
Transformers as Statisticians:
Provable In-Context Learning with In-Context Algorithm Selection

Yu Bai * 1 Fan Chen * 2 Huan Wang 1 Caiming Xiong 1 Song Mei * 3

Abstract

This work advances the understandings of the
remarkable in-context learning (ICL) abilities of
transformers—the ability of performing new tasks
when prompted with training and test examples,
without any parameter update to the model. We
begin by showing that transformers can imple-
ment a broad class of standard machine learning
algorithms in context, such as least squares, ridge
regression, Lasso, convex risk minimization for
generalized linear models, and gradient descent
on two-layer neural networks, with near-optimal
predictive power on various in-context data dis-
tributions. Our transformer constructions admit
mild sizes and norms, and can be learned with
polynomially many pretraining sequences.

Building on these “base” ICL algorithms, in-
triguingly, we show that transformers can imple-
ment more complex ICL procedures involving in-
context algorithm selection, akin to what a statisti-
cian can do in real life—A single transformer can
adaptively select different base ICL algorithms—
or even perform qualitatively different tasks—on
different input sequences, without any explicit
prompting of the right algorithm or task. In theory,
we construct two general mechanisms for algo-
rithm selection with concrete examples: (1) Pre-
ICL testing, where the transformer determines the
right task for the given sequenceby examining
certain summary statistics of the input sequence;
(2) Post-ICL validation, where the transformer
selects—among multiple base ICL algorithms—a
near-optimal one for the given sequence using a
train-validation split. Experimentally, we demon-
strate the strong in-context algorithm selection
capabilities of standard transformer architectures.

*Equal contribution 1Salesforce AI Research 2Peking
University 3UC Berkeley. Correspondence to: Yu Bai
<yu.bai@salesforce.com>.

Work presented at the ES-FoMo Workshop at ICML 2023.

1. Introduction
Large neural sequence models have demonstrated remark-
able in-context learning (ICL) capabilities (Brown et al.,
2020), where models can make accurate predictions on new
tasks when prompted with training examples from the same
task, in a zero-shot fashion without any parameter update
to the model. A prevalent example is large language mod-
els based on the transformer architecture (Vaswani et al.,
2017), which can perform a diverse range of tasks in con-
text when trained on enormous text (Brown et al., 2020;
Wei et al., 2022). Recent models in this paradigm such as
GPT-4 achieve surprisingly impressive ICL performance
that makes them akin to a general-purpose agent in many
aspects (OpenAI, 2023; Bubeck et al., 2023). Such strong
capabilities call for better understandings, which a recent
line of work tackles from various aspects (Liu et al., 2021;
Xie et al., 2021; Elhage et al., 2021; Razeghi et al., 2022;
Chan et al., 2022; Min et al., 2022; Olsson et al., 2022).

Recent pioneering work of Garg et al. (2022) proposes an
interpretable and theoretically amenable setting for under-
standing ICL in transformers. They perform ICL experi-
ments where input tokens are real-valued (input, label) pairs
generated from standard statistical models such as linear
models (and the sparse version), neural networks, and deci-
sion trees. Garg et al. (2022) find that transformers can learn
to perform ICL with prediction power (and fitted functions)
matching standard machine learning algorithms for these
settings, such as least squares for linear models, and Lasso
for sparse linear models. Subsequent work further studies
the internal mechanisms (Akyürek et al., 2022; von Oswald
et al., 2022; Dai et al., 2022), expressive power (Akyürek
et al., 2022; Giannou et al., 2023), and generalization (Li
et al., 2023) of transformers in this setting. However, these
works only showcase simple mechanisms such as regular-
ized regression (Garg et al., 2022; Akyürek et al., 2022; Li
et al., 2023) or gradient descent (Akyürek et al., 2022; von
Oswald et al., 2022; Dai et al., 2022), which are arguably
only a small subset of what transformers are capable of in
practice; or expressing universal function classes not spe-
cific to ICL (Wei et al., 2021; Giannou et al., 2023). This
motivates the following question:

How do transformers learn in context beyond

1

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Data

Which distribution?

dist 1 dist K

̂yN+1 = 𝖠𝗅𝗀k⋆(D, xN+1)

TF

𝖠𝗅𝗀1 𝖠𝗅𝗀K……

Mechanism 2: Pre-ICL Testing

Data

𝖠𝗅𝗀1(Dtrain) 𝖠𝗅𝗀K(Dtrain)……

TF

𝖫𝗈𝗌𝗌1(Dval) 𝖫𝗈𝗌𝗌K(Dval)……

Which loss is the smallest?

̂yN+1 = 𝖠𝗅𝗀k⋆(Dtrain, xN+1)

Train-validation split

Mechanism 1: Post-ICL Validation

Data 1
(Regression)

Transformer

𝖫𝗂𝗇𝖱𝖾𝗀(D, xN+1) 𝖫𝗈𝗀𝖱𝖾𝗀(D, xN+1)

Data 2
(Classification)

̂yN+1 :
Example 2: Regression + Classification

Data 1
(Reg w/noise)σ1

Transformer

𝖱𝗂𝖽𝗀𝖾λ1(D, xN+1) 𝖱𝗂𝖽𝗀𝖾λ2(D, xN+1)

Data 2
(Reg w/noise)σ2

̂yN+1 :
Example 1: Ridge with different λ

Figure 1: Illustration of in-context algorithm selection, and two mechanisms constructed in our theory. Left, middle-left: A single
transformer can perform ridge regression with different λ’s on input sequences with different observation noise; we prove this by the
post-ICL validation mechanism (Appendix D.1). Middle-right, right: A single transformer can perform linear regression on regression
data and logistic regression on classification data; we prove this via the pre-ICL testing mechanism (Appendix D.2).

implementing simple algorithms?

This paper makes steps on this question by making two main
contributions: (1) We unveil a general mechanism—in-
context algorithm selection—by which a single transformer
can adaptively select different “base” ICL algorithms to use
on different ICL instances, without any explicit prompting
of the right algorithm to use in the input sequence. For exam-
ple, a transformer may choose to perform ridge regression
with regularization λ1 on ICL instance 1, and λ2 on ICL
instance 2 (Figure 2); or perform regression on ICL instance
1 and classification on ICL instance 2 (Figure 5). This adap-
tivity allows transformers to achieve much stronger ICL
performance than the base ICL algorithms. We both prove
this in theory, and demonstrate this phenomenon empirically
on standard transformer architectures. (2) Along the way,
equally importantly, we present a comprehensive theory for
ICL in transformers by establishing end-to-end quantitative
guarantees for the expressive power, in-context predic-
tion performance, and sample complexity of pretraining.
These results add upon the recent line of work on the statis-
tical learning theory of transformers (Yun et al., 2019; Wei
et al., 2021; Edelman et al., 2022; Jelassi et al., 2022), and
lay out a foundation for the intriguing special case where
the learning targets are themselves ICL algorithms.

A detailed summary of our contributions is as follows.

• We prove that transformers can implement a broad
class of standard machine learning algorithms in con-
text, such as least squares, ridge regression, Lasso, con-
vex risk minimization for learning generalized linear
models (such as logistic regression), and gradient de-
scent for two-layer neural networks (Appendix C). Our
constructions admit mild bounds on the number of lay-
ers, heads, and weight norms, and achieve near-optimal
prediction power on many in-context data distributions.

• We prove that transformers can perform in-context al-
gorithm selection (Appendix D). We construct two
algorithm selection mechanisms: Post-ICL validation

(Appendix D.1), and Pre-ICL testing (Appendix D.2).
For both mechanisms, we provide general construc-
tions as well as concrete examples. Figure 1 provides a
pictorial illustration of the two mechanisms.

• As a concrete application, using the post-ICL valida-
tion mechanism, we construct a transformer that can
perform nearly Bayes-optimal ICL on noisy linear mod-
els with mixed noise levels (Appendix D.1.1), a more
complex task than those considered in existing work.

• We provide the first line of results for pretraining trans-
formers to perform the various ICL tasks above, from
polynomially many training sequences (Appendix E).

• Experimentally, we find that learned transformers in-
deed exhibit strong in-context algorithm selection ca-
pabilities in the settings considered in our theory (Sec-
tion 3). For example, Figure 2 shows that a single
transformer can approach the individual Bayes risks
(the optimal risk among all possible algorithms) simul-
taneously on two noisy linear models with different
noise levels.

Transformers as statisticians We humbly remark that the
typical toolkit of a statistician contains much more beyond
those covered in this work, including and not limited to
inference, uncertainty quantification, and theoretical analy-
sis. This work merely aims to show the algorithm selection
capability of transformers, akin to what statisticians can do.

Related work Our work is intimately related to the lines
of work on in-context learning, theoretical understandings
of transformers, as well as other formulations for learning-
to-learn such as meta-learning. Due to limited space, we
discuss these related work in Appendix A.

2. Theory
As a main contribution of this work, we present a com-
prehensive theory for the ICL and in-context algorithm se-
lection capabilities of transformers, providing quantitative

2

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

(a) Noisy linear reg with noise σ1

0 10 20 30 40
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
 lo

ss

TF_alg_select
TF_noise_1
TF_noise_2
ridge_lam_1
ridge_lam_2

(b) Noisy linear reg with noise σ2

0 10 20 30 40
in-context examples

0.4

0.6

0.8

1.0

1.2

1.4

TF_alg_select
TF_noise_1
TF_noise_2
ridge_lam_1
ridge_lam_2

(c) Task 1 vs. task 2 at token 20

0.10 0.15 0.20 0.25 0.30
noisy_reg_noise_1

0.6

0.8

1.0

1.2

1.4

no
isy

_r
eg

_n
oi

se
_2

TF_alg_select
TF_noise_1
TF_noise_2
ridge_lam_1
ridge_lam_2
ridge analytical
Bayes_err_noise_1
Bayes_err_noise_2

Figure 2: In-context algorithm selection on two separate noisy linear regression tasks with noise (σ1, σ2) = (0.1, 0.5). (a,b) A single
transformer TF_alg_select simultaneously approaches the performance of the two individual Bayes predictors ridge_lam_1
on task 1 and ridge_lam_2 on task 2. (c) At token 20 (using example {0, . . . , 19} for training), TF_alg_select approaches the
Bayes error on two tasks simultaneously, and outperforms ridge regression with any fixed λ. (a,b,c) Note that transformers pretrained
on a single task (TF_noise_1, TF_noise_2) perform near-optimally on that task but suboptimally on the other task. More details
about the setup and training method can be found in Section 3.2.

end-to-end guarantees for the expressive power, in-context
prediction performance, and sample complexity of pretrain-
ing. Due to limited space, we defer the details to the follow-
ing appendices:

• Transformer constructions for basic ICL algorithms
(Appendix C), with concrete and mild bounds on the
size of the transformers (number of layers, heads, and
weight norms) and guarantees on their in-context pre-
diction power.

• In-context algorithm selection capabilities of trans-
formers (Appendix D), with two general mechanisms
and concrete examples: Post-ICL validation (Ap-
pendix D.1), and pre-ICL testing (Appendix D.2).

• Analyses of pretraining (Appendix E).

3. Experiments
3.1. In-context learning and algorithm selection

We test our theory by studying the ICL and in-context al-
gorithm selection capabilities of transformers, using the
encoder-based architecture in our theoretical constructions
(Definition B.3). Additional experimental details can be
found in Appendix P.1.

Training data distributions and evaluation We train a
12-layer transformer, with two modes for the training se-
quence (instance) distribution π. In the “base” mode, similar
to (Garg et al., 2022; Akyürek et al., 2022; von Oswald et al.,
2022; Li et al., 2023), we sample the training instances from
one of the following base distributions (tasks), where we first
sample P = Pw⋆ ∼ π by sampling w⋆ ∼ N(0, Id/d), and
then sample {(xi, yi)}i∈[N+1]

iid∼ Pw⋆
as xi

iid∼ N(0, Id),
and yi from one of the following models studied in Ap-
pendix C:

1. Linear model: yi = ⟨w⋆,xi⟩;

2. Noisy linear model: yi = ⟨w⋆,xi⟩+σzi, where σ > 0
is a fixed noise level, and zi ∼ N(0, 1).

3. Sparse linear model: yi = ⟨w⋆,xi⟩ with ∥w⋆∥0 ≤ s,
where s < d is a fixed sparsity level, and in this case we
sample w⋆ from a special prior supported on s-sparse
vectors;

4. Linear classification model: yi = sign(⟨w⋆,xi⟩).

These base tasks have been empirically investigated by Garg
et al. (2022), though we remark that our architecture (used
in our theory) differs from theirs in several aspects, such as
encoder-based architecture instead of decoder-based, and
ReLU activation instead of softmax. All experiments use
d = 20. We choose σ ∈ {σ1, σ2} = {0.1, 0.5} andN = 20
for noisy linear regression, s = 3 and N = 10 for sparse
linear regression, and N = 40 for linear regression and
linear classification.

In the “mixture” mode, π is the uniform mixture of two or
more base distributions. We consider two representative
mixture modes studied in Appendix D:

• Linear model + linear classification model;

• Noisy linear model with four noise levels σ ∈
{0.1, 0.25, 0.5, 1}.

Transformers trained with the mixture mode will be evalu-
ated on multiple base distributions simultaneously. When
the base distributions are sufficiently diverse, a transformer
performing well on all of them will likely be performing
some level of in-context algorithm selection. We evaluate
transformers against standard machine learning algorithms
in context (for each task respectively) as baselines.

Results Figure 3a shows the ICL performance of trans-
formers on five base tasks, within each the transformer is

3

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

(a) Base ICL capabilities

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Loss

linear_regression

noisy_reg_noise_1

noisy_reg_noise_2

sparse_reg

linear_classification

Transformer
Least Squares
Averaging
3-NN
ridge_lam_1
ridge_lam_2
Lasso_lam=1
Lasso_lam=0.1
Lasso_lam=0.01
Lasso_lam=0.001
Logistic Regression

(b) Noisy reg with two noises

0.10 0.15 0.20 0.25 0.30
noisy_reg_noise_1

0.6

0.8

1.0

1.2

1.4

no
isy

_r
eg

_n
oi

se
_2

TF_alg_select
TF_noise_1
TF_noise_2
ridge_lam_1
ridge_lam_2
ridge analytical
Bayes_err_noise_1
Bayes_err_noise_2

(c) Reg + Classification

0.0 0.5 1.0 1.5
regression_square_loss

0.20

0.25

0.30

0.35

cla
ss

ifi
ca

tio
n_

er
ro

r

TF_alg_select
TF_reg
TF_cls
Least Squares
Averaging
3-NN

Figure 3: ICL capabilities of the transformer architecture used in our theoretical constructions. (a) On five representative base tasks,
transformers approximately match the best baseline algorithm for each task, when pretrained on the corresponding task. (b,c) A single
transformer TF_alg_select simultaneously approaches the performance of the strongest baseline algorithm on two separate
tasks: (b) noisy linear regression with two different noise levels σ ∈ {0.1, 0.5}, and (c) adaptively selecting between regression and
classification.

trained on the same task. Transformers match the best base-
line algorithm in four out of the five cases, except for the
sparse regression task where the Transformer still outper-
forms least squares and matches Lasso with some choices of
λ (thus utilizing sparsity to some extent). This demonstrates
the strong ICL capability of the transformer architecture
considered in our theory.

Figure 3b & 3c examine the in-context algorithm selec-
tion capability of transformers, on noisy linear regression
with two different noise levels (Figure 3b), and regres-
sion + classification (Figure 3c). In both figures, the trans-
former trained in the mixture mode (TF_alg_select)
approaches the best baseline algorithm on both tasks simul-
taneously. By contrast, transformers trained in the base
mode for one of the tasks perform well on that task but
behave suboptimally on the other task as expected. The exis-
tence of TF_alg_select showcases a single transformer
that performs well on multiple tasks simultaneously (and
thus has to perform in-context algorithm selection to some
extent), supporting our theoretical results in Appendix D.

3.2. Decoder-based architecture & details for Figure 2

ICL capabilities have also been demonstrated in the liter-
ature for decoder-based architectures (Garg et al., 2022;
Akyürek et al., 2022; Li et al., 2023). There, the transformer
can do in-context predictions at every token xi using past to-
kens {(xj ,yj)}j≤i−1 as training examples. Here we show
that such architectures is also able to perform in-context
algorithm selection at every token; For results for this ar-
chitecture on “base” ICL tasks (such as those considered
in Figure 3a), we refer the readers to Garg et al. (2022).

Setup Our setup is the same as the two “mixture” modes
(linear model + linear classification model, and noisy linear
models with two different noise levels) as in Section 3.1,
except that the architecture is GPT-2 following Garg et al.
(2022), and the input format is changed to (11) (so that
the input sequence has 2N + 1 tokens) without positional

encodings. For every i ∈ [N + 1], we extract the prediction
ŷi using a linear read-out function applied on output token
2i − 1, and the (learnable) linear read-out function is the
same across all tokens, similar as in Section 3.1. The rest
of the setup (optimization, training, and evaluation) is the
same as in Section 3.1 & P.1. Note that we also train on the
objective (40) for all tokens averaged, instead of for the last
test token as in Section 3.1.

Result Figure 2 shows the results for noisy linear mod-
els with two different noise levels, and Figure 5 shows the
results for linear model + linear classification model. We ob-
serve that at every token, In both cases, TF_alg_select
nearly matches the strongest baseline for both tasks simul-
taneously, whereas transformers trained on a single task
perform suboptimally on the other task. Further, this phe-
nomenon consistently shows up at every token. For exam-
ple, in Figure 2a & 2b, TF_alg_select matches ridge
regression with the optimal λ on all tokens i ∈ {1, . . . , N}
(N = 40). In Figure 5a & 5b, TF_alg_select matches
least squares on the regression task and logistic regression
on the classification task on all tokens i ∈ [N]. This demon-
strates the in-context algorithm selection capabilities of stan-
dard decoder-based transformer architectures.

4. Conclusion
This work shows that transformers can perform complex
in-context learning procedures with strong in-context al-
gorithm selection capabilties, by both explicit theoretical
constructions and experiments. We believe our work opens
up many exciting directions, such as (1) more mechanisms
for in-context algorithm selection; (2) Bayes-optimal ICL
on other problems by either the post-ICL validation mech-
anism or new approaches; (3) understanding the internal
workings of transformers performing in-context algorithm
selection; (4) other mechanisms for implementing complex
ICL procedures beyond in-context algorithm selection; (5)
further statistical analyses, e.g. of pretraining.

4

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

References
Agarwal, A., Negahban, S., and Wainwright, M. J. Fast

global convergence rates of gradient methods for high-
dimensional statistical recovery. Advances in Neural
Information Processing Systems, 23, 2010.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bach, F. Breaking the curse of dimensionality with con-
vex neural networks. The Journal of Machine Learning
Research, 18(1):629–681, 2017.

Bai, Y., Chen, M., Zhou, P., Zhao, T., Lee, J., Kakade,
S., Wang, H., and Xiong, C. How important is the train-
validation split in meta-learning? In International Confer-
ence on Machine Learning, pp. 543–553. PMLR, 2021.

Baxter, J. A model of inductive bias learning. Journal of
artificial intelligence research, 12:149–198, 2000.

Beck, A. and Teboulle, M. Gradient-based algorithms with
applications to signal recovery. Convex optimization in
signal processing and communications, pp. 42–88, 2009.

Bengio, S., Bengio, Y., Cloutier, J., and Gescei, J. On the
optimization of a synaptic learning rule. In Optimality in
Biological and Artificial Networks?, pp. 281–303. Rout-
ledge, 2013.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the abil-
ity and limitations of transformers to recognize formal
languages. arXiv preprint arXiv:2009.11264, 2020a.

Bhattamishra, S., Patel, A., and Goyal, N. On the com-
putational power of transformers and its implications in
sequence modeling. arXiv preprint arXiv:2006.09286,
2020b.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bubeck, S. Convex optimization: Algorithms and complex-
ity. Foundations and Trends® in Machine Learning, 8
(3-4):231–357, 2015.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A.,
Richemond, P., McClelland, J., and Hill, F. Data distri-
butional properties drive emergent in-context learning in
transformers. Advances in Neural Information Processing
Systems, 35:18878–18891, 2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chua, K., Lei, Q., and Lee, J. D. How fine-tuning allows for
effective meta-learning. Advances in Neural Information
Processing Systems, 34:8871–8884, 2021.

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z., and Wei, F. Why
can gpt learn in-context? language models secretly per-
form gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559, 2022.

Denevi, G., Ciliberto, C., Stamos, D., and Pontil, M. Incre-
mental learning-to-learn with statistical guarantees. arXiv
preprint arXiv:1803.08089, 2018a.

Denevi, G., Ciliberto, C., Stamos, D., and Pontil, M. Learn-
ing to learn around a common mean. Advances in Neural
Information Processing Systems, 31, 2018b.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dobriban, E. and Wager, S. High-dimensional asymptotics
of prediction: Ridge regression and classification. The
Annals of Statistics, 46(1):247–279, 2018.

Dong, L., Xu, S., and Xu, B. Speech-transformer: a no-
recurrence sequence-to-sequence model for speech recog-
nition. In 2018 IEEE international conference on acous-
tics, speech and signal processing (ICASSP), pp. 5884–
5888. IEEE, 2018.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun,
X., Xu, J., and Sui, Z. A survey for in-context learning.
arXiv preprint arXiv:2301.00234, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei,
Q. Few-shot learning via learning the representation,
provably. arXiv preprint arXiv:2002.09434, 2020.

5

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Edelman, B. L., Goel, S., Kakade, S., and Zhang, C. Induc-
tive biases and variable creation in self-attention mecha-
nisms. In International Conference on Machine Learning,
pp. 5793–5831. PMLR, 2022.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
et al. A mathematical framework for transformer circuits.
Transformer Circuits Thread, 2021.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. Online
meta-learning. In International Conference on Machine
Learning, pp. 1920–1930. PMLR, 2019.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. arXiv preprint arXiv:2301.13196,
2023.

Hahn, M. Theoretical limitations of self-attention in neural
sequence models. Transactions of the Association for
Computational Linguistics, 8:156–171, 2020.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In Artificial Neural Net-
works—ICANN 2001: International Conference Vienna,
Austria, August 21–25, 2001 Proceedings 11, pp. 87–94.
Springer, 2001.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey,
A. Meta-learning in neural networks: A survey. IEEE
transactions on pattern analysis and machine intelligence,
44(9):5149–5169, 2021.

Hsu, D., Kakade, S. M., and Zhang, T. Random design anal-
ysis of ridge regression. In Conference on learning theory,
pp. 9–1. JMLR Workshop and Conference Proceedings,
2012.

Jelassi, S., Sander, M. E., and Li, Y. Vision transform-
ers provably learn spatial structure. arXiv preprint
arXiv:2210.09221, 2022.

Ji, K., Lee, J. D., Liang, Y., and Poor, H. V. Convergence of
meta-learning with task-specific adaptation over partial
parameters. Advances in Neural Information Processing
Systems, 33:11490–11500, 2020.

Khodak, M., Balcan, M.-F. F., and Talwalkar, A. S. Adap-
tive gradient-based meta-learning methods. Advances in
Neural Information Processing Systems, 32, 2019.

Kirsch, L. and Schmidhuber, J. Meta learning backpropaga-
tion and improving it. Advances in Neural Information
Processing Systems, 34:14122–14134, 2021.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. arXiv preprint arXiv:2212.04458, 2022.

Li, K. and Malik, J. Learning to optimize. arXiv preprint
arXiv:1606.01885, 2016.

Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S.
Transformers as algorithms: Generalization and implicit
model selection in in-context learning. arXiv preprint
arXiv:2301.07067, 2023.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. arXiv
preprint arXiv:2210.10749, 2022.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp,
P. Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786, 2021.

Maurer, A., Pontil, M., and Romera-Paredes, B. The benefit
of multitask representation learning. Journal of Machine
Learning Research, 17(81):1–32, 2016.

McCullagh, P. Generalized linear models. Routledge, 2019.

Mei, S., Bai, Y., and Montanari, A. The landscape of empir-
ical risk for nonconvex losses. The Annals of Statistics,
46(6A):2747–2774, 2018.

Min, S., Lewis, M., Hajishirzi, H., and Zettlemoyer, L.
Noisy channel language model prompting for few-shot
text classification. arXiv preprint arXiv:2108.04106,
2021a.

Min, S., Lewis, M., Zettlemoyer, L., and Hajishirzi, H.
Metaicl: Learning to learn in context. arXiv preprint
arXiv:2110.15943, 2021b.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
arXiv preprint arXiv:2202.12837, 2022.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P.
A simple neural attentive meta-learner. arXiv preprint
arXiv:1707.03141, 2017.

6

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Naik, D. K. and Mammone, R. J. Meta-neural networks that
learn by learning. In [Proceedings 1992] IJCNN Interna-
tional Joint Conference on Neural Networks, volume 1,
pp. 437–442. IEEE, 1992.

Negahban, S. N., Ravikumar, P., Wainwright, M. J., and Yu,
B. A unified framework for high-dimensional analysis of
m-estimators with decomposable regularizers. 2012.

Nesterov, Y. Lectures on convex optimization, volume 137.
Springer, 2018.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Pérez, J., Marinković, J., and Barceló, P. On the turing
completeness of modern neural network architectures.
arXiv preprint arXiv:1901.03429, 2019.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Ravi, S. and Larochelle, H. Optimization as a model for few-
shot learning. In International conference on learning
representations, 2017.

Razeghi, Y., Logan IV, R. L., Gardner, M., and Singh, S.
Impact of pretraining term frequencies on few-shot rea-
soning. arXiv preprint arXiv:2202.07206, 2022.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Rubin, O., Herzig, J., and Berant, J. Learning to re-
trieve prompts for in-context learning. arXiv preprint
arXiv:2112.08633, 2021.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. Meta-learning with memory-augmented neu-
ral networks. In International conference on machine
learning, pp. 1842–1850. PMLR, 2016.

Saunshi, N., Gupta, A., and Hu, W. A representation learn-
ing perspective on the importance of train-validation split-
ting in meta-learning. In International Conference on
Machine Learning, pp. 9333–9343. PMLR, 2021.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Shen, K., Guo, J., Tan, X., Tang, S., Wang, R., and Bian,
J. A study on relu and softmax in transformer. arXiv
preprint arXiv:2302.06461, 2023.

Snell, C., Zhong, R., Klein, D., and Steinhardt, J. Approxi-
mating how single head attention learns. arXiv preprint
arXiv:2103.07601, 2021.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. Advances in neural information
processing systems, 30, 2017.

Thrun, S. and Pratt, L. Learning to learn. Springer Science
& Business Media, 2012.

Tripuraneni, N., Jordan, M., and Jin, C. On the theory
of transfer learning: The importance of task diversity.
Advances in neural information processing systems, 33:
7852–7862, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov, M.
Transformers learn in-context by gradient descent. arXiv
preprint arXiv:2212.07677, 2022.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge university
press, 2019.

Wang, X., Yuan, S., Wu, C., and Ge, R. Guarantees for
tuning the step size using a learning-to-learn approach.
In International Conference on Machine Learning, pp.
10981–10990. PMLR, 2021.

Wei, C., Chen, Y., and Ma, T. Statistically meaning-
ful approximation: a case study on approximating
turing machines with transformers. arXiv preprint
arXiv:2107.13163, 2021.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

7

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Wei, J., Wei, J., Tay, Y., Tran, D., Webson, A., Lu, Y., Chen,
X., Liu, H., Huang, D., Zhou, D., et al. Larger language
models do in-context learning differently. arXiv preprint
arXiv:2303.03846, 2023.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like trans-
formers. In International Conference on Machine Learn-
ing, pp. 11080–11090. PMLR, 2021.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Yao, S., Peng, B., Papadimitriou, C., and Narasimhan, K.
Self-attention networks can process bounded hierarchical
languages. arXiv preprint arXiv:2105.11115, 2021.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do transformers really perform badly for
graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J., and
Kumar, S. Are transformers universal approximators
of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gu-
nasekar, S., and Wagner, T. Unveiling transformers
with lego: a synthetic reasoning task. arXiv preprint
arXiv:2206.04301, 2022a.

Zhang, Y., Liu, B., Cai, Q., Wang, L., and Wang, Z. An
analysis of attention via the lens of exchangeability and
latent variable models. arXiv preprint arXiv:2212.14852,
2022b.

Zhao, Z., Wallace, E., Feng, S., Klein, D., and Singh, S.
Calibrate before use: Improving few-shot performance
of language models. In International Conference on
Machine Learning, pp. 12697–12706. PMLR, 2021.

Zuo, X., Chen, Z., Yao, H., Cao, Y., and Gu, Q. Un-
derstanding train-validation split in meta-learning with
neural networks. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=JVlyfHEEm0k.

8

https://openreview.net/forum?id=JVlyfHEEm0k
https://openreview.net/forum?id=JVlyfHEEm0k

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

A. Related work
In-context learning The in-context learning (ICL) capability of large language models (LLMs) has gained significant
attention since demonstrated on GPT-3 Brown et al. (2020). A number of subsequent empirical studies have contributed to a
better understanding of the capabilities and limitations of ICL in LLM systems, which include but are not limited to (Liu
et al., 2021; Min et al., 2021a;b; Lu et al., 2021; Zhao et al., 2021; Rubin et al., 2021; Razeghi et al., 2022; Elhage et al.,
2021; Kirsch et al., 2022; Wei et al., 2023). For a comprehensive overview of ICL, see the survey by Dong et al. (2022)
which highlights some key findings and advancements in this direction.

A line of recent work investigates why and how LLMs perform ICL (Xie et al., 2021; Garg et al., 2022; von Oswald et al.,
2022; Akyürek et al., 2022; Dai et al., 2022; Giannou et al., 2023; Li et al., 2023). In particular, Xie et al. (2021) propose a
Bayesian inference framework explaining how ICL works despite formatting differences between training and inference
distributions. Garg et al. (2022) show empirically that transformers could be trained from scratch to perform ICL of linear
models, sparse linear models, two-layer neural networks, and decision trees. Li et al. (2023) analyze the generalization error
of trained ICL transformers from a stability viewpoint. They also experimentally show that transformers could perform
“in-context model selection” (conceptually similar to in-context algorithm selection considered in this work) in specific
tasks and presented related theoretical hypotheses. However, they do not provide concrete mechanisms or constructions for
in-context model selection. A recent work (Zhang et al., 2022b) shows that pretrained transformers can perform Bayesian
inference in latent variable models, which may also be interpreted as a mechanism for ICL. Our experimental findings
extend these results by unveiling and demonstrating the in-context algorithm selection capabilities of transformers.

Closely related to our theoretical results are (von Oswald et al., 2022; Akyürek et al., 2022; Dai et al., 2022; Giannou et al.,
2023), which show (among many things) that transformers can perform ICL by simulating gradient descent. However, these
results do not provide quantitative error bounds for simulating multi-step gradient descent, and only handle linear regression
models or their simple variants. Among these works, Akyürek et al. (2022) showed that transformers can implement learning
algorithms for linear models based on gradient descent and closed-form ridge regression; it also presented preliminary
evidence that learned transformers perform ICL similar to Bayes-optimal ridge regression. Our work builds upon and
substantially extends this line of work by (1) providing a more general and quantitative construction for in-context gradient
descent; (2) providing an end-to-end theory with additional results for pretraining and statistical power; (3) analyzing
a broader spectrum of ICL algorithms, including least squares, ridge regression, Lasso, convex risk minimization for
generalized linear models, and gradient descent on two-layer neural networks; and (4) constructing more complex ICL
procedures using in-context algorithm selection.

When in-context data are generated from a prior, the Bayes risk is a theoretical lower bound for the risk of any possible ICL
algorithm, including transformers. Xie et al. (2021); Akyürek et al. (2022) observe that learned transformers behave closely
to the Bayes predictor on a variety of tasks such as hidden Markov models (Xie et al., 2021) and noisy linear regression
with a fixed noise level (Akyürek et al., 2022; Li et al., 2023). Using the in-context algorithm selection mechanism (more
precisely the post-ICL validation mechanism), we show that transformers can perform nearly-Bayes optimal ICL in noisy
linear models with mixed noise levels (a strictly more challenging task than considered in (Akyürek et al., 2022; Li et al.,
2023)), with both concrete theoretical guarantees (Appendix D.1.1) and empirical evidence (Figure 2 & 3b).

Transformers and its theory The transformer architecture, introduced by (Vaswani et al., 2017), has revolutionized
natural language processing and been adopted in most of the recently developed large language models such as BERT
and GPT (Radford et al., 2018; Devlin et al., 2018; Brown et al., 2020). Broaderly, transformers have demonstrated
remarkable performance in many other fields of artificial intelligence such as computer vision, speech, graph processing,
and reinforcement learning (Dong et al., 2018; Dosovitskiy et al., 2020; Radford et al., 2021; Ying et al., 2021; Chen et al.,
2021; Reed et al., 2022; OpenAI, 2023; Bubeck et al., 2023). Towards a better theoretical understanding, recent work has
studied the capabilities (Yun et al., 2019; Pérez et al., 2019; Yao et al., 2021; Bhattamishra et al., 2020b; Zhang et al., 2022a;
Liu et al., 2022), limitations (Hahn, 2020; Bhattamishra et al., 2020a), and internal workings (Elhage et al., 2021; Snell
et al., 2021; Weiss et al., 2021; Edelman et al., 2022; Olsson et al., 2022) of transformers.

We remark that the transformer architecture used in our theoretical constructions differs from the standard one by replacing
the softmax activation (in the attention layers) with a (normalized) ReLU function. Transformers with ReLU activations is
experimentally studied in the recent work of Shen et al. (2023), who find that they perform as well as the standard softmax
activation in many NLP tasks.

9

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Meta-learning Training models (such as transformers) to perform ICL can be viewed as an approach for the broader
problem of learning-to-learn or meta-learning (Schmidhuber, 1987; Naik & Mammone, 1992; Thrun & Pratt, 2012).
A number of other approaches has been studied extensively for this problem, including (and not limited to) training a
meta-learner on how to update the parameters of a downstream learner (Bengio et al., 2013; Li & Malik, 2016), learning
parameter initializations that quickly adapt to downstream tasks (Finn et al., 2017; Ravi & Larochelle, 2017), learning latent
embeddings that allow for effective similarity search (Snell et al., 2017). Most relevant to the ICL setting are approaches that
directly take as input examples from a downstream task and a query input and produce the corresponding output (Hochreiter
et al., 2001; Mishra et al., 2017; Santoro et al., 2016; Kirsch & Schmidhuber, 2021). For a comprehensive overview, see the
survey (Hospedales et al., 2021).

Theoretical aspects of meta-learning have received significant recent interest (Baxter, 2000; Maurer et al., 2016; Du et al.,
2020; Tripuraneni et al., 2020; Denevi et al., 2018a; Finn et al., 2019; Khodak et al., 2019; Ji et al., 2020; Wang et al., 2021;
Denevi et al., 2018b; Bai et al., 2021; Saunshi et al., 2021; Chua et al., 2021; Zuo et al., 2023). In particular, (Maurer et al.,
2016; Du et al., 2020; Tripuraneni et al., 2020) analyzed the benefit of multi-task learning through a representation learning
perspective, and (Wang et al., 2021; Denevi et al., 2018b; Bai et al., 2021; Saunshi et al., 2021; Zuo et al., 2023) studied the
statistical properties of learning the parameter initialization for downstream tasks.

Techniques We build on various existing techniques from the statistics and learning theory literature to establish our
approximation and generalization guarantees for transformers. For the approximation component, we rely on a technical
result of Bach (2017) on the approximation power of ReLU networks. We use this result to show that transformers can
approximate gradient descent (GD) on a broad range of loss functions, substantially extending the results of (von Oswald
et al., 2022; Akyürek et al., 2022; Dai et al., 2022) who primarily consider the square loss. The recent work of Giannou et al.
(2023) also approximates GD with general loss functions by transformers, though using a different technique of forcing the
softmax activations to act as sigmoids. Our analyses of Lasso and generalized linear models build on (Wainwright, 2019;
Negahban et al., 2012; Agarwal et al., 2010; Mei et al., 2018). Our generalization bound for transformers (used in our
pretraining results) build on a standard chaining argument (Wainwright, 2019).

B. Preliminaries
We consider a sequence of N input vectors {hi}Ni=1 ⊂ RD, written compactly as an input matrix H = [h1, . . . ,hN] ∈
RD×N , where each hi is a column of H (also a token). Throughout this paper, we let σ(t) := ReLU(t) = max {t, 0}
denote the standard relu activation.

B.1. Transformers

We consider transformer architectures that process any input sequence H ∈ RD×N by applying (encoder-mode1) attention
layers and MLP layers formally defined as follows.

Definition B.1 (Attention layer). A (self-)attention layer with M heads is denoted as Attnθ(·) with parameters θ =
{(Vm,Qm,Km)}m∈[M] ⊂ RD×D. On any input sequence H ∈ RD×N ,

H̃ = Attnθ(H) := H+ 1
N

∑M
m=1(VmH)× σ

(
(QmH)⊤(KmH)

)
∈ RD×N , (1)

where σ : R → R is the ReLU function. In vector form,

h̃i = [Attnθ(H)]i = hi +
∑M
m=1

1
N

∑N
j=1 σ(⟨Qmhi,Kmhj⟩) ·Vmhj .

Above, (1) uses a normalized ReLU activation t 7→ σ(t)/N in place of the standard softmax activation, which is for technical
convenience and does not affect the essence of our study2.

Definition B.2 (MLP layer). A (token-wise) MLP layer with hidden dimension D′ is denoted as MLPθ(·) with parameters
θ = (W1,W2) ∈ RD′×D × RD×D′

. On any input sequence H ∈ RD×N ,

H̃ = MLPθ(H) := H+W2σ(W1H),

1Many of our results can be generalized to decoder-based architectures; see Appendix G for a discussion.
2For each query index i, the attention weights {σ(⟨Qmhi,Kmhj⟩)/N}j∈[N] is also a set of non-negative weights that sum to O(1)

(similar as a softmax probability distribution) in typical scenarios.

10

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

where σ : R → R is the ReLU function. In vector form, we have h̃i = hi +W2σ(W1hi).

We consider a transformer architecture with L ≥ 1 transformer layers, each consisting of a self-attention layer followed by
an MLP layer.
Definition B.3 (Transformer). An L-layer transformer, denoted as TFθ(·), is a composition of L self-attention layers each
followed by an MLP layer: H(L) = TFθ(H

(0)), where H(0) ∈ RD×N is the input sequence, and

H(ℓ) = MLP
θ
(ℓ)
mlp

(
Attn

θ
(ℓ)
attn

(
H(ℓ−1)

))
, ℓ ∈ {1, . . . , L}.

Above, the parameter θ = (θ
(1:L)
attn ,θ

(1:L)
mlp) is the parameter consisting of the attention layers θ

(ℓ)
attn =

{(V(ℓ)
m ,Q

(ℓ)
m ,K

(ℓ)
m)}m∈[M(ℓ)] ⊂ RD×D and the MLP layers θ

(ℓ)
mlp = (W

(ℓ)
1 ,W

(ℓ)
2) ∈ RD(ℓ)×D × RD×D(ℓ)

. We will

frequently consider “attention-only” transformers with W
(ℓ)
1 ,W

(ℓ)
2 = 0, which we denote as TF0

θ(·) for shorthand, with
θ = θ(1:L) := θ

(1:L)
attn .

We additionally define the following norm of a transformer TFθ:

|||θ||| := max
ℓ∈[L]

{
max
m∈[M]

{
∥Q(ℓ)

m ∥op, ∥K(ℓ)
m ∥op

}
+

M∑
m=1

∥V(ℓ)
m ∥op + ∥W(ℓ)

1 ∥op + ∥W(ℓ)
2 ∥op

}
. (2)

In (2), the choices of the operator norm and max/sums are for convenience only and not essential, as our results (e.g. for
pretraining) depend only logarithmically on |||θ|||.

B.2. In-context learning

In an in-context learning (ICL) instance, the model is given a dataset D = {(xi, yi)}i∈[N]
iid∼ P and a new test input

xN+1 ∼ Px for some data distribution P, where {xi}i∈[N] ⊆ Rd are the input vectors, {yi}i∈[N] ⊆ R are the corresponding
labels (e.g. real-valued for regression, or {0, 1}-valued for binary classification), and xN+1 is the test input on which the
model is required to make a prediction. Different from standard supervised learning, in ICL, each instance (D,xN+1) is in
general drawn from a different distribution Pj , such as a linear model with a new ground truth coefficient w⋆,j ∈ Rd. Our
goal is to construct fixed transformer to perform ICL on a large set of Pj’s.

We consider using transformers to perform ICL, in which we encode (D,xN+1) into an input sequence H ∈ RD×(N+1). In
our theory, we use the following format, where the first two rows contain (D,xN+1) (zero at the location for yN+1), and the
third row contains fixed vectors {pi}i∈[N+1] with ones, zeros, and indicator for being the train token (similar to a positional
encoding vector):

H =

x1 x2 . . . xN xN+1

y1 y2 . . . yN 0
p1 p2 . . . pN pN+1

 ∈ RD×(N+1), pi :=

 0D−(d+3)

1
1{i < N + 1}

 ∈ RD−(d+1). (3)

We will choose D = Θ(d), so that the hidden dimension of H is at most a constant multiple of d. We then feed H into a
transformer to obtain the output H̃ = TFθ(H) ∈ RD×(N+1) with the same shape, and read out the prediction ŷN+1 from
the (d+ 1, N + 1)-th entry of H̃ = [h̃i]i∈[N+1] (the entry corresponding to the missing test label): ŷN+1 = ready(H̃) :=

(h̃N+1)d+1. The goal is to predict ŷN+1 that is close to yN+1 ∼ Py|xN+1
measured by proper losses. We emphasize that

we consider predicting only at the last token xN+1, which is without much loss of generality.3

Miscellaneous setups We assume bounded features and labels throughout the paper (unless otherwise specified, e.g. when
xi is Gaussian): ∥xi∥2 ≤ Bx and |yi| ≤ By with probability one. We use the standard notation X = [x⊤

1 ; . . . ;x
⊤
N] ∈ RN×d

and y = [y1; . . . ; yN] ∈ RN to denote the matrix of inputs and vector of labels, respectively. To prevent the transformer
from blowing up on tail events, in all our results concerning (statistical) in-context prediction powers, we consider a clipped
prediction ŷN+1 = r̃eady(H̃) := clipR((h̃N+1)d+1), where clipR(t) := Proj[−R,R](t) is the standard clipping operator
with (a suitably large) radius R ≥ 0 that varies in different problems.

3Our constructions may be generalized to predicting at every token, by using a decoder architecture and potentially different input
formats correspondingly (cf. Appendix G). Our theory focuses on predicting at the last token only, which simplifies the setting. Our
experiments test both settings.

11

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

C. Basic in-context learning algorithms
We begin by constructing transformers that approximately implement a variety of standard machine learning algorithms in
context, with mild bounds on the number of layers, heads, and weight norms.

C.1. In-context ridge regression and least squares

Consider the standard ridge regression estimator over the in-context training examples D with regularization λ ≥ 0 (reducing
to least squares at λ = 0 and N ≥ d):

wλ
ridge := argminw∈Rd

1
2N

∑N
i=1 (⟨w,xi⟩ − yi)

2
+ λ

2 ∥w∥22 . (ICRidge)

We show that transformers can approximately implement (ICRidge) (proof in Appendix J.1).

Theorem C.1 (Implementing in-context ridge regression). For any λ ≥ 0, 0 ≤ α ≤ β with κ := β+λ
α+λ , Bw > 0, and

ε < BxBw/2, there exists an L-layer attention-only transformer TF0
θ with

L = ⌈2κ log(BxBw/(2ε))⌉+ 1, maxℓ∈[L]M
(ℓ) ≤ 3, |||θ||| ≤ 4R+ 8(β + λ)−1. (4)

(with R := max {BxBw, By, 1}) such that the following holds. On any input data (D,xN+1) such that the prob-
lem (ICRidge) is well-conditioned and has a bounded solution:

α ≤ λmin(X
⊤X/N) ≤ λmax(X

⊤X/N) ≤ β,
∥∥wλ

ridge

∥∥
2
≤ Bw/2, (5)

TF0
θ approximately implements (ICRidge): The prediction ŷN+1 = ready(TF

0
θ(H)) satisfies∣∣ŷN+1 −

〈
wλ

ridge,xN+1

〉∣∣ ≤ ε. (6)

Theorem C.1 presents the first quantitative construction for end-to-end in-context ridge regression up to arbitrary precision,
and improves upon Akyürek et al. (2022) whose construction does not give (or directly imply) an explicit error bound
like (6). Further, the bounds on the number of layers and heads in (4) are mild (constant heads and logarithmically many
layers).

Near-optimal in-context prediction power for linear problems Combining Theorem C.1 with standard analyses of
linear regression yields the following corollaries (proofs in Appendix J.3 & J.4).

Corollary C.1 (Near-optimal linear regression with transformers by approximating least squares). For any N ≥ Õ(d),
there exists an O(κ log(N/σ))-layer transformer θ, such that on any P satisfying standard statistical assumptions for least
squares (Assumption A), its ICL prediction ŷN+1 achieves

E(D,xN+1,yN+1)∼P[(ŷN+1 − yN+1)
2] ≤ infw E(x,y)∼P

[
(y − ⟨w,x⟩)2

]
+ Õ(dσ2/N).

Assumption A requires only generic tail properties such as sub-Gaussianity, and not realizability (i.e., P follows a true linear
model); κ, σ above denote the covariance condition number and the noise level therein. The Õ(dσ2/N) excess risk is known
to be rate-optimal for linear regression (Hsu et al., 2012), and Corollary C.1 achieves this in context with a transformer with
only logarithmically many layers.

Next, consider Bayesian linear models where each in-context data distribution P = Plin
w⋆

is drawn from a Gaussian prior
π : w⋆ ∼ N(0, Id/d), and (x, y) ∼ Plin

w⋆
is sampled as x ∼ N(0, Id), y = ⟨w⋆,x⟩ + N(0, σ2). It is a standard result

that the Bayes estimator of yN+1 given (D,xN+1) is given by ridge regression (ICRidge): ŷBayesN+1 := ⟨wλ
ridge,xN+1⟩ with

λ = dσ2/N . We show that transformers achieve nearly-Bayes risk for this problem, and we use

BayesRiskπ := Ew⋆∼π,(D,xN+1,yN+1)∼Plin
w⋆

[
1
2

(
ŷBayesN+1 − yN+1

)2]
to denote the Bayes risk of this problem under prior π.

Corollary C.2 (Nearly-Bayes linear regression with transformers by approximating ridge regression). Under the Bayesian
linear model above with N ≥ max {d/10,O (log(1/ε))}, there exists a L = O (log(1/ε))-layer transformer such that
Ew⋆,(D,xN+1,yN+1)

[
1
2 (ŷN+1 − yN+1)

2
]
≤ BayesRiskπ + ε.

12

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Generalized linear models In Appendix K, we extend the above results to generalized linear models (McCullagh, 2019)
and show that transformers can approximate the corresponding convex risk minimization algorithm in context (which
includes logistic regression for linear classification as an important special case), and achieve near-optimal excess risk under
standard statistical assumptions.

C.2. In-context Lasso

Consider the standard Lasso estimator which minimizes an ℓ1-regularized linear regression loss L̂lasso over the in-context
training examples D:

wlasso := argminw∈Rd L̂lasso(w) = 1
2N

∑N
i=1 (⟨w,xi⟩ − yi)

2
+ λN ∥w∥1 . (ICLasso)

We show that transformers can also approximate in-context Lasso with a mild number of layers, and can perform sparse
linear regression in standard sparse linear models (proofs in Appendix L).

Theorem C.2 (Implementing in-context Lasso). For any λN ≥ 0, β > 0, Bw > 0, and ε > 0, there exists a L-layer
transformer TFθ with

L =
⌈
βB2

w/ε
⌉
+ 1, maxℓ∈[L]M

(ℓ) ≤ 2, maxℓ∈[L]D
(ℓ) ≤ 2d, |||θ||| ≤ 4R+ 8(1 + λN)β−1

such that the following holds. On any input data (D,xN+1) such that λmax(X
⊤X/N) ≤ β and ∥wlasso∥2 ≤ Bw/2,

TFθ(H
(0)) approximately implements (ICLasso), in that it outputs ŷN+1 = ⟨xN+1, ŵ⟩ with L̂lasso(ŵ)−L̂lasso(wlasso) ≤ ε.

Theorem C.3 (Near-optimal sparse linear regression with transformers by approximating Lasso). For any d,N ≥ 1, δ >
0, B⋆w, σ > 0, there exists a Õ((B⋆w)

2/σ2 × (1 + (d/N)))-layer transformer θ such that the following holds: For any s
and N ≥ O (s log(d/δ)), suppose that P is a s-sparse linear model: xi ∼ N(0, Id), yi = ⟨w⋆,xi⟩ + N(0, σ2) for any
∥w⋆∥2 ≤ B⋆w and ∥w⋆∥0 ≤ s, then with probability at least 1 − δ (over the randomness of D), the transformer output
ŷN+1 achieves

E(xN+1,yN+1)∼P

[
(ŷN+1 − yN+1)

2
]
≤ σ2[1 +O(s log(d/δ)/N)].

The Õ(s log d/N) excess risk obtained in Theorem C.3 is optimal up to log factors (Negahban et al., 2012; Wainwright,
2019). We remark that Theorem C.3 is not a direct corollary of Theorem C.2, but rather requires a sharper convergence
analysis of the (ICLasso) problem under sparse linear models (Appendix L.2), similar to (Agarwal et al., 2010).

C.3. Proof technique: In-context gradient descent

The constructions in Appendix C.1 and C.2 is built on the following result for approximating in-context (proximal) gradient
descent on (regularized) convex losses.

Theorem C.4 (ICGD; Informal version of Theorem H.1 & H.2). For a broad class of convex losses of form w 7→
1
N

∑N
i=1 ℓ(w

⊤xi, yi) + R(w), there exists an L-layer transformer that takes in any (D,w0) and outputs ŵL such that
∥ŵL −wL

{GD,PGD}∥2 ≤ O(Lε), by composing L identical layers each O(ε)-approximating a single step of GD (so that
O(Lε) is a linear error accumulation).

Our construction substantially generalizes that of von Oswald et al. (2022) (which only does GD on square losses with a
linear self-attention), and is simpler than the ones in Akyürek et al. (2022) and Giannou et al. (2023); see Figure 4 for a
pictorial illustration. Technically, we utilize the stability of convex gradient descent (Lemma H.1) to obtain the mild error
accumulation in Theorem C.4. In Appendix H.3, we also give results for non-convex GD on two-layer neural nets, though
the guarantees are expectedly weaker than the convex case and no longer admit the linear error accumulation.

D. In-context algorithm selection
We now show that transformers can perform various kinds of in-context algorithm selection, which allows them to implement
more complex ICL procedures by adaptively selecting different “base” algorithms on different input sequences. We construct
two general mechanisms: Post-ICL validation, and Pre-ICL testing; See Figure 1 for a pictorial illustration.

13

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

D.1. Post-ICL validation mechanism

In our first mechanism, post-ICL validation, the transformer begins by implementing a train-validation split D =
(Dtrain,Dval), and running K base ICL algorithms on Dtrain. Let {fk}k∈[K] ⊂ (Rd → R) denote the K learned pre-
dictors, and

L̂val(f) :=
1

|Dval|
∑

(xi,yi)∈Dval
ℓ(f(xi), yi) (7)

denote the validation loss of any predictor f .

We show that (proof in Appendix M.1) a 3-layer transformer can output a predictor f̂ that achieves nearly the smallest
validation loss, and thus nearly optimal expected loss if L̂val concentrates around the expected loss L. Below, the input
sequence H uses a generalized positional encoding pi := [0D−(d+3); 1; ti] in (3), where ti := 1 for i ∈ Dtrain, ti := −1 for
i ∈ Dval, and tN+1 := 0.

Proposition D.1 (In-context algorithm selection via train-validation split). Suppose that ℓ(·, ·) in (7) is approximable by
sum of relus (Definition H.1, which includes all C3-smooth bivariate functions). Then there exists a 3-layer transformer
TFθ with |||θ||| ≤ O(Kγ−1) that maps

hi = [xi; yi; ∗; f1(xi); · · · ; fK(xi);0K+1; 1; ti] → h′
i = [xi; yi; ∗; f̂(xi); 1; ti], i ∈ [N + 1],

where the predictor f̂ : Rd → R is a convex combination of {fk : L̂val(fk) ≤ mink⋆∈[K] L̂val(fk⋆) + γ}. As a corollary,
for any convex risk L : (Rd → R) → R, f̂ satisfies

L(f̂) ≤ mink⋆∈[K] L(fk⋆) + maxk∈[K]

∣∣∣L̂val(fk)− L(fk)
∣∣∣+ γ.

Ridge regression with in-context regularization selection As an example, we use Proposition D.1 to construct a
transformer to perform in-context ridge regression with regularization selection according to the unregularized validation loss
L̂val(w) := 1

2|Dval|
∑

(xi,yi)∈Dval
(⟨w,xi⟩ − yi)

2 (proof in Appendix M.2). Let λ1, . . . , λK ≥ 0 be K fixed regularization
strengths.

Theorem D.1 (Ridge regression with in-context regularization selection). There exists a transformer with O(log(1/ε))
layers, O(K) heads, and |||θ||| ≤ O(Kγ−1) such that the following holds: On any (D,xN+1) well-conditioned (cf. (5)) for
all {λk}k∈[K], it outputs ŷN+1 = ⟨ŵ,xN+1⟩, where

dist
(
ŵ, conv{ŵλk

ridge,train : L̂val(ŵ
λk

ridge,train) ≤ mink⋆∈[K] L̂val(ŵ
λk⋆

ridge,train) + γ}
)
≤ ε.

Above, ŵλ
ridge,train denotes the solution to (ICRidge) on the training split Dtrain.

D.1.1. NEARLY BAYES-OPTIMAL ICL ON NOISY LINEAR MODELS WITH MIXED NOISE LEVELS

We build on Theorem D.1 to show that transformers can perform nearly Bayes-optimal ICL when data come from noisy
linear models with a mixture of K different noise levels σ1, . . . , σK > 0.

Concretely, consider the following data generating model, where we first sample P = Pw⋆,σk
∼ π from k ∼ Λ ∈ ∆([K]),

w⋆ ∼ N(0, Id/d), and then sample data {(xi, yi)}i∈[N+1]
iid∼ Pk,w⋆

as

Pw⋆,σk
: xi ∼ N(0, Id), yi = ⟨xi,w⋆⟩+ εi, εi ∼ N(0, σ2

k).

For any fixed (N, d), consider the Bayes risk for predicting yN+1 under this model:

BayesRiskπ := infA Eπ
[
1
2 (A(D)(xN+1)− yN+1)

2
]
.

By standard Bayesian calculations, the above Bayes risk is attained when A is a certain mixture of K ridge regressions with
regularization λk = dσ2

k/N ; however, the mixing weights depend on D in a highly non-trivial fashion (see Appendix N.2
for a derivation). By using the post-ICL validation mechanism in Theorem D.1, we construct a transformer that achieves
nearly the Bayes risk.

14

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Theorem D.2 (Nearly Bayes-optimal ICL; Informal version of Theorem N.1). For sufficiently large N, d, there exists a
transformer with O(logN) layers and O(K) heads such that on the above model, it outputs a prediction ŷN+1 that is
nearly Bayes-optimal:

Eπ
[
1
2 (yN+1 − ŷN+1)

2] ≤ BayesRiskπ +O
(
(logK/N)1/3

)
. (8)

In particular, Theorem D.2 applies in the proportional setting where N, d are large and N/d = Θ(1) (Dobriban & Wager,
2018), in which case BayesRiskπ = Θ(1), and thus the transformer achieves vanishing excess risk relative to the Bayes risk
at large N .

This substantially strengthens the results of Akyürek et al. (2022), who empirically find that transformers can achieve nearly
Bayes risk under any fixed noise level. By contrast, Theorem D.2 shows that a single transformer can achieve nearly Bayes
risk even under a mixture of K noise levels, with quantitative guarantees. Also, our proof in fact gives a stronger guarantee:
The transformer approaches the individual Bayes risks on all K noise levels simultaneously (in addition to the overall Bayes
risk for k ∼ Λ as in Theorem D.2). We demonstrate this empirically in Section 3 (cf. Figure 3b & 2).

Exact Bayes predictor vs. Post-ICL validation mechanism As BayesRiskπ is the theoretical lower bound for the
risk of any possible ICL algorithm, Theorem D.2 implies that our transformer performs similarly as the exact Bayes
estimator4. Notice that our construction builds on the (generic) post-ICL validation mechanism, rather than a direct attempt
of approximating the exact Bayes predictor, whose structure may vary significantly case-by-case. This highlights post-ICL
validation as a promising mechanism for approximating the Bayes predictor on broader classes of problems beyond noisy
linear models, which we leave as future work.

D.2. Pre-ICL testing mechanism

In our second mechanism, pre-ICL testing, the transformer runs a distribution testing procedure on the input sequence to
determine the right ICL algorithm to use. While the test (and thus the mechanism itself) could in principle be general, we
focus on cases where the test amounts to computing some simple summary statistics of the input sequence.

To showcase pre-ICL testing, we consider the toy problem of selecting between in-context regression and in-context
classification, by running the following binary type check on the input labels {yi}i∈[N].

Ψbinary(D) =
1

N

N∑
i=1

ψ(yi), ψ(y) :=

1, y ∈ {0, 1},
0, y ̸∈ [−ε, ε] ∪ [1− ε, 1 + ε],

linear interpolation, otherwise

Lemma D.1. There exists a single attention layer with 6 heads that implements Ψbinary exactly.

Using this test, we construct a transformer that performs logistic regression when labels are binary, and linear regression
with high probability if the label admits a continuous distribution.
Proposition D.2 (Adaptive regression or classification; Informal version of Proposition M.4). There exists a transformer
with O(log(1/ε)) layers such that the following holds: On any D such that yi ∈ {0, 1}, it outputs ŷN+1 that ε-approximates
the prediction of in-context logistic regression.

By contrast, for any distribution P whose marginal distribution of y is not concentrated around {0, 1}, with high probability
(over D), ŷN+1 ε-approximates the prediction of in-context least squares.

The proofs can be found in Appendix M.3. We additionally show that transformers can implement more complex tests such
as a linear correlation test, which can be useful in certain scenarios such as “confident linear regression” (predict only when
the signal-to-noise ratio is high); see Appendix M.4.

E. Analysis of pretraining
Thus far, we have established the existence of transformers for performing various ICL tasks with good in-context statistical
performance. We now analyze the sample complexity of pretraining these transformers from a finite number of training ICL

4By the Bayes risk decomposition for square loss, (8) implies that E[(ŷN+1 − ŷBayes
N+1)

2] ≤ O((logK/N)1/3).

15

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

instances.

E.1. Generalization guarantee for pretraining

Setup At pretraining time, each training ICL instance has form Z := (H, yN+1), where H := H(D,xN+1) ∈ RD×(N+1)

denote the input sequence formatted as in (3). We consider the square loss between the in-context prediction and the ground
truth label:

ℓicl(θ;Z) :=
1

2

(
yN+1 − clipBy

(
ready︸ ︷︷ ︸

r̃eady

(TFRθ (H))
))2

.

Above, clipBy
(t) := max {min {t, By},−By} is the standard clipping operator onto [−By, By], and TFRθ the transformer

architecture as in Definition B.3 with clipping operators after each layer: let H(0) = clipR(H),

H(ℓ) = clipR

(
MLP

θ
(ℓ)
mlp

(
Attn

θ
(ℓ)
attn

(
H(ℓ−1)

)))
for all ℓ ∈ [L], clipR(H) := [Proj∥h∥2≤R(hi)]i.

The clipping operator is used to control the Lipschitz constant of TFθ with respect to θ, and we typically choose a sufficiently
large clipping radius R so that it does not modify the behavior of the transformer on any input sequence of our concern.

We draw ICL instances Z := (H, yN+1) = (D, (xN+1, yN+1)) from a (meta-)distribution denoted as π, which first sample
an in-context data distribution P ∼ π, then sample iid examples (xi, yi)N+1

i=1
iid∼ P⊗(N+1) and form D = {(xi, yi)}i∈[N].

Our pretraining loss is the average ICL loss on n pretraining instances Z(1:n) iid∼ π, and the corresponding test ICL loss on a
new test instance:

L̂icl(θ) :=
1

n

n∑
j=1

ℓicl(θ;Z
j), Licl(θ) := EP∼π,Z1:N+1∼P⊗(N+1) [ℓicl(θ;Z)].

Our pretraining algorithm is to solve a standard constrained empirical risk minimization (ERM) problem over transformers
with L layers, M heads, and norm bound B (recall the definition of the |||·||| norm in (2)):

θ̂ := argmin
θ∈ΘL,M,D′,B

L̂icl(θ),

ΘL,M,D′,B :=

{
θ = (θ

(1:L)
attn ,θ

(1:L)
mlp) : max

ℓ∈[L]
M (ℓ) ≤M, max

ℓ∈[L]
D(ℓ) ≤ D′, |||θ||| ≤ B

}
.

(TF-ERM)

Generalization guarantee By standard uniform concentration analysis via chaining arguments (Proposition F.4; see
also (Wainwright, 2019, Chapter 5) for similar arguments), we have the following excess loss guarantee for (TF-ERM). The
proof can be found in Appendix O.2.

Theorem E.1 (Generalization for pretraining). With probability at least 1− ξ (over the pretraining instances {Zj}j∈[n]),

the solution θ̂ to (TF-ERM) satisfies

Licl(θ̂) ≤ inf
θ∈ΘL,M,D′,B

Licl(θ) +O

(
B2
y

√
L2(MD2 +DD′)ι+ log(1/ξ)

n

)
,

where ι = log(2 + max {B,R, By}) is a log factor.

E.2. Examples of pretraining for in-context regression problems

In Theorem E.1, the comparator infθ∈ΘL,M,D′,B Licl(θ) is simply the smallest expected ICL loss for ICL instances drawn
from π, among all transformers within the norm ball ΘL,M,D′,B . Using our constructions in Appendix C & D, we show that
this comparator loss is small on various (meta-)distribution π’s, by which we obtain end-to-end guarantees for pretraining
transformers with small ICL loss at test time. Here we showcase this argument on several representative regression problems.

16

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Linear regression For any in-context data distribution P, let w⋆
P := EP[xx

⊤]−1EP[xy] denote the best linear predictor
for P. We show that with mild choices of L,M,B, the learned transformer can perform in-context linear regression with
near-optimal statistical power, in that on the sampled P ∼ π and ICL instance {(xi, yi)}i∈[N+1]

iid∼ P, it competes with the
best linear predictor w⋆

P for this particular P. The proof follows directly by on combining Corollary C.1 with Theorem E.1,
and can be found in Appendix O.3.

Theorem E.2 (Pretraining transformers for in-context linear regression). Suppose P ∼ π is almost surely well-posed for
in-context linear regression (Assumption A) with the canonical parameters. Then, for N ≥ Õ(d), with probability at least
1− ξ (over the training instances Z(1:n)), the solution θ̂ of (TF-ERM) with L = O(κ log(κN/σ)) layers, M = 3 heads,
D′ = 0 (attention-only), and B = O(

√
κd) achieves small excess ICL risk over w⋆

P:

Licl(θ̂)− EP∼πE(x,y)∼P

[
1

2
(y − ⟨w⋆

P,x⟩)
2

]
≤ Õ

(√
κ2d2 + log(1/ξ)

n
+
dσ2

N

)
,

where Õ(·) only hides polylogarithmic factors in κ,N, 1/σ.

To our best knowledge, Theorem E.2 offers the first end-to-end result for pretraining a transformer to perform in-context
linear regression with explicit excess loss bounds. The Õ(

√
κ2d2/n) term originates from the generalization of pretraining

(Theorem E.1), where as the Õ(dσ2/N) term agrees with the standard fast rate for the excess loss of linear regression (Hsu
et al., 2012). Further, as long as n ≥ Õ(κ2N/σ2), the excess risk achieves the optimal rate Õ(dσ2/N) (up to log factors).

Additional examples By similar arguments as in the proof of Theorem E.2, we can directly turn most of our other
expressivity results into results on the pretrained transformers. Here we present two such additional examples. The first
example is for the sparse linear regression problem considered in Theorem C.3.

Theorem E.3 (Pretraining transformers for in-context sparse linear regression). Suppose P ∼ π is almost surely an instance
of the sparse linear model specified in Theorem C.3 with canonical parameters: B⋆w = Θ(1), σP ∈ [σmin, σmax] with
σmax ≤ O(1). Let N ≥ Õ(s log(d/σmin)).

Then with probability at least 1 − ξ (over the training instances Z(1:n)), the solution θ̂ of (TF-ERM) with L = Õ((1 +

d/N)σ−2
min) layers, M = 2 heads, D′ = 2d, and B = Õ(

√
d+ d/N) achieves small excess ICL risk:

Licl(θ̂)− EP∼π
[
σ2
P

]
≤ Õ

√d2(1 + d/N)2σ−4
min + log(1/ξ)

n
+ EP∼π

[
σ2
P

]s log(d/σmin)

N

,
where Õ(·) only hides polylogarithmic factors in d,N, 1/σmin.

Our next example is for the problem of noisy linear regression with mixed noise levels considered in Theorem D.2
and Theorem N.1. There, the constructed transformer uses the post-ICL validation mechanism to perform ridge regression
with an adaptive regulariation strength depending on the particular input sequence.

Theorem E.4 (Pretraining transformers for in-context noisy linear regression with algorithm selection). Suppose π is the
data generating model (noisy linear model with mixed noise levels) considered in Theorem N.1, with σmax ≤ O(1). Let
N ≥ d/10.

Then, with probability at least 1 − ξ (over the training instances Z(1:n)), the solution θ̂ of (TF-ERM) with L =
O(σ−2

min log(N/σmin)) layers, M = O(K) heads, D′ = O(K2), and B = O(poly(K,σ−1
min, d,N)) achieves small

excess ICL risk:

Licl(θ̂)− BayesRiskπ ≤ Õ

√ (K2d+Kd2)σ−2
min + log(1/ξ)

n
+

(
logK

N

)1/3
,

where Õ(·) only hides polylogarithmic factors in d,N,K, 1/σmin.

17

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Remark on generality of transformer All results above are established by the expressivity results in Appendix C & D
for transformers to implement various ICL procedures (such as least squares, Lasso, and ridge regression with in-context
algorithm selection), combined with the generalization bound (Theorem E.1). However, the transformer itself was not
specified to encode any actual structure about the problem at hand in any result above, other than having sufficiently large
number of layers, number of heads, and weight norms, which illustrates the flexibility of the transformer architecture.

F. Technical tools
Additional notation for proofs We say a random variable X is σ2-sub-Gaussian (or SG(σ) interchangeably) if
E[exp(X2/σ2)] ≤ 2. A random vector x ∈ Rd is σ2-sub-Gaussian if ⟨v,x⟩ is σ2-sub-Gaussian for all ∥v∥2 = 1.
A random variable X is K-sub-Exponential (or SE(K) interchangeably) if E[exp(|X| /K)] ≤ 2.

F.1. Concentration inequalities

Lemma F.1. Let β ∼ N(0, Id/d). Then we have

P
(
∥β∥22 ≥ (1 + δ)2

)
≤ e−dδ

2/2.

Lemma F.2 (Theorem 6.1 of (Wainwright, 2019)). Let X = [Xij] ∈ Rn×d be a Gaussian random matrix with Xij ∼
N(0, 1). Let σmin(X) and σmin(X) be the minimum and maximum singular value of X , respectively. Then we have

P
(
σmax(X)/

√
n ≥ 1 +

√
d/n+ δ

)
≤ e−nδ

2/2,

P
(
σmin(X)/

√
n ≤ 1−

√
d/n− δ

)
≤ e−nδ

2/2.

The following lemma is a standard result of covariance concentration, see e.g. (Vershynin, 2018, Theorem 4.6.1).
Lemma F.3. Suppose that x1, · · · ,xN are independent d-dimensional K-sub-Gaussian random vectors. Then as long as
N ≥ C0d, with probability at least 1− exp(−N/C0) we have∥∥∥∥∥ 1

N

N∑
i=1

xix
⊤
i

∥∥∥∥∥
op

≤ 8K2,

where C0 is a universal constant.

Lemma F.4. For random matrix X = [xij] ∈ RN×d with xij
iid∼ N(0, 1) and ε = [εi] ∈ RN with εi

iid∼ N(0, σ2), it holds
that

P
(∥∥X⊤ε

∥∥
∞ ≥

√
8Nσ2 log(2d/δ)

)
≤ δ + exp(−N/2).

Proof. We consider uj := [xij]i ∈ RN , then
∥∥X⊤ε

∥∥
∞ = maxi∈[d] |⟨uj , ε⟩|. Notice that the random variables

⟨u1, ε⟩ , · · · , ⟨ud, ε⟩ are independent N(0, ∥ε∥22), and hence

P
(
max
i∈[d]

|⟨uj , ε⟩| ≥ t

∣∣∣∣ ε) ≤ 2d exp

(
− t2

2 ∥ε∥22

)
.

Further, by Lemma F.1, P(∥ε∥2 ≥ 2σ
√
N) ≤ exp(−N/2). Taking t =

√
8Nσ2 log(2d/δ) completes the proof.

F.2. Approximation theory

For any signed measure µ over a space W , let TV(µ) :=
∫
W |dµ(w)| ∈ [0,∞] denote its total measure. Recall σ(·) =

ReLU(·) is the standard relu activation, and Bk∞(R) = [−R,R]k denotes the standard ℓ∞ ball in Rk with radius R > 0.
Definition F.1 (Sufficiently smooth k-variable function). We say a function g : Rk → R is (R,Cℓ)-smooth, if for
s = ⌈(k − 1)/2⌉+ 2, g is a Cs function on Bk∞(R), and

sup
z∈Bk

∞(R)

∥∥∇ig(z)
∥∥
∞ = sup

z∈Bk
∞(R)

max
j1,...,ji∈[k]

|∂xj1
...xji

g(x)| ≤ Li

for all i ∈ {0, 1, . . . , s}, with max0≤i≤s LiR
i ≤ Cℓ.

18

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

The following result for expressing smooth functions as a random feature model with relu activation is adapted from Bach
(2017, Proposition 5).
Lemma F.5 (Expressing sufficiently smooth functions by relu random features). Suppose function g : Rk → R is (R,Cℓ)
smooth. Then there exists a signed measure µ over W = {w ∈ Rk+1 : ∥w∥1 = 1} such that

g(x) =

∫
W

1

R
σ(w⊤[x;R])dµ(w), ∀x ∈ X

and TV(µ) ≤ C(k)Cℓ, where C(k) <∞ is a constant that only depends on k.

Lemma F.6 (Uniform finite-neuron approximation). Let X be a space equipped with a distance function dX (·, ·) : X ×X →
R≥0. Suppose function g : X → R is given by

g(x) =

∫
W
ϕ(x;w)dµ(w),

where ϕ(·; ·) : X ×W → [−B,B] is L-Lipschitz (in dX) in the first argument, and µ is a signed measure over W with
finite total measure A = TV(µ) < ∞. Then for any ε > 0, there exists α1, · · · , αK ∈ {±1}, w1, · · · ,wK ∈ W with
K = O(A2B2 logN (X , dX , ε

3AL)/ε
2), such that

sup
x∈X

∣∣∣∣∣g(x)− A

K

K∑
i=1

αiϕ(x;wi)

∣∣∣∣∣ ≤ ε,

where N (X , dX , ε
3AL) denotes the (ε

3AL)-covering number of X in dX .

Proof. Let α(w) := sign(dµ(w)) ∈ {±1} denote the sign of the density dµ(w). We have

g(x) = A

∫
W
α(w)ϕ(x;w)× |dµ(w)|

A
. (9)

Note that |dµ(w)|/A is the density of a probability distribution over W . Thus for any x ∈ X , as long as K ≥
O(A2B2 log(1/δ)/ε2), we can sample w1, . . . ,wK

iid∼ |dµ(·)|/A, and obtain by Hoeffding’s inequality that with probability
at least 1− δ, ∣∣∣∣∣g(x)− A

K

K∑
i=1

α(wi)ϕ(x;wi)

∣∣∣∣∣ ≤ ε.

Let N (ε
3AL) := N (X , dX , ε

3AL) for shorthand. By union bound, as long as K ≥ O(A2B2 log(N (ε
3AL)/δ)/ε

2), we have
with probability at least 1− δ that for every x̂ in the covering set corresponding to N (ε

3AL),∣∣∣∣∣g(x̂)− A

K

K∑
i=1

α(wi)ϕ(x̂;wi)

∣∣∣∣∣ ≤ ε/3.

Taking δ = 1/2 (for which K = O(A2B2 logN (ε
3AL)/ε

2)), by the probabilistic method, there exists a deterministic set
{wi}i∈[K] ⊂ W and {αi := α(wi)}i∈[K] ∈ {±1} such that the above holds.

Next, note that both g (by (9)) and the function x 7→ A
K

∑K
i=1 α(wi)ϕ(x;wi) are (AL)-Lipschitz. Therefore, for any

x ∈ X , taking x̂ to be the point in the covereing set with dX (x, x̂) ≤ ε
3AL , we have∣∣∣∣∣g(x)− A

K

K∑
i=1

α(wi)ϕ(x;wi)

∣∣∣∣∣
≤ |g(x)− g(x̂)|+

∣∣∣∣∣g(x̂)− A

K

K∑
i=1

α(wi)ϕ(x̂;wi)

∣∣∣∣∣+
∣∣∣∣∣AK

K∑
i=1

α(wi)ϕ(x̂;wi)−
A

K

K∑
i=1

α(wi)ϕ(x;wi)

∣∣∣∣∣
≤ AL · ε

3AL
+
ε

3
+AL · ε

3AL
= ε.

This proves the lemma.

19

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Proposition F.1 (Approximating smooth k-variable functions). For any εapprox > 0, R ≥ 1, Cℓ > 0, we have the
following: Any (R,Cℓ)-smooth function (Definition F.1) g : Rk → R is (εapprox, R,M,C)-approximable by sum of relus
(Definition H.1) with M ≤ C(k)C2

ℓ log(1 + Cℓ/εapprox)/ε
2
approx) and C ≤ C(k)Cℓ, where C(k) > 0 is a constant that

depends only on k. In other words, there exists

f(z) =

M∑
m=1

cmσ(a
⊤
m[z; 1]) with

M∑
m=1

|cm| ∥am∥1 ≤ C

such that supz∈[−R,R]k |f(z)− g(z)| ≤ εapprox.

Proof. As function g : Bk∞(R) → R is (R,Cℓ)-smooth, we can apply Lemma F.5 to obtain that there exists a signed
measure µ over W := {w ∈ Rk+1 : ∥w∥1 ≤ 1} such that

g(z) =

∫
W

1

R
σ(w⊤[z;R])dµ(w), ∀z ∈ [−R,R]k,

and A = TV(µ) ≤ C(k)Cℓ where C(k) > 0 denotes a constant depending only on k.

We now apply Lemma F.6 to approximate the above random feature by finitely many neurons. Let x := [z;R] ∈ X :=
[−R,R]k × {R}. Then, the function ϕ(x;w) := 1

Rσ(w
⊤x) = σ(1

Rw
⊤[z;R]) is bounded by B = 1 and (1/R)-Lipschitz

in x (in the standard ℓ∞-distance). Further, we have logN (X , ∥· − ·∥∞ ,
εapprox
3A/R) ≤ O(k log(1+A/εapprox)). We can thus

apply Lemma F.6 to obtain that, for

M = O
(
kA2 log(1 +A/εapprox)/ε

2
approx

)
= C(k)C2

ℓ log(1 + Cℓ/εapprox)/ε
2
approx,

there exists α = {αm}m∈[M] ⊂ {±1} and W = {wm}m∈[M] ⊂ W = {w ∈ Rk+1 : lonew = 1} such that

sup
z∈[−R,R]2

|g(z)− fα,W(z)| ≤ εapprox,

where (recalling z = [s; t])

fα,W(z) =
A

M

M∑
m=1

αmσ

(
1

R
w⊤
m[z;R]

)
=

M∑
m=1

Aαm
M︸ ︷︷ ︸
cm

σ

([1
R
wm,1:k;wm,k+1

]⊤︸ ︷︷ ︸
a⊤
m

[z; 1]).

Note that we have
∑M
m=1 |cm| = A ≤ C(k)Cℓ, and ∥am∥1 ≤ ∥wm∥1 = 1. This is the desired result.

F.3. Optimization

The following convergence result for minimizing a smooth and strongly convex function is standard from the convex
optimization literature, see e.g. Bubeck (2015, Theorem 3.10).
Proposition F.2 (Gradient descent for smooth and strongly convex functions). Suppose L : Rd → R is α-strongly convex
and β-smooth for some 0 < α ≤ β. Then, the gradient descent iterates wt+1

GD := wt
GD − η∇L(wt

GD) with learning rate
η = 1/β and initialization w0

GD ∈ Rd satisfies for any t ≥ 1,∥∥wt
GD −w⋆

∥∥2
2
≤ exp (−t/κ) ·

∥∥w0
GD −w⋆

∥∥2
2
,

L(wt
GD)− L(w⋆) ≤ β

2
exp (−t/κ) ·

∥∥w0
GD −w⋆

∥∥2
2
,

where κ := β/α is the condition number of L, and w⋆ := argminw∈Rd L(w) is the minimizer of L.

The following convergence result of proximal gradient descent (PGD) on convex composite minimization problem is also
standard, see e.g. (Beck & Teboulle, 2009).
Proposition F.3 (Proximal gradient descent for convex function). Suppose L = f + h, f : Rd → R is convex and
β-smooth for some β > 0, h : Rd → R is a simple convex function. Then, the proximal gradient descent iterates
wt+1

PGD := proxηh(w
t
PGD − η∇f(wt

PGD)) with learning rate η = 1/β and initialization w0
GD ∈ Rd satisfies the following

for any t ≥ 1:

20

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

1. {L(wt
PGD)} is a decreasing sequence.

2. For any minimizer w⋆ ∈ argminw∈Rd L(w),

L(wt+1
GD)− L(w⋆) ≤ β

2

(∥∥wt
PGD −w⋆

∥∥2
2
−
∥∥wt+1

PGD −w⋆
∥∥2
2

)
,

and hence
{
∥wt

PGD −w⋆∥22
}

is also a decreasing sequence.

3. For k ≥ 1, t ≥ 0, it holds that

L(wt+k
GD)− L(w⋆) ≤ β

2k

∥∥wt
PGD −w⋆

∥∥2
2
.

F.4. Uniform convergence

The following result is shown in Wainwright (2019, Section 5.6).
Theorem F.1. Suppose that ψ : [0,+∞) → [0,+∞) is a convex, non-decreasing function that satisfies
ψ(x + y) ≥ ψ(x)ψ(y). For any random variable X , we consider the Orlicz norm induced by ψ: ∥X∥ψ :=
inf {K > 0 : Eψ(|X| /K)} ≤ 1.

Suppose that {Xθ}θ is a zero-mean random process indexed by θ ∈ Θ such that ∥Xθ −Xθ′∥ψ ≤ ρ(θ, θ′) for some metric ρ
on the space Θ. Then it holds that

P

(
sup
θ,θ′∈Θ

|Xθ −Xθ′ | ≤ 8(J + t)

)
≤ 1

ψ(t/D)
∀t ≥ 0,

where D is the diameter of the metric space (Θ, ρ), and the generalized Dudley entropy integral J is given by

J :=

∫ D

0

ψ−1(N(δ; Θ, ρ))dδ,

where N(δ; Θ, ρ) is the δ-covering number of (Θ, ρ).

As a corollary of Theorem F.1, we have the following result.
Proposition F.4 (Uniform concentration bound by chaining). Suppose that {Xθ}θ∈Θ is a zero-mean random process given
by

Xθ :=
1

N

N∑
i=1

f(zi; θ)− Ez[f(z; θ)],

where z1, · · · , zN are i.i.d samples from a distribution Pz such that the following assumption holds:

(a) The index set Θ is equipped with a distance ρ and diameter D. Further, assume that for some constant A, for any ball
Θ′ of radius r in Θ, the covering number admits upper bound logN(δ; Θ′, ρ) ≤ d log(2Ar/δ) for all 0 < δ ≤ 2r.

(b) For any fixed θ ∈ Θ and z sampled from Pz , the random variable f(z; θ) is a SG(B0)-sub-Gaussian random variable.

(c) For any θ, θ′ ∈ Θ and z sampled from Pz , the random variable f(z; θ)− f(z; θ′) is a SG(B1ρ(θ, θ′))-sub-Gaussian
random variable.

Then with probability at least 1− δ, it holds that

sup
θ∈Θ

|Xθ| ≤ CB0

√
d log(2Aκ) + log(1/δ)

N
,

where C is a universal constant, and we denote κ = 1 +B1D/B0.

Furthermore, if we replace the SG in assumption (b) and (c) by SE, then with probability at least 1− δ, it holds that

sup
θ∈Θ

|Xθ| ≤ CB0

[√
d log(2Aκ) + log(1/δ)

N
+
d log(2Aκ) + log(1/δ)

N

]
.

21

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Proof. Fix a D0 ∈ (0, D] to be specified later. We pick a (D0/2)-covering Θ0 of Θ so that log |Θ0| ≤ d log(2AD/D0).
Then, by the standard uniform covering of independent sub-Gaussian random variables, we have with probability at least
1− δ/2,

sup
θ∈Θ0

|Xθ| ≤ CB0

√
d log(2AD/D0) + log(2/δ)

N
.

Assume that Θ0 = {θ1, · · · , θn}. For each j ∈ [n], we consider Θj is the ball centered at θj of radius D0 in (Θ, ρ).
Then θ ∈ Θj has diameter D0 and admits covering number bound logN (Θj , δ) ≤ d log(AD0/δ). Hence, we can apply
Theorem F.1 with the process {Xθ}θ∈Θj , then

ψ = ψ2, ∥Xθ −Xθ′∥ψ ≤ B1

√
N
ρ(θ, θ′),

and a simple calculation yields

P

(
sup

θ,θ′∈Θj

|Xθ −Xθ′ | ≤ C ′B1D0

(√
d log(2A)

N
+ t

))
≤ 2 exp(−Nt2) ∀t ≥ 0.

Therefore, we can let t ≤
√
log(2n/δ)/N in the above inequality and taking the union bound over j ∈ [n], and hence with

probability at least 1− δ/2, it holds that for all j ∈ [n],

sup
θ,θ′∈Θj

|Xθ −Xθ′ | ≤ C ′B1D0

√
2d log(2AD/D0) + log(4/δ)

N
.

Notice that for each θ ∈ Θ, there exists j ∈ [n] such that θ ∈ Θj , and hence

|Xθ| ≤
∣∣Xθj

∣∣+ ∣∣Xθ −Xθj

∣∣ .
Thus, with probability at least 1− δ, it holds

sup
θ∈Θ

|Xθ| ≤ sup
θ∈Θ0

|Xθ|+ sup
j

sup
θ∈Θj

∣∣Xθ −Xθj

∣∣ ≤ C ′′(B0 +B1D0)

√
d log(2AD/D0) + log(2/δ)

N
.

Taking D0 = D/κ completes the proof of SG case.

We next consider the SE case. The idea is the same as the SG case, but in this case we need to consider the following
Orlicz-norm:

ψN (t) := exp

(
Nt2

t+ 1

)
− 1.

Then Bernstein’s inequality of SE random variables yields

∥Xθ −Xθ′∥ψN
≤ C0B

1ρ(θ, θ′)

for some universal constant C0. Therefore, we can repeat the argument above to deduce that with probability at least 1− δ,
it holds

sup
θ∈Θ

|Xθ| ≤ C ′′(B0 +B1D0)

[√
d log(2AD/D0) + log(2/δ)

N
+
d log(2AD/D0) + log(2/δ)

N

]
.

Taking D0 = D/κ completes the proof.

22

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

F.5. Useful properties of transformers

The following result can be obtained immediately by “joining” the attention heads and MLP layers of two single-layer
transformers.

Proposition F.5 (Joining parallel transformers). Suppose that P1 : R(D0+D1)×N → RD1×N , P2 : R(D0+D2)×N → RD2×N

are two sequence-to-sequence functions that are implemented by single-layer transformers, i.e. there exists θ1,θ2 such that

TFθ1
:H1 =

[
h
(0)
i

h
(1)
i

]
1≤i≤N

∈ R(D0+D1)×N 7→
[

h
(0)
i

P1(H1)

]
,

TFθ2
:H2 =

[
h
(0)
i

h
(2)
i

]
1≤i≤N

∈ R(D0+D2)×N 7→
[

h
(0)
i

P2(H2)

]
.

Then, there exists θ such that for H′ that takes form h′
i = [h

(0)
i ;h

(1)
i ;h

(2)
i], with h

(0)
i ∈ RD0 ,h

(1)
i ∈ RD1 ,h

(2)
i ∈ RD2 , we

have

TFθ :H′ =

h
(0)
i

h
(1)
i

h
(2)
i

1≤i≤N

∈ R(D0+D1+D2)×N 7→

 h
(0)
i

P1(H1)
P2(H2)

 .
Further, θ has at most M ′ ≤ M1 +M2 heads, D′ ≤ D′

1 + D′
2 hidden dimension in its MLP layer, and norm bound

|||θ||| ≤ |||θ1|||+ |||θ2|||.

G. Extension to decoder-based architecture
Here we briefly discuss how our theoretical results can be adapted to decoder-based architectures (henceforth decoder TFs).
Adopting the setting as in Section B, we consider a sequence of N input vectors {hi}Ni=1 ⊂ RD, written compactly as an
input matrix H = [h1, . . . ,hN] ∈ RD×N . Recall that σ(t) := ReLU(t) = max {t, 0} denotes the standard relu activation.

G.1. Decoder-based transformers

Decoder TFs are the same as encoder TFs, except that the attention layers are replaced by masked attention layers with a
specific decoder-based (causal) attention mask.

Definition G.1 (Masked attention layer). A masked attention layer with M heads is denoted as MAttnθ(·) with parameters
θ = {(Vm,Qm,Km)}m∈[M] ⊂ RD×D. On any input sequence H ∈ RD×N ′

with N ′ ≤ N ,

H̃ = MAttnθ(H) := H+
∑M
m=1(VmH)×

(
(MSK1:N ′,1:N ′) ◦ σ

(
(QmH)⊤(KmH)

))
∈ RD×N ′

, (10)

where ◦ denotes the entry-wise (Hadamard) product of two matrices, and MSK ∈ RN×N is the mask matrix given by

MSK =

1 1/2 1/3 · · · 1/N
0 1/2 1/3 · · · 1/N
0 0 1/3 · · · 1/N
· · · · · · · · · · · · · · ·
0 0 0 · · · 1/N

 .
In vector form, we have

h̃i = [Attnθ(H)]i = hi +
∑M
m=1

1
i

∑i
j=1 σ(⟨Qmhi,Kmhj⟩) ·Vmhj .

Notice that standard masked attention definitions use the pre-activation additive masks (with mask value −∞) (Vaswani
et al., 2017). The post-activation multiplicative masks we use is equivalent to the pre-activation additive masks, and the
modified presentation is for notational convenience. We also use a normalized ReLU activation t 7→ σ(t)/i in place of
the standard softmax activation to be consistent with Definition B.1. Note that the normalization 1/i is to ensure that the

23

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

attention weights {σ(⟨Qmhi,Kmhj⟩)/i}j∈[i] is a set of non-negative weights that sum to O(1). The motivation of masked
attention layer is to ensure that, when processing a sequence of tokens, the computations at any token do not see any later
token.

We next define the decoder-based transformers with L ≥ 1 transformer layers, each consisting of a masked attention
layer (c.f. Definition G.1) followed by an MLP layer (c.f. Definition B.2). This definition is similar to the definition of
encoder-based transformers (c.f., Definition B.3), except that we replace the attention layers by masked attention layers.

Definition G.2 (Decoder-based Transformer). An L-layer decoder-based transformer, denoted as DTFθ(·), is a composition
of L self-attention layers each followed by an MLP layer: H(L) = DTFθ(H

(0)), where H(0) ∈ RD×N is the input sequence,
and

H(ℓ) = MLP
θ
(ℓ)
mlp

(
MAttn

θ
(ℓ)
mattn

(
H(ℓ−1)

))
, ℓ ∈ {1, . . . , L}.

Above, the parameter θ = (θ
(1:L)
mattn,θ

(1:L)
mlp) is the parameter consisting of the attention layers θ

(ℓ)
mattn =

{(V(ℓ)
m ,Q

(ℓ)
m ,K

(ℓ)
m)}m∈[M(ℓ)] ⊂ RD×D and the MLP layers θ

(ℓ)
mlp = (W

(ℓ)
1 ,W

(ℓ)
2) ∈ RD(ℓ)×D × RD×D(ℓ)

. We will

frequently consider “attention-only” decoder-based transformers with W
(ℓ)
1 ,W

(ℓ)
2 = 0, which we denote as DTF0

θ(·) for
shorthand, with θ = θ(1:L) := θ

(1:L)
mattn.

We also use (2) to define the norm of DTFθ.

G.2. In-context learning with decoder-based transformers

We consider using decoder-based TFs to perform ICL. We encode (D,xN+1), which follows the generating rule as described
in Section B.2, into an input sequence H ∈ RD×(2N+1). In our theory, we use the following format, where the first two
rows contain (D,xN+1) which alternating between [xi; 0] ∈ Rd+1 and [0d×1; yi] ∈ Rd+1 (the same setup as adopted in
(Garg et al., 2022; Akyürek et al., 2022)); The third row contains fixed vectors {pi}i∈[N+1] with ones, zeros, the example
index, and indicator for being the covariate token (similar to a positional encoding vector):

H =

x1 0 . . . xN 0 xN+1

0 y1 . . . 0 yN 0
p1 p2 . . . p2N−1 p2N p2N+1

 , pi :=

0D−(d+4)

⌈i/2⌉
1

mod(i+ 1, 2)

 ∈ RD−(d+1). (11)

(11) is different from out input format (3) for encoder-based TFs. The main difference is that (xi, yi) are in different tokens
in (11), whereas (xi, yi) are in the same token in (3). The reason for the former (i.e., different tokens in decoder) is that we
want to avoid every [xi; 0] token seeing the information of yi, since we will evaluate the loss at every token. The reason for
the latter (i.e., the same token in encoder) is for presentation convenience: since we only evaluate the loss at the last token, it
is not necessary to alternate between [xi; 0] and [0; yi] to avoid information leakage.

We then feed H into a decoder TF to obtain the output H̃ = DTFθ(H) ∈ RD×(2N+1) with the same shape, and read out
the prediction ŷN+1 from the (d+ 1, 2N + 1)-th entry of H̃ = [h̃i]i∈[2N+1] (the entry corresponding to the last missing
test label): ŷN+1 = ready(H̃) := (h̃2N+1)d+1. The goal is to predict ŷN+1 that is close to yN+1 ∼ Py|xN+1

measured by
proper losses.

The benefit of using the decoder architecture is that, during the pre-training phase, one can construct the training loss
function by using all the predictions {ŷj}j∈[N+1], where ŷj gives the (d+ 1, 2j − 1)-th entry of H̃ = [h̃i]i∈[2N+1] for each
j ∈ [N + 1] (the entry corresponding to the missing test label of the 2j − 1’th token): ŷj = ready,j(H̃) := (h̃2j−1)d+1.
Given a loss function ℓ : R×R → R associated to a single response, the training loss associated to the whole input sequence
can be defined by ℓ(H) =

∑N+1
j=1 ℓ(yj , ŷj). This potentially enables less training sequences in the pre-training stage, and

some generalization bound analysis justifying this benefit was provided in (Li et al., 2023).

G.3. Results

We discuss how our theoretical results upon encoder TFs can be converted to those of the decoder TFs. Taking the imple-
mentation of (ICGD) (a key mechanism that enables most basic ICL algorithms such as ridge regression; cf. Appendix H) as

24

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

an example, this conversion is enabled by the following facts: (a) the input format (11) of decoders can be converted to the
input format (3) of encoders by a 2-layer decoder TF; (b) the encoder TF that implements (ICGD) with input format (3), by
a slight parameter modification, can be converted to a decoder TF that implements the (ICGD) algorithm with a converted
input format.

Input format conversion Despite the difference between the input format (11) and (3), we show that there exists a 2-layer
decoder TF that can convert the input format (11) to format (3). The proof can be found in Appendix G.4.
Proposition G.1 (Input format conversion). There exists a 2-layer decoder TF DTF with 3 heads per layer, hidden
dimension 2 and |||θ||| ≤ 12 such that upon taking input H of format (11), it outputs H̃ = DTF(H) with

H̃ =

x1 x1 . . . xN xN xN+1

0 y1 . . . 0 yN 0
p1 p2 . . . p2N−1 p2N p2N+1

 . (12)

In particular, format (12) contains format (3) as a submatrix, by restricting to the {1, 2, . . . , D − 1, D − 2, D} rows and
{2, 4, . . . , 2N − 2, 2N, 2N + 1} columns.

Generalization TF constructions to decoder architecture The construction in Theorem H.1 can be generalized to using
the input format (12) along with a decoder TF, by using the scratch pad within the last token to record the gradient descent
iterates. Further, if we slightly change the normalization in MSK from 1/i to 1/((i− 1) ∨ 1), then the same construction
performs (ICGD) (with training examples {1, . . . , j}) at every token i = 2j + 1 (corresponding to predicting at xj+1).
Building on this extension, all our constructions in Appendix C and Appendix D.2 can be generalized to decoder TFs.

G.4. Proof of Proposition G.1

For the simplicity of presentation, we write ci = ⌈i/2⌉ , ti = mod(i+ 1, 2), ui = hi[1 : d] ∈ Rd+1 be the vector of first d
entries of hi 5, and let vi = hi[d+ 1] be the (d+ 1)-th entry of hi. With such notations, the input sequence H = [hi]i can
be compactly written as

hi = [ui; vi;0D−d−4; ci; 1; ti].

In the following, we construct the desired θ = (θ(1),θ(2)) as follows.

Step 1: construction of θ(1) = (θ
(1)
mattn,θ

(1)
mlp), so that MLP

θ
(1)
mlp

◦MAttn
θ
(1)
mattn

maps

hi

MAttn
θ
(1)
mattn−−−−−−−→ h′

i = [ui; vi;0D−d−6; ti(c
2
i + 0.5); tici; ci; 1; ti]

MLP
θ
(1)
mlp−−−−−→ h

(1)
i = [ui; vi;0D−d−6; tic

2
i ; tici; ci; 1; ti].

For m ∈ {0, 1}, we define matrices Q(1)
m ,K

(1)
m ,V

(1)
m ∈ RD×D such that

Q
(1)
0 hi = Q

(1)
1 hi =

[
ti
0

]
, K

(1)
0 hj = K

(1)
1 hj =

[
cj
0

]
, V

(1)
0 hj =

0D−4

3cj
03

 , V
(1)
1 hj =

0D−3

2
02

 ,
for all i, j. By the structure of hi, these matrices indeed exist, and further it is straightforward to check that they have norm
bounds

max
m

∥∥∥Q(1)
m

∥∥∥
op

≤ 1, max
m

∥∥∥K(1)
m

∥∥∥
op

≤ 1,
∑
m

∥∥∥V(1)
m

∥∥∥
op

≤ 5.

Now, for every i,

1

i

i∑
j=1

∑
m∈{0,1}

σ
(〈

Q(1)
m hi,K

(1)
m hj

〉)
V(1)
m hj =

1

i

i∑
j=1

ti · [0D−4; 3c
2
j ; 2cj ; 0; 0].

5In other words, when 2 ∤ i, ui = x(i−1)/2; when 2 | i, ui = 0d.

25

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Notice that ti ̸= 0 only when 2 | i, we then compute for i = 2k that
i∑

j=1

3c2j = 3 · k(k − 1)(2k − 1)

3
+ 3k2 = 2k3 + k,

i∑
j=1

2cj = 2 · k(k − 1) + 2k = 2k2.

Therefore, the θ(1)
mattn = {(Q(1)

m ,K
(1)
m ,V

(1)
m ∈ RD×D)}m∈{0,1} we construct above is indeed the desired attention layer. The

existence of the desired θ
(1)
mlp is clear, and θ

(1)
mlp = (W

(1)
1 ,W

(1)
2) can further be chosen so that ∥W(1)

1 ∥op ≤ 1, ∥W(1)
2 ∥op ≤

1.

Step 2: construction of θ(2). For every m ∈ {−1, 0, 1}, we define matrices Q(2)
m ,K

(2)
m ,V

(2)
m ∈ RD×D such that

Q
(2)
0 h

(1)
i = Q

(2)
1 h

(1)
i = Q

(2)
−1h

(1)
i =

tic2itici
0

 ,
K

(2)
0 h

(1)
j =

 1
−cj
0

 , K
(2)
1 h

(1)
j =

 1
−(cj + 1)

0

 , K
(2)
1 h

(1)
j =

 1
−(cj − 1)

0

 ,
V

(2)
0 h

(1)
j =

[
−4uj
0D−d

]
, V

(2)
1 h

(1)
j = V

(2)
−1h

(1)
j =

[
2uj
0D−d

]
,

for all i, j. By the structure of h(1)
i , these matrices indeed exist, and further it is straightforward to check that they have

norm bounds

max
m

∥∥∥Q(2)
m

∥∥∥
op

≤ 1, max
m

∥∥∥K(2)
m

∥∥∥
op

≤ 2,
∑
m

∥∥∥V(2)
m

∥∥∥
op

≤ 8.

Now, for every i, j, we have∑
m∈{−1,0,1}

σ
(〈

Q(2)
m h

(1)
i ,K(2)

m h
(1)
j

〉)
V(2)
m h

(1)
j

=
{
−2σ

(
tic

2
i − ticicj

)
+ σ

(
tic

2
i − tici(cj + 1)

)
+ σ

(
tic

2
i − tici(cj − 1)

)}
· 2[uj ;0D−d]

= {−2σ(ci − cj) + σ((ci − cj)− 1) + σ((ci − cj) + 1)} · 2citi[uj ;0D−d]

= I(ci = cj) · 2citi[uj ;0D−d],

where the last equality follows from the fact that

−2σ(x) + σ(x− 1) + σ(x+ 1) =

0, x ≥ 1 or x ≤ −1,

x+ 1, x ∈ [−1, 0],

1− x, x ∈ [0, 1].

Therefore,

1

i

i∑
j=1

∑
m∈{−1,0,1}

σ
(〈

Q(2)
m h

(1)
i ,K(2)

m h
(1)
j

〉)
V(2)
m h

(1)
j =

1

i

i∑
j=1

2I(ci = cj)citi[uj ;0D−d]

=

{
[xk;0D−d], i = 2k

0D, otherwise
.

Therefore, the θ
(2)
mattn = {(Q(2)

m ,K
(2)
m ,V

(2)
m ∈ RD×D)}m∈{−1,0,1} we construct above maps

h
(1)
i → h′′

i = [x⌈i/2⌉; vi;0D−d−6; tic
2
i ; tici; ci; 1; ti].

Finally, we only need to take a MLP layer θ(2)
mlp = (W

(2)
1 ,W

(2)
2) with hidden dimension 2 that maps

h′′
i → h

(2)
i = [x⌈i/2⌉; vi;0D−d−6; 0; 0; ci; 1; ti],

which clearly exists and can be chosen so that ∥W(2)
1 ∥op ≤ 1, ∥W(2)

2 ∥op ≤ 1.

Combining the two steps above, we complete the proof of Proposition G.1.

26

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

= + 1
N

N

∑
i=1

M

∑
m=1

σ (⟨ , ⟩) ×ht+1
N+1 Qm Vmht

N+1 ht
N+1 ht

i ht
iKm

am σ (bm ⟨ , ⟩ + cm) ×= − η
N

N

∑
i=1

M

∑
m=1wt+1

xi
yi

wt

xi
yi xi wt yi

xi

0
0

∂s ℓ (⟨ , ⟩ ,) ×= − η
N

N

∑
i=1

wt+1 wt xi wt yi xi

∂sℓ(s, t) = ∑M
m=1 am ⋅ σ(bm ⋅ s + cm ⋅ t)

Attention

Gradient
descent

Weight
construction

Universal
approximation

ht
i

wt

xi
yi= Vm

xi

0
0= −ηam ×

wt

xi
yi, , ,

xiKm =
wt

xi
yi yi

Qm =
wt
* wt

1
bm ×*
cm ×

Figure 4: Illustration of our main mechanism for implementing basic ICL algorithms: One attention layer implements a single (ICGD)
iterate (Proposition I.1 & Theorem H.1). Top: the attention mechanism as in Definition B.1. Bottom: A single (ICGD) iterate. Middle:
Linear algebraic illustration of the attention layer for implementing a GD update.

H. Mechanism: In-context gradient descent
Recall the format (3) for the input sequence H ∈ RD×(N+1). Throughout the rest of this section (and Appendix I), we
consider input sequence H of the form (3), and we denote y′i = yi for i ∈ [N] and y′N+1 = 0 to simplify our notation.
Therefore, the input sequence H ∈ RD×(N+1) can be compactly written as hi = [xi; y

′
i;pi] = [xi; y

′
i;0D−d−3; 1; ti] for

i ∈ [N + 1], where ti := 1{i < N + 1} is the indicator for the train points.

H.1. Gradient descent on convex losses

Let ℓ(·, ·) : R2 → R be a loss function. Let L̂N (w) := 1
N

∑N
i=1 ℓ(w

⊤xi, yi) denote the empirical risk with loss function ℓ
on dataset {(xi, yi)}i∈[N], and

wt+1
GD := wt

GD − η∇L̂N (wt
GD) (ICGD)

denote the gradient descent trajectory on L̂N with initialization w0
GD ∈ Rd and learning rate η > 0.

We require the partial derivative of the loss ∂sℓ : (s, t) 7→ ∂sℓ(s, t) (as a bivariate function) to be approximable by a sum of
relus, defined as follows.

Definition H.1 (Approximability by sum of relus). A function g : Rk → R is (εapprox, R,M,C)-approximable by sum of
relus, if there exists a “(M,C)-sum of relus” function

fM,C(z) =
∑M
m=1 cmσ(a

⊤
m[z; 1]) with

∑M
m=1 |cm| · ∥am∥1 ≤ C, am ∈ Rk+1, cm ∈ R,

such that supz∈[−R,R]k |g(z)− fM,C(z)| ≤ εapprox.

Definition H.1 is known to contain broad class of functions. For example, any mildly smooth k-variate function is
approximable by a sum of relus for any (εapprox, R), with mild bounds on (M,C) (Proposition F.1, building on results
of Bach (2017)). Also, any function that is a (M,C)-sum of relus itself (which includes all piecewise linear functions) is by
definition (0,∞,M,C)-approximable by sum of relus.

We show that L steps of (ICGD) can be approximately implemented by an (L+ 1)-layer transformer.

27

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Theorem H.1 (Convex ICGD). Fix any Bw > 0, L > 1, η > 0, and ε ≤ Bw/(2L). Suppose that

1. The loss ℓ(·, ·) is convex in the first argument;

2. ∂sℓ is (ε,R,M,C)-approximable by sum of relus with R = max {BxBw, By, 1}.

Then, there exists an attention-only transformer TF0
θ with (L + 1) layers, maxℓ∈[L]M

(ℓ) ≤ M heads within the first L
layers, and M (L+1) = 2 such that for any input data (D,xN+1) such that

sup
∥w∥2≤Bw

λmax(∇2L̂N (w)) ≤ 2/η, ∃w⋆ ∈ argmin
w∈Rd

L̂N (w) such that ∥w⋆∥2 ≤ Bw/2,

TF0
θ(H

(0)) approximately implements (ICGD) with initialization w0
GD = 0:

1. (Parameter space) For every ℓ ∈ [L], the ℓ-th layer’s output H(ℓ) = TF0
θ(1:ℓ)(H(0)) approximates ℓ steps of (ICGD):

We have h
(ℓ)
i = [xi; y

′
i; ŵ

ℓ;0D−2d−3; 1; ti] for every i ∈ [N + 1], where∥∥ŵℓ −wℓ
GD

∥∥
2
≤ ε · (LηBx).

2. (Prediction space) The final output H(L+1) = TF0
θ(H

(0)) approximates the prediction of L steps of (ICGD): We have
h
(L+1)
N+1 = [xN+1; ŷN+1; ŵ

L;0D−2d−3; 1; ti], where ŷN+1 =
〈
ŵL,xN+1

〉
so that∣∣ŷN+1 −

〈
wL

GD,xN+1

〉∣∣ ≤ ε · (LηB2
x).

Further, the transformer admits norm bound |||θ||| ≤ 2 +R+ 2ηC.

The proof can be found in Appendix I.2. The following lemma (proof in Appendix I.3) is key to the mild dependence on L
in Theorem H.1.

Lemma H.1 (Composition of error for approximating convex GD). Suppose f : Rd → R is a convex function. Let
w⋆ ∈ argminw∈Rd f(w), R ≥ 2∥w⋆∥2, and assume that ∇f is Lf -smooth on Bd2(R). Let sequences {ŵℓ}ℓ≥0 ⊂ Rd and
{wℓ

GD}ℓ≥0 ⊂ Rd be given by ŵ0 = w0
GD = 0,{
ŵℓ+1 = ŵℓ − η∇f(ŵℓ) + εℓ, ∥εℓ∥2 ≤ ε,

wℓ+1
GD = wℓ

GD − η∇f(wℓ
GD),

for all ℓ ≥ 0. Then as long as η ≤ 2/Lf , for any 0 ≤ L ≤ R/(2ε), it holds that
∥∥ŵL −wL

GD

∥∥
2
≤ Lε and ∥ŵL∥2 ≤

R
2 + Lε ≤ R.

H.2. Proximal gradient descent for regularized convex losses

Let ℓ(·, ·) : R2 → R be a loss function. Let L̂N (w) := 1
N

∑N
i=1 ℓ(w

⊤xi, yi) +R(w) denote the regularized empirical
risk with loss function ℓ on dataset {(xi, yi)}i∈[N] and regularizer R. To minimize L̂N , we consider the proximal gradient

descent trajectory on L̂N with initialization w0
GD = 0 ∈ Rd and learning rate η > 0:

wt+1
PGD := proxηR

(
wt

PGD − η∇L̂0
N (wt

PGD)
)
, (ICPGD)

where we denote L̂0
N (w) := 1

N

∑N
i=1 ℓ(w

⊤xi, yi).

To approximate (ICPGD) by transformers, in addition to the requirement on the loss ℓ as in Theorem H.1, we additionally
require the the proximal operator proxηR(·) to be approximable by a MLP layer defined as follows.

Definition H.2 (Approximability by MLP). An operator P : Rd → Rd is (ε,R,D,C)-approximable by MLP, if there
exists a there exists a MLP θmlp = (W1,W2) ∈ RD×d × Rd×D with hidden dimension D, ∥W1∥op + ∥W2∥op ≤ C ′,
such that sup∥w∥2≤R

∥∥P (w)−MLPθmlp
(w)

∥∥
2
≤ ε.

The definition above captures the proximal operator proxηR for a broad class of regularizers, such as the (commonly-used)
L1 and L2 regularizer listed in the following proposition, for all of which one can directly check that they can be exactly
implemented by an MLP as stated below.

28

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Proposition H.1 (Proximal operators for commonly-used regularizers). For regularizer R in {λ ∥·∥1 ,
λ
2 ∥·∥22 , IB∞(B)(·)},

the operator proxηR : Rd → Rd is exactly approximable by MLP. More concretely, we have

1. For R = λ ∥·∥1, proxηR is (0,+∞, 4d, 4 + 2ηλ)-approximable by MLP.

2. For R = λ
2 ∥·∥22, proxηR is (0,+∞, 2d, 2 + 2ηλ)-approximable by MLP.

3. For R = IB∞(B)(·), proxηR = ProjB∞(B) is (0,+∞, 2d, 2 + 2B)-approximable by MLP.

Theorem H.2 (Convex ICPGD). Fix any Bw > 0, L > 1, η > 0, and ε+ ε′ ≤ Bw/(2L). Suppose that

1. The loss ℓ(·, ·) is convex in the first argument;

2. ∂sℓ is (ε,R,M,C)-approximable by sum of relus with R = max {BxBw, By, 1}.

3. R convex, and the proximal operator proxηR(w) is (ηε′, R′, D′, C ′)-approximable by MLP with R′ =

sup∥w∥2≤Bw

∥∥w+
η

∥∥
2
+ ηε.

Then there exists a transformer TFθ with (L+1) layers, maxℓ∈[L]M
(ℓ) ≤M heads within the first L layers, M (L+1) = 2,

and hidden dimension D′ such that, for any input data (D,xN+1) such that

sup
∥w∥2≤Bw

λmax(∇2L̂N (w)) ≤ 2/η, ∃w⋆ ∈ argmin
w∈Rd

L̂N (w) such that ∥w⋆∥2 ≤ Bw/2,

TFθ(H
(0)) approximately implements (ICGD):

1. (Parameter space) For every ℓ ∈ [L], the ℓ-th layer’s output H(ℓ) = TFθ(1:ℓ)(H(0)) approximates ℓ steps of (ICGD):
We have h

(ℓ)
i = [xi; y

′
i; ŵ

ℓ;0D−2d−3; 1; ti] for every i ∈ [N + 1], where∥∥ŵℓ −wℓ
PGD

∥∥
2
≤ (ε+ ε′) · (LηBx).

2. (Prediction space) The final output H(L+1) = TFθ(H
(0)) approximates the prediction of L steps of (ICGD): We have

h
(L+1)
N+1 = [xN+1; ŷN+1; ŵ

L;0D−2d−3; 1; ti], where ŷN+1 =
〈
ŵL,xN+1

〉
so that∣∣ŷN+1 −

〈
wL

PGD,xN+1

〉∣∣ ≤ (ε+ ε′) · (2LηB2
x).

Further, the weight matrices have norm bounds |||θ||| ≤ 3 +R+ 2ηC + C ′.

The proof of Theorem H.2 is essentially similar to the proof of Theorem H.1, using the following generalized version of
Lemma H.1.

Lemma H.2 (Composition of error for approximating convex PGD). Suppose f : Rd → R is a convex function and R is
a convex regularizer. Let w⋆ ∈ argminw∈Rd f(w) +R(w), R ≥ 2∥w⋆∥2, and assume that ∇f is Lf -smooth on Bd2(R).
Let sequences {ŵℓ}ℓ≥0 ⊂ Rd and {wℓ

GD}ℓ≥0 ⊂ Rd be given by ŵ0 = w0
GD = 0,{

ŵℓ+1 = proxηR
(
ŵℓ − η∇f(ŵℓ)

)
+ εℓ, ∥εℓ∥2 ≤ ε,

wℓ+1
GD = proxηR

(
wℓ

GD − η∇f(wℓ
GD)

)
,

for all ℓ ≥ 0. Then as long as η ≤ 2/Lf , for any 0 ≤ L ≤ R/(2ε), it holds that
∥∥ŵL −wL

GD

∥∥
2
≤ Lε and ∥ŵL∥2 ≤

R
2 + Lε ≤ R.

The proof of the above lemma is done by utilizing the non-expansiveness of the PGD operator w 7→ proxηR(w−η∇f(w))
and otherwise following the same arguments as for Lemma H.1.

H.3. Gradient descent on two-layer neural networks

We now move beyond the convex setting by showing that transformers can implement gradient descent on two-layer neural
networks in context.

29

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Suppose that the prediction function pred(x;w) :=
∑K
k=1 ukr(v

⊤
k x) is given by a two-layer neural network, parameterized

by w = (vk, uk)k∈[K] ∈ RK(d+1). Consider the empirical risk minimization problem:

min
w∈W

L̂N (w) :=
1

2N

N∑
i=1

(pred(xi;w)− yi)
2
=

1

2N

N∑
i=1

(
K∑
k=1

ukr(v
⊤
k xi)− yi

)2

, (13)

where W is a bounded domain. For the sake of simplicity, in the following discussion we assume that ProjW can be exactly
implemented by a MLP layer (e.g. W = B∞(Rw) for some Rw > 0).

Theorem H.3 (Non-convex ICGD). Fix any Bvw, B
a
w > 0, L > 1, η > 0, and 0 < ε < R :=

max{BvwBx, (Baw)2, ByBaw, Bx, 1}. Suppose that

1. The activation function r is C4-smooth;

2. W is a closed convex domain such that W ⊂ {w = (vk, uk) : ∥vk∥2 ≤ Bvw, |uk| ≤ Baw}, and ProjW = MLPθmlp
for

some MLP layer θmlp with hidden dimension D′ and
∣∣∣∣∣∣θmlp∣∣∣∣∣∣ ≤ Cw;

Then there exists a 1-layer transformer TFθ with

max
ℓ∈[L]

M (ℓ) ≤ 4KMε, max
ℓ∈[L]

D(ℓ) ≤ D′, |||θ||| ≤ R+ Cw + 4Cr,

where Cr depends only on the smoothness of r and R, Mε = K4C2
r ε

−2 log(1 +KCrε
−1) such that for any input data

(D,xN+1) such that input sequence H(0) ∈ RD×(N+1) takes form (3), TFθ(H
(0)) approximately implements (ICGD): For

every ℓ ∈ [L], the ℓ-th layer’s output h(ℓ)
i = [zi; ŵ

ℓ;0D−2d−3; 1; ti] for every i ∈ [N + 1],

ŵℓ = ProjW

(
ŵℓ−1 − η(∇L̂N (ŵℓ−1) + εℓ−1)

)
,

where
∥∥εℓ−1

∥∥
2
≤ ε is an error term.

As a direct corollary, TF can find stationary point of (possibly non-convex) ICL problem (13).

Corollary H.1 (Informal; TF finds stationary point of non-convex ICL problem). For any C4-smooth activation function r,
parameter η > 0,∆ > 0 and ε ∈ (0, R) (R is defined in Theorem H.3), there exists a transformer θ with

L = O
(
∆η−1ε−2

)
, max

ℓ
M (ℓ) = Õ

(
C2
r ε

−2
)
,

such that for any dataset (D, zN+1) such that

sup
w∈W

λmax(∇2L̂N (w)) ≤ 2/η, L̂N (0)− inf L̂N ≤ ∆,

TFθ(H
(0)) approximately implements (ICGD), in the sense that it outputs h(L)

N+1 = [xN+1; ŷN+1; ŵ;0D−2d−3; 1; 0], where
we have

|ŷN+1 − pred(xN+1; ŵ)| ≤ ε,
∥∥∇L̂N (ŵ)

∥∥
2
≤ ε.

The corollary above is simple implication of Theorem H.3 and the following standard convergence result of approximate
gradient descent.

Lemma H.3. Suppose f : W → R, where W ⊂ Rd is a convex closed domain and ∇f is Lf -smooth on Bd2(R). Let
sequences {ŵℓ}ℓ≥0 ⊂ Rd and be given by ŵ0 = w0,

ŵℓ+1 = ProjW
(
ŵℓ − η(∇f(ŵℓ) + εℓ)

)
, ∥εℓ∥2 ≤ ε,

for all ℓ ≥ 0. Then the following holds.

(a) As long as η ≤ 1/Lf , for all L ≥ 0,

min
ℓ∈[L−1]

∥∥∇f(ŵl)
∥∥2
2
≤ 1

L

L−1∑
ℓ=0

∥∥∇f(ŵl)
∥∥2
2
≤ 4(f(w0)− infw∈W f(w))

ηL
+ 4ε2.

30

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

(b) Let the sequences {wℓ
GD}ℓ≥0 ⊂ Rd and be given by w0 = w0 and wℓ+1

GD = ProjW(wℓ
GD − η∇f(wℓ

GD)). Then it
holds that ∥∥ŵℓ −wℓ

GD

∥∥
2
≤ (1 + ηLf)

ℓε, ∀ℓ ≥ 0.

I. Proofs for Section H
I.1. Approximating a single GD step

Proposition I.1 (Approximating a single GD step by a single attention layer). Let ℓ(·, ·) : R2 → R be a loss function such
that ∂sℓ is (ε,R,M,C)-approximable by sum of relus with R = max{BxBw, By, 1}. Let L̂N (w) := 1

N

∑N
i=1 ℓ(w

⊤xi, yi)
denote the empirical risk with loss function ℓ on dataset {(xi, yi)}i∈[N].

Then, for any ε > 0, there exists an attention layer θ = {(Qm,Km,Vm)}m∈[M] with M heads such that, for any

input sequence that takes form hi = [xi; y
′
i;w;0D−2d−3; 1; ti] with ∥w∥2 ≤ Bw, it gives output h̃i = [Attnθ(H)]i =

[xi; y
′
i; w̃;0D−2d−3; 1; ti] for all i ∈ [N + 1], where∥∥∥w̃ − (w − η∇L̂N (w))

∥∥∥
2
≤ ε · (ηBx).

Further, |||θ||| ≤ 2 +R+ 2ηC.

Proof of Proposition I.1. As ∂sℓ is (ε,R,M,C)-approximable by sum of relus, there exists a function f : [−R,R]2 → R
of form

f(s, t) =

M∑
m=1

cmσ(ams+ bmt+ dm) with

M∑
m=1

|cm| ≤ C, |am|+ |bm|+ |dm| ≤ 1, ∀m ∈ [M],

such that sup(s,t)∈[−R,R]2 |f(s, t)− ∂sℓ(s, t)| ≤ ε.

Next, for every m ∈ [M], we define matrices Qm,Km,Vm ∈ RD×D such that

Qmhi =

amw
bm
dm
−2
0

 , Kmhj =

xj
y′j
1

R(1− tj)
0

 , Vmhj = − (N + 1)ηcm
N

·

0d
0
xj

0D−2d−1

for all i, j ∈ [N + 1]. As the input has structure hi = [xi; y

′
i;w;0D−2d−3; 1; ti], these matrices indeed exist, and further it

is straightforward to check that they have norm bounds

max
m∈[M]

∥Qm∥op ≤ 3, max
m∈[M]

∥Km∥op ≤ 2 +R,
∑

m∈[M]

∥Vm∥op ≤ 2ηC.

Consequently, |||θ||| ≤ 2 +R+ 2ηC.

Now, for every i, j ∈ [N + 1], we have

σ(⟨Qmhi,Kmhj⟩) = σ
(
amw⊤xj + bm(1− tj)yj + dm − 2Rtj

)
= σ

(
amw⊤xj + bmyj + dm

)
1{tj = 1},

where the last equality follows from the bound
∣∣amw⊤xj + bm(1− tj)yj + dm

∣∣ ≤ |am|BxBw + R ≤ 2R, so that the
above relu equals 0 if tj ≤ 0. Therefore,

M∑
m=1

σ(⟨Qmhi,Kmhj⟩)Vmhj

31

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

=

(
M∑
m=1

cmσ
(
amw⊤xj + bmyj + dm

))
· −(N + 1)η

N
1{tj = 0}[0d+1;xj ;02]

= f(w⊤xj , yj) ·
−(N + 1)η

N
1{tj = 0}[0d+1;xj ;0D−2d−1].

Thus letting the attention layer θ = {(Vm,Qm,Km)}m∈[M], we have

h̃i = [Attnθ(H)]i = hi +
1

N + 1

N+1∑
j=1

M∑
m=1

σ(⟨Qmhi,Kmhj⟩)Vmhj

= hi −
η

N

N∑
j=1

f(w⊤xj , yj)[0d+1;xj ;02]

= [xi; yi;w; 1; ti]−
η

N

N∑
j=1

∂sℓ(w
⊤xj , yj)[0d+1;xj ;0D−2d−1]︸ ︷︷ ︸

[0d+1;−η∇L̂N (w);0D−2d−1]

+[0d+1; ε;0D−2d−1]

= [xi; yi;w
+
η + ε;0D−2d−3; 1; ti],

where the error vector ε ∈ Rd satisfies

∥ε∥2 =

∥∥∥∥∥∥− η

N

N∑
j=1

(
f(w⊤xj , yj)− ∂sℓ(w

⊤xj , yj)
)
xj

∥∥∥∥∥∥
2

≤ η

N

N∑
j=1

∣∣f(w⊤xj , yj)− ∂sℓ(w
⊤xj , yj)

∣∣ · ∥xj∥2
≤ η

N
·N · ε ·Bx = ε · (ηBx).

This is the desired result.

I.2. Proof of Theorem H.1

We first prove part (a), which requires constructing the first L layers of θ. Note that by our precondition L ≤ Bw/(2ε).

By our precondition, the partial derivative of the loss ∂sℓ is (ε,R,M,C)-approximable by sum of relus. Therefore we can
apply Proposition I.1 to obtain that, there exists a single attention layer θ(1) = {(Qm,Km,Vm)}m∈[M] with M heads
(and norm bounds specified in Proposition I.1), such that for any w with ∥w∥2 ≤ Bw, the attention layer Attnθ(1) maps the
input hi = [xi; y

′
i;w;0D−2d−3; 1; ti] to output h′

i = [xi; y
′
i; ŵ;0D−2d−3; 1; ti] for all i ∈ [N + 1], where∥∥∥ŵ −

(
w − η∇L̂N (w)

)∥∥∥
2
≤ ε · (ηBx) =: ε′.

Consider the L-layer transformer θ1:L = (θ(1), . . . ,θ(1)) which stacks the same attention layer θ(1) for L times, and for
the given input h(0)

i = [xi; y
′
i;w

0;0D−2d−3; 1; ti], its ℓ-th layer’s output h(ℓ)
i = [xi; y

′
i; ŵ

ℓ;0D−2d−3; 1; ti].

We now inductively show that
∥∥ŵℓ

∥∥
2
≤ Bw and

∥∥ŵℓ −wℓ
GD

∥∥
2
≤ ℓε for all ℓ ∈ [L]. The base case of ℓ = 0 is trivial.

Suppose the claim holds for ℓ. Then for ℓ + 1 ≤ L ≤ Bw/(2ε), the sequence {ŵi}i≤ℓ+1 and {wi
GD}i≤ℓ+1 satisfies the

precondition of the error composition lemma (Lemma H.1) with error bound ε, from which we obtain
∥∥ŵℓ+1

∥∥
2
≤ Bw and∥∥ŵℓ+1 −wℓ+1

GD

∥∥
2
≤ (ℓ+ 1)ε′.

This finishes the induction, and gives the following approximation guarantee for all ℓ ∈ [L]:∥∥ŵℓ −wℓ
GD

∥∥
2
≤ ℓε′ ≤ ε · (LηBx),

32

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

which proves part (a).

We now prove part (b), which requires constructing the last attention layer θ(L+1). Recall h
(L)
i =

[xi; y
′
i; ŵ

L;0D−2d−3; 1; ti] for all i ∈ [N + 1]. We construct a 2-head attention layer θ(L+1) =

{(Q(L+1)
m ,K

(L+1)
m ,V

(L+1)
m)}m=1,2 such that for every i, j ∈ [N + 1],

Q
(L+1)
1 h

(L)
i = [xi;0D−d], K

(L+1)
1 h

(L)
j = [ŵL;0D−d], V

(L+1)
1 h

(L)
j = [0d; 1;0D−d−1],

Q
(L+1)
2 h

(L)
i = [xi;0D−d], K

(L+1)
2 h

(L)
j = [−ŵL;0D−d], V

(L+1)
2 h

(L)
j = [0d;−1;0D−d−1].

Note that the weight matrices have norm bound

max
i=1,2

∥∥∥Q(L+1)
i

∥∥∥
op

≤ 1, max
i=1,2

∥∥∥K(L+1)
i

∥∥∥
op

≤ 1,

2∑
i=1

∥∥∥V(L+1)
i

∥∥∥
op

≤ 2.

Then we have

h
(L+1)
N+1 = h

(L)
N+1 +

1

N + 1

N+1∑
j=1

2∑
m=1

σ
(〈

Q(L+1)h
(L)
N+1,K

(L+1)h
(L)
j

〉)
V(L+1)h

(L)
j

= [xi; 0; ŵ
L;0D−2d−3; 1; 1] +

(
σ(
〈
ŵL,xN+1

〉
)− σ(−

〈
ŵL,xN+1

〉
)
)
· [0d; 1;0D−d−1]

(i)
= [xi; 0; ŵ

L;0D−2d−3; 1; 1] + [0d;
〈
ŵL,xN+1

〉
;0D−d−1]

= [xi;
〈
ŵL,xN+1

〉︸ ︷︷ ︸
ŷN+1

; ŵL;0D−2d−3; 1; 1],

Above, (i) uses the identity t = σ(t)− σ(−t). Further by part (a) we have∣∣ŷN+1 −
〈
wL

GD,xN+1

〉∣∣ = ∣∣〈ŵL −wL
GD,xN+1

〉∣∣ ≤ ε · (LηB2
x).

This proves part (b), and also finishes the proof Theorem H.1 where the overall (L+ 1)-layer attention-only transformer is
given by TF0

θ with

θ = (θ(1), . . . ,θ(1)︸ ︷︷ ︸
L times

,θ(L+1)).

I.3. Proof of Lemma H.1

As f is a convex, Lf smooth function on Bd2(R), the mapping Tη : w 7→ w − η∇f(w) is non-expansive in ∥·∥2: Indeed,
for any w,w′ ∈ Bd2(R) we have

∥Tη(w)− Tη(w′)∥2 = ∥w − η∇f(w)− (w′ − η∇f(w′))∥22
= ∥w −w′∥22 − 2η ⟨w −w′,∇f(w)−∇f(w′)⟩+ η2 ∥∇f(w)−∇f(w′)∥22
(i)

≤ ∥w −w′∥22 −
(
2η/Lf − η2

)
∥∇f(w)−∇f(w′)∥22

(ii)

≤ ∥w −w′∥22 .

Above, (i) uses the property ⟨w −w′,∇f(w)−∇f(w′)⟩ ≥ 1
Lf

∥∇f(w)−∇f(w′)∥22 for smooth convex functions (Nes-
terov, 2018, Theorem 2.1.5); (ii) uses the precondition that η ≤ 2/Lf .

The lemma then follows directly by induction on L. The base case of L = 0 follows directly by assumption that
ŵ0 = w0

GD ∈ Bd2(R/2). Suppose the claim holds for iterate L. For iterate L+ 1 ≤ R/(2ε), we have∥∥ŵL+1 −wL+1
GD

∥∥
2
=
∥∥Tη(ŵL) + εL − Tη(wL

GD)
∥∥
2

≤
∥∥Tη(ŵL)− Tη(wL

GD)
∥∥
2
+
∥∥εL∥∥

2

33

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

(i)

≤
∥∥ŵL −wL

GD

∥∥
2
+ ε

(ii)

≤ (L+ 1)ε.

Above, (i) uses the non-expansiveness, and (ii) uses the inductive hypothesis. Similarly, by our assumption w⋆ = Tη(w⋆),∥∥ŵL+1 −w⋆
∥∥
2
=
∥∥Tη(ŵL) + εL − Tη(w⋆)

∥∥
2
≤
∥∥ŵL −w⋆

∥∥
2
+
∥∥εL∥∥

2
≤ R

2
+ (L+ 1)ε ≤ R.

This finishes the induction.

I.4. Convex ICGD with ℓ2 regularization

In the same setting as Theorem H.1, consider the ICGD dynamics over an ℓ2-regularized empirical risk:

wt+1
GD := wt

GD − η∇L̂λN (wt
GD) (ICGD-ℓ2)

with initialization w0
GD ∈ Rd and learning rate η > 0, where L̂λN (w) := L̂N (w) + λ

2 ∥w∥22 denotes the ℓ2-regularized
empirical risk.

Corollary I.1 (Convex ICGD with ℓ2 regularization). Fix any Bw > 0, L > 1, η > 0, and ε < BxBw. Suppose the loss
ℓ(·, ·) is convex in the first argument, and ∂sℓ is (ε,R,M,C)-approximable by sum of relus with R = max {BxBw, By, 1}.

Then, there exists an attention-only transformer TF0
θ with (L+ 1) layers, maxℓ∈[L]M

(ℓ) ≤M + 1 heads within the first L
layers, and M (L+1) = 2 such that for any input data (D,xN+1) with

sup
∥w∥2≤Bw

λmax(∇2L̂λN (w)) ≤ 2η−1, ∃w⋆ ∈ argmin
w∈Rd

L̂λN (w) such that ∥w⋆∥2 ≤ Bw/2,

TF0
θ(H

(0)) approximately implements (ICGD-ℓ2):

1. (Parameter space) For every ℓ ∈ [L], the ℓ-th layer’s output H(ℓ) = TFθ(1:ℓ)(H(0)) approximates ℓ steps of (ICGD-ℓ2):
We have h

(ℓ)
i = [xi; y

′
i; ŵ

ℓ;0D−2d−3; 1; ti] for every i ∈ [N + 1], where∥∥ŵℓ −wℓ
GD

∥∥
2
≤ ε · (2LηBx).

2. (Prediction space) The final output H(L+1) = TFθ(H
(0)) approximates the prediction of L steps of (ICGD-ℓ2): We

have h
(L+1)
N+1 = [xN+1; ŷN+1; ŵ

L;0D−2d−3; 1; 0], where∣∣ŷN+1 −
〈
wL

GD,xN+1

〉∣∣ ≤ ε · (2LηB2
x).

Further, the transformer admits norm bound |||θ||| ≤ 2 +R+ (2C + λ)η.

Proof. This construction is the same as in the proof of Theorem H.1, except that within each layer ℓ ∈ [L], we add one more
attention head (Q(ℓ),K(ℓ),V(ℓ)) ⊂ RD×D which when acting on its input h(ℓ−1)

i = [∗; ∗; ŵℓ−1; 1; ∗] gives

Q(ℓ)h
(ℓ−1)
i =

[
1

0D−1

]
, K(ℓ)h

(ℓ−1)
j =

[
1

0D−1

]
, V(ℓ)h

(ℓ−1)
j =

 0d+1

−ηλŵℓ−1

02

for all i, j ∈ [N + 1]. Note that

∥∥Q(ℓ)
∥∥
op

=
∥∥K(ℓ)

∥∥
op

= 1, and
∥∥V(ℓ)

∥∥
op

= ηλ. Further, it is straightforward to check

that the output of this attention head on every h
(ℓ)
i is

1

N + 1

N+1∑
j=1

σ(
〈
Q(ℓ)h

(ℓ−1)
i ,K(ℓ)h

(ℓ−1)
j

〉
)V(ℓ)h

(ℓ−1)
j =

 0d+1

−ηλŵℓ−1

02

 .
Adding this onto the original output of the ℓ-th layer exactly implements the gradient of the regularizer w 7→ λ

2 ∥w∥22. The
rest of the proof follows by repeating the argument of Theorem H.1, and combining the norm bound for the additional
attention head here with the norm bound therein.

34

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

I.5. Proof of Theorem H.3

We only need to prove the following single-layer version of Theorem H.3.

Proposition I.2. Under the assumptions of Theorem H.3, there exists a 1-layer transformer TFθ with Mε heads, hidden
dimension D′ and |||θ||| ≤ 3R+ Cw + 4K4ηCr, such that for any input data (D,xN+1) such that TFθ maps

hi = [xi; y
′
i;w;0; 1; ti] → h′

i = [xi; y
′
i;w

+
η ;0; 1; ti],

where

w+
η = ProjW

(
w − η∇L̂N (w) + ε(w)

)
, ∥ε(w)∥2 ≤ ηε.

Before we present the formal (and technical) proof of Proposition I.2, we first provide some intuitions. To begin with, we
first note that

∇vk
L̂N (w) =

1

N

N∑
i=1

(pred(xi;w)− yi) · uk · r′(v⊤
k xi)xi

=
1

N

N∑
i=1

[
K∑
l=1

ulukr(v
⊤
l xi)r

′(v⊤
k xi)− ukyir

′(v⊤
k xi)

]
· xi,

(14)

and

∇uk
L̂N (w) =

1

N

N∑
i=1

(pred(xi;w)− yi) · r(v⊤
k xi)

=
1

N

N∑
i=1

K∑
l=1

r(v⊤
l xi)r(v

⊤
k xi) · ul − ukyir(v

⊤
k xi) · 1.

(15)

Thus, we consider the following functions:

f1(z1, z2, z3) = z1 · r(z2) · r′(z3), f2(z1, z2) = z1 · r′(z2),
f3(z1, z2) = r(z1) · r(z2), f4(z1, z2) = z1 · r(z1).

By our assumption on r and Proposition F.1, the functions defined above are all (ε,R,Mε, Cr) approximable for ε =
ε/(4K2R), for some Cr > 0 that depends only on the C4-smoothness of r and R. Hence, there exists f1, f2, f3, f4 of the
form

fw(z) =
∑

m∈[M]

cwmσ(⟨awm, [z; 1]⟩), with
∑

m∈[M]

|cwm| ≤ Cr, max
m∈[M]

∥∥ajm∥∥1 ≤ 1,

such that for each w ∈ [4], sup∥z∥∞≤R
∣∣fw(z)− fw(z)

∣∣ ≤ ε.

Then, we can regard

∇vk
L̂N (w) ≈ 1

N

N∑
j=1

[∑
l∈[K],m∈[M]

σ
(〈
a1m, [ukul;v

⊤
l xj ;v

⊤
k xj ; 1]

〉)
· c1mxj

+
∑

m∈[M]

σ(
〈
a2m, [ukyj ;v

⊤
k xj ; 1]

〉
) · (−c2mxj)

]
.

Similarly,

∇uk
L̂N (w) ≈ 1

N

N∑
j=1

[∑
l∈[K],m∈[M]

σ
(〈
a3m, [v

⊤
l xj ;v

⊤
k xj ; 1]

〉)
· c3mul

35

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

+
∑

m∈[M]

σ(
〈
a4m, [ukyj ;v

⊤
k xj ; 1]

〉
) · (−c4m)

]
.

Based on the observations above, we now present the proof of Proposition I.2.

Proof of Proposition I.2. For each tuple (m, k, l) with m ∈ [M], k ∈ [K], l ∈ [K] ∪ {0}, we define matrices
Qv
m,k,l,K

v
m,k,l,V

v
m,k,l so that for all i, j ∈ [N + 1],

Qv
m,k,lhi =

a1m[1] · uk
a1m[2] · vl
a1m[3] · vk
a1m[4]
−1
0

 , Kv
m,k,lhj =

ul
xj
xj
1

R(1− tj)
0

 , Vv
m,k,lhj = − (N + 1)ηc1m

N
·

 0
xj
0

 ,

Qv
m,k,0hi =

a2m[1] · uk
a2m[2] · vk
a2m[3]
−1
0

 , Kv
m,k,lhj =

yj
xj
1

R(1− tj)
0

 , Vv
m,k,lhj =

(N + 1)ηc2m
N

·

 0
xj
0

 ,
where Vv

m,k,lhj has xj on the place of vk. As the input has structure hi = [xi; y
′
i;w;0; 1; ti], these matrices indeed exist,

and further it is straightforward to check that they have norm bounds

max
m,k,l

∥∥Qv
m,k,l

∥∥
op

≤ 1, max
m,k,l

∥∥Kv
m,k,l

∥∥
op

≤ 2 +R,
∑
m

∥∥Vv
m,k,l

∥∥
op

≤ 2ηCr.

By definition, for every i, j ∈ [N + 1] and k ∈ [K], we have (focusing only on the non-zero component of Vhj)

− η−1N

N + 1

∑
m,l

σ
(〈
Qv
m,k,lhi,K

v
m,k,lhj

〉)
Vv
m,k,lhj

=
∑

l∈[K],m∈[M]

σ
(〈
a1m, [ukul;v

⊤
l xj ;v

⊤
k xj ; 1]

〉
−R(1− tj)

)
· c1mxj

+
∑

m∈[M]

σ(
〈
a2m, [ukyj ;v

⊤
k xj ; 1]

〉
−R(1− tj)) · (−c2mxj)

=
∑

l∈[K],m∈[M]

σ
(〈
a1m, [ukul;v

⊤
l xj ;v

⊤
k xj ; 1]

〉)
· 1{tj = 1} · c1mxj

+
∑

m∈[M]

σ(
〈
a2m, [ukyj ;v

⊤
k xj ; 1]

〉
) · 1{tj = 1} · (−c2mxj)

=

[
K∑
l=1

f1(ukul,v
⊤
l xj ,v

⊤
k xj)− f2(ukyi,v

⊤
k xj)

]
· 1{tj = 1} · xj

=

[
K∑
l=1

f(ukul,v
⊤
l xj ,v

⊤
k xj)− f(ukyj ,v

⊤
k xj) + δk,j

]
· 1{tj = 1} · xj

=

[
K∑
l=1

ukul · r(v⊤
l xj)r

′(v⊤
k xj)− ukyj · r(v⊤

k xj) + εk,j

]
· 1{tj = 1} · xj

where the second equality follows from the bound ∥am∥1 ≤ 1, and in the last two equalities we denote

εk,j :=

K∑
l=1

δ1(ukul,v
⊤
l xj ,v

⊤
k xj)− δ2(ukyi,v

⊤
k xj),

36

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

with the abbreviation δw(z) := fw(z)− fw(z) for w = 1, 2, 3, 4. Therefore, combining the above equation with (14), we
have for each k ∈ [K],

1

N + 1

N+1∑
j=1

∑
m,l

σ
(〈
Qv
m,k,lhi,K

v
m,k,lhj

〉)
Vv
m,k,lhj = [0;−η∇vk

L̂N (w);0] + εk,

where εk := − η
N

∑N
j=1 εk,jxj and hence

∥εk∥2 ≤ ηmax
j

|εk,j | · ∥xj∥2 ≤ ε · (K + 1)R.

Analogously, for each tuple (m, k, l) with m ∈ [M], k ∈ [K], l ∈ [K] ∪ {0}, we define matrices Qu
m,k,l,K

u
m,k,l,V

u
m,k,l so

that for all i, j ∈ [N + 1],

Qu
m,k,lhi =

a3m[1] · vl
a3m[2] · vk
a3m[3]
−1
0

 , Ku
m,k,lhj =

xj
xj
1

R(1− tj)
0

 , Vv
m,k,lhj = − (N + 1)ηc3m

N
·

0ul
0

 ,

Qu
m,k,0hi =

a4m[1] · uk
a4m[2] · vk
a4m[3]
−1
0

 , Ku
m,k,lhj =

yj
xj
1

R(1− tj)
0

 , Vu
m,k,lhj =

(N + 1)ηc4m
N

·

01
0

 ,
where Vv

m,k,lhj has 1 or ul on the entry of uk. By the structure of the input, these matrices also exist, and can be chosen so
that

max
m,k,l

∥∥Qu
m,k,l

∥∥
op

≤ 1, max
m,k,l

∥∥Ku
m,k,l

∥∥
op

≤ 2 +R,
∑
m

∥∥Vu
m,k,l

∥∥
op

≤ 2ηCr.

Similarly to the argument above, we can show that for each k ∈ [K],

1

N + 1

N+1∑
j=1

∑
m,l

σ
(〈
Qu
m,k,lhi,K

u
m,k,lhj

〉)
Vu
m,k,lhj = [0;−η∇uk

L̂N (w);0] + ε′k,

where ∥ε′k∥2 ≤ ε · (K + 1)R.

Thus letting the attention layer

θattn = {(Qw
m,k,l,K

w
m,k,l,V

w
m,k,l)}m∈[M],k∈[K],l∈[K]∪{0},w∈{u,v},

we have

1

N + 1

N+1∑
j=1

∑
m,l,k,w

σ
(〈
Qw
m,k,lhi,K

w
m,k,lhj

〉)
Vw
m,k,lhj = [0;−η∇L̂N (w);0] + ε,

such that ∥ε∥2 ≤ ε · 2K(K + 1)R ≤ ε. Further consider θmlp so that MLPθmlp
= ProjW . Then θ = (θattn,θmlp) is the

desired transformer.

J. Proofs for Section C.1
J.1. Proof of Theorem C.1

Fix λ ≥ 0, 0 ≤ α ≤ β with κ := β+λ
α+λ , and Bw > 0, and consider any in-context data D such that the precondition

of Theorem C.1 holds. Let

Lridge(w) :=
1

2N

N∑
i=1

(⟨w,xi⟩ − yi)
2
+
λ

2
∥w∥22

37

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

denote the ridge regression loss in (ICRidge), so that wλ
ridge = argminw∈Rd Lridge(w). It is a standard result that

∇2Lridge(w) = X⊤X/N + λId, so that Lridge is (α+ λ)-strongly convex and (β + λ)-smooth over Rd.

Consider the gradient descent algorithm on the ridge loss

wt+1
GD = wt

GD − η∇Lridge(w
t
GD)

with initialization, learning rate, and number of steps

w0
GD := 0d, η :=

1

β + λ
, T :=

⌈
2κ log

(
BxBw
2ε

)⌉
.

By standard convergence results for strongly convex and smooth functions (Proposition F.2), we have for all t ≥ 1 that∥∥wt
GD −wλ

ridge

∥∥2
2
≤ exp

(
− t

κ

)∥∥w0
GD −wλ

ridge

∥∥2
2
= exp

(
− t

κ

)∥∥wλ
ridge

∥∥2
2
.

Further, we have ∥∥wT
GD −wλ

ridge

∥∥
2
≤ exp

(
− T

2κ

)∥∥wλ
ridge

∥∥
2
≤ 2ε

BxBw
· Bw

2
≤ ε

Bx
. (16)

It remains to construct a transformer to approximate wT
GD. Notice that the problem (ICRidge) corresponds to an ℓ2-

regularized ERM with the square loss ℓ(s, t) := 1
2 (s− t)2, whose partial derivative ∂sℓ(s, t) = s− t is exactly a sum of

two relus:

∂sℓ(s, t) = 2σ((s− t)/2)− 2σ(−(s− t)/2).

In particular, this shows that ∂sℓ(s, t) is (0, R, 2, 4)-approximable for anyR > 0, in particular forR = max {BxBw, By, 1}.

Therefore, we can apply Corollary I.1 with the square loss ℓ, learning rate η, regularization strength λ and accuracy parameter
ε = 0 to obtain that there exists an attention-only transformer TF0

θ with (T + 1) := L layers such that the final output
h
(L)
N+1 = [xN+1; ŷN+1; ∗] with ∣∣ŷN+1 −

〈
wT

GD,xN+1

〉∣∣ = 0, (17)

and number of headsM (ℓ) = 3 for all ℓ ∈ [L−1] (can be taken as 2 in the unregularized case λ = 0 directly by Theorem H.1),
and M (L) = 2. Further, θ admits norm bound |||θ||| ≤ 2 +R+ 8+λ

β+λ ≤ 3R+ 8(β + λ)−1 + 1 ≤ 4R+ 8(β + λ)−1.

Combining (16) and (17), we obtain that∣∣ŷN+1 −
〈
wλ

ridge,xN+1

〉∣∣ = ∣∣〈wT
GD −wλ

ridge,xN+1

〉∣∣ ≤ (ε/Bx) ·Bx = ε.

This finishes the proof.

J.2. Statistical analysis of in-context least squares

Consider the standard least-squares algorithm ALS and least-squares estimator ŵLS ∈ Rd defined as

ALS(D)(xN+1) := ⟨ŵLS,xN+1⟩ , ŵLS =
(
X⊤X

)−1
X⊤y ∈ Rd. (ICLS)

For any distribution P over (x, y) ∈ Rd × R and any estimator w ∈ Rd, let

LP(w) := E(x′,y)∼P

[
1
2 (⟨w,x

′⟩ − y′)
2
]

denote the expected risk of w over a new test example (x′, y′) ∼ P.

Assumption A (Well-posedness for learning linear predictors). We say a distribution P on Rd×R is well-posed for learning
linear predictors, if (x, y) ∼ P satisfies

38

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

(1) ∥x∥2 ≤ Bx and |y| ≤ By almost surely;

(2) The covariance ΣP := EP[xx
⊤] satisfies λminId ⪯ ΣP ⪯ λmaxId, with 0 < λmin ≤ λmax, and κ := λmax/λmin.

(3) The whitened vector Σ−1/2
P x is K2-sub-Gaussian for some K ≥ 1.

(4) The best linear predictor w⋆
P := EP[xx

⊤]−1EP[xy] satisfies ∥w⋆
P∥2 ≤ B⋆w.

(5) We have E[(y − ⟨x,w⋆
P⟩)2|x] ≤ σ2 with probability one (over x).

Further, we say P is well-posed with canonical parameters if

Bx = Θ(
√
d), By = Θ(1), B⋆w = Θ(1), σ ≤ O(1), λmax = Θ(1), K = Θ(1), (18)

where Θ(·) and O(·) only hides absolute constants.

The following result bounds the excess risk of least squares under Assumption A with a clipping operation on the predictor;
the clipping allows the result to only depend on the second moment of the noise (cf. Assumption A(5)) instead of e.g. its
sub-Gaussianity, and also makes the result convenient to be directly translated to a result for transformers.

Proposition J.1 (Guarantees for in-context least squares). Suppose distribution P satisfies Assumption A. Then as long as
N ≥ O(dK4 log(1/δ)), we have the following:

(a) The (clipped) least squares predictor achieves small expected excess risk (fast rate) over the best linear predictor: For
any clipping radius R ≥ By ,

ED,xN+1,yN+1∼P

[
1

2
(clipR(⟨ŵLS,xN+1⟩)− yN+1)

2

]
≤ inf

w∈Rd
LP(w)︸ ︷︷ ︸

LP(w⋆
P)

+O
(
R2δ +

dσ2

N

)
. (19)

(b) We have P(Ecov ∩ Ew) ≥ 1− δ/10, where

Ecov = Ecov(D) :=

{
1

2
Id ⪯ Σ

−1/2
P Σ̂Σ

−1/2
P ⪯ 2Id

}
, (20)

Ew = Ew(D) :=

∥ŵLS∥2 ≤ B⋆w +

√
80dσ2

δNλmin

. (21)

Proof. We first show P(Ecov) ≥ 1− δ/20. Let Σ̂ := 1
N

∑N
i=1 xix

⊤
i , and let the whitened covariance and noise variables

be denoted as

x̃i = Σ
−1/2
P xi, Σ̃ :=

1

N

N∑
i=1

x̃ix̃
⊤
i = Σ

−1/2
P Σ̂Σ

−1/2
P .

Also let zi := yi − ⟨xi,w⋆
P⟩ denote the “noise” variables. Note that

Ecov =

{
1

2
Id ⪯ Σ̃ ⪯ 2Id

}
is exactly a covariance concentration of the whitened vectors {x̃i}i∈[N]. Recall that E[x̃ix̃⊤

i] = Id, and x̃i are K2-sub-
Gaussian by assumption. Therefore, we can apply (Vershynin, 2018, Theorem 4.6.1), we have with probability at least
1− δ/10 that ∥∥∥Σ̃− Id

∥∥∥
op

≤ O

(
K2 max

{√
d+ log(1/δ)

N
,
d+ log(1/δ)

N

})
.

Setting N ≥ O(K4(d+ log(1/δ))) ensures that the right-hand side above is at most 1/2, on which event we have

1

2
Id ⪯ Σ̃ ⪯ 3

2
Id ⪯ 2Id, (22)

39

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

i.e. Ecov holds. This shows that P(Eccov) ≤ δ/10.

Next, we show (19). Using Ecov, we decompose the risk as

E
[
1

2
(clipR(⟨ŵLS,xN+1⟩)− yN+1)

2

]
= E

[
1

2
(clipR(⟨ŵLS,xN+1⟩)− yN+1)

2
1{Ecov}

]
+ E

[
1

2
(clipR(⟨ŵLS,xN+1⟩)− yN+1)

2
1{Eccov}

]
(i)

≤ E
[
1

2
(⟨ŵLS,xN+1⟩ − yN+1)

2
1{Ecov}

]
+ 2R2 · (δ/20)

(ii)
= ED,xN+1

[
1

2
(⟨ŵLS −w⋆

P,xN+1⟩)21{Ecov}
]
+ ExN+1,yN+1

[
1

2
(⟨w⋆

P,xN+1⟩ − yN+1)
2
1{Ecov}

]
+O(R2δ)

≤ ED

[
1

2
∥ŵLS −w⋆

P∥
2
ΣP

1{Ecov}
]
+ ExN+1,yN+1

[
1

2
(⟨w⋆

P,xN+1⟩ − yN+1)
2

]
︸ ︷︷ ︸

LP(w⋆
P)

+O(R2δ).

(23)

Above, (i) follows by assumption that |yN+1| ≤ By ≤ R almost surely, so that removing the clipping can only potentially
increase the distance in the first term, and the square loss is upper bounded by 1

2 · (2R)2 almost surely in the second term;
(ii) follows by the fact that ExN+1,yN+1

[⟨ŵLS −w⋆
P,xN+1⟩ (⟨w⋆

P,xN+1⟩ − yN+1)] = 0 by the definition of w⋆
P, as well as

the fact that 1{Ecov} is independent of (xN+1, yN+1).

It thus remains to bound ED

[
1
2 ∥ŵLS −w⋆

P∥
2
ΣP

1{Ecov}
]
. Note that on the event Ecov, we have

Σ
1/2
P Σ̂−1Σ

1/2
P =

(
Σ

−1/2
P Σ̂Σ

−1/2
P

)−1

⪯ 2Id.

Therefore,

1

2
∥ŵLS −w⋆

P∥
2
ΣP

1{Ecov} =
1

2

(
(X⊤X)−1X⊤y −w⋆

P

)⊤
ΣP

(
(X⊤X)−1X⊤y −w⋆

P

)
1{Ecov}

=
1

2
z⊤X(X⊤X)−1ΣP(X

⊤X)−1X⊤z · 1{Ecov}

=
1

2N2
z⊤XΣ

−1/2
P

(
Σ

1/2
P Σ̂−1Σ

1/2
P

)2
Σ

−1/2
P X⊤z · 1{Ecov}

≤ 2

N2

∥∥∥Σ−1/2
P X⊤z

∥∥∥2
2
1{Ecov} =

2

N2

∥∥∥∥∥
N∑
i=1

x̃izi

∥∥∥∥∥
2

2

1{Ecov} ≤ 2

N2

∥∥∥∥∥
N∑
i=1

x̃izi

∥∥∥∥∥
2

2

.

Note that E[x̃izi] = Σ
−1/2
P E[xi(yi − ⟨w⋆

P,xi⟩)] = 0. Therefore, taking expectation on the above (over D), we get

ED

[
1

2
∥ŵLS −w⋆

P∥
2
ΣP

1{Ecov}
]
≤ 2

N2
E

∥∥∥∥∥
N∑
i=1

x̃izi

∥∥∥∥∥
2

2

 =
2

N
E
[
∥x̃1z1∥22

]
=

2

N
E
[
z21x

⊤
1 Σ

−1
P x1

]
(24)

(i)

≤ 2σ2

N
E
[
x⊤
1 Σ

−1
P x1

]
=

2dσ2

N
. (25)

Above, (i) follows by conditioning on x1 and using Assumption A(5). Combining with (23), we obtain

E
[
1

2
(clipR(⟨ŵLS,xN+1⟩)− yN+1)

2

]
≤ LP(w

⋆
P) +O

(
R2δ +

dσ2

N

)
.

This proves (19).

Finally, we show P(Ecov ∩ Ew) ≥ 1− δ/10. Using (24) and ΣP ⪰ λminId by assumption, we get

E
[
∥ŵLS −w⋆

P∥
2
2 1{Ecov}

]
≤ 4dσ2

Nλmin
.

40

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Therefore, using an argument similar to Chebyshev’s inequality,

P(Ecov ∩ Ecw) = E

1{Ecov} × 1{∥ŵLS∥2 >

√
20

δ
· 4dσ2

Nλmin
+B⋆w}

≤ E

1{Ecov} × 1{∥ŵLS −w⋆
P∥2 >

√
20

δ
· 4dσ2

Nλmin
}

≤ E

[
1{Ecov} ×

∥ŵLS −w⋆
P∥

2
2

20
δ · 4dσ2

Nλmin

]
≤ δ/20.

This implies that

P(Ecov ∩ Ew) = P(Ecov)− P(Ecov ∩ Ecw) ≥ 1− δ/20− δ/20 ≥ 1− δ/10.

This is the desired result.

J.3. Proof of Corollary C.1

The proof follows by first checking the well-conditionedness of the data D (cf. (5)) with high probability, then invoking The-
orem C.1 (for approximation least squares) and Proposition J.1 (for the statistical power of least squares).

First, as P satisfies Assumption A, by Proposition J.1, as long as N ≥ O(K4(d+ log(1/δ))), we have with probability at
least 1− δ/10 that event Ecov ∩ Ew holds. On this event, we have

1

2
λminId ⪯

1

2
ΣP ⪯ Σ̂ = X⊤X/N ⪯ 2ΣP ⪯ 2λmaxId,

∥ŵLS∥2 ≤ Bw/2 := O

B⋆w +

√
dσ2

δNλmin

,
and thus the dataset D is well-conditioned (in the sense of (5)) with parameters α = λmin/2, β = 2λmax, and Bw defined
as above. Note that the condition number of Σ̂ is upper bounded by β/α = 4λmax/λmin ≤ 4κ, where κ is the upper bound
on the condition number of ΣP as in Assumption A(c).

Define parameters

ε =

√
dσ2

N
, δ =

dσ2

B2
yN

∧ 1. (26)

Note that Bw ≤ O(B⋆w +
√
B2
y/λmin) by the above choice of δ.

We can thus apply Theorem C.1 in the unregularized case (λ = 0) to obtain that, there exists a transformer θ with
maxℓ∈[L]M

(ℓ) ≤ 3, |||θ||| ≤ 4R+ 4/λmax (with R = max {BxBw, By, 1}), and number of layers

L ≤ O
(
κ log

BxBw
ε

)
≤ O

(
κ log

(
Bx

√
N

dσ2

(
B⋆w +

B2
y√

λmin

)))
,

such that on Ecov∩Ew (so that D is well-conditioned), we have (choosing the clipping radius in r̃eady(·) = clipBy
(ready(·))

to be By): ∣∣∣r̃eady(TF0
θ(H))− clipBy

(⟨ŵLS,xN+1⟩)
∣∣∣ ≤ ∣∣ready(TF0

θ(H))− ⟨ŵLS,xN+1⟩
∣∣ ≤ ε =

√
dσ2

N
. (27)

We now bound the excess risk of the above transformer. Combining Proposition J.1 and (27), we have

E
[(

r̃eady(TF
0
θ(H))− yN+1

)2]
41

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

= E
[(

r̃eady(TF
0
θ(H))− yN+1

)2
1{Ecov ∩ Ew}

]
+ E

[(
r̃eady(TF

0
θ(H))− yN+1

)2
1{(Ecov ∩ Ew)c}

]
≤ 2E

[(
r̃eady(TF

0
θ(H))− clipBy

(⟨ŵLS,xN+1⟩)
)2

1{Ecov ∩ Ew}
]

+ 2E
[(

clipBy
(⟨ŵLS,xN+1⟩)− yN+1

)2
1{Ecov ∩ Ew}

]
+ 2B2

y · δ/10

(i)

≤ 2ε2 + LP(w
⋆
P) +O

(
B2
yδ +

dσ2

N

)
+O

(
B2
yδ
)

≤ LP(w
⋆
P) +O

(
B2
yδ +

dσ2

N

)
≤ O

(
dσ2

N

)
.

Above, (i) uses the approximation guarantee (27) as well as Proposition J.1(a) (with clipping radius By). This proves the
desired excess risk guarantee.

Finally, under the canonical choice of parameters (18), the bounds for L,M, |||θ||| simplify to

L ≤ O
(
κ log

Nκ

σ

)
, max

ℓ∈[L]
M (ℓ) ≤ 3, |||θ||| ≤ O(

√
κd), (28)

and the requirement for N simplifies to N ≥ O(d+ log(1/δ)) = Õ(d) (as K = Θ(1)). This proves the claim about the
required N and L.

J.4. Proof of Corollary C.2

Fix parameters δ, ε > 0 to be specified later and a large universal constant C0. Let us set

α = max
{
0, 1/2−

√
d/N

}2

, β = 25,

B⋆w := 1 +

√
log(4/δ)

d
, Bw = C0(B

⋆
w + σ),

Bx = C0

√
d log(N/δ), By = C0(B

⋆
w + σ)

√
log(N/δ).

Consider the following good events

Eπ =
{
∥w⋆∥2 ≤ B⋆w, ∥ε∥2 ≤ 2

√
Nσ
}
,

Ew =
{
α ≤ λmin(X

⊤X/N) ≤ λmax(X
⊤X/N) ≤ β

}
,

Eb = {∀i ∈ [N], ∥xi∥2 ≤ Bx, |yi| ≤ By},
Eb,N+1 = {∥xN+1∥2 ≤ Bx, |yN+1| ≤ By},

and we define E := Eπ ∩ Ew ∩ Eb ∩ Eb,N+1. Under the event E , the problem (ICRidge) is well-conditioned and ∥wλ
ridge∥ ≤

Bw/2 (by Lemma J.1).

Therefore, Theorem C.1 implies that for κ = α+λ
β+λ , there exists a L = ⌈2κ log(Bw/ε)⌉+ 1-layer transformer θ such that

for its prediction ŷN+1 := r̃eady(TF
0
θ(H)), we have ŷN+1 = clipBy

(⟨xN+1, ŵ⟩) and ∥ŵ −wλ
ridge∥ ≤ ε under the good

event E .

In the following, we show that θ is indeed the desired transformer (when ε and δ is suitably chosen). Notice that we have

E(ŷN+1 − yN+1)
2 = E

[
1{E}(ŷN+1 − yN+1)

2
]
+ E

[
1{Ec}(ŷN+1 − yN+1)

2
]
,

and we analyze these two parts separately.

Prediction risk under good event E . We first note that

E
[
1{E}(ŷN+1 − yN+1)

2
]
= E

[
1{E}(clipBy

(⟨xN+1, ŵ⟩)− yN+1)
2
]

42

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

≤ E
[
1{E}(⟨xN+1, ŵ⟩ − yN+1)

2
]
,

where the inequality is because yN+1 ∈ [−By, By] under the good event E . Notice that by our construction, under the good
event E , ŵ = ŵ(D) depends only on the dataset D. Therefore, we have ∥ŵ(D) −wλ

ridge(D)∥ ≤ ε as long as the event
E0 := Eπ ∩ Ew ∩ Eb holds for (w⋆,D). Thus, under E0,

E
[
1{E}(⟨xN+1, ŵ⟩ − yN+1)

2
∣∣w⋆,D

]
= E

[
1{E}(⟨xN+1, ŵ(D)⟩ − yN+1)

2
∣∣w⋆,D

]
≤ E

[
(⟨xN+1, ŵ(D)⟩ − yN+1)

2
∣∣w⋆,D

]
= E

[
(⟨xN+1, ŵ(D)⟩ − ⟨xN+1,w⋆⟩)2

∣∣w⋆,D
]
+ σ2

= ∥ŵ(D)−w⋆∥22 + σ2,

and we also have

∥ŵ(D)−w⋆∥22 ≤
∥∥wλ

ridge −w⋆

∥∥2
2
+ 2

∥∥wλ
ridge −w⋆

∥∥
2

∥∥ŵ(D)−wλ
ridge

∥∥
2
+
∥∥ŵ(D)−wλ

ridge

∥∥2
2

≤
∥∥wλ

ridge −w⋆

∥∥2
2
+ 2ε

∥∥wλ
ridge −w⋆

∥∥
2
+ ε2.

Recall that 2BayesRiskπ = Ew⋆,D∥wλ
ridge −w⋆∥22 + σ2. Note that 2BayesRiskπ ≤ 1 + σ2 by definition. Therefore, we

can conclude that

E
[
1{E}(ŷN+1 − yN+1)

2
]
≤ 2BayesRiskπ + 2ε+ ε2.

Prediction risk under bad event Ec. Notice that

E
[
1{Ec}(ŷN+1 − yN+1)

2
]
≤
√

P(Ec)E[(ŷN+1 − yN+1)4].

We can upper bound P(Ec) = P(Ecπ ∪ Ecw ∪ Ecb ∪ Ecb,N+1) by Lemma F.1, Lemma F.2 and the sub-Gaussian tail bound:

P(Ecπ) ≤
δ

2
+ exp(−N/8), P(Ecw) ≤ 2 exp(−N/8), P(Ecb ∪ Ecb,N+1) ≤

δ

4
.

Thus, as long as N ≥ 8 exp(12/δ), we have P(Ec) ≤ δ. Further, a simple calculation yields

E(ŷN+1 − yN+1)
4 ≤ 8Eŷ4N+1 + 8Ey4N+1) ≤ 8B2

y + 8Ey4N+1.

Notice that yN+1|w⋆ ∼ N(0, ∥w⋆∥22 + σ2), hence Ey4N+1 = 3E(∥w⋆∥22 + σ2)2 ≤ 3(3 + 2σ2 + σ4) ≤ B4
y . Thus, we can

conclude that

E
[
1{Ec}(ŷN+1 − yN+1)

2
]
≤ 4

√
δBy.

Choosing ε and δ. Combining the inequalities above, we have

E(ŷN+1 − yN+1)
2 ≤ 2BayesRiskπ +

[
2ε
√

2BayesRiskπ + ε2 + 4
√
δBy

]
.

To ensure 1
2E(ŷN+1 − yN+1)

2 ≤ BayesRiskπ + ε, we only need to take (ε, δ) so that the following constraints are satisfied:

ε =
1

2
min

{
ε,
√
ε
}
, 4

√
δBy ≤ ε

2
, N ≥ 8 log(12/δ).

Therefore, it suffices to take δ = c0
log2(N)

(
ε2

1+σ2

)2
for some small constant c0, then as long as

N ≥ C log

(
σ2 + 1

ε

)
+ C.

our choice of ε and δ is feasible. Note that κ ≤ O
(
1 + σ−2

)
, and hence under such choice of (ε, δ), we have L =

O(log(1/ε)) and |||θ||| = Õ
(√

d
)

. This is the desired result.

43

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Lemma J.1. Under the event Eπ ∩ Ew, we have
∥∥wλ

ridge

∥∥
2
≤ O (B⋆w + σ).

Proof of Lemma J.1. We denote ε = [εi]i∈[N] = y − Xw⋆ ∈ RN . Then by the definition of wλ
ridge and recall that

λ = dσ2/N , we have wλ
ridge = (X⊤X+ dσ2Id)

−1X⊤y.

Therefore, we only need to prove the following fact: for any γ > 0 and ŵ⋆ = (X⊤X+ dγId)
−1X⊤y, we have

∥β̂∥2 ≤ B⋆w + 100σ(1 + γ−1/2). (29)

We now prove (29). Note that we have

∥β̂∥2 = ∥(X⊤X+ dγId)
−1X⊤(Xw⋆ + ε)∥2 ≤ ∥B1∥op ∥w⋆∥2 + ∥B2∥op ∥ε∥2

where B1 = X⊤X(X⊤X+ dγId)
−1, B2 = (X⊤X+ dγId)

−1X⊤ and we have ∥B1∥op ≤ 1.

We first consider the case that N ≥ 36d. Then we have

∥B2∥op ≤
√
λmax(X⊤X)

λmin(X⊤X)
=

√
λmax(X⊤X/N)

λmin(X⊤X/N)
·N−1/2

Ew

≤ 45N−1/2.

We then consider the case that N ≤ 36d. Consider the SVD decomposition of X = UΣV , Σ = diag(λ1, · · · , λd), and
U ∈ RN×d, V ∈ Rd×d are orthonormal matrices. Then B2 = V ⊤(Σ2 + dγId)

−1ΣU⊤, and hence

∥B2∥op ≤
∥∥(Σ2 + dγId)

−1Σ
∥∥
op

≤
√
Nσ ·max

i

λi
λ2i + dγ

≤ d−1/2γ−1/2 ≤ 6(Nγ)−1/2.

Summarizing both cases, we have
∥B2∥op ≤ 45N−1/2(γ−1/2 + 1).

Combining all the inequalities above completes the proof of (29).

K. Generalized linear models
As a generalization of Appendix C.1, we show that transformers can implement the standard convex risk minimization
algorithm for generalized linear models (McCullagh, 2019). Let g : R → R be a link function that is non-decreasing and
Lg-smooth (i.e. supt |g′(t)| ≤ Lg).

We consider the following convex problem

wGLM := argmin
w∈Rd

L̂N (w) :=
1

N

N∑
i=1

ℓ(⟨xi,w⟩ , yi), (ICGLM)

where

ℓ(t, y) = −yt+
∫ t

0

g(s)ds.

A canonical example of (ICGLM) is logistic regression, in which g(t) = σlog(t) := (1 + e−t)−1 is the sigmoid function,
and the resulting ℓ(t, y) = ℓlog(t, y) = −yt+ log(1 + et) is the logistic loss.

Theorem K.1 (Generalized linear model). For any 0 < α < β with κ := β
α , Bw > 0, Bx > 0, κw := LgB

2
x/α and

ε < Bw/2, there exists an attention-only transformer TF0
θ with

L = ⌈2κ log(LgBwBx/ε)⌉+ 1, max
ℓ∈[L]

M (ℓ) ≤ Õ
(
C2
g (1 + κ2w)ε

−2
)

|||θ||| ≤ O
(
R+ β−1Cg

)
(where Cg > 0 is a constant that depends only on the C2-smoothness of g), such that the following holds. On any input data
(D,xN+1) such that

α ≤ λmin(∇2L̂N (w)) ≤ λmax(∇2L̂N (w)) ≤ β,∀w ∈ B2(Bw), ∥wGLM∥2 ≤ Bw/2, (30)

TF0
θ(H

(0)) approximately implements (ICGLM): We have h
(L+1)
N+1 := [xN+1; ŷN+1; ŵ; 1; 1], where

|ŷN+1 − g(⟨xN+1,wGLM⟩)| ≤ ε.

44

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

For any law P of (x, y), we also denote

Lp(w) := E(x,y)∼P[ℓ(⟨w,x⟩ , y)].

When P is realizable by a generalized linear model of link function g and parameter β, it is a standard result that
β ∈ argminw Lp(w) is the true minimizer of the population risk (proof by differentiating and using realizability). In
the general case where P is not necessarily realizable, Lp(w) is also a sensible measure of the performance of the linear
predictor x 7→ ⟨w,x⟩.
Theorem K.2. Suppose that P is any distribution so that Assumption B holds for (P, g), and there exists β⋆ ∈ argminLp
with ∥β⋆∥2 ≤ Bw/4. Then as long as N ≥ O (d), L ≥ O (log(N/d)), there exists a L-layer transformer θ that outputs
[xN+1; ŷN+1; ŵ;0D−2d−3; 1; 0], such that the following holds.

(1) For the linear read-out ŷlinN+1 = ⟨xN+1, ŵ⟩, it holds that

E(D,yN+1)∼P
[
ℓ(ŷlinN+1, yN+1)

]
−min

β
Lp(β) ≤ O

(
d

N

)
.

(2) (Realizable setting) If there exists a β such that under P, E[y|x] = g(⟨β,x⟩) (i.e. β⋆ = β), then

E(ŷN+1 − yN+1)
2 ≤ E(g(⟨β,xN+1⟩)− yN+1)

2 +O
(
d

N

)
,

or equivalently, E(ŷN+1 − E[yN+1|xN+1])
2 ≤ O

(
d
N

)
.

Here O (·) hides constants that depend on the parameters in Assumption B.

Assumption B. We assume that there is some Bµ > 0 such that for any t ∈ [−Bµ, Bµ], g′(t) ≥ µg > 0.

We also assume that for each i ∈ [N + 1], (xi, yi) is independently sampled from P such that the following holds.

(a) Under the law P, We have x ∼ SG(Kx), y ∼ SG(Ky) and g(⟨w,x⟩) ∼ SG(Ky)∀w ∈ B2(Bw).

(b) For some µx > 0, it holds that

E[1{|x⊤w| ≤ Bµ/2}xx⊤] ⪰ µxI ∀w ∈ B2(Bw).

Applying Theorem K.2 to logistic regression, we have the following result as a direct corollary.

Corollary K.1 (In-context logistic regression). For the link function g = σlog and any context β, we consider

Plog
β : x ∼ N(0, Id), y ∼ Bernoulli(g(⟨β,x⟩)).

Then as long as ∥β∥2 ≤ B⋆w = O (1), we can choose Bµ, µg, Lg, µx,Kx,Ky = Θ(1). Hence, when N ≥ O (d), there
exists a transformer θ with L = O (log(N/d)) layers, such that for any context β such that ∥β∥2 ≤ B⋆w, the following
holds.

(a) For ŷN+1 = r̃eady(TFθ(H)) the prediction of θ, we have

E(D,xN+1)∼Pβ
(ŷN+1 − g(⟨β,xN+1⟩))2 ≤ O

(
d

N

)
.

(b) For some alternative read-out function readw, we have

ED,xN+1∼Pβ
KL(Plog

β (·|xN+1) ∥ Plog
ŵ (·|xN+1)) ≤ O

(
d

N

)
, for ŵ = readw(TFθ(H)).

45

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

K.1. Proof of Theorem K.1

Let us write B = max{BxBw, 1} and define

Cg := max
i=0,1,2

(
B2−i max

s∈[−B,B]

∣∣∣g(i)(s)∣∣∣).
By Proposition F.1, g is (εg,M(εg), B,C · Cg) approximable for all ε ∈ (0, Cg] and

M(εg) ≤ C · C2
gε

−2
g log(1 + Cgε

−1
g),

where C is a universal constant. Therefore, we can invoke Theorem H.1 to obtain that, as long as 2Tεg ≤ Bw, there exists a
T -layer attention-only transformer θ(1:T) with M(εg) heads per layer, such that for any input H of format (3) and satisfies
(30), its last layer outputs h(T)

i = [xi; y
′
i; ŵ

T ;0D−2d−3; 1; ti], such that∥∥ŵT −wT
GD

∥∥
2
≤ εg · (Lβ−1Bx),

where {wℓ
GD}ℓ∈[L] is the sequence of gradient descent iterates with stepsize β−1 and initialization w0

GD = 0. Notice that
Proposition F.2 implies∥∥wT

GD −wGLM

∥∥
2
≤ exp(−T/(2κ)) ∥wGLM∥2 ≤ exp(−T/(2κ)) · Bw

2
:= εo.

Furthermore, we can show that (similar to the proof of Theorem H.1 (b)), there exists a single attention layer θ(T+1) with
M(εg) heads such that it outputs h(T+1)

N+1 = [xN+1; ŷN+1; ŵ
T ;0D−2d−3; 1; 0], where

∣∣ŷN+1 − g(
〈
xN+1, ŵ

T
〉
)
∣∣ ≤ εg .

In the following, we show that for suitably chosen (T, εg), θ = (θ(1:T),θ(T+1)) is the desired transformer. First notice that
its output h(T+1)

N+1 = [xN+1; ŷN+1; ŵ
T ;0D−2d−3; 1; 0] satisfies

|ŷN+1 − g(⟨xN+1,wGLM⟩)| ≤
∣∣ŷN+1 − g(

〈
xN+1, ŵ

T
〉
)
∣∣+ Lg

∣∣〈xN+1, ŵ
T
〉
− ⟨xN+1,wGLM⟩

∣∣
≤ εg + LgBx

∥∥ŵT −wT
GD

∥∥
2
+ LgBx

∥∥wT
GD −wGLM

∥∥
2

≤ εg(1 + LgBx · Tβ−1Bx) + LgBxεo.

Therefore, for any fixed ε > 0, we can take

T = ⌈2κ log(LgBxBw/ε)⌉ , εg =
1

2

ε

1 + Tε · (LgB2
xβ

−1)
,

so that the θ we construct above ensures |ŷN+1 − g(⟨xN+1,wGLM⟩)| ≤ ε for all input H satisfies (30). The upper bound
on |||θ||| follows immediately from Theorem H.1.

K.2. Proof of Theorem K.2

We summarize the statistical power of GLM in the following theorem.

Theorem K.3. Under Assumption B, the following statements hold with universal constant C0 and constant C1, C2 that
depend only on the parameters (Kx,Ky, Bµ, Bw, µx, Lg, µg).

(a) As long as N ≥ C1 · d, the following event happens with probability at least 1− 2e−N/C1 :

Ew :
1

8
µgµx ≤ λmin(∇2L̂N (w)) ≤ λmax(∇2L̂N (w)) ≤ 8LgK

2
x, ∀w ∈ B2(Bw).

(b) For any δ > 0, we have with probability at least 1− δ that

εstat := sup
w∈B2(Bw)

∥∥∥∇wL̂N (w)−∇wE[L̂N (w)]
∥∥∥
2
≤ C0KxKymax

{√
dι+ log(1/δ)

N
,
dι+ log(1/δ)

N

}
,

46

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

where we write ι = log(2 + LgK
2
xBw/Ky).

(c) Condition on (a) holds and N ≥ C2 · d, the event Er := {∥wGLM∥2 ≤ Bw/2} happens with probability at least
1− eN/C2 .

(d) For any w ∈ B2(Bw), it holds that

Lp(w)− Lp(β) ≤
4

µgµx

(
ε2stat +

∥∥∇L̂N (w)
∥∥2
2

)
.

(e) (Realizable setting) As long as wGLM ∈ B2(Bw), it holds that

Ex(g(⟨x,wGLM⟩)− g(⟨x,β⟩))2 ≤ Lg
µxµg

ε2stat.

Therefore, we can set

α =
µgµx
8

, β = 8LgK
2
x,

Bx = C0Kx

√
d log(N/δ), By = C0Ky

√
log(N/δ).

Consider the following good events

Eb = {∀i ∈ [N], ∥xi∥2 ≤ Bx, |yi| ≤ By},
Eb,N+1 = {∥xN+1∥2 ≤ Bx, |yN+1| ≤ By},

E = Eπ ∩ Ew ∩ Eb ∩ Eb,N+1.

Under the event E and our choice of α, β, the problem (ICGLM) is well-conditioned (i.e. (30) holds).

Our proof of Theorem K.1 implies that there exists a L-layer transformer θ such that for any input H of the form (3), TFθ

outputs h′
N+1 = [xN+1; ỹN+1; ŵ;0D−2d−3; 1; 0], such that the following holds on the good event E :

(a) |ỹN+1 − g(⟨xN+1,wGLM⟩)| ≤ ε, and the prediction is ŷN+1 = r̃eady(TFθ(H)) = clipBy
(ỹN+1).

(b)
∥∥∇L̂N (ŵ)

∥∥
2
≤ βε

LgBw
.

And we extra require that ∥ŵ∥∞ ≤ Bw always (which is possible because we can add a MLP layer that implements
projection into Bd∞(Bw), following the transformer constructed in Theorem K.1).

In the following, we show that θ constructed above fulfills both (a) & (b) of Theorem K.2.

Proof of Theorem K.2 (a). Notice that under the good event E , ŵ = ŵ(D) ∈ B2(Bw) is a function of D, and we have
Lp(ŵ(D)) = E(xN+1,yN+1)ℓ(⟨xN+1, ŵ(D)⟩ , yN+1). Therefore, we can consider E0 = Eπ ∩ Ew ∩ Eb, and then

E(D,xN+1,yN+1)

[
ℓ(ŷlinN+1, yN+1)

]
− ED[I(E0)Lp(ŵ)]

= E(D,xN+1,yN+1)

[
ℓ(ŷlinN+1, yN+1)

]
− E(D,xN+1,yN+1)[I(E0)ℓ(⟨xN+1, ŵ(D)⟩ , yN+1)]

= E(D,xN+1,yN+1)

[
I(Ec)ℓ(ŷlinN+1, yN+1)

]
− E(D,xN+1,yN+1)[I(E0 − E)ℓ(⟨xN+1, ŵ(D)⟩ , yN+1)]

≤ 2
√
P(Ec) ·max

{
E
[
ℓ(ŷlinN+1, yN+1)4

]
,E[ℓ(⟨xN+1, ŵ(D)⟩ , yN+1)4]

}
= O

(
B2
ℓ

N5

)
,

where the first and second equality use ŵ = ŵ(D) on the good event E , and the line follows from Cauchy inequality and
the fact P(Ec) ≤ N−10, and Bℓ is defined in Lemma K.1.

Notice that by Theorem K.3 (d), we have

ED[I(E0)(Lp(ŵ)− inf Lp)] ≤
4

µgµx

(
E[ε2stat] + E

[
I(E0)

∥∥∇L̂N (ŵ)
∥∥2
2

])
,

47

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

and by Theorem K.3 (b) and taking integration over δ > 0, we have

E[ε2stat] ≤ O (1) ·K2
xK

2
y

(
dι

N
+

(
dι

N

)2
)
.

Therefore, we can conclude that

E(D,xN+1,yN+1)

[
ℓ(ŷlinN+1, yN+1)

]
≤ inf Lp +O (1) ·

(
K2
xK

2
y ι

µgµx

d

N
+

K4
x

µgµxBw
ε2 +

B2
ℓ

N5

)
.

Taking ε2 ≤ K2
yι

BwK2
x

d
N completes the proof.

Proof of Theorem K.2 (b). Similar to the proof of Corollary C.2, we have

E(ŷN+1 − yN+1)
2 = E

[
1{E}(ŷN+1 − yN+1)

2
]
+ E

[
1{Ec}(ŷN+1 − yN+1)

2
]

≤ E
[
1{E}(ỹN+1 − yN+1)

2
]
+
√
P(Ec)E(ŷN+1 − yN+1)4,

where the inequality follows from yN+1 ∈ [−By, By] on event E . For the first part, we consider E ′ = Ew ∩ Er ∩ Eb ∩
{∥xN+1∥2 ≤ Bx}, and then

E
[
1{E}(ỹN+1 − yN+1)

2
]
≤ E

[
1{E ′}(ỹN+1 − yN+1)

2
]

= E
[
1{E ′}(ỹN+1 − E[yN+1|D,xN+1])

2
]
+ E

[
1{E ′}(yN+1 − E[yN+1|D,xN+1])

2
]

= E
[
1{E ′}(ỹN+1 − g(⟨xN+1,β⟩))2

]
+ E

[
1{E ′}(yN+1 − g(⟨xN+1,β⟩))2

]
,

where the second line uses . Thus,

E
[
1{E}(ỹN+1 − yN+1)

2
]
− E(yN+1 − g(⟨xN+1,β⟩))2

≤ E
[
1{E ′}(ỹN+1 − g(⟨xN+1,β⟩))2

]
≤ 2E

[
1{E}(ỹN+1 − g(⟨xN+1,wGLM⟩))2

]
+ 2E

[
1{E}(g(⟨x,wGLM⟩)− g(⟨x,β⟩))2

]
≤ 2ε2 +

2Lg
µxµg

E[ε2stat] ≤ 2ε2 +O (1) ·
LgK

2
xK

2
y ι

µxµg

d

N
.

For the second part, we know P(Ec) = O
(
N−10

)
and

E(ŷN+1 − yN+1)
4 ≤ 8Eŷ2N+1 + 8Ey4N+1 = O

(
B4
y

)
.

In conclusion, we have

E(ŷN+1 − yN+1)
2 ≤ E(yN+1 − g(⟨xN+1,β⟩))2 + 2ε2 +O (1) ·

LgK
2
xK

2
y ι

µxµg

d

N
+O

(
B2
y

N5

)
.

Taking ε2 ≤ LgK
2
xK

2
yι

µxµg

d
N completes the proof.

Lemma K.1. Suppose that x ∼ SG(Kx), y ∼ SG(Ky), and w is (possibly random) vector such that ∥w∥∞ ≤ Bw. Then

E
[
ℓ(⟨x,w⟩ , y)4

]1/4 ≤ O
(
LgK

2
xB

2
wd

2 +KxKyBwd
)
=: Bℓ.

Proof. Notice that by our assumption, |g(0)| ≤ 2Ky . Therefore, by the definition of ℓ,

|ℓ(t, y)| =
∣∣∣∣−yt+ ∫ t

0

g(s)ds

∣∣∣∣ ≤ |t(g(0)− y)|+
∣∣∣∣∫ t

0

(g(s)− g(0))ds

∣∣∣∣ ≤ |t| (2Ky + |y|) + 2Lgt
2.

The proof is then done by bounding the moment E |y|8 and E |⟨x,w⟩|8 ≤ (
√
dBw)

8E ∥x∥82, which is standard (by utilizing
the tail bound of sub-Gaussian/sub-Exponential random variable).

48

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

K.3. Proof of Theorem K.3 (a)

We begin with the upper bound on λmax(∇2L̂N (w)). By Lemma F.3, as long as N ≥ C0 · d, the following event

Ew,0 :

∥∥∥∥∥ 1

N

N∑
i=1

xix
⊤
i

∥∥∥∥∥
op

≤ 8K2.

happens with probability at least 1− exp(−N/C0). By the assumption that sup |g′| ≤ Lg , it is clear that when Ew,0 holds,
we have λmax(∇2L̂N (w)) ≤ 8LgK

2
x ∀w ∈ Rd.

In the following, we analyze the quantity λmax(∇2L̂N (w)). We have to invoke the following covering argument (see e.g.
Vershynin (2018, Section 4.1.1)).
Lemma K.2. Suppose that V is a ε-covering of Sd−1 with ε ∈ [0, 1). Then the following holds:

1. For any d× d symmetric matrix A, ∥A∥op ≤ 1
1−2ε maxv∈V

∣∣v⊤Av
∣∣ and

λmin(A) ≥ min
v∈V

v⊤Av − 2ε ∥A∥op

2. For any vector x ∈ Rd, ∥x∥2 ≤ 1
1−ε maxv∈V |⟨v,x⟩|.

Notice that

∇2L̂N (w) =
1

N

N∑
i=1

g′(⟨w,xi⟩)xix⊤
i ⪰ 1

N

N∑
i=1

µgI(|⟨w,xi⟩| ≤ Bµ)xix
⊤
i

⪰ 1

N

N∑
i=1

µg

(
1− |⟨w,xi⟩|

Bµ

)
+

xix
⊤
i .

Therefore, we can define h(t) := (Bµ − |t|)+ (which is a 1-Lipschitz function), and we have

∇2L̂N (w) ⪰ µg
Bµ

1

N

N∑
i=1

h(⟨w,xi⟩)xix⊤
i︸ ︷︷ ︸

=:A(w)

.

In the following, we pick a εv-covering V of Sd−1 such that |V| ≤ (3/εv)
d (we will specify εv later in proof). Then for any

w ∈ B2(Bw),

λmin(A(w)) ≥ min
v∈V

v⊤A(w)v − 2εv ∥A(w)∥op

By our definition of A(w), we have (for any fixed Bxv)

min
v∈V

v⊤A(w)v = min
v∈V

1

N

N∑
i=1

h(⟨w,xi⟩) ⟨v,xi⟩2

≥ min
v∈V

1

N

N∑
i=1

h(⟨w,xi⟩)min
{
⟨v,xi⟩2 , B2

xv

}
︸ ︷︷ ︸

=:Uv(w)

≥ min
v∈V

E[Uv(w)] + min
v∈V

(Uv(w)− E[Uv(w)]).

By Lemma K.3, we can choose Bxv = Kx(15 + log(K2
x/µx)), and then E[Uv(w)] ≥ 3Bµµx/8. Thus, combining the

inequalities above, we can take εv =
128K2

x

µx
in the following, so that under event Ew,0,

λmin(∇2L̂N (w)) ≥ µgµx
8

+
µg
Bµ

(
Bµµx
16

−max
v∈V

(E[Uv(w)]− Uv(w))

)
.

49

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

In the following, we consider the random process
{
Uv(w) := Uv(w)− E[Uv(w)]

}
w

, which is zero-mean and indexed by
w ∈ B2(Bw). For any fixed v, consider applying Proposition F.4 to the random process

{
Uv(w)

}
w

. We need to verify the
preconditions:

(a) With norm ρ(w,w′) = ∥w −w′∥2, logN (Bρ(w, r), δ) ≤ d log(2Ar/δ) with constant A = 2;

(b) Let f(x;w) := h(⟨w,xi⟩)min
{
⟨v,xi⟩2 , B2

xv

}
, then |f(x;w)| ≤ BµB

2
xv and hence in SG(CBµB

2
xv) for any random

x;

(c) For w,w′ ∈ W , we have |h(⟨w,xi⟩)− h(⟨w′,xi⟩)| ≤ |⟨w −w′,xi⟩|. Hence, because x ∼ SG(Kx), the random
variable h(⟨w,x⟩)−h(⟨w′,x⟩) is SG(CKx∥w−w′∥2), and the random variable f(x;w)−f(x;w′) is SG(CKxB

2
xv∥w−

w′∥2).

Therefore, we can apply Proposition F.4 to obtain that with probability 1− δ0, it holds

sup
w

∣∣Uv(w)
∣∣ ≤ C ′BµB

2
xv

[√
d log(2κg) + log(1/δ0)

N

]
,

where we denote κg = 1 +KxBw/Bµ. Setting δ0 = δ/ |V| and taking the union bound over v ∈ V , we obtain that with
probability at least 1− δ,

max
v∈V

sup
∥w∥2≤Bw

∣∣Uv(w)
∣∣ ≤ C ′BµB

2
xv

[√
d log(8κg/εv) + log(1/δ)

N

]
,

where we use log |V| ≤ d log(4/εv). Therefore, we plug in the definition of εv and Bxv to deduce that, if we set

C1 =

(
16C ′B2

xv

µx

)2

log(8κg/εv), εv =
128K2

x

µx
, Bxv = Kx(15 + log(K2

x/µx)),

then as long as N ≥ C1 · d, it holds maxv∈V E[Uv(w)]−Uv(w) ≤ µxBµ

16 with probability at least 1− exp(−N/C1). This
is the desired result.

Lemma K.3. Under Assumption B, for Bxv = Kx(15 + log(K2
x/µx)), it holds

inf
w∈B2(Bw),v∈Sd−1

E[1{|x⊤w| ≤ Bµ/2}(x⊤v)21{|x⊤v| ≤ Bxv}] ≥ 3µx/4.

Proof. For any fixed w ∈ B2(Bw),v ∈ Sd−1,

E[1{|x⊤w| ≤ Bµ/2}(x⊤v)21{|x⊤v| ≤ Bxv}]
= E[1{|x⊤w| ≤ Bµ/2}(x⊤v)2}]− E[1{|x⊤w| ≤ Bµ/2}(x⊤v)21{|x⊤v| > Bxv}]
≥ µx − E[(x⊤v)21{|x⊤v| > Bxv}].

Because x ∼ SG(Kx), x⊤v ∼ SG(Kx), and a simple calculation yields

E[(x⊤v)21{|x⊤v| > tKx}] ≤ 2K2
x(t

2 + 1) exp(−t2).

Taking t = 15 + log(K2
x/µx) gives E[(x⊤v)21{|x⊤v| > Bxv}] ≤ µx/4, which completes the proof.

K.4. Proof of Theorem K.3 (b)

Notice that

∇L̂N (w) =
1

N

N∑
i=1

(g(⟨w,xi⟩)− yi)xi.

50

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

In the following, we pick a minimal 1/2-covering of Sd−1 (so |V| ≤ 5d). Then by Lemma K.2, it holds∥∥∥∇L̂N (w)− E[∇L̂N (w)]
∥∥∥
2
≤ 2max

v∈V

∣∣∣ ⟨∇L̂N (w),v⟩ − E[⟨∇L̂N (w),v⟩]︸ ︷︷ ︸
=:Xv(w)

Fix a v ∈ Sd−1 and set δ′ = δ/|V|. We proceed to bound supw |Xv(w)| by applying Proposition F.4 to the random process
{Xv(w)}w. We need to verify the preconditions:

(a) With norm ρ(w,w′) = ∥w −w′∥2, logN(δ;Bρ(r), ρ) ≤ d log(2Ar/δ) with constant A = 2;

(b) For z = [x; y], we let f(z;w) := (g(⟨w,x⟩)− y) ⟨x,v⟩, then f(z;w) ∼ SE(CKxKy) for any w by our assumption
on (x, y);

(c) For w,w′ ∈ W , we have |g(⟨w,x⟩)− g(⟨w′,x⟩)| ≤ Lg |⟨w −w′,x⟩|. Hence, because x ∼ SG(Kx), the random
variable g(⟨w,xi⟩)− g(⟨w′,xi⟩) is sub-Gaussian in SG(KxLg∥w −w′∥2). Thus, f(z;w)− f(z;w′) is sub-exponential
in SE(CK2

xLg∥w −w′∥2).

Therefore, we can apply Proposition F.4 to obtain that with probability 1− δ0, it holds

sup
w

|Xv(w)| ≤ C ′KxKy

[√
d log(2κy) + log(1/δ0)

N
+
d log(2κy) + log(1/δ0)

N

]
,

where we denote κy = 1 + LgK
2
xBw/Ky . Setting δ0 = δ/ |V| and taking the union bound over v ∈ V , we obtain that with

probability at least 1− δ,

max
v∈V

sup
∥w∥2≤Bw

|Xv(w)| ≤ C ′KxKy

[√
d log(10κy) + log(1/δ)

N
+
d log(10κy) + log(1/δ)

N

]
.

This is the desired result.

K.5. Proof of Theorem K.3 (c)

In the following, we condition on (a) holds, i.e. L̂N is α-strongly-convex and β smooth over B2(Bw) with α = µxµg/8 and
β = C0LgK

2
x. We define

w̃ = argmin
w∈B2(Bw)

L̂N (w).

Then by standard convex analysis, we have

α ∥w̃ − β∥22 ≤
〈
∇L̂N (w̃)−∇L̂N (β), w̃ − β

〉
≤
〈
−∇L̂N (β), w̃ − β

〉
≤
∥∥∇L̂N (β)

∥∥
2
∥w̃ − β∥2 .

Notice that
∥∥∇L̂N (β)

∥∥
2
≤ εstat, we can conclude that

∥w̃∥2 ≤ ∥β∥2 +
εstat
α

.

Recall that we assume ∥β∥2 ≤ Bw/4, we can then consider Es := {εstat < αBw/4}. Once Es holds, our argument above
yields w̃ < Bw, so w̃ = argminw∈Rd L̂N (w). Further, by Theorem K.3, we can set

C2 := max

{
2ι

(
4C0αKxKy

Bw

)2

, 2ι · 4C0αKxKy

Bw

}
,

so that as long as N ≥ C2d, the event Es holds with probability at least 1− exp(−N/C2). This is the desired result.

51

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

K.6. Proof of Theorem K.3 (d) & (e)

We first prove Theorem K.3 (d). Notice that

∇2Lp(w) = E
[
g′(⟨x,w⟩)xx⊤] ⪰ E

[
µgI(|⟨x,w⟩| ≤ Bµ)xx

⊤] ⪰ µgµxId,∀w ∈ B2(Bw)

and we also have ∇2Lp(w) ⪯ LgE[xx⊤] ⪯ 2LgK
2
xId as x ∼ SG(Kx). Therefore, Lp is αp strongly convex and

βp-smooth over B2(Bw) with αp = µgµx and βp = 2LgK
2
x. Therefore, because β ∈ B2(Bw) is the global minimum of

Lp, it holds that for all w ∈ B2(Bw),

Lp(w)− Lp(β) ≤
1

2αp
∥∇Lp(w)∥22 .

By the definition of εstat, ∥∇Lp(w)∥2 ≤ εstat + ∥∇L̂N (w)∥2, and hence the proof of Theorem K.3 (d) is completed.

We next prove Theorem K.3 (e), where we assume that E[y|x] = g(⟨x,β⟩) and wGLM ∈ B2(Bw). Notice that

∇Lp(w) = E
[
∇L̂N (w)

]
= E[(g(⟨x,w⟩)− y)x] = E[(g(⟨x,w⟩)− g(⟨w,β⟩))x],

and hence

⟨∇Lp(wGLM),wGLM − β⟩ = E[(g(⟨x,wGLM⟩)− g(⟨w,β⟩)) · (⟨x,wGLM⟩ − ⟨w,β⟩)]

≥ 1

Lg
E
[
(g(⟨x,wGLM⟩)− g(⟨w,β⟩))2

]
.

On the other hand, by the αp-strong-convexity of Lp over B2(Bw), it holds that

⟨∇Lp(wGLM),wGLM − β⟩ ≤ 1

αp
∥∇Lp(wGLM)∥22 .

Finally, using the fact that ∇L̂N (wGLM) = 0 yields ∥∇Lp(wGLM)∥2 ≤ εstat, and hence completes the proof of Theo-
rem K.3 (e).

L. Proofs for Section C.2
L.1. Proof of Theorem C.2

Fix λN ≥ 0, β > 0 and Bw > 0, and consider any in-context data D such that the precondition of Theorem C.2 holds.
Recall that

Llasso(w) :=
1

2N

N∑
i=1

(⟨w,xi⟩ − yi)
2
+ λN ∥w∥1

denotes the lasso regression loss in (ICLasso), so that wλ
lasso = argminw∈Rd Llasso(w). We further write

L̂0
N (w) :=

1

2N

N∑
i=1

(⟨w,xi⟩ − yi)
2
, R(w) := λN ∥w∥1 .

Note that ∇2L̂0
N (w) = X⊤X/N and thus L̂0

N is β-smooth over Rd.

Consider the proximal gradient descent algorithm on the ridge loss

wt+1
PGD = proxηR

(
wt

PGD − η∇L̂0
N (wt

PGD)
)

with initialization w0
PGD := 0d, learning rate η := β−1, and number of steps T to be specified later. Similar to the proof of

Theorem C.1, we can construct a transformer to approximate wT
GD. Consider ℓ(s, t) = 1

2 (s− t)2 and R(w) = λN ∥w∥1,

52

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

then ∂sℓ(s, t) is (0,+∞, 2, 4)-approximable by sum of relus (cf. Definition H.1), and proxηR is (0,+∞, 4d, 4 + 2ηλN)-
approximable by sum of relus (Proposition H.1). Therefore, we can apply Theorem H.2 with the square loss ℓ, regularizer
R, learning rate η and accuracy parameter 0 to obtain that there exists a transformer TFθ with (T + 1) layers, number of
heads M (ℓ) = 2 for all ℓ ∈ [L], and hidden dimension D′ = 2d, such that the final output h(L)

N+1 = [xN+1; ŷN+1;w
T
PGD; ∗]

with ŷN+1 =
〈
wT

PGD,xN+1

〉
. Further, the weight matrices have norm bounds |||θ||| ≤ 10R+ (8 + 2λN)β−1.

By the standard convergence result for proximal gradient descent (Proposition F.3), we have for all t ≥ 1 that

Llasso(w
t
PGD)− Llasso(wlasso) ≤

β

2t
∥wlasso∥22 .

Plugging in ∥wlasso∥2 ≤ Bw/2 and T = L− 1 =
⌈
βB2

w/ε
⌉

finishes the proof.

L.2. Sharper convergence analysis of proximal gradient descent for Lasso

Collection of parameters Throughout the rest of this section, we consider fixed N ≥ 1, λN =
√

ρν log d
N for ρ ≥ 0,

ν ≥ 1 fixed (and to be determined), fixed 0 < α ≤ β, and fixed B⋆w > 0. We write κ := β/α, κs := β(B⋆w)
2/ν2, and

εN := ρ
α
s log d
N .

Here we present a sharper convergence analysis on the proximal gradient descent algorithm for Llasso under the following
well-conditionedness assumption, which will be useful for proving Theorem C.3 in the sequel.

Assumption C (Well-conditioned property for Lasso). We say the (ICLasso) problem is well-conditioned with sparsity s if
the following conditions hold:

1. The (α, ρ)-RSC condition holds:

∥Xw∥22
N

≥ α ∥w∥22 − ρ
log d

N
∥w∥21 , ∀w ∈ Rd. (31)

Further, λmax(X
⊤X/N) ≤ β.

2. The data (X,y) is “approximately generated from a s-sparse linear model”: There exists a w⋆ ∈ Rd such that
∥w⋆∥2 ≤ B⋆w, ∥w⋆∥0 ≤ s and for the residue ε = y −Xw⋆,∥∥X⊤ε

∥∥
∞ ≤ 1

2
NλN .

3. It holds that N ≥ 32 ρα · s log d. Consequently, εN ≤ Θ(1).

Assumption C1 imposes the standard restricted strong convexity (RSC) condition for the feature matrix X ∈ RN×d,
and Assumption C2 asserts that the data is approximately generated from a sparse linear model, with a bound on the
L∞ norm of the error vector X⊤ε. Assumption C is entirely deterministic in nature, and suffices to imply the following
convergence result. In the proof of Theorem C.3, we show that Assumption C is satisfied with high probability when data is
generated from the standard sparse linear model considered therein.

Theorem L.1 (Sharper convergence guarantee for Lasso). Under Assumption C, for the PGD iterates {wt}t≥0 on loss

function L̂lasso with stepsize η = 1/β and starting point w0 = 0, we have L̂lasso(w
T)− L̂lasso(ŵ) ≤ ε for all

T ≥ C

[
β(B⋆w)

2

ν
+ κ log

(
C · κ · β(B

⋆
w)

2

ν
· ν
ε

)
+ κ

νε2N
ε

]
,

where C is a universal constant.

The proof can be found in Appendix L.4. Combining Theorem L.1 with the construction in Theorem C.2, we directly obtain
the following result as a corollary.

Theorem L.2 (In-context Lasso with transformers with sharper convergence). For any N, d, s ≥ 1, 0 < α ≤ β, ν ≥ 0,
ρ ≥ 0, there exists a L-layer transformer TFθ with

L =
⌈
C
(
κs + κ(log(Cκs/ε) + νε2N/ε)

)⌉
, max

ℓ∈[L]
M (ℓ) ≤ 2, max

ℓ∈[L]
D(ℓ) ≤ 2d,

53

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

|||θ||| ≤ 3 +R+ (8 + 2λN)β−1,

such that the following holds. On any input data (D,xN+1) such that the (ICLasso) problem satisfies Assumption C (which
implies ∥wlasso∥2 ≤ Bw/2 with Bw = 2B⋆w +

√
ν/α), TFθ(H

(0)) approximately implements (ICLasso), in that it outputs
ŷN+1 = ready(TFθ(H)) = ⟨xN+1, ŵ⟩ with

L̂lasso(ŵ)− L̂lasso(wlasso) ≤ ε.

L.3. Basic properties for Lasso

Lemma L.1 (Relaxed basic inequality). Suppose that Assumption C2 holds. Then it holds that

∥w −w⋆∥1 ≤ 4
√
s ∥w −w⋆∥2 +

2

λN

(
L̂lasso(w)− L̂lasso(w⋆)

)
, ∀w ∈ Rd.

As a corollary, ∥wlasso −w⋆∥1 ≤ 4
√
s ∥wlasso −w⋆∥2.

Proof. Let us first fix any w ∈ Rd. Denote ∆ = w −w⋆, and let S = supp(w⋆) be the set of indexes of nonzero entries
of w⋆. Then by definition, y = Xw⋆ + ε and |S| ≤ s, and hence

∥Xw − y∥22 − ∥Xw⋆ − y∥22 = ∥X∆− ε∥22 − ∥ε∥22 = ∥X∆∥22 − 2ε⊤X∆,

∥w∥1 − ∥w⋆∥1 =
∑
j∈S

(|w[j]| − |w⋆[j]|) +
∑
j ̸∈S

|w[j]|

≥ −
∑
j∈S

|w[j]−w⋆[j]|+
∑
j ̸∈S

|w[j]| = ∥∆Sc∥1 − ∥∆S∥1 .

Combining these inequalities, we obtain

0 ≤ 1

2N
∥X∆∥22 ≤ ε⊤X∆

N
+ λN (∥∆S∥1 − ∥∆Sc∥1) + L̂lasso(w)− L̂lasso(w⋆)

≤ λN
2

∥∆∥1 + λN (∥∆S∥1 − ∥∆Sc∥1) + L̂lasso(w)− L̂lasso(w⋆)

=
λN
2

(3 ∥∆S∥1 − ∥∆Sc∥1) + L̂lasso(w)− L̂lasso(w⋆),

(32)

where the second inequality follows from ε⊤X∆
N ≤ ∥X⊤ε∥∞

N ∥∆∥1 and our assumption that 2
∥X⊤ε∥∞

N ≤ λN , and the last
inequality is due to ∥∆∥1 = ∥∆S∥1 + ∥∆Sc∥1. Therefore, we have

∥∆∥1 = ∥∆S∥1 + ∥∆Sc∥1 ≤ 4 ∥∆S∥1 +
2

λN

(
L̂lasso(w)− L̂lasso(w⋆)

)
≤ 4

√
s ∥∆∥2 +

2

λN

(
L̂lasso(w)− L̂lasso(w⋆)

)
,

where the last inequality follows from ∥∆S∥1 ≤
√
s ∥∆S∥2 ≤

√
s ∥∆∥2. This completes the proof of our main inequality.

As for the corollary, we only need to use the definition that L̂lasso(wlasso) ≤ L̂lasso(w⋆).

Proposition L.1 (Gap to parameter estimation error). Suppose that Assumption C holds. Then for all w ∈ Rd,

∥w −w⋆∥22 ≤ C

[
sλ2N
α2

+ ν−1gap2 + gap

]
,

where we write gap := L̂lasso(w) − L̂lasso(wlasso), and C = 120 is a universal constant. In particular, we have
∥wlasso −w⋆∥22 ≤ 10 ρνα2

s log d
N .

54

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Proof. We follow the notation in the proof of Lemma L.1. By (32), we have

0 ≤ 1

2N
∥X∆∥22 ≤ λN

2
(3 ∥∆S∥1 − ∥∆Sc∥1) + L̂lasso(w)− L̂lasso(w⋆),

and hence ∥∆∥1 ≤ 4
√
s ∥∆∥2 +

2gap
λN

due to L̂lasso(w) − L̂lasso(w⋆) ≤ gap. On the other hand, by the RSC condition
(31), it holds that

∥X∆∥22
N

≥ α ∥∆∥22 − ρ
log d

N
∥∆∥21 .

Therefore, we have

α ∥∆∥22 ≤ 3λN
√
s ∥∆∥2 + ρ

log d

N
∥∆∥21 + 2gap

≤ 3λN
√
s ∥∆∥2 + ρ

log d

N

(
4
√
s ∥∆∥2 +

2gap

λN

)2

+ 2gap

≤ 5sλ2N
α

+
α

6
∥∆∥22 + ρ

20s log d

λ2NN
∥∆∥22 + ρ

20 log d

N
gap2 + 2gap,

where the last inequality uses AM-GM inequality and Cauchy inequality. Notice that ρ 20s log d
N ≤ 2

3α, we now derive that

∥∆∥22 ≤ 30sλ2N
α2

+ ρ
120 log d

λ2NN
gap2 + 12gap.

Plugging in λN =
√

ρν log d
N completes the proof. The corollary follows immediately by letting w = wlasso in above proof

(hence gap = 0).

Lemma L.2 (Growth). It holds that

1

2N
∥X(w −wlasso)∥22 ≤ L̂lasso(w)− L̂lasso(wlasso), ∀w.

Proof. For simplicity we denote ŵ := wlasso. By the first order optimality condition, it holds that

0 ∈ 1

N
X⊤(Xŵ − y) + ∂R(ŵ),

where we write R(w) := λN ∥w∥1. Then by the convexity of R, we have

R(w)−R(ŵ) ≥ ⟨∂R(ŵ),w − ŵ⟩ =
〈
− 1

N
X⊤(Xŵ − y),w − ŵ

〉
= − 1

N
⟨Xŵ − y, (Xw − y)− (Xŵ − y)⟩

= − 1

2N
∥Xw − y∥22 +

1

2N
∥Xŵ − y∥22 +

1

2N
∥X(w − ŵ)∥22 .

Rearranging completes the proof.

L.4. Proof of Theorem L.1

For the simplicity of presentation, we write ŵ = wlasso and we denote gapt := L̂lasso(w
t)− L̂lasso(ŵ).

By Lemma L.1, we have ∥wt −w⋆∥1 ≤ 4
√
s ∥wt −w⋆∥2 +

2gapt

λN
, which implies

∥∥wt − ŵ
∥∥
1
≤
∥∥wt −w⋆

∥∥
1
+ ∥ŵ −w⋆∥1 ≤ 4

√
s
∥∥wt − ŵ

∥∥
2
+ 8

√
s ∥ŵ −w⋆∥2 +

2gapt

λN
.

55

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

We denote µN = ρ2 log d
N . Using the assumption that X is (α, ρ)-RSC, we obtain that

1

N

∥∥X(wt − ŵ)
∥∥2
2
≥ α

∥∥wt − ŵ
∥∥2
2
− µN

∥∥wt − ŵ
∥∥2
1

≥ α
∥∥wt − ŵ

∥∥2
2
− µN

(
20s

∥∥wt − ŵ
∥∥2
2
+ 400s ∥ŵ −w⋆∥22 +

400

λ2N
(gapt)2

)
.

Thus, as long as N ≥ 30ρ2s log d
α , we have

2α

3

∥∥wt − ŵ
∥∥2
2
≤ 1

N

∥∥X(wt − ŵ)
∥∥2
2
+ 400sµN ∥ŵ −w⋆∥22 +

400µN
λ2N

(gapt)2

≤ 2gapt + 400ν−1(gapt)2 + 400sµN ∥ŵ −w⋆∥22 ,

where the last inequality follows from Lemma L.2 and the definition of λN , µN .

We define εstat := 400sµN ∥ŵ −w⋆∥22, T0 := 100βν−1 ∥ŵ∥22. By Proposition F.3(3), it holds that for t ≥ T0,

gapt ≤ β

2t
∥ŵ∥22 ≤ β

2T0
∥ŵ∥22 =

ν

20
.

Then for all t ≥ T0 − 1, we have (the second ≤ below uses Proposition F.3(2))

α

2

∥∥wt+1 − ŵ
∥∥2
2
≤ 4gapt+1 + εstat ≤ 2β

(∥∥wt − ŵ
∥∥2
2
−
∥∥wt+1 − ŵ

∥∥2
2

)
+ εstat,

⇒
∥∥wt+1 − ŵ

∥∥2
2
− 2εstat

α
≤
(
1 +

α

4β

)−1(∥∥wt+1 − ŵ
∥∥2
2
− 2εstat

α

)
.

Therefore, for t ≥ T0 − 1,

∥∥wt − ŵ
∥∥2
2
≤ exp

(
− α

12β
(t− ⌈T0⌉+ 1)

)∥∥∥w⌈T0⌉−1 − ŵ
∥∥∥2
2
+

2εstat
α

≤ exp

(
− α

12β
(t− T0)

)
∥ŵ∥22 +

2εstat
α

,

where the last inequality follows from Proposition F.3(2). Further, by Proposition F.3(3), we have

gapt+k ≤ β

2k

∥∥wt − ŵ
∥∥2
2
≤ β

2k

[
exp

(
− α

12β
(t− T0)

)
∥ŵ∥22 +

2εstat
α

]
, ∀t ≥ T0 − 1, k ≥ 0.

Hence, we can conclude that gapT ≤ ε for all T such that

T ≥ 100βν−1 ∥ŵ∥22 + 12κ log

(
β ∥ŵ∥22

ε

)
+
κεstat
ε

+ 1.

Now, by Lemma L.1, it holds that

∥ŵ∥22 ≤ 2 ∥w⋆∥22 + 2 ∥ŵ −w⋆∥22 ≤ 2(B⋆w)
2 +

200ρs log d

α2N
.

Plugging in our definition of

µN =
ρ log d

N
, εstat := 400sµN ∥ŵ −w⋆∥22 , εN =

ρ

α

s log d

N
≤ 1

completes the proof.

56

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

L.5. Proof of Theorem C.3

In this section, we present the proof of Theorem C.3 based on Theorem L.2. We begin by recalling the following RSC
property of a Gaussian random matrix (Wainwright, 2019, Theorem 7.16), a classical result in the high-dimensional statistics
literature.

Proposition L.2 (RSC for Gaussian random design). Suppose that X = [x1; · · · ;xN]⊤ ∈ RN×d is a random matrix
with each row xi being i.i.d. samples from N(0,Σ). Then there are universal constants c1 = 1

8 , c2 = 50 such that with

probability at least 1− e−N/32

1−e−N/32 ,

∥Xw∥22
N

≥ c1 ∥w∥2Σ − c2ρ(Σ)
log d

N
∥w∥21 , ∀w ∈ Rd, (33)

where ρ(Σ) = maxi∈[d] Σii is the maximum of diagonal entries of Σ.

Fix a parameter δ1 ≤ δ (which we will specify in proof) and a large universal constant C0. Let us set

α = c1 = Θ(1) , β = 8(1 + (d/N)), ρ = c2 = Θ(1) ,

Bx = C0

√
d log(N/δ1), By = C0(B

⋆
w + σ)

√
log(N/δ1).

Similar to the proof of Corollary C.2 (Appendix J.4), we consider the following good events

Ew =
{
λmax(X

⊤X/N) ≤ β and X is (α, ρ)-RSC
}
,

Er =
{∥∥X⊤ε

∥∥
∞ ≥ 4σ

√
N log(4d/δ)

}
,

Eb = {∀i ∈ [N], ∥xi∥2 ≤ Bx, |yi| ≤ By},
Eb,N+1 = {∥xN+1∥2 ≤ Bx, |yN+1| ≤ By},

and we define E := Ew ∩ Er ∩ Eb ∩ Eb,N+1.

Furthermore, we choose ν > 0 that correspond to the choice λN = 8σ
√

log(4d/δ)
N , and we also assume N ≥ 32c2

c1
· s log d.

Then, Assumption C holds on the event E .

Therefore, we can apply Theorem L.2 with ε = νεN , which implies that there exists a L-layer transformer θ such that its
prediction ŷN+1 := r̃eady(TF

0
θ(H)), so that under the good event E we have ŷN+1 = clipBy

(⟨xN+1, ŵ⟩), where

Llasso(ŵ)− Llasso(wlasso) ≤ νεN .

In the following, we show that θ is indeed the desired transformer (similarly to the proof in Appendix J.4). Consider the
conditional prediction error

E
[
(ŷN+1 − yN+1)

2
∣∣D] = E

[
1{E}(ŷN+1 − yN+1)

2
∣∣D]+ E

[
1{Ec}(ŷN+1 − yN+1)

2
∣∣D] ,

and we analyze these two parts separately under the good event E0 := Ew ∩ Er ∩ Eb of D.

Part I. We first note that

E
[
1{E}(ŷN+1 − yN+1)

2
∣∣D] = E

[
1{E}(clipBy

(⟨xN+1, ŵ⟩)− yN+1)
2
∣∣∣D]

≤ E
[
1{E}(⟨xN+1, ŵ⟩ − yN+1)

2
∣∣D] ,

where the inequality is because yN+1 ∈ [−By, By] under the good event E . Notice that by our construction, under the good
event E , ŵ = ŵ(D) depends only on the dataset D (because it is the (L − 1)-th iterate of PGD on (ICLasso) problem).
Applying Proposition L.1 to ŵ(D) and using the definition of εN and our choice of λN , we obtain that (under E0)

∥ŵ(D)−w⋆∥22 ≤ C ·
[
sλ2N
α2

+ νε2N + νεN

]
= O

(
σ2s log(d/δ)

N

)
.

57

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Therefore, under E0,

E
[
1{E}(⟨xN+1, ŵ⟩ − yN+1)

2
∣∣D] = E

[
1{E}(⟨xN+1, ŵ(D)⟩ − yN+1)

2
∣∣D]

≤ E
[
(⟨xN+1, ŵ(D)⟩ − yN+1)

2
∣∣D]

= E
[
(⟨xN+1, ŵ(D)⟩ − ⟨xN+1,w⋆⟩)2

∣∣D]+ σ2

= ∥ŵ(D)−w⋆∥22 + σ2

= σ2

[
1 +O

(
s log(d/δ)

N

)]
.

Part II. Notice that under good event E0, the bad event Ec holds if and only if Ecb,N+1 holds, and hence

E
[
1{Ec}(ŷN+1 − yN+1)

2
∣∣D] = E

[
1{Ecb,N+1}(ŷN+1 − yN+1)

2
∣∣D]

≤
√
P(Ecb,N+1)E[(ŷN+1 − yN+1)4].

With a large enough constant C0, we clearly have P(Ecb,N+1) ≤ (δ1/N)10. Further, a simple calculation yields

E(ŷN+1 − yN+1)
4 ≤ 8E(ŷ4N+1 + y4N+1) ≤ 8B2

y + 8Ey4N+1 ≤ 16B2
y ,

where the last inequality is because the marginal distribution of yN+1 is simply N(0, σ2 + ∥w⋆∥22). Combining these yields

E
[
1{Ec}(ŷN+1 − yN+1)

2
∣∣D] ≤ O

(
B2
y

N5

)
≤ O

(
δ51((B

⋆
w)

2 + σ2) log(1/δ1)

N4

)
.

Therefore, choosing δ1 = min{δ, σ
B⋆

w
} is enough for our purpose, and under such choice of δ1,

E
[
1{Ec}(ŷN+1 − yN+1)

2
∣∣D] ≤ O

(
σ2

N4

)
.

Conclusion. Combining the inequalities above, we can conclude that under E0,

E
[
(ŷN+1 − yN+1)

2
∣∣D] ≤ σ2

[
1 +O

(
s log(d/δ)

N

)]
.

It remains to show that P(E0) ≥ 1− δ. By Proposition L.2, Lemma F.2 and Lemma F.4, we have

P(Ew) ≤ 3 exp(−N/32), P(Er) ≤
δ

2
, P(Eb) ≤

δ

4
.

Therefore, as long as N ≥ 32 log(12/δ), we have P(E0) ≥ 1− δ. This completes the proof.

We also remark that in the construction above,

R = O
(
(B⋆w + σ)

√
d log(N · (1 +B⋆w/σ))

)
,

which would be useful for bounding |||θ|||.

M. Proofs for Section D
M.1. Proof of Proposition D.1

We begin by restating Proposition D.1 into the following version, which contains additional size bounds on θ.

Theorem M.1 (Full statement of Proposition D.1). Suppose that for

L̂val(f) :=
1

|Dval|
∑

(xi,yi)∈Dval

ℓ(f(xi), yi),

58

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

ℓ(·, ·) is (γ/3, R,M,C)-approximable by sum of relus (Definition H.1). Then there exists a 3-layer transformer TFθ with

max
ℓ∈[3]

M (ℓ) ≤ (M + 3)K, max
ℓ∈[3]

D(ℓ) ≤ K2 +K + 1, |||θ||| ≤ 2NKC

|Dval|
+ 3γ−1 + 7KR.

that maps

hi = [∗; f1(xi); · · · ; fK(xi);0K+1; 1; ti] → h′
i = [∗; f̂(xi); 1; ti], i ∈ [N + 1],

where the predictor f̂ : Rd → R is a convex combination of {fk : L̂val(fk) ≤ mink⋆∈[K] L̂val(fk⋆) + γ}. As a corollary,
for any convex risk L : (Rd → R) → R, f̂ satisfies

L(f̂) ≤ mink⋆∈[K] L(fk⋆) + maxk∈[K]

∣∣∣L̂val(fk)− L(fk)
∣∣∣+ γ.

To prove Theorem M.1, we first state and prove the following two propositions.

Proposition M.1 (Evaluation layer). There exists a 1-layer transformer TFθ with MK heads and |||θ||| ≤ 3R +
2NKC/ |Dval| such that for all H such that maxi{|yi|} ≤ R,maxi,j{|fj(xi)|} ≤ R, TFθ maps

hi = [xi; yi; ∗; f1(xi); · · · ; fK(xi);0K+1; 1; ti]

→ h′
i = [xi; yi; ∗; f1(xi); · · · ; fK(xi); L̃val(f1); · · · ; L̃val(fK); 0; 1; ti], i ∈ [N + 1],

where L̃val(·) is a functional such that maxk

∣∣∣L̃val(fk)− L̂val(fk)
∣∣∣ ≤ ε.

Proof of Proposition M.1. As ℓ is (ε,R,M,C)-approximable by sum of relus, there exists a function g : R2 → R of form

g(s, t) =

M∑
m=1

cmσ(ams+ bmt+ dm) with

M∑
m=1

|cm| ≤ C, |am|+ |bm|+ |dm| ≤ 1, ∀m ∈ [M],

such that sup(s,t)∈[−R,R]2 |g(s, t)− ℓ(s, t)| ≤ ε. We define

L̃val(f) :=
1

|Dval|
∑

(xi,yi)∈Dval

g(f(xi), yi),

Next, for every m ∈ [M] and k ∈ [K], we define matrices Qm,k,Km,k,Vm,k ∈ RD×D such that for all i, j ∈ [N + 1],

Qm,khi =

am
bm
dm
−2
0

 , Km,khj =

fk(xj)
yj
1

R(1 + tj)
0

 , Vm,khj =
(N + 1)cm

|Dval|
· eD−(K−k)−3

where es ∈ RD is the vector with s-th entry being 1 and others being 0. As the input has structure hi =
[xi; yi; ∗; f1(xi); · · · ; fK(xi);0K+1; 1; ti], these matrices indeed exist, and further it is straightforward to check that
they have norm bounds

max
m∈[M],k∈[K]

∥Qm,k∥op ≤ 3, max
m∈[M],k∈[K]

∥Km,k∥op ≤ 2 +R,
∑

m∈[M],k∈[K]

∥Vm,k∥op ≤ K(N + 1)C

|Dval|
.

Now, for every i, j ∈ [N + 1], we have

σ(⟨Qm,khi,Km,khj⟩) = σ(amfk(xj) + bmyj + dm − 2R(1 + tj))

= σ
(
amw⊤xj + bmyj + dm

)
1{tj = −1},

59

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

where the last equality follows from the bound |amfk(xj) + bmyj + dm| ≤ R(|am|+ |bm|) + dm ≤ 2R, so that the above
relu equals 0 if tj ≤ 0. Therefore, for each i ∈ [N + 1] and k ∈ [K],

M∑
m=1

σ(⟨Qm,khi,Km,khj⟩)Vm,khj

=

(
M∑
m=1

cmσ
(
amw⊤xj + bmyj + dm

))
· (N + 1)

|Dval|
1{tj = −1}eD−(K−k)−3

= g(fk(xj), yj) ·
(N + 1)

|Dval|
1{tj = −1}eD−(K−k)−3.

Thus letting the attention layer θ = {(Vm,k,Qm,k,Km,k)}(m,k)∈[M]×[K], we have

h̃i = [Attnθ(H)]i = hi +
1

N + 1

N+1∑
j=1

∑
m,k

σ(⟨Qm,khi,Km,khj⟩)Vm,khj

= hi +
1

|Dval|

N+1∑
j=1

K∑
k=1

g(fk(xj), yj) · 1{tj = −1}eD−(K−k)−3

= hi +

K∑
k=1

 1

|Dval|
∑

(xj ,yj)∈Dval

g(fk(xj), yj)

eD−(K−k)−3

= hi +

K∑
k=1

L̃val(fk) · eD−(K−k)−3

= [xi; yi; ∗; f1(xi); · · · ; fK(xi);0K+1; 1; ti] + [0D−K−3; L̃val(f1); · · · ; L̃val(fK); 0; 0; 0]

= [xi; yi; ∗; f1(xi); · · · ; fK(xi); L̃val(f1); · · · ; L̃val(fK); 0; 1; ti], i ∈ [N + 1].

This is the desired result.

Proposition M.2 (Selection layer). There exists a 3-layer transformer TFθ with

max
ℓ∈[3]

M (ℓ) ≤ 2K + 2, max
ℓ∈[3]

D(ℓ) ≤ K2 +K + 1, |||θ||| ≤ γ−1 + 3KR+ 2.

such that TFθ maps

hi = [∗; f1(xi); · · · ; fK(xi);L1; · · · ;LK ; 0; 1; ti]

→ h′
i = [∗; f1(xi); · · · ; fK(xi); ∗; · · · ; ∗; f̂(xi); 1; ti], i ∈ [N + 1],

where f̂ =
∑K
k=1 λkfk is an aggregated predictor, where the weights λ1, · · · , λK ≥ 0 are functions only on L1, · · · ,Lk

such that

K∑
k=1

λk = 1, λk > 0 only if Lk ≤ min
k⋆∈[K]

Lk⋆ + γ.

Proof of Proposition M.2. We construct a θ which is a composition of 2 MLP layers followed by an attention layer
(θ

(1)
mlp,θ

(2)
mlp,θ

(3)
attn).

Step 1: construction of θ(1)
mlp. We consider matrix W

(1)
1 that maps

h = [∗D−K−3;L1; · · · ;LK ; ∗; ∗; ∗]

7→W
(1)
1 h = [L1 − L2; · · · ;L1 − LK ; · · · ;LK − LK−1;L1;−L1; · · · ;LK ;−LK],

60

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

i.e. W(1)
1 h is a K2 +K dimensional vector so that its entry contains {Lk − Ll}k,l∈[K] and {Lk,−Lk}k∈[K]. Clearly, such

W
(1)
1 exists and can be chosen so that

∥∥∥W(1)
1

∥∥∥
op

≤ 2K. We then consider a matrix W
(1)
2 that maps

σ(W
(1)
1 h) 7→ W

(1)
2 σ(W

(1)
1 h) = [0D−K−3; c1 − L1; · · · ; cK − LK ;03] ∈ RD,

where ck = ck(L) :=
∑
l ̸=k σ(Lk − Ll). Notice that

ck − Lk = −σ(Lk) + σ(−Lk) +
∑
l ̸=k

σ(Lk − Ll),

and hence such W
(1)
2 exists and can be chosen so that

∥∥∥W(1)
2

∥∥∥
op

≤ K + 1. We set θ(1)
mlp = (W

(1)
1 ,W

(1)
2), then MLP

θ
(1)
mlp

maps hi to

h
(1)
i = [∗; f1(xi); · · · ; fK(xi); c1; · · · ; cK ; 0; 1; ti].

The basic property of {ck}k∈[K] is that, if ck ≤ γ, then Lk ≤ mink⋆∈[K] Lk⋆ + γ.

Step 2: construction of θ(2)
mlp. We consider matrix W

(2)
1 that maps

h = [∗D−K−3; c1; · · · ; cK ; ∗; 1; ∗]

7→ W
(2)
1 h = [1− γ−1c1; c1;−c1; · · · ; 1− γ−1cK ; cK ;−cK] ∈ R3K ,

and W
(2)
1 can be chosen so that

∥∥∥W(2)
1

∥∥∥
op

≤ K + 1 + γ−1. We then consider a matrix W
(2)
2 that maps

σ(W
(2)
1 h) 7→ W

(2)
2 σ(W

(1)
1 h) = [0D−K−3;σ(1− γ−1c1)− c1; · · · ;σ(1− γ−1cK)− cK ;03] ∈ RD,

which exists and can be chosen so that
∥∥∥W(1)

2

∥∥∥
op

≤ 2. We set θ(2)
mlp = (W

(2)
1 ,W

(2)
2), then MLP

θ
(2)
mlp

maps h(1)
i to

h
(2)
i = [∗; f1(xi); · · · ; fK(xi);u1; · · · ;uK ; 0; 1; ti],

where uk = σ(1− γ−1ck)∀k ∈ [K]. Clearly, uk ∈ [0, 1], and uk > 0 if and only if ck ≤ γ.

Step 3: construction of θ(3)
attn. We define

λ1 = 1− σ(1− u1), λk = σ(1− u1 − · · · − uk−1)− σ(1− u1 − · · · − uk)∀k ≥ 2.

Clearly, λk ≥ 0, and
∑
k λk = 1. Further,

λk > 0 ⇒ uk > 0 ⇒ ck ≤ γ ⇒ Lk ≤ min
k⋆∈[K]

Lk⋆ + γ.

Therefore, it remains to construct θ(3)
attn that implements f̂ =

∑K
k=1 λkfk based on [h

(2)
i]i. Notice that

f̂(xi) = σ(1) · f1(xi) +
K−1∑
k=1

σ(1− u1 − · · · − uk−1) · (fk(xi)− fk−1(xi))

− σ(1− u1 − · · · − uK) · fK(xi),

(34)

and hence we construct θ(3)
attn as follows: for every k ∈ [K + 1] and w ∈ {0, 1}, we define matrices Qk,w,Kk,w,Vk,w ∈

RD×D such that for all k ∈ [K + 1]

Qk,0h
(2)
i =

[
(fk(xi) +R) · 1k

0

]
, Qk,1h

(2)
i =

[
(fk−1(xi) +R) · 1k

0

]
,

61

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Kk,0h
(2)
j = Kk,1h

(2)
j =

1

−u1
...

−uk−1

0

 , Vk,0h
(2)
j = eD−2 = −Vk,1h

(2)
j ,

for all i, j ∈ [N + 1], where we understand f0 = fK+1 = 0 and 1k is the k-dimensional vector with all entries being 1. By
the structure of h(2)

i , these matrices indeed exist, and further it is straightforward to check that they have norm bounds

max
k∈[K+1],w∈{0,1}

∥Qk,w∥op ≤ KR, max
k∈[K+1],w∈{0,1}

∥Kk∥op ≤ 1,
∑

k∈[K+1],w∈{0,1}

∥Vk,w∥op ≤ 2K + 2.

Now, for every i, j ∈ [N + 1], k ∈ [K + 1], w ∈ {0, 1}, we have

σ
(〈

Qk,wh
(2)
i ,Kk,wh

(2)
j

〉)
= σ((1− u1 − · · · − uk−1)(fk−w(xi) +R))

= σ(1− u1 − · · · − uk−1) · (fk−w(xi) +R),

where the last equality follows from fk(xi) +R ≥ 0∀k ∈ [K]. Therefore,∑
k∈[K+1],w∈{0,1}

σ
(〈

Qm,kh
(2)
i ,Km,kh

(2)
j

〉)
Vm,kh

(2)
j

=

K∑
k=1

[
σ(1− u1 − · · · − uk−1) · (fk(xi) +R)− σ(1− u1 − · · · − uk−1) · (fk−1(xi) +R)

]
· eD−2

= f̂(xi) · eD−2,

where the last equality is due to (34). Thus letting the attention layer θ(3)
attn = {(Vk,w,Qk,w,Kk,w)}(k,w)∈[K+1]×{0,1}, we

have

h
(3)
i =

[
Attnθ(H

(2))
]
i
= hi +

1

N + 1

N+1∑
j=1

∑
k,w

σ
(〈

Qk,wh
(2)
i ,Kk,wh

(2)
j

〉)
Vk,wh

(2)
j

= h
(2)
i + f̂(xi) · eD−2

= [∗; f1(xi); · · · ; fK(xi);u1; · · · ;uK ; f̂(xi); 1; ti].

This is the desired result.

Now, we are ready to prove Theorem M.1.

Proof of Theorem M.1 As ℓ(·, ·) is (γ/3, R,M,C)-approximable by sum of relus, we can invoke Proposition M.1 to
show that there exists a single attention layer θ(1)

attn so that Attn
θ
(1)
attn

maps

hi → h′
i = [xi; yi; ∗; f1(xi); · · · ; fK(xi); L̃val(f1); · · · ; L̃val(fK); 0; 1; ti], i ∈ [N + 1],

for any input H = [hi]i of the form described in Theorem M.1, and L̃val(·) is a functional such that
maxk

∣∣∣L̃val(fk)− L̂val(fk)
∣∣∣ ≤ γ/3.

Next, by the proof of Proposition M.2, there exists (θ(1)
mlp,θ

(2)
mlp,θ

(3)
attn) that maps

h′
i → h

(3)
i =

[
xi; yi; ∗; f1(xi); · · · ; fK(xi); ∗;

K∑
k=1

λkfk(xi); 1; ti

]
, i ∈ [N + 1],

62

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

where λ = (λ1, · · · , λK) ∈ ∆([K]) and λk > 0 only when L̃val(fk) ≤ mink⋆ L̃val(fk⋆) + γ/3. Using the fact that
maxk |L̃val(fk)− L̂val(fk)| ≤ γ/3, we deduce that λ is supported on {k : L̂val(fk) ≤ mink⋆∈[K] L̂val(fk⋆) + γ}.

Therefore, θ = (θ
(1)
attn,θ

(1)
mlp,θ

(2)
mlp,θ

(3)
attn) is the desired transformer, with

max
ℓ∈[3]

M (ℓ) ≤ (M + 3)K, max
ℓ∈[3]

D(ℓ) ≤ K2 +K + 1,

and

|||θ||| ≤ max

{
3R+

2NKC

|Dval|
+ 3K + 1,K + 3 + γ−1,KR+ 2K + 2

}
≤ 7KR+

2NKC

|Dval|
+ γ−1.

This completes the proof.

M.2. Proof of Theorem D.1

We first restate Theorem D.1 into the following version which provides additional size bounds for θ. For the simplicity of
presentation, throughout this subsection and Appendix N, we denote It = {i : (xi, yi) ∈ Dtrain}, Iv = {i : (xi, yi) ∈ Dval},
Xt = [xi]i∈It

to be the input matrix corresponding to the training split only, and Nt = |Dtrain|, Nv = |Dval|.
Theorem M.2. For any sequence of ridges {λk}k∈[K], 0 ≤ α ≤ β with κ := maxk

β+λk

α+λk
, Bw > 0, γ > 0, and ε < Bw/2,

there exists an L-layer transformer TFθ with

L = ⌈2κ log(Bw/(2ε))⌉+ 4, max
ℓ∈[L]

M (ℓ) ≤ 3K + 1, max
ℓ∈[L]

D(ℓ) ≤ K2 +K + 1,

|||θ||| ≤ 5KR+ 8(β + λ)−1 +
2N

Nv
+ γ−1, R := max{BxBw, By, 1},

such that the following holds. On any input data (D,xN+1) such that the problem (ICRidge) is well-conditioned and has a
bounded solution:

α ≤ λmin(X
⊤
t Xt/Nt) ≤ λmax(X

⊤
t Xt/Nt) ≤ β, max

k∈[K]

∥∥wλk

ridge(Dtrain)
∥∥
2
≤ Bw/2, (35)

TF0
θ approximately implements ridge selection: its prediction

ŷN+1 = ready(TF
0
θ(H)) = ⟨ŵ,xN+1⟩ , ŵ =

K∑
k=1

λkŵk

satisfies the following.

1. For each k ∈ [K], ŵk = ŵk(Dtrain) approximates the ridge estimator wλk

ridge(Dtrain), i.e.
∥∥ŵk−wλk

ridge(Dtrain)
∥∥
2
≤ ε.

2. λ = (λ1, · · · , λK) ∈ ∆([K]) so that

λk > 0 only if L̂val(ŵk) ≤ min
k⋆∈[K]

L̂val(ŵk⋆) + γ.

In particular, if we set γ′ = 2(BxBw +Bw)Bxε+ γ, then it holds that6

dist

(
ŵ, conv{ŵλk

ridge,train : L̂val(ŵ
λk

ridge,train) ≤ min
k⋆∈[K]

L̂val(ŵ
λk⋆

ridge,train) + γ′}
)

≤ ε,

where we denote ŵλk

ridge,train := wλk

ridge(Dtrain).

To prove Theorem M.2, we first show that, for the squared validation loss, there exists a 3-layer transformer that performs
predictor selection based on the exactly evaluated L̂val(fk) for each k ∈ [K]. (Proof in Appendix M.2.1.)

6This is because L̂val(w) is (BxBw +By)Bx-Lipschitz w.r.t. w ∈ B2(Bw)

63

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Theorem M.3 (Square-loss version of Theorem M.1). Consider the squared validation loss

L̂val(f) :=
1

2|Dval|
∑

(xi,yi)∈Dval

(f(xi)− yi)
2
.

Then there exists a 3-layer transformer TFθ with

max
ℓ∈[3]

M (ℓ) ≤ 2K + 2, max
ℓ∈[3]

D(ℓ) ≤ K2 +K + 1, |||θ||| ≤ 7KR+
2N

|Dval|
+ γ−1,

such that for any input H that takes form

hi = [xi; y
′
i; ∗; f1(xi); · · · ; fK(xi);0K ; ∗; 1; ti],

where TFθ outputs hN+1 = [xN+1; f̂(xN+1); ∗; 1; 0], where the predictor f̂ : Rd → R is a convex combination of
{fk : L̂val(fk) ≤ mink⋆∈[K] L̂val(fk⋆) + γ}. As a corollary, for any convex risk L : (Rd → R) → R, f̂ satisfies

L(f̂) ≤ mink⋆∈[K] L(fk⋆) + maxk∈[K]

∣∣∣L̂val(fk)− L(fk)
∣∣∣+ γ.

Proof of Theorem M.2 First, by the proof of Theorem C.1 and Proposition F.5, for each k ∈ [K], there exists a T = L−3
layer transformer θ(1:T) such that TFθ(1:T) maps

hi → h
(T)
i = [xi; y

′
i; ∗; ⟨ŵ1,xi⟩ ; · · · ; ⟨ŵK ,xi⟩ ;0K ; 1; ti],

so that if (35) holds, we have
∥∥ŵk −wλk

ridge

∥∥
2
≤ ε and ŵk ∈ B2(Bw).

Next, by Theorem M.3, there exists a 3-layer transformer θ(T+1:T+3) that outputs

h
(T+3)
N+1 = [xN+1; ⟨ŵ,xN+1⟩ ; ∗; 1; ti],

where ŵ =
∑K
k=1 λkŵk, λ = (λ1, · · · , λK) ∈ ∆([K]) so that

λk > 0 only if L̂val(ŵk) ≤ min
k⋆∈[K]

L̂val(ŵk⋆) + γ.

This is the desired result.

M.2.1. PROOF OF THEOREM M.3

Similar to the proof of Proposition D.1, Theorem M.3 is a direct corollary by combining Proposition M.3 with Proposi-
tion M.2.

Proposition M.3 (Evaluation layer for the squared loss). There exists an attention layer TFθ with 2K heads and |||θ||| ≤
3R+ 2NK/ |Dval| such that TFθ maps

hi = [∗; f1(xi); · · · ; fK(xi);0K ; ∗; 1; ti]

→ h′
i = [∗; f1(xi); · · · ; fK(xi); L̂val(f1); · · · ; L̂val(fK); ∗; 1; ti], i ∈ [N + 1].

Proof of Proposition M.3. For every k ∈ [K], we define matrices Qm,k,Km,k,Vm,k ∈ RD×D such that for all i, j ∈
[N + 1],

Qk,0hi =

1
−1
−2
0

 , Qk,1hi =

−1
1
−2
0

 , Kk,0hj = Kk,1hj =

fk(xj)
yj

R(1 + tj)
0

 ,
64

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Vk,0hj = −Vk,1hj =
(N + 1)

2 |Dval|
· (fk(xj)− yj)eD−(K−k)−3.

As the input has structure hi = [xi; yi; ∗; f1(xi); · · · ; fK(xi);0K+1; 1; ti], these matrices indeed exist, and further it is
straightforward to check that they have norm bounds

max
k∈[K],w∈{0,1}

∥Qk,w∥op ≤ 3, max
k∈[K],w∈{0,1}

∥Kk,w∥op ≤ 1 +R,
∑

k∈[K],w∈{0,1}

∥Vk,w∥op ≤ K(N + 1)

|Dval|
.

Now, for every i, j ∈ [N + 1], we have∑
w∈{0,1}

σ(⟨Qk,whi,Kk,whj⟩)Vk,whj

= [σ(fk(xj)− yj − 2R(1 + tj))− σ(yj − fk(xj)− 2R(1 + tj))] ·
(N + 1)

2 |Dval|
(fk(xj)− yj)eD−(K−k)−3

= 1{tj = −1} · [σ(fk(xj)− yj)− σ(yj − fk(xj))] ·
(N + 1)

2 |Dval|
(fk(xj)− yj)eD−(K−k)−3

= 1{tj = −1} · (N + 1)

2 |Dval|
(fk(xj)− yj)

2eD−(K−k)−3,

where the second equality follows from the bound |fk(xj)− yj | ≤ 2R, so that the relus equals 0 if tj ≤ 0. Thus letting the
attention layer θ = {(Vk,w,Qk,w,Kk,w)}(k,w)∈[K]×{0,1}, we have

h̃i = [Attnθ(H)]i = hi +
1

N + 1

N+1∑
j=1

∑
k,w

σ(⟨Qk,whi,Kk,whj⟩)Vk,whj

= hi +
1

2|Dval|

N+1∑
j=1

K∑
k=1

(fk(xj)− yj)
2 · 1{tj = −1}eD−(K−k)−3

= hi +

K∑
k=1

 1

2|Dval|
∑

(xj ,yj)∈Dval

(fk(xj)− yj)
2

eD−(K−k)−3

= hi +

K∑
k=1

L̂val(fk) · eD−(K−k)−3

= [xi; yi; ∗; f1(xi); · · · ; fK(xi);0K+1; 1; ti] + [0D−K−3; L̂val(f1); · · · ; L̂val(fK); 0; 0; 0]

= [xi; yi; ∗; f1(xi); · · · ; fK(xi); L̂val(f1); · · · ; L̂val(fK); 0; 1; ti], i ∈ [N + 1].

This is the desired result.

M.3. Proofs for Section D.2

M.3.1. PROOF OF LEMMA D.1

It is straightforward to check that the binary type check ψ : R → R can be expressed as a linear combination of 6 relu’s
(recalling σ(·) = ReLU(·)):

ψ(y) = σ

(
y + ε

ε

)
− 2σ

(y
ε

)
+ σ

(
y − ε

ε

)
+ σ

(
y − (1− ε)

ε

)
− 2σ

(
y − 1

ε

)
+ σ

(
y − (1 + ε)

ε

)
=:

6∑
m=1

amσ(bmy + cm),

with
∑
m |am| = 8/ε, maxmmax {|bm|, |cm|} ≤ 2. We can thus construct an attention layer θ = {(Qm,Km,Vm)}6m=1

with 6 heads such that

Qmhi = [bm; cm;0D−2], Kmhj = [yj ; 1;0D−2], Vmhj =

[
N + 1

N
am · tj ;0D−1

]
,

65

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

which gives that for every i ∈ [N + 1],

6∑
m=1

1

N + 1

∑
j∈[N+1]

σ(⟨Qmhi,Kmhj⟩)[Vmhj]1

=

6∑
m=1

1

N

N∑
j=1

σ(bmyj + cm)am =
1

N

N∑
j=1

ψ(yj) = Ψbinary(D).

Further, we have |||θ||| ≤ 18/ε = O(1/ε). This is the desired result.

By composing the above attention layer with one additional layer (with 2 heads) that implement the following function

σ(2(t− 1/2))− σ(2(t− 1)),

on the output Ψbinary(D), we directly obtain the following corollary.

Corollary M.1 (Thresholded binary test). There exists a two-layer attention-only transformer with maxℓ∈[2]M
(ℓ) ≤ 6 and

|||θ||| ≤ O(1/ε) that exactly implements the thresholded binary test

Ψbinary
thres (D) :=

1, if Ψbinary(D) ≥ 1,

0, if Ψbinary(D) ≤ 1

2
,

linear interpolation, o.w.

(36)

at every token i ∈ [N + 1], where we recall the definition of Ψbinary in Lemma D.1.

M.3.2. FORMAL STATEMENT AND PROOF OF PROPOSITION D.2

We say a distribution Py on R is (C, ε0)-not-concentrated around {0, 1} if

Py([−ε, ε] ∪ [1− ε, 1 + ε]) ≤ Cε

for all ε ∈ (0, ε0]. A sufficient condition is that the density py is upper bounded by C within [−ε0, ε0] ∪ [1− ε0, 1 + ε0].

Throughout this section, let σlog(t) := (1 + e−t)−1 denote the sigmoid activation, and let ŵlog denote the solution to the
in-context logistic regression problem, i.e. (ICGLM) with g(·) = σlog(·).
Proposition M.4 (Adaptive regression or classification; Formal version of Proposition D.2). For any Bw > 0, ε ≤
BxBw/10, 0 < α ≤ β with κ := β/α, and any (C, ε0), there exists a L-layer attention-only transformer with

L ≤ O
(
κ log

BxBw
ε

)
, max

ℓ∈[L]
M (ℓ) ≤ O

((
1 +

B4
x

α2

)
ε−2

)
, |||θ||| ≤ O

(
R+

1

β
+

1

ε

)
(with R := max {BxBw, By, 1}, and ε depending only on (C, ε0)) such that the following holds. Suppose the input format
is (3) with dimension D ≥ 3d+ 4.

On any classification instance (D,xN+1) (such that {yi}i∈[N] ⊂ {0, 1}) that is well-conditioned for logistic regression in
the sense of (30), it outputs ŷN+1 that ε-approximates the prediction of in-context logistic regression:

|ŷN+1 − σlog(⟨xN+1, ŵlog⟩)| ≤ ε.

On the contrary, for regression problems, i.e. any in-context distribution P whose marginal Py is (C, ε0)-not-concentrated
around {0, 1}, with probability at least 1−exp(−cN) over D (where c > 0 depends only on (C, ε0)), ŷN+1 ε-approximates
the prediction of in-context least squares if the data is well-conditioned:

|ŷN+1 − ⟨xN+1, ŵLS⟩| ≤ ε whenever D satisfies (5) with λ = 0,

where ŵLS denotes the in-context least squares estimator, i.e. (ICRidge) with λ = 0.

66

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Proof. The result follows by combining the binary test in Corollary M.1 with Theorem C.1 and Theorem K.1. By those
results, there exists three attention-only transformers θLS,θlog,θbin, with (below Lg, Cg = Θ(1) for g = σlog(·))

LLS ≤ O
(
κ log

BxBw
ε

)
, max

ℓ∈[LLS]
M

(ℓ)
LS ≤ 3, |||θLS||| ≤ O

(
R+

1

β

)
,

Llog ≤ O
(
κ log

LgBxBw
ε

)
, max

ℓ∈[Llog]
M

(ℓ)
log ≤ O

(
C2
g

(
1 +

L2
gB

4
x

α2

)
ε−2

)
, |||θlog||| ≤ O

(
R+

Cg
β

)
,

Lbin = 2, max
ℓ∈[2]

M
(ℓ)
bin ≤ 6, |||θbin||| ≤ O(1/ε),

that outputs prediction ŷLSN+1, ŷlogN+1 (at the (N + 1)-th token) and Ψbinary
thres (D) (at every token) respectively, which satisfy

∣∣∣ŷlogN+1 − σlog(⟨xN+1, ŵlog⟩)
∣∣∣ ≤ ε,∣∣ŷLSN+1 − ⟨xN+1, ŵLS⟩

∣∣ ≤ ε.

when the corresponding well-conditionednesses are satisfied. In particular, we can make ŵlog well-defined on non-binary
data, by multiplying Ψbinary

thres (D) onto the xi’s (which can be implemented by slightly modifying θlog without changing the
order of the number of layers, heads, and norms) so that ŵlog = 0 on any data where Ψbinary

thres (D) = 0.

By joining θLS and θlog using Proposition F.5 (and zero layers to implement the identity mapping where appropriate),
concatenating with θbin before, and concatenating with one additional attention layer with 2 heads after to implement

Ψbinary
thres (D)ŷlogN+1 +

(
1−Ψbinary

thres (D)
)
ŷLSN+1, (37)

we obtain a single transformer θ with

L ≤ O
(
κ log

BxBw
ε

)
, max

ℓ∈[L]
M (ℓ) ≤ O

((
1 +

B4
x

α2

)
ε−2

)
, |||θLS||| ≤ O

(
R+

1

β
+

1

ε

)
,

which outputs (37) as its prediction (at the location for ŷN+1).

It remains to show that (37) reduces to either one of ŷlogN+1 or ŷLSN+1. When the data are binary (yi ∈ {0, 1}), we have
Ψbinary(D) = 1 and Ψbinary

thres (D) = 1, in which case (37) becomes exactly ŷlogN+1. By contrast, when data is sampled
from a distribution that is (C, ε0)-not-concentrated around {0, 1}, we have for any fixed ε ≤ ε0 ∧ 1

4C that, letting
Bε := [−ε, ε] ∪ [1− ε, 1 + ε] and pε := Py(Bε) ≤ Cε ≤ 1

4 , by Hoeffding’s inequality,

P(Ψbinary
thres (D) ̸= 0) = P

(
Ψbinary

thres (D) ≥ 1

2

)
= P

(
1

N

N∑
i=1

1{yj ∈ Bε} ≥ 1

2

)
≤ exp

(
−c(1/2− pε)

2
N
)
≤ exp(−c′N),

where c′ > 0 is an absolute constant. On the event Ψbinary
thres (D) = 0 (which happens with probability at least 1 −

exp(−c′N)), (37) becomes exactly ŷLSN+1. This finishes the proof.

M.4. Linear correlation test and application

In this section, we give another instantiation of the pre-ICL testing mechanism by showing that the transformer can
implement a linear correlation test that tests whether the correlation vector E[xy] has a large norm. We then use this test to
construct a transformer to perform “confident linear regression”, i.e. output a prediction from linear regression only when
the signal-to-noise ratio is high.

67

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

For any fixed parameters λmin, B
⋆
w > 0, consider the linear correlation test over data D defined as

Ψlin(D) :=
1

λ2min(B
⋆
w)

2/2
·
[
σ
(
∥t̂∥22 − (λminB

⋆
w/4)

2
)
− σ

(
∥t̂∥22 − (3λminB

⋆
w/4)

2
)]

=

0, ∥t̂∥22 ≤ (λminB

⋆
w/4)

2,

1, ∥t̂∥22 ≥ (3λminB
⋆
w/4)

2,

linear interpolation, o.w.,

where t̂ = T(D) :=
1

N

N∑
i=1

xiyi.

(38)

Recall that σ(·) = ReLU(·) above denotes the relu activation.

We show that Ψlin can be exactly implemented by a 3-layer transformer.

Lemma M.1 (Expressing Ψlin by transformer). There exists a 3-layer attention-only transformer TFθ with at most 2 heads
per layer and |||θ||| ≤ O(1 + λ2min(B

⋆
w)

2) such that on input sequence H of the form (3) with D ≥ 2d+ 4, the transformer
exactly implements Ψlin: it outputs H̃ such that h̃i = [xi; yiti; ∗; Ψlin(D); 1] for all i ∈ [N + 1].

Proof. We begin by noting the following basic facts:

• Identity function can be implemented exactly by two ReLUs: t = σ(t)− σ(−t).

• Squared ℓ2 norm can be implemented exactly by a single attention head (assuming every input hi contains the same
vector g): ∥g∥22 = σ(⟨g,g⟩).

We construct the transformer θ as follows.

Layer 1: Use 2 heads to implement t̂ = 1
N

∑N
i=1 xiyi, where V

(1)
{1,2}hj = [±xj ;0D−d], Q

(1)
{1,2}hi = [N+1

N ;0D−1], and

K
(1)
{1,2}hj = [±yjtj ;0D−1] = [±yj1{j < N + 1};0D−1] (where we recall tj = 1{j < N + 1} and note that yjtj

corresponds exactly to the location for yj in H, cf. (3)). By manipulating the output dimension in V(1), write the result t̂
into blank memory space with dimension d at every token i ∈ [N + 1].

Layer 2: Use a single head to compute ∥t̂∥22: Q(2)
1 h

(1)
i = [̂t;0D−d], K

(2)
1 h

(1)
j = [̂t;0D−d], and V

(2)
1 h

(1)
j = [1;0D−1]. By

manipulating the output dimension in V(2), write the result ∥t̂∥22 into blank memory space with dimension 1 at every token
i ∈ [N + 1]. After layer 2, we have h

(3)
i = [xi; yiti; ∗; ∥t̂∥22; ∗; 1].

Layer 3: Use 2 heads to implement two ReLU functions with bias: ∥t̂∥22 7→ 1
B−A (σ(∥t̂∥

2
2 −A)− σ(∥t̂∥22 −B)). The two

query (or key) matrices contain values A and B. In our problem we take

A = (λminB
⋆
w/4)

2, B = (3λminB
⋆
w/4)

2,

so that the above ReLU function implements Ψlin(D) exactly. Write the result into a blank memory space with dimension 1.
We finish the proof by noting that |||θ||| ≤ O(1 + λ2min(B

⋆
w)

2).

Statistical guarantee for Ψlin We consider the following well-posedness assumption for the linear correlation test Ψlin.
Note that, similar as Assumption A, the assumption does not require the data to be generated from any true linear model, but
rather only requires some properties about the best linear fit w⋆

P, as well as sub-Gaussianity conditions.

Assumption D (Well-posedness for linear correlation test). We say a distribution P on Rd × R is well-posed for linear
independence tests, if (x, y) ∼ P satisfies

(1) ∥x∥2 ≤ Bx and |y| ≤ By almost surely;

(2) The covariance ΣP := EP[xx
⊤] satisfies λminId ⪯ ΣP ⪯ λmaxId, with 0 < λmin ≤ λmax, and κ := λmax/λmin.

(3) The whitened vector Σ−1/2
P x is K2-sub-Gaussian for some K ≥ 1.

(4) The best linear predictor w⋆
P := EP[xx

⊤]−1EP[xy] satisfies ∥w⋆
P∥2 ≤ B⋆w.

68

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

(5) The label y is σ2-sub-Gaussian.

(6) The residual z := y − ⟨x,w⋆
P⟩ is σ2-sub-Gaussian with probability one (over x).

The following results states that Ψlin achieves high power as long as the sample size is high enough, and the signal ∥w⋆
P∥2 is

either sufficiently high or sufficiently low.

Proposition M.5 (Power of linear correlation test). Suppose distribution P satisfies Assumption D with parameters
λmin, λmax, B⋆w. Then, for the linear correlation test Ψlin with parameters (λmin, B

⋆
w) with B⋆w ≤ B⋆w and any N ≥

Õ
(
max {dK4, λmaxdK

2σ2

(B⋆
w)2λ2

min
}
)

, we have

1. If ∥w⋆
P∥2 ≥ B⋆w, then with probability at least 1− δ over D, we have Ψlin(D) = 1.

2. If ∥w⋆
P∥2 ≤ λmin

10λmax
B⋆w, then with probability at least 1− δ over D, we have Ψlin(D) = 0.

Proof. For any P satisfying Assumption D, note that E[xz] = E[x(y − ⟨w⋆
P,x⟩)] = 0 by construction. Therefore,

by standard sub-Gaussian and sub-exponential concentration combined with union bound, the following events hold
simultaneously with probability at least 1− δ:

0.9ΣP ⪯ Σ̂ =
1

N

N∑
i=1

xix
⊤
i ⪯ 1.1ΣP as N ≥ Õ(dK4) by (22),∥∥∥∥∥ 1

N

N∑
i=1

xizi

∥∥∥∥∥
2

≤ λ1/2max ·

∥∥∥∥∥ 1

N

N∑
i=1

Σ
−1/2
P xizi

∥∥∥∥∥
2

≤ Õ

(
λ1/2max

(
Kσ

√
d√

N
+
Kσd

N

))

≤Õ

(
λ1/2maxKσ

√
d

N

)
≤ λminB

⋆
w

8
, as N ≥ Õ

(
λmaxdK

2σ2

(B⋆w)
2λ2min

)
.

On the above event, we have∥∥∥t̂∥∥∥
2
=

∥∥∥∥∥ 1

N

N∑
i=1

xi(⟨xi,w⋆
P⟩+ zi)

∥∥∥∥∥
2

=

∥∥∥∥∥Σ̂w⋆
P +

1

N

N∑
i=1

xizi

∥∥∥∥∥
2

.

Therefore, in case 1, we have∥∥∥t̂∥∥∥
2
≥
∥∥∥Σ̂w⋆

P

∥∥∥
2
−

∥∥∥∥∥ 1

N

N∑
i=1

xizi

∥∥∥∥∥
2

≥ 0.9λmin ∥w⋆
P∥2 −

λminB
⋆
w

8
≥ 3λminB

⋆
w

4
.

In case 2, we have ∥∥∥t̂∥∥∥
2
≤
∥∥∥Σ̂w⋆

P

∥∥∥
2
+

∥∥∥∥∥ 1

N

N∑
i=1

xizi

∥∥∥∥∥
2

≤ λmax ·
λminB

⋆
w

10λmax
+
λminB

⋆
w

8
≤ λminB

⋆
w

4
.

The proof is finished by recalling the definition of Ψlin in (38), so that Ψlin(D) = 1 if ∥t̂∥2 ≥ 3λminB
⋆
w/4, and Ψlin(D) = 0

if ∥t̂∥2 ≤ λminB
⋆
w/4.

Application: Confident linear regression By directly composing the linear correlation test in Lemma M.1 with the
transformer construction in Corollary C.1 (using an argument similar as the proof of Proposition M.4), and using the power
of the linear correlation test Proposition M.5, we immediately obtain the following result, which outputs a prediction from
(approximately) least squares if ψ̂ := Ψlin(D) = 1, and abstains from predicting if ψ̂ = 0. This can be viewed as a form of
“confident linear regression”, where the model predicts only if it thinks the linear signal is strong enough.

Proposition M.6 (Confident linear regression). For any Bw > 0, 0 < B⋆w ≤ B⋆w, 0 ≤ λmin ≤ λmax, ε ≤ BxBw/10,
0 < α ≤ β with κ := β/α, there exists a L-layer attention-only transformer with

L ≤ O
(
κ log

BxBw
ε

)
, max

ℓ∈[L]
M (ℓ) ≤ O(1), |||θ||| ≤ O

(
R+

1

β
+ λ2min(B

⋆
w)

2

)
69

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

(with R := max {BxBw, By, 1}) such that the following holds. Let N ≥ Õ
(
max {K4, λmaxK

2σ2

(B⋆
w)2λ2

min
} · d

)
. Suppose

the input format is (3) with dimension D ≥ 2d + 4. Let ICL instance (D,xN+1) be drawn from any distribution P

satisfying Assumption D. Then the transformer outputs a 2-dimensional prediction (within the test token h̃N+1)

(ŷN+1, ψ̂) ∈ R× {0, 1}

such that the following holds:

1. If ∥w⋆
P∥2 ≥ B⋆w, then with probability at least 1− δ over D, we have |ŷN+1 − ⟨ŵLS,xN+1⟩ | ≤ ε, and ψ̂ = 1 if D is

in addition well-conditioned for least squares (in the sense of (5) with λ = 0).

2. If ∥w⋆
P∥2 ≤ λmin

10λmax
B⋆w, then with probability at least 1− δ over D, we have ŷN+1 = 0 and ψ̂ = 0.

N. Proof of Theorem D.2: Noisy linear model with mixed noise levels
Recall that for each k ∈ [K], we consider the following data generating model Pk, where we first sample P = Pw⋆,σk

∼ π

from w⋆ ∼ N(0, Id/d), and then sample data {(xi, yi)}i∈[N+1]
iid∼ Pk,w⋆

as

Pw⋆,σk
: xi ∼ N(0, Id), yi = ⟨xi,w⋆⟩+ εi, εi ∼ N(0, σ2

k).

Also, recall that the Bayes optimal estimator on Pk is given by ŷBayesN+1 =
〈
wλk

ridge(D),xN+1

〉
with ridge λk = σ2

kd/N , and
the Bayes risk on Pk is given by

BayesRiskk := infA Ek
[
1
2 (A(D)(xN+1)− yN+1)

2
]
= Ek

[
1
2

(
ŷBayesN+1 − yN+1

)2]
.

Recall that in Appendix D.1.1, we consider a mixture law Pπ that generates data from Pk with k ∼ Λ. It is clear that we
have (pushing infA into Ek∼Λ does not increase the value) we have

BayesRiskπ ≥ Ek∼Λ[BayesRiskk],

i.e., the Bayes risk can only be greater if we consider a mixture of models. In other words, if a transformer can achieve
near-Bayes ICL on each meta-task Pk, then it can perform near-Bayes ICL on any meta-task π which is a mixture of Pk
with k ∼ Λ. Therefore, to prove Theorem D.2, it suffices to show the following (strengthened) result.

Theorem N.1 (Formal version of Theorem D.2). Suppose that N ≥ 0.1d and we write σmax = maxk{σk, 1}, σmin =
mink{σk, 1}. Then there exists a transformer θ with

L ≤ O
(
σ−2
min log(N/σmin)

)
, max

ℓ∈[L]
M (ℓ) ≤ O (K) , max

ℓ∈[L]
D(ℓ) ≤ O(K2),

|||θ||| ≤ O (σmaxKd log(N)) ,

such that for any k ∈ [K], it holds that

Ek
[
1
2 (yN+1 − ŷN+1)

2] ≤ BayesRiskk + Õ
(
σ2
max

σ
2/3
min

(
log(K)
N

)1/3)
if we choose Nv := |Dval| ≍ N2/3[log(K)]1/3.

N.1. Proof of Theorem N.1

We first recall that we define Nt = |Dtrain| , Nv = |Dval|, It = {i : (xi, yi) ∈ Dtrain}, Iv = {i : (xi, yi) ∈ Dval}, and
Xt = [xi]i∈It

.

Fix parameters δ, ε, γ > 0 and a large universal constant C0. Let us set

α = max
{
0, 1/2−

√
d/Nt

}2

, β = 25,

70

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

B⋆w = 1 + C0

√
log(N)

d
, Bw = C0(B

⋆
w + σmax/σmin),

Bx = C0

√
d log(N), By = C0(B

⋆
w + σmax)

√
log(N),

Then, we define good events similarly to the proof of Corollary C.2 (Appendix J.4):

Eπ = {∥w⋆∥2 ≤ B⋆w, ∥ε∥2 ≤ 2σmax

√
N},

Ew = {α ≤ λmin(X
⊤
t Xt/Nt) ≤ λmax(X

⊤
t Xt/Nt) ≤ β},

Eb,train = {∀(xi, yi) ∈ Dtrain, ∥xi∥2 ≤ Bx, |yi| ≤ By},
Eb,val = {∀(xi, yi) ∈ Dval, ∥xi∥2 ≤ Bx, |yi| ≤ By},

Eb,N+1 = {∥xN+1∥2 ≤ Bx, |yN+1| ≤ By}.

By the proof of Lemma J.1 (see e.g. (29)), we know that maxk∈[K]

∥∥wλk

ridge(Dtrain)
∥∥
2
≤ Bw/2 holds under the good event

E := Eπ ∩ Ew ∩ Eb,train ∩ Eb,test ∩ Eb,N+1.

For the ridge λk =
dσ2

k

Nt
and parameters (α, β, γ, ε), we consider the transformer θ constructed in Theorem M.2, with a

clipped prediction ŷN+1 = r̃eady(TFθ(H)) read out by a clipping by By .

In the following, we upper bound the quantity Ek(ŷN+1 − yN+1)
2 for any fixed k. Similar to the proof of Corollary C.2

(Appendix J.4), we decompose

Ek(ŷN+1 − yN+1)
2 = Ek

[
1{E}(ŷN+1 − yN+1)

2
]
+ Ek

[
1{Ec}(ŷN+1 − yN+1)

2
]
,

and we analyze these two parts separately.

Part I. Recall that by our construction, when E holds, we have ŷN+1 = clipBy
(⟨ŵ,xN+1⟩), so that the statements of

Theorem M.2 hold for ŵ. Thus, we have

Ek
[
1{E}(ŷN+1 − yN+1)

2
]
= Ek

[
1{E}(clipBy

(⟨xN+1, ŵ⟩)− yN+1)
2
]

≤ Ek
[
1{E}(⟨xN+1, ŵ⟩ − yN+1)

2
]
.

Let us consider the following risk functional

Lval,w⋆
(w) = E(x,y)∼Pw⋆,σk

[
1
2 (⟨w,x⟩ − y)

2
]
= 1

2

(
∥w −w⋆∥22 + σ2

k

)
.

Then, under the good event E0 := Eπ ∩ Ew ∩ Eb,train ∩ Eb,test of (w⋆,D),

Ek
[
1{E}(⟨xN+1, ŵ⟩ − yN+1)

2
∣∣w⋆,D

]
= Ek

[
1{E}(⟨xN+1, ŵ(D)⟩ − yN+1)

2
∣∣w⋆,D

]
≤ Ek

[
(⟨xN+1, ŵ(D)⟩ − yN+1)

2
∣∣w⋆,D

]
= E(x,y)∼Pw⋆,σk

[
(⟨xN+1, ŵ(D)⟩ − yN+1)

2
]

= Lval,w⋆
(ŵ(D)).

By our construction, under the good event E0, we have

Lval,w⋆
(ŵ(D)) ≤ Lval,w⋆

(ŵk(Dtrain)) + max
l∈[K]

∣∣∣L̂val(ŵl(Dtrain))− Lval,w⋆
(ŵl(Dtrain))

∣∣∣+ γ,

where
∥∥ŵl(Dtrain))−wλl

ridge(Dtrain)
∥∥
2
≤ ε for each l ∈ [K]. Clearly,

2Ek[1{E0}Lval,w⋆
(ŵk(Dtrain))] = Ek

[
1{E0}

(
∥ŵk(Dtrain)−w⋆∥22 + σ2

k

)]
≤ Ek

[
1{E0}

(∥∥wλk

ridge(Dtrain)−w⋆

∥∥2
2
+ 2ε

∥∥wλk

ridge(Dtrain)−w⋆

∥∥
2
+ ε2

)]
+ σ2

k

≤ Ek
[∥∥wλk

ridge(Dtrain)−w⋆

∥∥2
2
+ 2ε

∥∥wλk

ridge(Dtrain)−w⋆

∥∥
2
+ ε2

]
+ σ2

k

71

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

≤ 2Riskk,train + 2ε
√
2Riskk,train + ε2,

where we denote 2Riskk,train = Ek
∥∥wλk

ridge(Dtrain)−w⋆

∥∥2
2
+ σ2

k, and we also note that Riskk,train ≤ 1 + σ2
k by definition.

By Lemma N.1, we have

Riskk,train ≤ BayesRiskk +O
(
(σ2
k + 1)

Nv
N

)
.

We next deal with the term εval := maxl∈[K]

∣∣∣L̂val(ŵl(Dtrain))− Lval,w⋆
(ŵl(Dtrain))

∣∣∣. Note that for the good event
Etrain := Eπ ∩ Ew ∩ Eb,train of (w⋆,Dtrain), we have

Ek[1{E0}εval] ≤ Ek[1{Etrain}εval] ≤ Ew⋆,Dtrain∼Pk
[1{Etrain} · EDval

[εval|w⋆,Dtrain]].

Thus, Lemma N.2 yields

Ek[1{E0}εval] ≤ O
(
B2
w

)
·

√ log(2K)

Nv
+

log(2K)

Nv

.
Therefore, we can conclude that

Ek
[
1{E}(ŷN+1 − yN+1)

2
]
≤ 2BayesRiskk +O

εσmax + ε2 +
σ2
maxNv
N

+B2
w

√
log(2K)

Nv
+
B2
w log(2K)

Nv

 .

Therefore, we can choose (ε,Nv) so that Nv ≤ N/2 as

Nv = max

{(
B2
w

σ2
max

N

)2/3

log1/3(2K), log(2K)

}
, ε =

σmax

N
.

It is worth noting that such choice of Nv is feasible as long as N ≳ B4
w

σ4
max

log(K). Under such choice, we obtain

1

2
Ek
[
1{E}(ŷN+1 − yN+1)

2
]
≤ BayesRiskk +O

(
σ4/3
maxB

2/3
w

(
log(2K)

N

)1/3
)
.

Part II. Similar to the proof of Corollary C.2, we have

E
[
1{Ec}(ŷN+1 − yN+1)

2
]
≤ O

(
B2
y

N5

)
≤ O

(
σ2
max

N4

)
.

Conclusion. Combining the both cases, we obtain

Ek
[
1
2 (yN+1 − ŷN+1)

2] ≤ BayesRiskk +O
(
σ
4/3
maxB

2/3
w

(
log(2K)
N

)1/3)
≤ BayesRiskk +O

(
σ2
max

σ
2/3
min

(
log(2K)
N

)1/3
+ σ

4/3
max

log2/3(N) log1/3(K)
d2/3N1/3

)
≤ BayesRiskk + Õ

(
σ2
max

σ
2/3
min

(
log(2K)
N

)1/3)
,

where we plug in our choice of By. The bounds on M (ℓ), D(ℓ) and |||θ||| follows immediately from Theorem M.2. This
completes the proof.

72

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

N.2. Derivation of the exact Bayes predictor

Let (D,xN+1, yN+1) be (N + 1) observations from the data generating model π considered in Appendix D.1.1. On
observing (D,xN+1), the Bayes predictor of yN+1 is given by its posterior mean:

Eπ[yN+1|D,xN+1] = Eπ[⟨xN+1,w⋆⟩+ εN+1|D,xN+1] = ⟨xN+1,Eπ[w⋆|D]⟩ .

It thus remains to derive Eπ[w⋆|D]. Recall that our data generating model is given by k ∼ Λ, By Bayes’ rule, we have

Eπ[w⋆|D] =
∑
k′∈[K]

Pπ(k = k′|D) · Eπ[w⋆|D, k = k′]. (39)

On k = k′, the data is generated from the noisy linear model w⋆ ∼ N(0, Id/d), and y = Xw⋆ + ε where εi
iid∼ N(0, σ2

k′).
It is a standard result that Eπ[w⋆|D, k = k′] is given by the ridge estimator

Eπ[w⋆|D, k = k′] =
(
X⊤X+ dσ2

k′
)−1︸ ︷︷ ︸

Σ̂−1

k′

X⊤y =: ŵk′

=

(
X⊤X

N
+
dσ2

k′

N

)−1
X⊤y

N
.

(Note that the sample covariance within Σ̂k′ is not normalized by N , which is not to be confused with remaining parts
within the paper.) Therefore, the posterior mean (39) is exactly a weighted combination of K ridge regression estimators,
each with regularization dσ2

k/N .

It remains to derive the mixing weights Pπ(k = k′|D) for all k′ ∈ [K]. By Bayes’ rule, we have

Pπ(k = k′|D) ∝k′ Pπ(k = k′) ·
∫
w⋆

p(w⋆) · pk′,w⋆
(D|w⋆)dw⋆

∝ Λk′ ·
∫
w

1

(2πd)d/2(2πσ2
k′)

N/2
exp

(
−d∥w∥22

2
−

∥Xw − y∥22
2σ2

k′

)
dw

∝ Λk′ ·
∫
w

1

(2πσ2
k′)

N/2
exp

(
−1

2
w⊤
(
X⊤X

σ2
k′

+ dId

)
w +

〈
w,

X⊤y

σ2
k′

〉
−

∥y∥22
2σ2

k′

)
dw

∝ Λk′ ·
∫
w

1

(2πσ2
k′)

N/2
exp

(
− 1

2σ2
k′
(w − ŵk′)

⊤Σ̂k′(w − ŵk′)−
1

2σ2
k′

(
∥y∥22 − y⊤XΣ̂−1

k′ X
⊤y
))

dw

∝ Λk′ ·
det(Σ̂k′/σ

2
k′)

−1/2

σNk′
exp

(
− 1

2σ2
k′

(
∥y∥22 − y⊤XΣ̂−1

k′ X
⊤y
))

∝ Λk′ ·
1

σN−d
k′ det(X⊤X+ dσ2

k′Id)
1/2

exp

(
− 1

2σ2
k′

(
∥y∥22 − ⟨y,Xŵk′⟩

))
.

Note that such mixing weights involve the determinant of the matrix Σ̂k′ = X⊤X+ dσ2
k′Id, which depends on the data X

in a non-trivial fashion; Any transformer has to approximate these weights if their mechanism is to directly approximate the
exact Bayesian predictor (39).

N.3. Useful lemmas

Lemma N.1. For 2Riskk,train = Ek
∥∥wλk

ridge(Dtrain)−w⋆

∥∥2
2
+ σ2

k, there exists universal constant C such that

Riskk,train ≤ BayesRiskk + C(σ2
k + 1)

Nv
N
.

Proof. Recall that under Pk, we have

w⋆ ∼ N(0, Id/d), yi = ⟨xi,w⋆⟩+ εi, εi ∼ N(0, σ2).

73

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

We denote Xt = [xi]i∈It
,yt = [yi]i∈It

, then by definition wλk

ridge = (X⊤
t Xt + dσ2

k)
−1Xtyt (with λk = dσ2

k/Nt). Thus,
a simple calculation yields

2Riskk,train = Ek
∥∥wλk

ridge(Dtrain)−w⋆

∥∥2
2
+ σ2

k = σ2
kEtr

(
(X⊤

t Xt + dσ2
k)

−1
)
+ σ2

k,

and analogously, 2BayesRiskk = σ2
kEtr

(
(X⊤X+ dσ2

kId)
−1
)
+ σ2

k. Therefore,

2Riskk,train − 2BayesRiskk = σ2
kEtr

(
(X⊤

t Xt + dσ2
kId)

−1
)
− σ2

kEtr
(
(X⊤X+ dσ2

kId)
−1
)

≤ σ2
kNvEk[λmin(Σ)−1],

where in the above inequality we denote Σ := X⊤
t Xt + dσ2

kId and use the following fact:

tr
(
Σ−1

)
− tr

(
(Σ+X⊤

v Xv)
−1
)
= tr

(
Σ−1/2(Id − (Id +Σ−1/2X⊤

v XvΣ
−1/2)−1)Σ−1/2

)
= tr

(
Σ−1/2(Id +Σ−1/2X⊤

v XvΣ
−1/2)−1Σ−1/2X⊤

v XvΣ
−1
)

=
〈
(Id +Σ−1/2X⊤

v XvΣ
−1/2)−1Σ−1/2X⊤

v XvΣ
−1/2,Σ−1

〉
≤ rank(Σ−1/2X⊤

v XvΣ
−1/2)λmax(Σ

−1) ≤ Nvλmin(Σ)−1

Case 1. We first suppose that Nt ≤ 16d. Then by definition Σ ⪰ dσ2
kId, and hence

σ2
kNvEk[λmin(Σ)−1] ≤ σ2

kNv
dσ2

k

≤ 16Nv
Nt

≤ 32Nv
N

.

Case 2. When Nt ≥ 9d, then we consider the event Et := {λmin(X
⊤
t Xt/Nt) ≥ 1

16}. By Lemma F.2 we have P(Ect) ≤
exp(−Nt/8). Therefore,

σ2
kNvEk[λmin(Σ)−1] = σ2

kNvEk[1{Et}λmin(Σ)−1] + σ2
kNvEk[1{Ect }λmin(Σ)−1]

≤ 16σ2
kNv
Nt

· P(Et) +
Nv
d

· P(Ect)

≤ 32σ2
kNv
N

+
Nv
d

· exp(−N/16) = O
(
(σ2
k + 1)Nv
N

)
.

Combining these two cases finishes the proof.

Lemma N.2. Condition on the event Etrain, we have

EDval∼Pk|w⋆,Dtrain

[
max
l∈[K]

∣∣∣L̂val(ŵl)− Lval,w⋆(ŵl)
∣∣∣] ≤ CB2

w

 log(2K)

Nv
+

√
log(2K)

Nv

,
where we denote ŵl = ŵl(Dtrain).

Proof. We only need to work with a fixed pair of (w⋆,Dtrain) such that Etrain holds. Hence, in the following we only
consider the randomness of Dval conditional on such a (w⋆,Dtrain).

Recall that for any w,

L̂val(w) =
1

2 |Dval|
∑

(xi,yi)∈Dval

(⟨xi,w⟩ − yi)
2
,

and we have EDv [L̂val(w)] = Lval,w⋆(w). For each i ∈ Iv ,

yi − ⟨xi, ŵl⟩ = εi − ⟨xi,w⋆ − ŵl⟩ ∼ SG(σ2
k + ∥w⋆ − ŵl∥2).

74

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Note that under Etrain, we have ŵl ∈ B2(Bw) for all l ∈ [K], and hence σ2
k + ∥w⋆ − ŵl∥2 ≤ 5B2

w. We then have
(yi − ⟨xi, ŵl⟩)2’s are (conditional) i.i.d random variables in SE(CB4

w). Then, by Bernstein’s inequality, we have

PDval

(∣∣∣L̂val(ŵl)− Lval,w⋆(ŵl)
∣∣∣ ≥ t

)
≤ 2 exp

(
−cNvmin

{
t2

B2
w

,
t

Bw

})
,

where c is a universal constant. Applying the union bound, we obtain

PDval

(
max
l∈[K]

∣∣∣L̂val(ŵl)− Lval,w⋆
(ŵl)

∣∣∣ ≥ t

)
≤ 2K exp

(
−cNvmin

{
t2

B2
w

,
t

Bw

})
Taking intehration completes the proof.

O. Proofs for Section E
O.1. Lipschitzness of transformers

For any p ∈ [1,∞], let ∥H∥2,p := (
∑N
i=1 ∥hi∥

p
2)

1/p denote the column-wise (2, p)-norm of H. For any radius R > 0, we
denote HR := {H : ∥H∥2,∞ ≤ R} be the ball of radius R under norm ∥·∥2,∞.

Lemma O.1. For a single MLP layer θmlp = (W1,W2), we introduce its norm (as in (2))∣∣∣∣∣∣θmlp∣∣∣∣∣∣ = ∥W1∥op + ∥W2∥op .

For any fixed hidden dimension D′, we consider

Θmlp,B :=
{
θmlp :

∣∣∣∣∣∣θmlp∣∣∣∣∣∣ ≤ B
}
.

Then for H ∈ HR, θmlp ∈ Θmlp,B , the function (θmlp,H) 7→ MLPθmlp
(H) is (BR)-Lipschitz w.r.t. θmlp and (1 + B2)-

Lipschitz w.r.t. H.

Proof. Recall that by our definition, for the parameter θmlp = (W1,W2) ∈ Θmlp,B and the input H = [hi] ∈ RD×N , the
output MLPθmlp

(H) = H+W2σ(W1H) = [hi +W2σ(W1hi)]i. Therefore, for θ′mlp = (W′
1,W

′
2) ∈ Θmlp,B , we have∥∥∥MLPθmlp

(H)−MLPθ′mlp(H)
∥∥∥
2,∞

= max
i

∥W2σ(W1hi)−W′
2σ(W

′
1hi)∥2

= max
i

∥(W2 −W′
2)σ(W1hi) +W′

2(σ(W1hi)− σ(W′
1hi))∥2

≤ max
i

∥W2 −W′
2∥op ∥σ(W1hi)∥2 + ∥W′

2∥op ∥σ(W1hi)− σ(W′
1hi)∥2

≤ max
i

∥W2 −W′
2∥op ∥W1hi∥2 + ∥W′

2∥op ∥W1hi −W′
1hi∥2

≤ BR ∥W2 −W′
2∥op +BR ∥W1 −W′

1∥op ,

where the second inequality follows from the 1-Lipschitznees of σ = [·]+. Similarly, for H′ = [h′
i] ∈ RD×N ,∥∥MLPθmlp

(H)−MLPθmlp
(H′)

∥∥
2,∞ = max

i
∥hi +W1σ(W2hi)− h′

i −W1σ(W2h
′
i)∥2

≤ ∥H−H′∥2,∞ +max
i

∥W1(σ(W2hi)− σ(W2h
′
i))∥2

≤ ∥H−H′∥2,∞ +max
i
B ∥σ(W2hi)− σ(W2h

′
i)∥2

≤ ∥H−H′∥2,∞ +B2 ∥H−H′∥2,∞ .

Lemma O.2. For a single attention layer θattn = {(Vm,Qm,Km)}m∈[M] ⊂ RD×D, we introduce its norm (as in (2))

|||θattn||| := max
m∈[M]

{
∥Qm∥op , ∥Km∥op

}
+

M∑
m=1

∥Vm∥op .

75

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

For any fixed dimension D, we consider

Θattn,B := {θattn : |||θattn||| ≤ B}.

Then for H ∈ HR, θattn ∈ Θattn,B , the function (θattn,H) 7→ Attnθattn
(H) is (B2R3)-Lipschitz w.r.t. θattn and

(1 +B3R2)-Lipschitz w.r.t. H.

Proof. Recall that by our definition, for the parameter θattn = {(Vm,Qm,Km)}m∈[M] ∈ Θattn,B and the input H =

[hi] ∈ RD×N , the output Attnθattn
(H) = [h̃i] is given by

h̃i = hi +

M∑
m=1

1

N

N∑
j=1

σ(⟨Qmhi,Kmhj⟩) ·Vmhj .

Now, for θ′attn = {(V′
m,Q

′
m,K

′
m)}m∈[M], we consider

h̃′
i =

[
Attnθ′attn(H)

]
i
= hi +

M∑
m=1

1

N

N∑
j=1

σ(⟨Q′
mhi,K

′
mhj⟩) ·V′

mhj , ∀i ∈ [N].

Clearly
∥∥Attnθattn

(H)−Attnθ′attn(H)
∥∥
2,∞ = maxi

∥∥∥h̃i − h̃′
i

∥∥∥
2
. For any i ∈ [N], we have

∥∥∥h̃i − h̃′
i

∥∥∥
2
=

∥∥∥∥∥∥
M∑
m=1

1

N

N∑
j=1

[σ(⟨Qmhi,Kmhj⟩)Vmhj − σ(⟨Q′
mhi,K

′
mhj⟩)V′

mhj]

∥∥∥∥∥∥
2

≤
M∑
m=1

1

N

N∑
j=1

∥σ(⟨Qmhi,Kmhj⟩)Vm − σ(⟨Q′
mhi,K

′
mhj⟩)V′

m∥op ∥hj∥2

≤
M∑
m=1

1

N

N∑
j=1

∥hj∥2
{∣∣σ(⟨Qmhi,Kmhj⟩)

∣∣ · ∥Vm −V′
m∥op

+
∣∣σ(⟨Qmhi,Kmhj⟩)− σ(⟨Q′

mhi,Kmhj⟩)
∣∣ · ∥V′

m∥op
+
∣∣σ(⟨Q′

mhi,Kmhj⟩)− σ(⟨Q′
mhi,K

′
mhj⟩)

∣∣ · ∥V′
m∥op

}
≤

M∑
m=1

1

N

N∑
j=1

R
{
B2R2 · ∥Vm −V′

m∥op + ∥Qmhi −Q′
mhi∥2 · ∥Kmhj∥2 · ∥V

′
m∥op

+ ∥Q′
mhi∥2 · ∥Kmhj −K′

mhj∥2 · ∥V
′
m∥op

}
≤

M∑
m=1

R
{
B2R2 ∥Vm −V′

m∥op +BR2 ∥Qm −Q′
m∥op · ∥V′

m∥op +BR2 ∥Km −K′
m∥op · ∥V′

m∥op
}

≤ B2R3
{ M∑
m=1

∥Vm −V′
m∥op +max

m
∥Qm −Q′

m∥op +max
m

∥Km −K′
m∥op

}
= B2R3|||θattn − θ′attn|||,

where the second inequality uses the definition of operator norm, the third inequality follows from the triangle inequality,
the forth inequality is because ∥Qmhi∥2 ≤ BR, ∥Kmhj∥2 ≤ BR, and σ is 1-Lipschitz. This completes the proof the
Lipschitzness w.r.t. θattn.

Similarly, we consider H′ = [h′
i], and

h̃′
i =

[
Attnθ′attn(H)

]
i
= h′

i +

M∑
m=1

1

N

N∑
j=1

σ
(〈
Qmh′

i,Kmh′
j

〉)
·Vmh′

j , ∀i ∈ [N].

76

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

By definition, we can similarly bound∥∥∥(h̃′
i − h′

i

)
−
(
h̃i − hi

)∥∥∥
2

=

∥∥∥∥∥∥
M∑
m=1

1

N

N∑
j=1

[
σ(⟨Qmhi,Kmhj⟩)Vmhj − σ

(〈
Qmh′

i,Kmh′
j

〉)
Vmh′

j

]∥∥∥∥∥∥
2

≤
M∑
m=1

1

N

N∑
j=1

∥Vm∥op
∥∥σ(⟨Qmhi,Kmhj⟩)hj − σ

(〈
Qmh′

i,Kmh′
j

〉)
h′
j

∥∥
2

≤
M∑
m=1

1

N

N∑
j=1

∥Vm∥op
{∣∣σ(⟨Qmhi,Kmhj⟩)

∣∣ · ∥∥hj − h′
j

∥∥
2

+
∣∣σ(⟨Qmhi,Kmhj⟩)− σ(⟨Qmh′

i,Kmhj⟩)
∣∣ · ∥∥h′

j

∥∥
2

+
∣∣σ(⟨Qmh′

i,Kmhj⟩)− σ
(〈
Qmh′

i,Kmh′
j

〉)∣∣ · ∥∥h′
j

∥∥
2

}
≤

M∑
m=1

1

N

N∑
j=1

∥Vm∥op · 3 ∥Qm∥op ∥Km∥op R
2
∥∥hj − h′

j

∥∥
2

≤ R2 ∥H−H′∥2,∞ · 3 max
m∈[M]

∥Qm∥op ∥Km∥op ·
M∑
m=1

∥Vm∥op

≤ B3R2 ∥H−H′∥2,∞ ,

where the last inequality uses |||θattn||| ≤ B and the AM-GM inequality. This completes the proof the Lipschitzness w.r.t.
H.

Corollary O.1. For a fixed number of heads M and hidden dimension D′, we consider

ΘTF,1,B =
{
θ = (θattn,θmlp) :M heads, hidden dimension D′, |||θ||| ≤ B

}
.

Then for the function TFR given by

TFR : (θ,H) 7→ clipR
(
MLPθmlp

(Attnθattn
(H))

)
, θ ∈ ΘTF,1,B ,H ∈ HR

TFR isBΘ-Lipschitz w.r.t θ andLH -Lipschitz w.r.t. H, whereBΘ := BR(1+BR2+B3R2) andBH := (1+B2)(1+B2R3).

Proof. For any θ = (θattn,θmlp), H ∈ HR, and θ′ = (θ′attn, θ
′
mlp), we have

∥TFθ(H)− TFθ′(H)∥2,∞ ≤
∥∥MLPθmlp

(Attnθattn
(H))−MLPθmlp

(
Attnθ′attn(H)

)∥∥
2,∞

+
∥∥∥MLPθmlp

(
Attnθ′attn(H)

)
−MLPθ′mlp

(
Attnθ′attn(H)

)∥∥∥
2,∞

≤ (1 +B2)
∥∥Attnθattn

(H)−Attnθ′attn(H)
∥∥
2,∞ +BR

∣∣∣∣∣∣θmlp − θ′mlp
∣∣∣∣∣∣

≤ (1 +B2)B2R3|||θattn − θ′
attn|||+BR

∣∣∣∣∣∣θmlp − θ′mlp
∣∣∣∣∣∣

≤ BΘ|||θ − θ′|||,

where the second inequality follows from Lemma O.2 and Lemma O.1 and the fact that ∥Attnθattn
(H)∥2,∞ ≤ R :=

R+B3R3 for all H ∈ HR.

Furthermore, for H′ ∈ HR, we have

∥TFθ(H)− TFθ(H
′)∥2,∞ ≤ (1 +B2) ∥Attnθattn

(H)−Attnθattn
(H′)∥2,∞

≤ (1 +B2)(1 +B3R2) ∥H−H′∥2,∞ ,

which also follows from Lemma O.2 and Lemma O.1.

77

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Proposition O.1 (Lipschitzness of transformers). For a fixed number of heads M and hidden dimension D′, we consider

ΘTF,L,B =
{
θ = (θ

(1:L)
attn ,θ

(1:L)
mlp) :M (ℓ) =M,D(ℓ) = D′, |||θ||| ≤ B

}
.

Then the function TFR is (LBL−1
H BΘ)-Lipschitz w.r.t θ ∈ ΘTF,L,B for any fixed H.

Proof. For θ = θ(1:L) ∈ ΘTF,L,B , θ̃ = θ̃(1:L) ∈ ΘTF,L,B , we have∥∥∥TFR
θ(H)− TFR

θ̃
(H)

∥∥∥
2,∞

≤
L∑
ℓ=1

∥∥∥TFR
θ(ℓ+1:L)

(
TFR

θ(ℓ)

(
TFR

θ̃(1:ℓ−1)(H)
))

− TFR
θ(ℓ+1:L)

(
TFR

θ̃(ℓ)

(
TFR

θ̃(1:ℓ−1)(H)
))∥∥∥

2,∞

≤
L∑
ℓ=1

BL−ℓΘ

∥∥∥TFR
θ(ℓ)

(
TFR

θ̃(1:ℓ−1)(H)
)
− TFR

θ̃(ℓ)

(
TFR

θ̃(1:ℓ−1)(H)
)∥∥∥

2,∞

≤
L∑
ℓ=1

BL−ℓH BΘ ·
∣∣∣∣∣∣∣∣∣θ(ℓ) − θ̃(ℓ)

∣∣∣∣∣∣∣∣∣ ≤ LBL−1
H BΘ ·

∣∣∣∣∣∣∣∣∣θ − θ̃
∣∣∣∣∣∣∣∣∣,

where the second inequality follows from Corollary O.1, and the last inequality is because BH ≥ 1.

O.2. Proof of Theorem E.1

In this section, we prove a slightly more general result by considering the general ICL loss

ℓicl(θ;Z) := ℓ(r̃eady(TF
R
θ(H)), yN+1).

We assume that the loss function ℓ satisfies sup |ℓ| ≤ B0
ℓ and sup |∂1ℓ| ≤ B1

ℓ . For the special case ℓ(s, t) = 1
2 (s− t)2, we

can take B0
ℓ = 4B2

y , B
1
ℓ = 2By.

We then consider

Xθ :=
1

n

n∑
j=1

ℓicl(θ;Z
j)− EZ[ℓicl(θ;Z)],

where Z(1:n) are i.i.d copies of Z ∼ P,P ∼ π. It remains to apply Proposition F.4 to the random process {Xθ}. We verify
the preconditions:

(a) By Wainwright (2019, Example 5.8), it holds that logN(δ;B|||·|||(r), |||·|||) ≤ L(3MD2 + 2DD′) log(1 + 2r/δ), where
B|||·|||(r) is any ball of radius r under norm |||·|||.

(b) |ℓicl(θ;Z)| ≤ B0
ℓ and hence B0

ℓ -sub-Gaussian.

(c)
∣∣∣ℓicl(θ;Z)− ℓicl(θ̃;Z)

∣∣∣ ≤ B1
ℓ · (LB

L−1
H BΘ) ·

∣∣∣∣∣∣∣∣∣θ − θ̃
∣∣∣∣∣∣∣∣∣, by Proposition O.1.

Therefore, we can apply the uniform concentration result in Proposition F.4 to obtain that, with probability at least 1− ξ,

sup
θ

|Xθ| ≤ CB0
ℓ

√
L(MD2 +DD′)ι+ log(1/ξ)

n
,

where ι = log(2 +B · LBL−1
H BΘB

1
ℓ /B

0
ℓ) ≤ 20L log(2 + max{B,R, B1

ℓ /B
0
ℓ }). Recalling that

Licl(θ̂) ≤ inf
θ
Licl(θ) + 2 sup

θ
|Xθ|

completes the proof.

78

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

O.3. Proof of Theorem E.2

By Corollary C.1, there exists a transformer TFθ such that for every P satisfying Assumption A with canonical parameters
(and thus in expectation over P ∼ π) and every N ≥ Õ(d), it outputs prediction ŷN+1 = r̃eady(TFθ(H)) such that

Licl(θ) = EP∼π,(D,xN+1,yN+1∼P)

[
1

2
(ŷN+1 − yN+1)

2

]
≤ EP∼π[LP(w

⋆
P)] +O

(
dσ2

N

)
,

where we recall that LP(w
⋆
P) :=

1
2E(x,y)∼P

[
(y − ⟨w⋆

P,x⟩)2
]
. By inspecting the proof, the same result holds if we change

TFθ to the clipped version TFR
θ if we choose R2 = O(B2

x + B2
y + B2

w + 1) = O(d + κ), so that on the good event
Ecov ∩ Ew considered therein, all intermediate outputs within TFθ has ∥·∥2,∞ ≤ R and thus the clipping does not modify
the transformer output on Ecov ∩ Ew. Further, recall by (28) that θ has size bounds

L ≤ O
(
κ log

Nκ

σ

)
, max

ℓ∈[L]
M (ℓ) ≤ 3, |||θ||| ≤ O(

√
κd).

We can thus apply Theorem E.1 to obtain that the solution θ̂ to (TF-ERM) with the above choice of (L,M,B) and D′ = 0
(attention-only) satisfies the following with probability at least 1− ξ:

Licl(θ̂) ≤ inf
θ′∈ΘL,M,D′,B

Licl(θ
′) +O

(√
L2MD2ι+ log(1/ξ)

n

)

≤ Licl(θ) + Õ

(√
L2MD2 + log(1/ξ)

n

)
≤ Õ

(√
κ2d2 + log(1/ξ)

n
+
dσ2

N

)
.

Above, ι = O(log(1 + max {By,R, B})) = Õ(1). This finishes the proof.

P. Experimental details and additional studies
P.1. Additional details for Section 3.1

Architecture and optimization We train a 12-layer encoder-only transformer, where each layer consists of an attention
layer as in Definition B.1 with M = 8 heads, hidden dimension D = 64, and ReLU activation (normalized by the sequence
length), as well as an MLP layer as in Definition B.2 hidden dimension D′ = 64. We add Layer Normalization (Ba et al.,
2016) after each attention and MLP layer to help optimization, as in standard implementations (Vaswani et al., 2017). We
append linear read-in layer and linear read-out layer before and after the transformer respectively, both applying a same
affine transform to all tokens in the sequence and are trainable. The read-in layer maps any input vector to a D-dimensional
hidden state, and the read-out layer maps a D-dimensional hidden state to a 1-dimensional scalar.

Each training sequence corresponds to a single ICL instance with N in-context training examples {(xi, yi)}Ni=1 ⊂ Rd × R
and test input xN+1 ∈ Rd. The input to the transformer is formatted as in (3) where each token has dimension d+ 1 (no
zero-paddings). The transformer is trained by minimizing the following loss with fresh mini-batches:

L(θ) = EP∼π,(H,yN+1)∼P[ℓP(ready(TFθ(H)), yN+1)], (40)

where the loss function ℓP : R2 → R may depend on the training data distribution P in general; we use the square loss when
P is regression data, and the logistic loss when P is classification data. We use the Adam optimizer with a fixed learning
rate 10−4, which we find works well for all our experiments. Throughout all our experiments except for the sparse linear
regression experiment in Figure 3a, we train the model for 300K steps, where each step consists of a (fresh) minibatch with
batch size 64 in the base mode, and K minibatches each with batch size 64 in the mixture mode.

For the sparse linear regression experiment, we find that minimizing the training objective (40) alone was not enough, e.g.
for the learned transformer to achieve better loss than the least squares algorithm (which achieves much higher test loss than
the Lasso; cf. Figure 3a). To help optimization, we augment (40) with another loss that encourages the second-to-last hidden
states to recover the true (sparse) coefficient w⋆:

Lfit-w(θ) =
1

N0

N0∑
j=1

EP=Pw⋆∼π,(H,yN+1)∼P

[∥∥∥∥[TF(1:L−1)
θ (H)

]
j,(D−d+1):D

−w⋆

∥∥∥∥2
2

]
. (41)

79

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

(a) Linear regression

0 10 20 30 40
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
 lo

ss

TF_alg_select
TF_reg
TF_cls
Least Squares

(b) Linear classification

0 10 20 30 40
in-context examples

0.15

0.20

0.25

0.30

0.35

0.40

er
ro

r

TF_alg_select
TF_reg
TF_cls
Logistic Regression

(c) Reg vs. cls at token 40

0 1 2 3 4
regression_square_loss

0.20

0.25

0.30

0.35

cla
ss

ifi
ca

tio
n_

er
ro

r

TF_alg_select
TF_reg
TF_cls
Least Squares
Averaging
3-NN

Figure 5: In-context algorithm selection abilities of transformers between linear regression and linear classification. (a,b) On these two
tasks, a single transformer TF_alg_select simultaneously approaches the performance of the strongest baseline algorithm
Least Squares on linear regression and Logistic Regression on linear classification. (c) At token 40 (using example
{0, . . . , 39} for training), TF_alg_select matches the performance of the best baseline algorithm for both tasks. (a,b,c) Note that
transformers pretrained on a single task (TF_reg, TF_cls) perform near-optimally on their pretraining task but suboptimally on the
other task.

Specifically, the above loss encourages the first N0 ≤ N tokens within the second-to-last layer to be close to w⋆. We choose
N0 = 5 (recall that the total number of tokens is N = 10 and sequence length is N + 1 = 11 for this experiment). We
minimize the loss L(θ) + λLfit-w(θ) with λ = 0.1 for 2M steps for this task.

Evaluation All evaluations are done on the trained transformer with 6400 test instances. We use the square loss for
regression tasks, and the classification error (1−accuracy) between the true label yN+1 ∈ {0, 1} and the predicted label
1{ŷN+1 ≥ 1/2}. We report the means in all experiments, as well as their standard deviations (using one-std error bars)
in Figure 2a, 2b, 5a, 5b. In Figure 2c, 3b, 3c 5c, all standard deviations are sufficiently small (not significantly exceeding the
width of the markers), thus we did not show error bars in those plots.

Baseline algorithms We implement various baseline machine learning algorithms to compare with the learned transformers.
A superset of the algorithms is shown in Figure 3a:

• Least squares, Logistic regression: Standard algorithms for linear regression and linear classification,
respectively. Note that least squares is also a valid algorithm for classification.

• Averaging: The simple algorithm which computes the linear predictor ŵ = 1
N

∑N
i=1 yixi and predicts ŷN+1 =

⟨ŵ,xN+1⟩;

• 3-NN: 3-Nearest Neighbors.

• Ridge: Standard ridge regression as in (ICRidge). We specifically consider two λ’s (denoted as lam_1 and lam_2):
λ1, λ2 = (0.005, 0.125). These are the Bayes-optimal regularization strengths for the noise levels (σ1, σ2) = (0.1, 0.5)
respectively under the noisy linear model (cf. Corollary C.2), using the formula λ⋆ = dσ2/N , with (d,N) = (20, 40).

• Lasso: Standard Lasso as in (ICLasso) with λ ∈ {1, 0.1, 0.01, 0.001}.

In Figure 2c, the ridge_analytical curve plots the expected risk of ridge regression under the noisy linear model
over 20 geometrically spaced values of λ’s in between (λ1, λ2), using analytical formulae (with Monte Carlo simulations).
The Bayes_err_{1,2} indicate the expected risks of λ1 on task 1 (with noise σ1) and λ2 on task 2 (with noise σ2),
respectively.

P.2. Computational resource

All our experiments are performed on 8 Nvidia Tesla A100 GPUs (40GB memory). The total GPU time is approximately
5 days (on 8 GPUs), with the largest individual training run taking about a single day on a single GPU. The code
for our experiments is provided at the following anonymous link: https://anonymous.4open.science/r/
tf-as-statisticians.

80

https://anonymous.4open.science/r/tf-as-statisticians
https://anonymous.4open.science/r/tf-as-statisticians

	Introduction
	Theory
	Experiments
	In-context learning and algorithm selection
	Decoder-based architecture & details for Figure 2

	Conclusion
	Related work
	Preliminaries
	Transformers
	In-context learning

	Basic in-context learning algorithms
	In-context ridge regression and least squares
	In-context Lasso
	Proof technique: In-context gradient descent

	In-context algorithm selection
	Post-ICL validation mechanism
	Nearly Bayes-optimal ICL on noisy linear models with mixed noise levels

	Pre-ICL testing mechanism

	Analysis of pretraining
	Generalization guarantee for pretraining
	Examples of pretraining for in-context regression problems

	Technical tools
	Concentration inequalities
	Approximation theory
	Optimization
	Uniform convergence
	Useful properties of transformers

	Extension to decoder-based architecture
	Decoder-based transformers
	In-context learning with decoder-based transformers
	Results
	Proof of Proposition G.1

	Mechanism: In-context gradient descent
	Gradient descent on convex losses
	Proximal gradient descent for regularized convex losses
	Gradient descent on two-layer neural networks

	Proofs for Section H
	Approximating a single GD step
	Proof of Theorem H.1
	Proof of Lemma H.1
	Convex ICGD with 2 regularization
	Proof of Theorem H.3

	Proofs for Section C.1
	Proof of Theorem C.1
	Statistical analysis of in-context least squares
	Proof of Corollary C.1
	Proof of Corollary C.2

	Generalized linear models
	Proof of Theorem K.1
	Proof of Theorem K.2
	Proof of Theorem K.3 (a)
	Proof of Theorem K.3 (b)
	Proof of Theorem K.3 (c)
	Proof of Theorem K.3 (d) & (e)

	Proofs for Section C.2
	Proof of Theorem C.2
	Sharper convergence analysis of proximal gradient descent for Lasso
	Basic properties for Lasso
	Proof of Theorem L.1
	Proof of Theorem C.3

	Proofs for Section D
	Proof of Proposition D.1
	Proof of Theorem D.1
	Proof of Theorem M.3

	Proofs for Section D.2
	Proof of Lemma D.1
	Formal statement and proof of Proposition D.2

	Linear correlation test and application

	Proof of Theorem D.2: Noisy linear model with mixed noise levels
	Proof of Theorem N.1
	Derivation of the exact Bayes predictor
	Useful lemmas

	Proofs for Section E
	Lipschitzness of transformers
	Proof of Theorem E.1
	Proof of Theorem E.2

	Experimental details and additional studies
	Additional details for Section 3.1
	Computational resource

