, Chapter 2). The subspace B is e-flat, meaning that the
logarithmic combination, or called e-geodesic,R ∈ {(1− t) logQ1 + t logQ2 − ϕ(t) | 0 < t < 1}
of any two points Q1,Q2 ∈ B is included in the subspace B, where ϕ(t) is a normalizer. There is
always a unique point P on the e-flat subspace that minimizes the KL divergence from any point P .

P = argmin
Q;Q∈B

DKL(P,Q) (4)

This projection is called the m-projection. The m-projection onto a e-flat subspace is a convex
optimization. We define two vectors θB = (θb)b∈B and ηB = (ηb)b∈B . We write as |B| the number
of elements in these vectors since it is equal to the cardinality of B. The derivative of the KL
divergence and the Hessian matrix G ∈ R|B|×|B| are given as

∂

∂θB
DKL(P,Q) = ηB − η̂B , Gu,v = ηmax(i1,j1),...,max(iD,jD) − ηi1,...,iDηj1,...,jD (5)

where ηB and η̂B are the expectation parameters ofQ and P , respectively, and u = (i1, . . . , iD), v =
(j1, . . . , jD) ∈ B. This matrix G is also known as the negative Fisher information matrix. Using
gradient descent with second-order derivative, we can update θB in each iteration t as

θB
t+1 = θB

t −G−1(ηB
t − η̂B) (6)
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Figure 1: (a) An illustration of optimization of Legendre decomposition. Interaction representations
corresponding to (c) equation 10 and (d) equation 11.

The distribution Qt+1 is calculated from the updated natural parameters θt+1. This step finds a point
Qt+1 ∈ B that is closer to the destination P along with the e-geodesic from Qt to P . We can also
calculate the expected value parameters ηt+1 from the distribution. By repeating this process until
convergence, we can always find the globally optimal solution satisfying equation 4. This procedure
is illustrated in Figure. 1(a). See Supplemental Materials for more detail on the optimization.

2.2 INTERACTION AND ITS REPRESENTATION OF TENSORS

In this subsection, we introduce interactions between modes and its visual representation to prepare for
many-body approximation. The following discussion enables us to intuitively describe relationships
between modes and formulate our novel rank-free tensor decomposition.

First we introduce n-body parameters, which is a generalized concept of one-body and two-body
parameters in (Ghalamkari & Sugiyama, 2022). Let n of a n-body parameter be the number of
non-one indices; for example, θ1,2,1,1 is a one-body parameter, θ4,3,1,1 is a two-body parameter and
θ1,2,4,3 is a three-body parameter. We also use the following notation for n-body parameters:

θ
(k)
ik

= θ1,...,1,ik,1,...,1, θ
(k,m)
ik,im

= θ1,...,1,ik,1,...,1,im,1,...,1, θ
(k,m,p)
ik,im,ip

= θ1,...,ik,...,im,...,ip,...,1,

for n = 1, 2, and 3, respectively. We write the energy functionH with n-body parameters as

Hi1,··· ,iD = H0 +

D∑
k=1

H
(k)
ik

+

k−1∑
m=1

D∑
k=1

H
(k,m)
ik,im

+

m−1∑
p=1

k−1∑
m=1

D∑
k=1

H
(k,m,p)
ik,im,ip

+ · · ·+H
(1,...,D)
i1,...,iD

(8)

where the n-th order energy is introduced as

H
(l1,...,ln)
il1 ,...,iln

=

il1∑
i′l1

=2

· · ·
iln∑

i′ln=2

θ
(l1,...,ln)
i′l1

,...,i′ln
. (9)

For simplicity, we suppose that 1 ≤ l1 < l2 < · · · < ln ≤ D holds. We set H0 = θ1,...,1. We say
that an n-body interaction exists between modes l1, . . . , ln if there are indices il1 , . . . , iln satisfying
H

(l1,...,ln)
il1 ,...,iln

̸= 0.

The first term H0 in equation 8 is called the normalized factor or the partition function. The terms
H(k) are called bias in machine learning and magnetic field or self-energy in statistical physics. The
terms H(k,m) are called the weight of the Boltzmann machine in machine learning and two-body
interaction or electron-electron interaction in physics.

To visualize the existence of interactions within a tensor, we newly introduce a diagram called
interaction representation, which is inspired by factor graphs in graphical modelling (Bishop &
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Nasrabadi, 2006, Chapter 8). The graphical representation of the product of tensors is widely known
as tensor networks. However, displaying the relations between the modes of a tensor as a factor graph
is our novel approach. We represent the n-body interaction as a black square, ■, connected with n
modes. We describe examples of the two-body interaction between modes (k,m) and the three-body
interaction among modes (k,m, p) in Figure 1(b). Combining these interactions, the energy function
including all two-body interactions is shown in Figure 1(c), and the energy function including all
two-body and three-body interactions is shown in Figure 1(d) for D = 4.

This visualization allows us to intuitively understand the relationship between modes of tensors. For
simplicity, we abbreviate one-body interactions in the diagrams, while we always assume them. Once
interaction representation is given, we can determine the corresponding decomposition of tensors.

In the following section, we reduce some of n-body interactions, that is, H(l1,...,ln)
il1 ,...,iln

= 0, by fixing

each parameter θ(l1,...,ln)il1 ,...,iln
= 0 for all indices (il1 , . . . , iln) ∈ {2, . . . , Il1} × · · · × {2, . . . , Iln}.

2.3 MANY-BODY APPROXIMATION

Our proposed method, tensor many-body approximation, approximate a given tensor with assuming
the existence of dominant interactions between the modes of the tensor and ignoring other interactions.
Since this operation can be understood as setting some natural parameters of the distribution to be
zero, it can be achieved by convex optimization through the theory of Legendre decomposition. As
we see below, approximated tensors are represented without the summation symbol

∑
. This property

is different from existing low-rank approximations except for rank-1 approximation.

As an example, we consider two types of approximations of a nonnegative tensor P by tensors
represented in Figure 1(c), (d). If all energies greater than 2nd-order or those than 3rd-order
in equation 8 are ignored, that is, H(l1,...,ln)

il1 ,...,iln
= 0 for n > 2 or n > 3, P is approximated as follows:

Pi1,i2,i3,i4 ≃ P
≤2
i1,i2,i3,i4

= X
(1,2)
i1,i2

X
(1,3)
i1,i3

X
(1,4)
i1,i4

X
(2,3)
i2,i3

X
(2,4)
i2,i4

X
(3,4)
i3,i4

, (10)

Pi1,i2,i3,i4 ≃ P
≤3
i1,i2,i3,i4

= χ
(1,2,3)
i1,i2,i3

χ
(1,2,4)
i1,i2,i4

χ
(1,3,4)
i1,i3,i4

χ
(2,3,4)
i2,i3,i4

, (11)
where each factor on the right-hand side is represented as

X
(k,m)
ik,im

=
1

6
√
Z

exp

(
1

3
H

(k)
ik

+H
(k,m)
ik,im

+
1

3
H

(m)
im

)
,

χ
(k,m,p)
ik,im,ip

=
1

4
√
Z

exp

(
H

(k)
ik

+H
(m)
im

+H
(p)
ip

3
+

1

2
H

(k,m)
ik,im

+
1

2
H

(m,p)
im,ip

+
1

2
H

(k,p)
ik,ip

+H
(k,m,p)
ik,im,ip

)
.

The partition function, or the normalization factor, is given as Z = exp (−θ1,1,1,1), which do not
depend on indices (i1, i2, i3, i4). When the tensor P is approximated by P≤m, the set B contains
only indices of n(≤ m)-body parameters.

In the above discussion, we consider many-body approximation with all n-body parameters, while
our formulation allows us to use only a part of n-body interactions as shown in the following. We
consider the situation where only one-body interaction and two-body interaction between (k, k + 1)
exist for all k ∈ {1, . . . , D} (D + 1 implies 1 for simplicity). Figure 2(a) shows the interaction
representation of the approximated tensor. As we can confirm by substituting 0 for H(k,l)

ik,il
if l ̸= k+1,

we can describe the approximated tensor as

Pi1,...,iD ≃ P
cyc
i1,...,iD

= X
(1)
i1,i2

X
(2)
i2,i3

. . . X
(D)
iD,i1

(12)
where

X
(k)
ik,ik+1

=
1

D
√
Z

exp

(
1

2
H

(k)
ik

+H
(k,k+1)
ik,ik+1

+
1

2
H

(k+1)
ik+1

)
. (13)

with normalization factor Z = exp (−θ1,...,1). When the tensor P is approximated by Pcyc, the set
B contains only all one-body parameters and two-body parameters θ(d,d+1)

id,id+1
for d ∈ {1, 2, . . . , D}.

We call this approximation cyclic two-body approximation since the order of indices in equation 12 is
cyclic. We show the connection between cyclic two-body approximation and existing tensor ring
decomposition in the following subsection.
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a. b.

Figure 2: (a) Interaction representation of an example of cyclic two-body approximation and its
transformed tensor network for D = 4. (b) Tensor network of tensor ring decomposition.

2.4 CONNECTION TO TENSOR NETWORK

Tensor interaction representation is a diagram that focuses on the relationship between modes. Tensor
networks, which are well known as diagrams that focus on factors after decomposition, represent
a tensor as an undirected graph, whose nodes correspond to matrices or tensors and edges are the
modes of summation in tensor products (Cichocki et al., 2016).

Our tensor interaction representation has a tight connection to tensor networks, and we can convert a
tensor interaction representation to a tensor network. For the conversion, we use a hyper-diagonal
tensor Ω, that is defined as Ωijk = δijδjkδki , where δij = 1 if i = j and 0 otherwise. The tensor
Ω is often represented by • in tensor networks. In the community of tensor network, the tensor Ω
appears in the CNOT gate and a special case of Z spider (Nielsen & Chuang, 2010). The tensor
network in Figure 2(a) represents the following formula

D∏
d=1

∑
jd

∑
ld

X
(d)
ld,jd+1

Ωjd+1,id+1,ld+1

 , (14)

where jD+1 = j1, iD+1 = i1, lD+1 = l1. Substituting the definition of Ω in equation 14, we realize
that the tensor network corresponds to equation 12.

We point out that the tensor network representation of cyclic two-body approximation is similar to
the tensor network of the tensor ring decomposition. The tensor ring decomposition is an extension
of the tensor train decomposition, and its representation is shown in Figure 2(b) using a tensor
network. In fact, if we consider the region enclosed by the dotted line in the tensor network as a new
tensor, the tensor network of the cyclic two-body approximation coincides with the tensor network of
the tensor ring decomposition(See more details in the Supplemental Materials). This operation, in
which multiple tensors are regarded as a new tensor in a tensor network, is called renormalization or
coarse-graining transformation (Evenbly & Vidal, 2015).

Comparing the number of parameters The number of elements of an input tensor is I1 × I2 ×
· · · × ID. After the cyclic two-body approximation, the number of parameters is given as

|B| = 1 +

D∑
d=1

(Id − 1) +

D∑
d=1

(Id − 1)(Id+1 − 1) (15)

where we assume ID+1 = I1. The first term is for a normalizer, the second is the number of
one-body parameters, and the final term is the number of two-body parameters. In contrast, in the
tensor ring decomposition with the target rank (R1, . . . , RD), the number of parameters is given
as |R| =

∑D
k=1 RkIkRk+1. The ratio of the number of parameters of these two methods |B|/|R|

is proportional to I/R2 if we assume Rd = R and Id = I for all d ∈ {1, . . . , D} for simplicity.
Therefore, when the target rank is small and the size of the input tensor is large, the proposed method
has more parameters than the tensor ring decomposition.
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a. b.

Figure 3: (a) Interaction representation corresponding to equation 16 and its transformed tensor
network for D = 9. (b) Tensor network of a variant of tensor tree decomposition.

2.4.1 OTHER EXAMPLE OF MANY-BODY APPROXIMATION AND ITS TENSOR NETWORK

In the same way, we can find a correspondence between another example of many-body approximation
and the existing low-rank approximation. For D = 9, we consider three-body and two-body
interactions among (i1, i2, i3), (i4, i5, i6), and (i7, i8, i9) and three-body approximation among
(i3, i6, i9). We provide the interaction representation of the target energy function in Figure 3(a). In
this approximation, the decomposed tensor can be described as

Pi1,...,i9 = Ai1,i2,i3Bi4,i5,i6Ci7,i8,i9Gi3,i6,i9 . (16)

In the same way in the case of the cyclic two-body approximation, we can convert the interaction
representation to a tensor network, as described in Figure 3(a). A tensor network of tensor tree
decomposition in Figure 3(b) emerges when the region enclosed by the dotted line is replaced with a
new tensor (shown with tilde) in Figure 3(a). Such tensor tree decomposition is used in generative
modeling (Cheng et al., 2019), computational chemistry (Murg et al., 2015) and quantum many-body
physics (Shi et al., 2006).

As we have seen above, by transforming tensor interaction representation to tensor networks and
applying coarse-graining, we can reveal the relationship between tensor many-body approximations
and low-rank approximations.

2.5 MANY-BODY APPROXIMATION AS GENERALIZATION OF MEAN-FIELD APPROXIMATION

It has been already pointed out that any tensor P can be represented by vectors x(d) ∈ RId for
d ∈ {1, . . . , D} as Pi1,...,iD = x

(1)
i1

x
(2)
i2

. . . x
(D)
iD

if and only if all n(≥ 2)-body θ-parameters are
0 (Ghalamkari & Sugiyama, 2021). The right-hand side is equal to the Kronecker product of D
vectors x(1), . . . ,x(D), and therefore this approximation is equivalent to the rank-1 approximation
since the rank of the tensor that can be represented by the Kronecker product is always 1, which
is also known to correspond to mean-field approximation. In this study, we propose many-body
approximation by relaxing the condition for the mean-field approximation that ignores n(≥ 2)-body
interactions. Therefore many-body approximation is generalization of rank-1 approximation and
mean-field approximation.

2.6 COMPUTATIONAL COMPLEXITY

We analyze the computational complexity of many-body approximation. In many-body approxima-
tion, the overall complexity is dominated by the update of θ, which includes matrix inversion of G.
The complexity of computing the inverse of an n× n matrix is O(n3). Therefore, the computational
complexity of many-body approximation is O(γ|B|3), where γ is the number of iterations.

This complexity can be reduced if we reshape tensors so that the size of each mode becomes
small. For example, let us consider a 3-order tensor whose size is (J2, J2, J2) and its cyclic two-
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Figure 4: (a)(b) Results for low ring rank tensor. (c)(d) Results for tensors sampled from uniform
distribution. The vertical red dotted line is |B| (See equation 15).

body approximation. In this case, the time complexity is O(γJ12) since it holds that |B| ∝ J4

(See equation 15). In contrast, if we reshape the input tensor to a 6-order tensor whose size is
(J, J, J, J, J, J), the time complexity becomes O(γJ6) since it holds that |B| ∝ J2.

This technique of reshaping a tensor into a larger-order tensor is used practically not only in the
proposed method but also in various methods based on tensor networks, such as tensor ring decompo-
sition (Malik & Becker, 2021).

3 EXPERIMENTS

As seen in Section 2.4, many-body approximation has a close connection to low-rank approxima-
tion. For example, in a tensor ring decomposition, if we impose that decomposed factors can be
represented as products with hyper-diagonal tensors Ω, this decomposition is equivalent to a cyclic
two-body approximation (see Figure 2). Therefore, to examine our conjecture that cyclic two-body
approximation is as capable of approximating as tensor ring decomposition, we empirically examine
the efficiency and effectiveness of cyclic two-body approximation compared with tensor ring de-
composition. As baselines, we use five existing methods of non-negative tensor ring decomposition,
NTR-APG, NTR-HALS, NTR-MU, NTR-MM and NTR-lraMM (Yu et al., 2021; 2022). These
methods minimize the reconstruction error defined with the Frobenius norm by the gradient method.
See Supplemental Materials for implementation detail.

We evaluate the approximation performance by the relative error ∥T −T ∥F /∥T ∥F for an input tensor
T and a reconstructed tensor T with the Frobenius norms ∥ · ∥F . Since all the existing methods are
based on nonconvex optimization, we plot the best score (minimum relative error) among 5 restarts
with random initialization. In contrast, the score of our method is obtained by a single run as it is
convex optimization and such restarts are fundamentally unnecessary. We compare the total running
time of them.

Synthetic data We performed experiments on four synthetic datasets. The first two are synthetic
data with low tensor ring rank. This setting is often used in evaluation of tensor ring decomposition.
We create D core tensors of size R× I ×R by sampling from uniform distribution. Then a tensor
with the size ID and the tensor ring rank (R, . . . , R) is obtained by the product of these D tensors.
Results for R = 15, D = 5, I = 30 are shown in Figure 4(a)., and those for R = 10, D = 6, I = 20
in Figure 4(b). Relative error and computation time are plotted with gradually increasing the target
rank of the tensor ring decomposition, which is compared to the score of our method, plotted as the
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Figure 5: Experimental results for real datasets. The vertical red dotted line is |B| (See equation 15).

cross point of horizontal and vertical red dotted lines. Please note that our method does not have the
concept of the rank, thus the score of our method is invariant to changes of the target rank unlike
other methods. If the cross point of red dotted lines is lower than other lines, the proposed method is
better than other methods.

In addition to the above case in which we assumed the low-rankness, we also generated synthetic
datasets without such an assumption. We created a tensor of size 305 and a tensor of size 205 by
sampling from uniform distribution and performed the same experiment. Results are shown in
Figure 4(c) and Figure 4(d). In all experiments, the proposed method is superior to comparison
partners in both efficiency and effectiveness. It should be noted that the relative error of the proposed
method is smaller even when the target rank of the tensor ring decomposition is large and the number
of parameters is several times larger than the proposed method.

Real data Next, we evaluate our method on real data. 4DLFD is a 9-order tensor, which is
produced from 4D Light Field Dataset (Honauer et al., 2016; Gortler et al., 1996; Levoy & Hanrahan,
1996). TT_ChartRes, TT_Origami and TT_Paint are 7-order tensors, which is produced from
TokyoTech Hyperspectral Image Dataset (Monno et al., 2015; 2017). Each tensor has been reshaped
to reduce the computational complexity. See the dataset details in the Supplemental Materials.
The proposed method is always faster than baselines with keeping the competitive relative errors.
In baseline methods, a slight change of the target rank can induce a significant increase of the
reconstruction error due to the nonconvex nature of them.

4 CONCLUSION

We propose many-body approximation for tensors, which decomposes tensors with focusing on
the relationship between modes represented by an energy-based model. It approximates tensors
by ignoring the energy corresponding to some interactions, which can be viewed as generalization
of mean-field approximation that considers only one-body interactions. Our novel formulation
enables us to achieve convex optimization of the model, while the existing approaches based on
the low-rank structure are non-convex. Furthermore, we introduce a way of visualize interactions
between modes, called interaction representation, to see activated interactions between modes. We
have established transformation between our representation and tensor networks, which reveals the
nontrivial connection between many-body approximation and the classical tensor low-rank tensor
decomposition.

9
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A CYCLIC TWO-BODY APPROXIMATION AND RING DECOMPOSITION

We can interpret cyclic two-body approximation as tensor ring decomposition with constraints as de-
scribed below. Non-negative tensor ring decomposition approximates a given tensor P ∈ RI1×···×ID

≥0

with D core tensors χ(1), χ(2), . . . , χ(D) with χ(d) ∈ RRd−1×Id×Rd

≥0 for each d ∈ {1, 2, . . . , D} as

Pi1,...,iD ≃ Pi1,...,iD =

R1∑
r1=1

R2∑
r2=1

· · ·
RD∑

rD=1

χ
(1)
rD,i1,r1

χ
(2)
r1,i2,r2

. . . χ
(D)
rD−1,iD,rD

(18)

where (R1, . . . , RD) is called tensor ring rank. The decomposition is described in Figure 2(c). The
cyclic two-body approximation also approximates the tensor P in the form of equation 18, imposing
an additional constraint that each core tensor χ(d) is decomposed as

χ
(d)
rd−1,id,rd

=

Id∑
md=1

X(d)
rd−1,md

Ωmd,id,rd (19)

for each d ∈ {1, 2, . . . , D}, where Ωijk = δijδjkδki. We assume r0 = rD for simplicity. We
obtain equation 12 by substituting equation 19 into equation 18.

This constraint enables us to perform convex optimization. From Kronecker’s delta δ, rd = id holds
in equation 19, thus χ(d) is a tensor with the size Id−1 × Id × Id. Tensor ring rank after the cyclic
two-body approximation is (I1, . . . , ID) since the size of core tensors coincides with tensor ring rank.

B IMPLEMENTATION DETAIL

We describe the implementation details of methods in the following.

Proposed method Our method is implemented in Julia 1.8. We use a natural gradient method for
cyclic two-body approximation. The natural gradient method uses the inverse of the Fisher infor-
mation matrix to perform second-order optimization in a non-euclidean space. For non-normalized
tensors, we conduct the following procedure. First, we compute the total sum of elements of an
input tensor. Then, we normalize the tensor. After that, we conduct Legendre decomposition for the
normalized tensor. Finally, we get the product of the result of the previous step and the total sum we
compute initially. The termination criterion is the same as the original implementation of Legendre
Decomposition by Sugiyama et al. (2018), that is, it terminates if ||ηB

t − η̂B || < 10−5, where ηB
t

is the expectation parameters on t-th step and η̂B is the expectation parameters of an input tensor,
which are defined in Section 2.1.1. The overall procedure is described in Algorithm 1. Note that this
algorithm is based on Legendre decomposition by Sugiyama et al. (2018).

Baseline methods We implemented baseline methods by translating MATLAB code provided by
the authors into Julia code for fair comparison. As we can see from their original papers, NTR-APG,
NTR-HALS, NTR-MU, NTR-MM and NTR-lraMM have an inner and outer loop to find a local
solution. We repeat the inner loop 100 times. We stop the outer loop when the difference between the
relative error of the previous and the current iteration is less than 10e-4. NTR-MM and NTR-lraMM
require diagonal parameters matrix Ξ. We define Ξ = ωI where I is an identical matrix and ω = 0.1.
The NTR-lraMM method performs low-rank approximation to the matrix obtained by mode expansion
of an input tensor. The target rank is set to be 20. This setting is the default setting in the provided
code. The initial positions of baseline methods were sampled from uniform distribution on (0, 1).
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Algorithm 1: Many-body approximation
MANYBODYAPPROXIMATION(T , B)

s← Total sum of T .
Obtain normalized input tensor P ← T ./s // “./” denotes element-wise division
Compute η̂ of P using equation 3.
Initialize θB

t=1 // e.g. θb = 0 for all b ∈ B
t← 1
repeat

Compute Qt using the current parameter θB
t with equation 1.

Compute ηB
t from Qt using equation 3.

Compute the inverse of the Fisher information matrix G using equation 5.
θB
t+1 ← θB

t −G−1(ηB
t − η̂B)

t← t+ 1
until ||ηB

t − η̂B || < ϵ // We set ϵ = 10−5 in our implementation;
T ← Qt .∗ s // “.∗” denotes element-wise multiplication
return T

Environment Experiments were conducted on Ubuntu 20.04.1 with a single core of 2.1GHz Intel
Xeon CPU Gold 5218 and 128GB of memory.

C DATASET DETAIL

We describe the details of each dataset in the following.

Synthetic Datasets For all experiments on synthetic datasets, we change the target ring-rank as
(r, . . . , r) for r = 2, 3, . . . , 9 for baseline methods.

Real Datasets 4DLFD is originally a (9, 9, 512, 512, 3) tensor, which is produced from 4D Light
Field Dataset described in Honauer et al. (2016). Its license is Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. We use dino images and their depth
and disparity map in training scenes. We concatenate them to produce a tensor. We re-
shaped the tensor as (6, 8, 6, 8, 6, 8, 6, 8, 12). For baseline methods, we chose the target ring-
rank as (2, 3, 2, 2, 2, 2, 2, 2, 2), (2, 3, 2, 2, 3, 2, 2, 3, 2), (2, 2, 2, 2, 2, 2, 2, 2, 5), (2, 5, 2, 2, 5, 2, 2, 2, 2),
(2, 2, 2, 2, 2, 2, 2, 2, 7), (2, 2, 2, 2, 3, 2, 2, 2, 7), (2, 2, 2, 2, 2, 2, 2, 2, 9). TT_ChartRes is origi-
nally a (736, 736, 31) tensor, which is produced from TokyoTech 31-band Hyperspectral Image
Dataset. We use ChartRes.mat. We reshaped the tensor as (23, 8, 4, 23, 8, 4, 31). For baseline
methods, we chose the target ring-rank as (2, 2, 2, 2, 2, 2, 2) (2, 2, 2, 2, 2, 2, 5), (2, 2, 2, 2, 2, 2, 8),
(3, 2, 2, 3, 2, 2, 5), (2, 2, 2, 2, 2, 2, 9), (3, 2, 2, 3, 2, 2, 6), (4, 2, 2, 2, 2, 2, 6), (3, 2, 2, 4, 2, 2, 8),
(3, 2, 2, 3, 2, 2, 9), (3, 2, 2, 3, 2, 2, 10), (3, 2, 2, 3, 2, 2, 12), (3, 2, 2, 3, 2, 2, 15), (3, 2, 2, 3, 2, 2, 16).
TT_Origami and TT_Paint are originally (512, 512, 59) tensors, which are produced from
TokyoTech 59-band Hyperspectral Image Dataset. We use Origami.mat and Paint.mat.
In TT_Origami, 0.0016% of elements were negative, hence we preprocessed all elements of
TT_Origami by subtracting−0.000764, the smallest value in TT_Origami, to make all elements
non-negative. We reshaped the tensor as (8, 8, 8, 8, 8, 8, 59). For baseline methods, we chose the
target ring-rank as (2, 2, 2, 2, 2, 2, r) for r = 2, 3, . . . , 15. These reshaping reduces the computational
complexity as described in Section 2.6 to complete all the experiments in a reasonable time.

D PROJECTION THEORY IN INFORMATION GEOMETRY

We explain concepts of information geometry used in this study, including natural parameters,
expectation parameters, model flatness, and convexity of optimization. In the following discussion,
we consider only discrete probability distributions.
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(θ, η)-coordinate and geodesics In this study, we map a normalized D-order non-negative tensor
P ∈ RI1×···×ID

≥0 to a discrete probability distribution with D random variables. Let U be the set of
discrete probability distributions with D random variables. The entire space U is a non-Euclidean
space with the Fisher information matrix G as the metric. This metric measures the distance between
two points. In Euclidean space, the shortest path between two points is a straight line. In a non-
Euclidean space, such a shortest path is called a geodesic. In the space U , two kinds of geodesics can
be introduced, e-geodesics and m-geodesics. For two points P1,P2 ∈ U , e- and m-geodesics can be
defined as

{ Rt | logRt = (1− t) logP1 + t logP2 − ϕ(t) } , { Rt | Rt = (1− t)P1 + tP2 } ,
respectively, where 0 ≤ t ≤ 1 and ϕ(t) is a normalization factor to keepRt to be a distribution.

We can parameterize distributions P ∈ U by a parameter called the natural parameter. We have
described the relationship between a distribution P and natural parameter θ = (θ1,...,1, . . . , θI1,...,ID )
in equation 1. The natural parameter θ serves as a coordinate system of U , since any distribution in U
is specified by determining θ. Furthermore, we can also specify a distribution P by its expectation
parameter η = (η1,...,1, . . . , ηI1,...,ID ), which corresponds to expected values of the distribution and
an alternative coordinate system of U . The definition of the expectation parameter η is described
in equation 3. θ-coordinates and η-coordinates are orthogonal with each other, which means that the
Fisher information matrix G has the following property, Gu,v = ∂ηu/∂θv and (G−1)u,v = ∂θu/∂ηv .
e- and m-geodesics can also be described using these parameters as follows.{

θt | θt = (1− t)θP1 + tθP2
}
,
{
ηt | ηt = (1− t)ηP1 + tηP2

}
,

where θP and ηP are θ- and η-coordinate of a distribution P ∈ U .

Flattness and projections A subspace is called e-flat when any e-geodesic connecting two points
in a subspace is included in the subspace. The vertical descent of an m-geodesic from a point
P ∈ U onto e-flat subspace Be is called m-projection. Similarly, e-projection is obtained when
we replace all e with m and m with e. The flatness of subspaces guarantees the uniqueness of the
projection destination. The projection destination P or P̃ obtained by m- or e-projection onto Be or
Bm minimizes the following KL divergence,

P = argmin
Q∈Be

DKL(P,Q), P̃ = argmin
Q∈Bm

DKL(Q,P).

The KL divergence from discrete distributions P ∈ U to Q ∈ U is given as

DKL(P,Q) =
I1∑

i1=1

· · ·
ID∑

iD=1

Pi1,...,iD log
Pi1,...,iD

Qi1,...,iD

. (20)

It is known that a subspace with linear constraints on natural parameters θ is e-flat (Amari, 2016,
Chapter 2). The proposed many-body approximation performs m-projection onto the subspace
B ⊂ U with some natural parameters fixed to be 0. From this linear constraint, we know that B is
e-flat. Therefore, the optimal solution of the many-body approximation is always unique. When a
space is e-flat and m-flat at the same time, we say that the space is dually-flat. U is dually-flat.

Natural gradient method e(m)-flatness guarantees that cost functions to be optimized in equa-
tion 20 are convex. Therefore, m(e)-projection onto an e(m)-flat subspace can be implemented by a
gradient method using a second-order gradient. We call this gradient method the natural gradient
method. The Fisher information matrix G appears by second-order differentiation of the KL diver-
gence (see equation 5). We can perform fast optimization using the update formula in equation 6,
using the inverse of the Fisher information matrix.

Examples for Möbius function In the proposed method, we need to transform the distribution
P ∈ RI1×···×ID with θ and η using the Möbius function, defined in Section 2.1. We provide
examples here. In equation 2, The Möbius function is used to find the natural parameter θ from a
distribution P . For example, if D = 2, 3, it holds that

θi1,i2 = logPi1,i2 − logPi1−1,i2 − logPi1,i2−1 + logPi1−1,i2−1,

θi1,i2,i3 = logPi1,i2,i3 − logPi1−1,i2,i3 − logPi1,i2−1,i3 − logPi1,i2,i3−1

+ logPi1−1,i2−1,i3 + logPi1,i2−1,i3−1 + logPi1,i2−1,i3−1 − logPi1−1,i2−1,i3−1,
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where we assume P0,i2 = Pi1,0 = 1 and Pi1,i2,0 = Pi1,0,i3 = P0,i2,i3 = 1. Note that, to identify
the value of θi1,...,id , we need only Pi′1,...,i

′
d

with (i′1, . . . , i
′
d) ∈ {i1 − 1, i1} × {i2 − 1, i2} × · · · ×

{id − 1, id}. In the same way, using equation 3, we can find the distribution P by the expectaion
parameter η. For example, if D = 2, 3, it holds that

Pi1,i2 = ηi1,i2 − ηi1+1,i2 − ηi1,i2+1 + ηi1+1,i2+1,

Pi1,i2,i3 = ηi1,i2,i3 − ηi1+1,i2,i3 − ηi1,i2+1,i3 − ηi1,i2,i3+1

+ ηi1+1,i2+1,i3 + ηi1+1,i2,i3+1 + ηi1,i2+1,i3+1 − ηi1+1,i2+1,i3+1,

where we assume ηI1+1,i2 = ηi1,I2+1 = 0 and ηI1+1,i2,i3 = ηi1,I2+1,i3 = ηi1,i2,I3+1 = 0.
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