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Abstract

Effective visual representation learning is crucial
for reinforcement learning (RL) agents to extract
task-relevant information from raw sensory in-
puts and generalize across diverse environments.
However, existing RL benchmarks lack the ability
to systematically evaluate representation learning
capabilities in isolation from other learning chal-
lenges. To address this gap, we introduce the Slid-
ing Puzzles Gym (SPGym), a novel benchmark
that transforms the classic 8-tile puzzle into a vi-
sual RL task with images drawn from arbitrarily
large datasets. SPGym’s key innovation lies in its
ability to precisely control representation learning
complexity through adjustable grid sizes and im-
age pools, while maintaining fixed environment
dynamics, observation, and action spaces. This
design enables researchers to isolate and scale the
visual representation challenge independently of
other learning components. Through extensive ex-
periments with model-free and model-based RL
algorithms, we uncover fundamental limitations
in current methods’ ability to handle visual diver-
sity. As we increase the pool of possible images,
all algorithms exhibit in- and out-of-distribution
performance degradation, with sophisticated rep-
resentation learning techniques often underper-
forming simpler approaches like data augmen-
tation. These findings highlight critical gaps in
visual representation learning for RL and estab-
lish SPGym as a valuable tool for driving progress
in robust, generalizable decision-making systems.
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1. Introduction
Learning meaningful representations from raw sensory in-
puts, such as visual data, is fundamental to reinforcement
learning (RL) agents’ ability to generalize across different
tasks in complex, open-world environments (Bengio et al.,
2013; Lesort et al., 2018). In visual RL, agents must process
high-dimensional pixel data, extract useful features, and uti-
lize these features for decision-making (Mnih et al., 2015;
Yarats et al., 2021a). This becomes especially crucial as
real-world applications demand adaptability to unstructured
and diverse observations. However, measuring an agent’s
representation learning capabilities independently of other
learning tasks, such as policy optimization or dynamics
modeling, remains a key challenge in RL benchmarks.

While traditional RL benchmarks such as Atari (Bellemare
et al., 2013) and DeepMind Control Suite (Tassa et al., 2018)
provide valuable testing grounds for overall agent perfor-
mance, they inherently intertwine representation learning
with policy optimization and environment dynamics. More
recent specialized benchmarks for visual learning, though
promising, fall short in their ability to precisely modulate vi-
sual complexity. ProcGen (Cobbe et al., 2020) concurrently
alters both visual and task difficulty, obscuring the specific
impact of representation learning, while the Distracting Con-
trol Suite (Stone et al., 2021) incorporates visual variations
that are orthogonal to the core task objectives. Consequently,
existing benchmarks lack the necessary precision to system-
atically assess an agent’s capacity to acquire task-relevant
visual representations in isolation.

To address this critical gap in visual RL evaluation, we in-
troduce the Sliding Puzzles Gym (SPGym)1, an open-source
benchmark specifically designed to assess how agents han-
dle increasingly diverse visual observations. As depicted in
Figure 1, SPGym transforms the classic 8-tile puzzle into a
visual RL task through three innovative design principles:
(1) maintaining consistent environment dynamics regardless
of difficulty level, ensuring that the underlying task remains
fixed; (2) enabling precise control over visual complexity

1Available at https://github.com/
bryanoliveira/sliding-puzzles-gym.
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Figure 1. Overview of SPGym. The framework extends the 8-tile puzzle by replacing numbered tiles with image patches. At each
training run, SPGym samples a pool of images and, at each episode, it randomly selects one of those images to form the observations.
While we scale visual diversity by adjusting the pool size, the task and environment dynamics remain fixed.

through adjustable grid dimensions and image pool sizes;
and (3) establishing an unambiguous success metric based
on puzzle completion. This carefully engineered frame-
work provides researchers with a controlled environment to
systematically evaluate how agents’ performance degrades
with increasing visual diversity, offering insights into the
fundamental limitations of their representation learning ca-
pabilities while keeping the core task unchanged.

Our experiments with SPGym reveal that it effectively dis-
tinguishes agents by their representation learning capabil-
ities, showing a strong correlation with task performance.
While pretrained encoders and data augmentation provide
clear benefits, many advanced methods surprisingly under-
perform their baselines, suggesting their assumptions don’t
transfer to SPGym’s unique blend of visual complexity and
structured dynamics. More concerningly, our tiered gener-
alization analysis exposes fundamental limitations: agents
achieve perfect performance on training images but fail to
transfer to unseen ones, even with larger training pools. Per-
formance often degrades as pool size increases, highlighting
a key trade-off: greater visual diversity increases learning
difficulty without improving generalization, suggesting cur-
rent methods struggle to learn truly generalizable repre-
sentations. We further demonstrate SPGym’s extensibility
through experiments with procedurally generated images
and larger puzzles, maintaining fixed observation/action
spaces while expanding state space and visual diversity.
These findings expose critical gaps in current visual RL
methods and establish SPGym as a valuable tool for advanc-
ing robust, generalizable decision-making systems.

Contributions. We make three key contributions to visual
RL research: (1) SPGym, a novel benchmark that system-
atically evaluates representation learning by scaling visual
complexity while keeping environment dynamics constant;
(2) an extensive empirical analysis of state-of-the-art meth-
ods, uncovering critical limitations in their ability to process
diverse visual inputs; and (3) fundamental insights into the
challenges of scaling visual RL, offering directions for ad-
vancing representation learning in decision-making systems.

2. Related Work
Traditional RL benchmarks. Foundational visual RL
benchmarks like the Atari Learning Environment (Belle-
mare et al., 2013), DeepMind Control Suite (Tassa et al.,
2018), DeepMind Lab (Beattie et al., 2016), and CARLA
(Dosovitskiy et al., 2017) pioneered pixel-based agent evalu-
ation. These environments drove advances in representation
learning techniques including pretraining (Higgins et al.,
2017; Stooke et al., 2021; Schwarzer et al., 2021), con-
trastive learning (Laskin et al., 2020b), self-supervised pre-
diction (Schwarzer et al., 2020), and world models (Hafner
et al., 2025). However, by assessing overall agent perfor-
mance across representation learning, policy optimization,
and dynamics modeling, these benchmarks obscure the spe-
cific impact of representation learning improvements.

SPGym addresses this limitation by precisely controlling vi-
sual complexity while keeping environment dynamics fixed,
enabling focused evaluation of representation learning.
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Specialized benchmarks for visual RL. Recent bench-
marks have sought to better assess visual generalization.
ProcGen (Cobbe et al., 2020) employs procedurally gener-
ated levels, but its difficulty scaling simultaneously affects
both visual and task complexity. The Distracting Control
Suite (Stone et al., 2021) evaluates robustness to visual vari-
ations, but these serve as task-irrelevant distractions that
agents can safely ignore while solving core tasks. COOM
(Tomilin et al., 2023) provides a continual learning bench-
mark for embodied pixel-based RL in 3D environments,
focusing on catastrophic forgetting and knowledge transfer
across tasks rather than isolating representation learning in
a single task. These approaches fail to create representation
learning challenges essential for task success.

SPGym overcomes these limitations by making visual under-
standing fundamental to puzzle solving while maintaining
fixed task complexity. Through controlled scaling of vi-
sual diversity in puzzle tiles, SPGym creates representation
learning challenges tied to task completion, enabling precise
evaluation of agents’ visual learning capabilities.

Puzzle-based benchmarks. Estermann et al. (2024)
demonstrated puzzle-based environments’ value for eval-
uating neural algorithmic reasoning, focusing on discrete
states. Though they tested pixel observations with sparse
rewards, agents struggled with basic visual inputs. This
work revealed puzzles’ potential and challenges for visual
learning, showing the need for systematic representation
learning evaluation in these controlled settings.

SPGym advances this research direction by incorporating
rich visual observations while maintaining the controlled
nature of puzzle environments, facilitating systematic as-
sessment of representation learning in the visual domain.

Methods for solving the sliding tile puzzle. Classical
approaches to sliding puzzles employ heuristic search algo-
rithms like A* and IDA* with domain-specific heuristics
such as Manhattan distance (Korf, 1985; Burns et al., 2012;
Lee & See, 2022). While these methods guarantee optimal
solutions, they require direct access to internal puzzle states
and are computationally demanding. Deep RL provides a
scalable alternative that learns effective strategies without
hand-crafted heuristics (Agostinelli et al., 2019; Moon &
Cho, 2024; Estermann et al., 2024). However, prior work
has predominantly focused on discrete state representations
rather than learning from visual observations (Agostinelli
et al., 2019; Moon & Cho, 2024).

Building on this foundation, our work evaluates standard RL
algorithms on SPGym, where agents must learn exclusively
from pixel observations without access to internal states,
offering insights into their out-of-the-box performance in
this challenging visual learning setting.

3. The Sliding Puzzles Gym
SPGym extends the classic sliding puzzle, a game where
players rearrange shuffled tiles on a grid by sliding a tile
into an adjacent empty space, with the goal of restoring an
ordered configuration (Figure 1). Our framework general-
izes this by supporting configurable H×W grid dimensions
(from 2 × 2 upwards) and diverse observation modalities.
In our experiments, we primarily use a 3 × 3 grid where
tiles are image patches, and the agent receives the com-
posite image of the grid as input. SPGym adheres to the
Gym (Brockman, 2016) interface, promoting modularity
between environment and agent.

Formalization. We formulate SPGym as a partially ob-
servable Markov decision process (POMDP) defined by the
tuple (S,X ,A,P,R,S0), where S is the finite state space
representing the internal configuration of puzzle tiles, X : is
the observation space of image-based tiles, A is the action
space, P : S ×A → S defines the deterministic transition
dynamics, R : S × A → R is the reward function, and S0

is the initial state distribution.

State space and observations. Crucially, agents do not
have direct access to states s ∈ S and must learn policies
π : X → A based solely on observations x ∈ X . For
visual observations, each training run begins by sampling
p images from a predefined dataset to form an image pool
I. At the start of each episode, we select a random image
i ∈ I and split it into H × W distinct, spatially indexed
patches, and overlay it onto the puzzle. The agent’s task
is therefore to reconstruct the shuffled image, testing its
ability to form compositional representations from pixels.
This formulation provides two independent mechanisms for
controlling complexity: (1) varying p adjusts the diversity of
the observation space X by changing the pool of available
images, and (2) modifying H and W alters the state space
complexity by changing the grid dimensions and number of
puzzle pieces. Both mechanisms operate while keeping the
underlying dynamics P , the action space A, and the reward
function R fixed. SPGym is dataset-agnostic, supporting
any image dataset, including procedurally generated ones.

Action space and dynamics. The action space A contains
four possible actions: UP, DOWN, LEFT, or RIGHT, which
move the corresponding tile to the empty space in a discrete
manner. Once the agent selects a tile to move, the dynamics
P define the next puzzle state in a predictable and deter-
ministic way, as illustrated in Figure 1. The objective is to
rearrange shuffled image tiles into their correct positions,
forming a complete, intelligible image.

Reward function. The reward function R provides dense
feedback r to guide agent learning while accommodating
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the non-monotonic nature of optimal puzzle-solving paths.
Following established approaches in the sliding puzzle lit-
erature (Korf, 1985; Burns et al., 2012; Lee & See, 2022;
Moon & Cho, 2024), we base our reward on the Manhattan
distance between each tile’s current position and its target
position, normalized across all tiles. This distance metric is
widely adopted in computational solutions to sliding puzzles
due to its efficiency and effectiveness in capturing progress
toward the goal state. Specifically, at each time step, the
reward is computed as follows:

rt =


−D, if action is valid
−1, if action is invalid
+1, if puzzle is solved

, with (1)

D =

∑H
i=1

∑W
j=1 |ui,j − u∗

i,j |+ |vi,j − v∗i,j |∑H
i=1

∑W
j=1 max(i,H − i) + max(j,W − j)

. (2)

Here, (ui,j , vi,j) represents the current position of the tile
at index (i, j), (u∗

i,j , v
∗
i,j) is its target position. D is the

normalized Manhattan distance between current and target
positions. Invalid actions, such as attempting to move a tile
outside the grid boundaries, result in a penalty of −1 and
don’t alter the puzzle state. For example, in Figure 1, the
DOWN and RIGHT actions would be invalid for the first
state. Successfully solving the puzzle rewards the agent
with +1 and terminates the episode. This formulation pro-
vides a well-behaved learning signal between [−1,+1] and
encourages solving the puzzle in minimal steps.

Initial state distribution. SPGym’s initial state distribu-
tion S0 can be defined through two methods. The primary
method generates a uniformly random H ×W array where
all tiles (including the blank tile) are placed randomly, and
ensures solvability by adjusting the puzzle’s parity through
swapping the first two tiles when needed (Johnson & Story,
1879). The second method, designed to support curriculum
learning, starts from a solved state and applies a sequence
of random valid moves to reach the initial configuration.
Although this approach guarantees solvability due to the
reversibility of moves, it becomes computationally expen-
sive for larger grid sizes due to the sequential nature of
move application. Given these efficiency considerations, we
exclusively employ the first method in our experiments.

Diversity scalability and extensibility. While our main
experiments focus on 3× 3 grids with image observations,
SPGym supports variable grid sizes from 2 × 2 to larger
H ×W configurations. We demonstrate this with experi-
ments on 4× 4 grids (Table 3), which significantly increase
sample complexity compared to 3 × 3 grids. We also use
one-hot observation spaces, illustrated in Figure 2, as a

Figure 2. Different observation modalities in SPGym. Each
modality presents a unique challenge for representation learning.
The three presented observations represent the same puzzle state.
We focus our experiments on image-based observations.

proxy for ground-truth puzzle states to benchmark the vi-
sual representation challenge (results in Appendix C.1).

The primary scaling mechanism in SPGym involves increas-
ing visual diversity by expanding the image pool while
keeping the grid size fixed (Figure 3). As shown in Table 1,
larger image pools consistently increase sample complexity.
Since core task elements like state and action spaces, transi-
tion dynamics, and reward function remain unchanged, this
increased difficulty primarily reflects the challenge of learn-
ing robust visual representations. The quality of learned
representations is directly linked to task performance, as
demonstrated by linear probe analyses (Appendix C.1.2).
Probe accuracy decreases with larger pool sizes (Table 10),
exhibiting strong correlation with sample efficiency. Com-
parisons with one-hot encoded baselines (Appendix C.1.1),
where the representation learning burden is minimal, further
highlight this focus. While the one-hot setting offers fixed
difficulty, the systematic increase in sample complexity for
image-based agents as visual diversity scales provides a
stress test not possible in the one-hot setting.

The secondary scaling mechanism adjusts grid dimensions.
Increasing from 3 × 3 to 4 × 4 dramatically increases the
number of steps to solve the task due to expanded state
space complexity. While 3× 3 puzzles have approximately
1.81× 105 possible states, 4× 4 puzzles present a dramat-
ically larger challenge with approximately 1013 possible
states. This increase in puzzle size not only expands the
state space exponentially but also makes the representation
learning problem harder, as the same image must now be di-
vided into more patches that need to be correctly positioned.
Importantly, larger grids don’t affect the observation space
X (image sizes remain fixed) or action space A (still four
directional moves), and both puzzle sizes maintain identi-
cal observation and action spaces, isolating the impact of
state space complexity. While this mechanism evaluates ex-
ploration and policy-learning capabilities, our experiments
demonstrate that 3×3 grids provide sufficient discriminative
power for visual representation learning assessment.

By maintaining consistent environment dynamics across
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Figure 3. The visual diversity scalability of SPGym. Each row
presents the first observation of 3 different episodes of the same
training run. The visual diversity scales with the size of the image
pool. Crucially, we keep the grid size fixed, ensuring that the
increased difficulty comes solely from the agent’s need to handle a
larger variety of visual observations.

these scaling mechanisms, SPGym creates a controlled ex-
perimental setting where performance variations can be
more directly attributed to an agent’s representation learn-
ing and generalization capabilities.

4. Methods
In this section, we detail the evaluation protocol for various
RL agents within the SPGym framework, focusing on their
ability to manage increasing visual diversity.

Experimental setup. We sample images from ImageNet-
1k’s validation split (Russakovsky et al., 2015) to construct
visual observations, resizing each image to 84× 84 pixels
and normalizing values to [0, 1]. To isolate visual diversity,
we fix the puzzle size to 3× 3 and vary only the image pool
size p. For each training run, we randomly sample p distinct
images to create a fixed image pool. At episode start, we
randomly select one image from this pool to generate the
puzzle observations. We cap the number of environment
steps to 10M and limit episodes to 1,000 steps.

Our analysis focuses on sample efficiency, measured by the
number of environment steps required to solve the puzzle
(lower is better). We calculate this metric by averaging the
steps needed to reach 80% success rate across all parallel en-
vironments in a run, then average this number across seeds.

We terminate training runs early when an agent maintains
100% success rate for 100 consecutive episodes, indicating
task completion. This early termination serves two purposes:
it enables out-of-distribution evaluation before extreme en-
coder overfitting occurs, and it reduces computational costs
for running the comprehensive set of experiments. Each ex-
periment is conducted 5 times with different random seeds,
and we report the mean ± 1.96 standard errors (95% confi-
dence interval).

We evaluate sample efficiency using pools of 1, 5, and 10
images across all agent variants. For standard agents, we
additionally test with progressively larger pools up to 100
images or until final performance is less than 80% success
rate after the full 10M training steps. This protocol allows us
to analyze both the effectiveness and scalability of different
algorithms and representation learning methods.

Algorithms and variants. We explore three distinct al-
gorithmic approaches: Soft Actor-Critic (SAC) (Haarnoja
et al., 2018a), Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), and DreamerV3 (Hafner et al., 2025),
each representing different strategies for learning from vi-
sual observations. For each algorithm, we evaluate several
representation learning variants to assess their effectiveness
in handling visual diversity.

For SAC, we begin with the standard implementation for
discrete action spaces proposed by Christodoulou (2019).
We then examine several representation learning variants:
RAD (Laskin et al., 2020a), which employs data augmenta-
tion; CURL (Laskin et al., 2020b), which uses contrastive
learning; SPR (Schwarzer et al., 2020), which incorporates
self-supervised prediction; DBC (Zhang et al., 2021), which
focuses on state metric learning; SAC-AE and SAC-VAE
(Yarats et al., 2021b), which utilize reconstruction-based
learning; and Simple Baseline (SB) (Tomar et al., 2023),
which implements a simplified approach with reward and
transition prediction.

For PPO, we evaluate three encoder configurations: the
standard version with random initialization, a variant pre-
trained on the same image distribution (in-distribution, ID),
and a variant pretrained on a different image distribution
(out-of-distribution, OOD). These pretrained variants re-
spectively provide an upper bound on expected pretraining
performance and help establish the potential benefits of
generally pretrained encoders, though we acknowledge this
may make direct sample efficiency comparisons with other
methods less fair.

For DreamerV3, we compare the standard version against
a variant without decoder gradients to evaluate the impact
of the reconstruction objective on performance. Detailed
descriptions for all agents and their learning objectives are
provided in Appendix B.
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Hyperparameters. RAD, CURL, and SPR require data
augmentation. We apply these augmentations to observa-
tions after sampling them from the replay buffer. For each
algorithm, we conducted individual augmentation searches
with the objective of maximizing sample efficiency (detailed
in Appendix A.4.2). These experiments consistently con-
verged to a simple two-step pipeline, which we use through-
out all evaluations: first converting to grayscale with 20%
probability, then randomly shuffling the color channels.

We evaluate out-of-the-box performance of existing ap-
proaches in SPGym by adopting neural architectures and
hyperparameters from established visual discrete control im-
plementations. Our base architecture uses three-layer CNN
encoders with mirrored deconvolutional decoders, while
actor, critic, and auxiliary components employ multi-layer
perceptrons (MLPs).

For SAC-based agents, we follow Yarats et al. (2021b) and
Tomar et al. (2023) by blocking actor gradients through
the encoder while allowing critic and auxiliary gradients
to prevent representation collapse. PPO and DreamerV3
maintain their original gradient flow patterns. While PPO
and DreamerV3 worked robustly with default configura-
tions, SAC-based agents required tuning of the temperature
parameter α (Appendix A.4.1). We found a fixed value of
0.05 to work best across all SAC variants, as the automatic
tuning from Haarnoja et al. (2018b) proved ineffective here.

Where applicable, we preserve uniform hyperparameter
while drawing algorithm-specific configurations from their
respective source papers. The publicly available code repos-
itory2 extends both CleanRL (Huang et al., 2022) and the
official DreamerV3 codebase. Additional methodological
details are provided in Appendix A.

5. Results
Our analysis reveals three fundamental tensions in visual
RL: between method assumptions and environment struc-
ture, sample efficiency and solution optimality, and training
diversity versus generalization capability. We organize find-
ings through seven research questions.

5.1. Can SPGym distinguish agents on representation
learning capabilities?

Table 1 demonstrates SPGym’s ability to differentiate agents
based on their representation learning approaches across
varying levels of visual diversity. Our primary goal in this
analysis is to compare the sample efficiency with which
different agents learn useful visual representations. No-
tably, certain representation learning methods provide clear

2Accessible at https://github.com/
bryanoliveira/spgym-experiments

Table 1. Million steps to reach 80% success rate across pool
sizes. Lower is better. Best performing variant for each algorithm
and pool size is highlighted in bold.

Agent Pool 1 Pool 5 Pool 10

PPO 1.75±0.44 7.80±1.08 9.73±0.36

PPO + PT (ID) 0.95±0.21 5.55±1.22 9.17±1.10

PPO + PT (OOD) 1.34±0.42 7.03±1.07 9.70±0.41

SAC 0.33±0.07 0.91±0.12 2.03±0.38

SAC + RAD 0.24±0.03 0.42±0.06 0.82±0.18

SAC + CURL 0.46±0.10 1.56±0.31 5.24±1.92

SAC + SPR 2.09±0.81 3.68±1.68 10.00±0.00

SAC + DBC 0.99±0.25 1.12±0.22 2.13±0.41

SAC + AE 1.04±0.24 1.02±0.19 2.01±0.38

SAC + VAE 1.13±0.14 5.30±0.68 10.00±0.00

SAC + SB 0.98±0.88 2.08±0.30 10.00±0.00

DreamerV3 0.42±0.06 1.23±0.20 1.44±0.58

DreamerV3w/o dec. 1.13±0.12 1.79±0.61 2.57±0.91

benefits, though the extent can depend on the pool size.

To explore the potential benefits of leveraging pretrained
encoders in this setup, we evaluated PPO with two types of
pretrained encoders. It is important to acknowledge that di-
rect comparisons of sample efficiency with encoders trained
from scratch can be nuanced, as pretrained encoders have
inherently been exposed to significantly more data during
their pretraining phase. The in-distribution pretrained en-
coder (PT (ID)) for PPO, intended as a proxy to estimate an
approximate upper bound on performance achievable with
pretraining, significantly boosts sample efficiency across all
tested pool sizes, almost matching the performance of PPO
with one-hot observations (see Appendix C.1.1). The out-
of-distribution pretrained encoder (PT (OOD)), designed to
represent the average performance one might expect from
a generally pretrained encoder, offers more modest gains
which also decrease with larger pools.

For SAC, data augmentation via RAD consistently and sub-
stantially improves efficiency across all tested pool sizes,
demonstrating increasing benefits as visual diversity scales.
The improvements are particularly pronounced for larger
pools, making SAC significantly faster at handling visual
diversity. Conversely, many sophisticated auxiliary repre-
sentation learning methods struggle in SPGym. For instance,
CURL, SPR, and VAE variants consistently require more
samples than standard SAC across all tested pool sizes, with
particularly poor performance on larger pools. DBC also
generally underperforms or offers marginal improvements
compared to standard SAC.

DreamerV3 demonstrates particularly strong performance,
consistently outperforming both PPO and SAC variants
across all pool sizes. The full DreamerV3 model shows re-
markably stable performance across different pool sizes, sig-
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Figure 4. Success rate as a function of environment steps. The gradual increase in visual diversity affects the sample efficiency of
standard PPO, SAC, and DreamerV3 agents at different rates. Each line represents a different pool size, from 1 to 100 images.

nificantly better than most other methods. The variant with-
out decoder gradients shows reduced performance across
all configurations, highlighting the importance of the world
model’s discrete reconstruction objective. This suggests that
DreamerV3’s approach of learning a predictive model of the
environment provides a particularly effective foundation for
handling visual diversity in SPGym.

These results highlight SPGym’s value as a diagnostic tool,
effectively distinguishing which approaches can handle its
distinct combination of visual diversity and structured dy-
namics. The benchmark exposes important limitations in
methods that have proven successful in other visual RL do-
mains, suggesting that their underlying assumptions may
not align with SPGym’s unique characteristics. For detailed
performance analysis and hypothesized explanations for
agents behavior, see Appendix C.2.1.

5.2. How does visual diversity affect agents?

Figure 4 exposes critical limitations in current methods.
While all agents eventually degrade with larger image pools,
their failure modes differ. PPO degrades significantly at
pool size 10 and fails at 20. SAC performs well up to pool
size 20, degrades at 30, and fails at 50. DreamerV3 shows
the most robust scaling, learning effectively at pool size 50
and exhibiting learning even at pool size 100.

These distinct degradation patterns suggest differences in
handling increasing visual diversity, potentially due to
agents memorizing features instead of learning general-
izable representations, thus exhausting network capacity.
PPO’s early failure indicates difficulty forming robust rep-
resentations and rapid capacity exhaustion. SAC’s better
performance on medium pools, possibly aided by its replay
buffer and encoder training independent of actor gradients,
suggests stronger initial representation learning. However,
it also faces fundamental limitations, potentially as memo-

rization becomes unsustainable. DreamerV3’s world model
architecture appears to foster more compressed represen-
tations, leading to more graceful degradation, but it too
struggles with very large pools.

Preliminary DreamerV3 experiments with extremely large
image pools (10,000-20,000 images) support this interpreta-
tion: agents failed to learn useful policies as each observa-
tion became virtually unique. This suggests that increased
dataset scale alone is insufficient if the RL signal is too
sparse for encoder training amidst high diversity. These
methods appear to memorize rather than generalize, strug-
gling when network capacity is overwhelmed by unique
inputs. This highlights fundamental limitations of current
methods when facing diverse visuals where assumptions
break and the learning signal is too weak for generalization.

5.3. Can agents generalize to unseen visual inputs?

Our analysis of out-of-distribution (OOD) generalization
capabilities on PPO and SAC agents reveals a stark contrast
between in-distribution and generalization performance. We
evaluate two levels of generalization difficulty: ‘Easy’ OOD,
using augmented versions of training images, and ‘Hard’
OOD, using completely unseen images. Since meaningful
generalization evaluation requires agents that first achieve
competent in-distribution performance, we primarily focus
our OOD analysis on smaller pool sizes (i.e., 1, 5, and 10)
where most methods successfully learn the task.

Despite most agents achieving high success rates on their
training distribution, they exhibit varying degrees of failure
on both generalization challenges. Table 2 illustrates this for
the Easy OOD setting across pool sizes 1, 5, and 10, show-
ing a general decline in OOD performance as training pool
diversity increases. For Easy OOD evaluation, we applied
the augmentations described in Appendix A.3 to training
images and tested PPO and SAC agents across 100 episodes
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Table 2. Success rate of PPO and SAC agents on Easy OOD
across different pool sizes. Higher is better.

Algorithm Pool 1 Pool 5 Pool 10

PPO 0.49±0.13 0.53±0.14 0.34±0.08

PPO + PT (ID) 0.33±0.09 0.53±0.16 0.27±0.07

PPO + PT (OOD) 0.49±0.12 0.52±0.14 0.34±0.08

SAC 0.45±0.12 0.58±0.12 0.46±0.12

SAC + AE 0.78±0.11 0.64±0.16 0.55±0.12

SAC + VAE 0.64±0.15 0.30±0.08 0.12±0.03

SAC + SPR 0.65±0.13 0.21±0.09 0.07±0.04

SAC + DBC 0.44±0.13 0.34±0.13 0.13±0.04

SAC + CURL 0.76±0.09 0.44±0.10 0.37±0.11

SAC + RAD 0.62±0.15 0.42±0.13 0.30±0.11

SAC + SB 0.89±0.08 0.65±0.12 0.06±0.02

for each augmentation type. We observe that while some
SAC variants demonstrate improved robustness to these aug-
mentations compared to base SAC, particularly on pool size
1, this Easy OOD performance generally degrades as the
training pool size increases. We found a strong correlation
(Pearson r=-0.81, p=2.5e-12) between success rates on these
augmented images (Easy OOD) and agents’ in-distribution
sample efficiency, suggesting that representations robust to
simple transformations are tied to faster learning on SPGym.

For Hard OOD evaluation, we test PPO, SAC and Dreamer
agents on 100 episodes using images independently sampled
from the ImageNet-1k validation split, repeating across 5
seeds. Here, agents almost universally fail, achieving near
0% success rates across all methods and training configura-
tions. This stark failure on completely unseen images is a
crucial diagnostic finding, exposing fundamental limitations
of current end-to-end RL methods when faced with visual
inputs that differ substantially from their training distribu-
tion. The complete inability to generalize suggests that what
agents learn to achieve good task performance is primarily
memorization of specific visual patterns rather than learning
generalizable representations.

Intuitively, one might expect training on larger, more diverse
image pools to improve generalization. However, our results
demonstrate that even agents trained on pools of up to 100
images completely fail to transfer skills to novel images
in the Hard OOD setting. Furthermore, performance on
augmented training images often decreases as training pool
size increases. This counter-intuitive result may suggest that
agents trained on smaller, less diverse pools (which are often
more sample efficient) learn representations more attuned to
the specific structural invariances of the task, making them
robust to simple perturbations but not fundamentally general.
The rare non-zero success rates in Hard OOD likely stem
from chance encounters with nearly-solved initial states
rather than genuine generalization.

These findings offer critical insights for developing future
methods. The strong link between Easy OOD robustness
and sample efficiency suggests that encouraging invariance
to simple transformations is beneficial. However, the uni-
versal failure on Hard OOD, and the degradation of Easy
OOD with increasing pool diversity, indicates that current
methods do not learn sufficiently abstract or disentangled
representations. Future research should focus on developing
techniques that not only achieve good sample efficiency but
also explicitly promote generalization to truly novel visual
contexts. This might involve architectures that better sep-
arate visual representation learning from policy learning,
incorporate stronger inductive biases for visual reasoning,
or leverage self-supervised objectives that encourage learn-
ing of more fundamental visual features. Simply increasing
the diversity of training images, as SPGym allows, is insuf-
ficient with current algorithms, highlighting the need for
new approaches to bridge this generalization gap. Full OOD
performance data for both Easy and Hard settings across all
configurations can be found in Appendix C.2.

5.4. Is representation quality linked with performance?

To measure the quality of learned representations, we per-
formed linear probing on frozen encoders from trained PPO
and SAC agents, using a single-layer MLP to predict one-hot
puzzle states. We find a statistically significant correlation
between probe accuracy and sample efficiency (Pearson r=-
0.81, p=1.1e-13), indicating that encoders capturing more
task-relevant spatial information are strongly linked with
faster learning. As image pool size increases, both probe
accuracy and task performance systematically degrade, with
standard SAC maintaining high accuracy (100% at pool size
1, 97.63% at pool size 5) mirroring its strong efficiency,
while less efficient methods like SAC+VAE (78.21% at pool
size 5) and SPR (dropping from 94.31% to 75.48% from
pool size 5 to 10) show reduced probe performance. These
consistent trends across algorithms demonstrate SPGym’s
ability to identify learning procedures that develop represen-
tations better aligned with the task’s spatial reasoning needs.
Full results are provided in Appendix C.1.2.

5.5. Does performance generalize across image sources?

To validate that our findings generalize beyond ImageNet,
we evaluated agents on DiffusionDB (Wang et al., 2023), a
dataset of procedurally generated images. As shown in Fig-
ure 8, performance scaling patterns on DiffusionDB closely
mirror those observed on ImageNet across PPO, SAC, and
DreamerV3. This consistency across fundamentally differ-
ent image sources, real photographs versus synthetic gen-
erations, demonstrates that visual diversity rather than se-
mantic content drives the representation learning challenge
in SPGym. The similarity in degradation patterns as pool
size increases indicates that our algorithmic insights reflect
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fundamental properties of the tested methods rather than
dataset-specific artifacts. Procedurally generated images
also offer practical advantages for future research: elimi-
nating storage requirements through on-demand generation,
enabling fine-grained control over visual similarity, and pro-
viding unlimited training diversity. For a more detailed
analysis, see Appendix A.5.

5.6. How does puzzle size affect learning performance?

Another direction is increasing puzzle size. As shown in
Table 3, the complexity increase from 3× 3 to 4× 4 grids
significantly impacts learning. On the simpler 3 × 3 puz-
zle, PPO solved the puzzle in 1.75M steps, while SAC
and DreamerV3 were more efficient, requiring 0.33M and
0.42M steps, respectively. For the 4 × 4 puzzle, PPO’s
sample requirements surged to 24.46M steps, far exceeding
the 10M step training budget, while SAC and DreamerV3
still solved the puzzle within budget at 8.14M and 2.26M
steps, respectively. This demonstrates that while larger
state spaces pose a major challenge by requiring more ex-
ploration and more complex visual representations, more
sample-efficient algorithms can still scale to harder tasks.

Table 3. Million steps to reach 80% success rate across grid
sizes, with pool size 1. Lower is better.

Grid Size PPO SAC DreamerV3

3×3 1.75±0.44 0.33±0.07 0.42±0.06

4×4 24.46±7.58 8.14±3.64 2.26±0.29

5.7. How optimal are the learned solutions?

While our primary focus is on sample efficiency for task
completion, we also analyze solution quality by examining
the average number of steps agents take to solve puzzles.
Our experimental design uses early termination when agents
achieve 100% success rate to enable out-of-distribution eval-
uation before extreme encoder overfitting and to save com-
putational resources. However, this approach may prevent
agents from discovering more optimal solutions through
continued training. To investigate this trade-off, we trained
PPO, SAC, and DreamerV3 on pool size 1 for the full 10M
steps without early termination across 5 seeds. Comparing
episode lengths between when these agents first achieve
100% success rate (where early termination would occur)
and after completing the full training reveals substantial
improvements in solution efficiency. For PPO, the first 100
successful episodes average 214.30 ± 16.52 steps, while
the last 100 episodes average 31.35 ± 6.59 steps. SAC
shows improvement from 64.16 ± 9.81 to 57.27 ± 12.29
steps, and DreamerV3 improves from 126.02 ± 17.25 to
23.48 ± 0.71 steps. Notably, DreamerV3 with continued
training approaches the theoretical 22-step average optimal
solution (Reinefeld, 1993). This confirms that early termina-

tion, while needed for our experimental objectives, prevents
agents from discovering more optimal solutions through
continued training.

6. Conclusion
We introduce the Sliding Puzzles Gym (SPGym), a novel
benchmark designed to systematically evaluate representa-
tion learning in RL algorithms by isolating visual complex-
ity from environment dynamics. Our analysis reveals three
fundamental tensions in visual RL that challenge current
methods. First, many sophisticated representation learning
techniques struggle with SPGym’s unique combination of
visual diversity and structured spatial reasoning, with auxil-
iary objectives often underperforming compared to simpler
approaches like data augmentation. Second, we uncover a
complex relationship between sample efficiency and gener-
alization, where agents trained on smaller pools often learn
representations more attuned to task-specific invariances,
making them paradoxically more robust to simple pertur-
bations. Most critically, we expose severe limitations in
current end-to-end RL methods through their universal fail-
ure on completely novel visual contexts, achieving near-zero
success rates despite strong in-distribution performance – re-
vealing that learned representations rely primarily on mem-
orization rather than genuine visual understanding. These
findings highlight the need for fundamental algorithmic ad-
vances that effectively balance sample efficiency with true
visual generalization.

Limitations. We identify two key limitations in this work.
First, our objective was to evaluate out-of-the-box perfor-
mance of all methods with minimal tuning, which means
we may not have seen the true peak capabilities of each
approach. Second, computational constraints limited us to 5
independent runs per configuration. Given the high stochas-
ticity in sampled image pools, more seeds would provide
better statistical robustness for comparing methods.

Future work. SPGym opens several promising research
directions for developing representation learning methods
that can bridge the generalization gap while maintaining
sample efficiency. The benchmark’s controlled nature en-
ables systematic investigation of the trade-offs between
training diversity and generalization capability, while its
easy integration with external image generation systems al-
lows controlled experiments with varying degrees of visual
similarity. Beyond images, SPGym supports incorporating
other modalities as puzzle observations, enabling research
on leveraging powerful pretrained models as representation
encoders. We believe these directions would help develop
more robust learning approaches that transfer effectively
across different domains and modalities.
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Impact Statement
This work advances our understanding of how visual rep-
resentation learning affects reinforcement learning perfor-
mance and generalization. The insights gained could in-
fluence the development of more robust and efficient RL
systems for real-world applications. However, several po-
tential impacts warrant consideration:

Positive impacts: By exposing limitations in current meth-
ods, our benchmark may help direct research toward more
reliable and generalizable RL systems. This could acceler-
ate progress in areas like robotics and autonomous systems
where visual understanding is crucial. The benchmark’s
controlled nature also promotes more rigorous evaluation
practices in RL research.

Negative impacts: As with any machine learning bench-
mark, there is a risk of overfitting to our specific evaluation
criteria rather than addressing fundamental challenges. Ad-
ditionally, improved visual RL capabilities could enable
automation that displaces human workers or enable surveil-
lance applications if misused.

Mitigations: We have open-sourced our benchmark and
evaluation protocols to promote transparency and repro-
ducibility. We encourage future work to consider both per-
formance metrics and broader societal implications when
building on our findings. Researchers should carefully con-
sider potential dual-use applications and implement appro-
priate safeguards when deploying systems based on these
techniques.
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A. Experimental Setup and Configuration
A.1. Model Architectures

We base our implementations on CleanRL’s Atari agents for both PPO and SAC, with minor architectural modifications
including additional normalization layers and increased network depth to approximate our SAC implementation to the one
used by Tomar et al. (2023). The architectures are detailed below.

For PPO agents:

SharedEncoder(
(encoder): Sequential(

(0): Conv2d(3, 32, kernel_size=(8, 8), stride=(4, 4))
(1): ReLU()
(2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, stats=True)
(3): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
(4): ReLU()
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(8): Flatten(start_dim=1, end_dim=-1)

)
(projection): Sequential(

(0): Linear(in_features=3136, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): Tanh()

)
)
Actor(

(encoder): SharedEncoder
(mlp): Linear(in_features=512, out_features=4, bias=True)

)
Critic(

(encoder): SharedEncoder
(mlp): Linear(in_features=512, out_features=1, bias=True)

)

For SAC agents:

SharedEncoder(
(encoder): Sequential(

(0): Conv2d(3, 32, kernel_size=(8, 8), stride=(4, 4))
(1): ReLU()
(2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, stats=True)
(3): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
(4): ReLU()
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(8): Flatten(start_dim=1, end_dim=-1)

)
)
Actor(

(encoder): Encoder(
(shared_encoder): SharedEncoder
(projection): Sequential(

(0): Linear(in_features=3136, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): Tanh()

)
)
(mlp): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
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(3): Linear(in_features=512, out_features=4, bias=True)
)

)
Critic(

(encoder): Encoder(
(shared_encoder): SharedEncoder
(projection): Sequential(

(0): Linear(in_features=3136, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): Tanh()

)
)
(mlp): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Linear(in_features=512, out_features=4, bias=True)

)
(mlp): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Linear(in_features=512, out_features=4, bias=True)

)
)

For the representation learning methods, we maintain the same base architecture and use a consistent MLP structure (2 layers
with ReLU activation) for the projector, predictor, transition and reward models. The decoder architecture is as follows:

ImageDecoder(
(decoder): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Linear(in_features=512, out_features=3136, bias=True)
(4): Unflatten(dim=1, unflattened_size=(3, 7, 7))
(5): ConvTranspose2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
(6): ReLU()
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(8): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2))
(9): ReLU()
(10): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, stats=True)
(11): ConvTranspose2d(32, 3, kernel_size=(8, 8), stride=(4, 4))
(12): Sigmoid()

)
)

For DreamerV3 agents, we use the same base 12M architecture as the one used by Hafner et al. (2025). Appendix A.2
contains the specific hyperparameters used in our experiments.

A.2. Hyperparameters

Table 5, Table 6, and Table 7 list hyperparameters used across all experiments, unless noted otherwise. For DreamerV3, we
adopted hyperparameters from (Hafner et al., 2025), modifying only the decoder loss scale (set to 0) for the version without
decoder. Table 8 lists hyperparameters for representation learning methods and components. We use a separate optimizer for
the representation learning gradient flow, and we adopt a higher learning rate. When using representation learning methods,
we update the target network’s encoder faster, with an EMA τ of 0.025. When using a crop augmentation, we set the image
size to 100 and crop it back to 84.
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Table 4. Benchmark settings

Parameter Value

Max steps 10M
Puzzle size 3x3
Action space discrete
Variation image
Render size 100x100 (for crop augmentation)

84x84 (otherwise)
Dataset ImageNet-1k validation split

Table 5. Hyperparameters for PPO

PPO Parameter Value

Input image size 84x84
Env instances 64
Optimizer Adam
Learning Rate (LR) 2.5e-4
LR annealing yes
Adam ϵ 1e-5
Num. steps 16
Num. epochs 4
Batch size 64
Num. minibatches 4
γ 0.99
GAE λ 0.95
Advantage normalization yes
Clip coef. 0.1
Clip value loss yes
Value function coef. 0.5

Table 6. Hyperparameters for SAC

SAC Parameter Value

Input image size 84x84
Env instances 64
Optimizer Adam
Learning rate 3e-4
Replay buffer capacity 3e5
Batch size 4096
Warmup steps 2e4
γ 0.99
Policy update frequency 2
Fixed α temperature 0.05
Target network update frequency 1
Target Q functions EMA τ 0.005
Target encoder EMA τ 0.005 (standard)

0.025 (otherwise)
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Table 7. Hyperparameters for DreamerV3

DreamerV3 Parameter Value

Input image size 80x80
Env instances 16
Model size 12M
RSSM deterministic size 2048
RSSM hidden size 256
RSSM classes 16
Network depth 16
Network units 256
Replay buffer capacity 5e5
Replay ratio 32
Action repeat 1
Learning rate 4e-5
Batch size 16
Batch length 64
Imagination horizon 15
Discount horizon 333
Decoder loss scale 1 (standard)

0 (no decoder)

Table 8. Hyperparameters for Representation Learning Methods and Components

Method Hyperparameter Value

General Learning rate 1e-3
Loss coefficient 1.0

Transition and reward models
Min sigma 1e-4
Max sigma 10
Probabilistic no

SAC-AE Latent space decay weight 1e-6
Decoder decay weight 1e-7

SAC-VAE Variational KL weight β 1e-7

CURL
Temperature 0.1
Positive samples temporal/augmented
Augmentations crop

RAD
Augmentations crop

channel shuffle
color jitter

SPR Horizon H 5
Augmentations crop

A.3. Augmentation Strategies

We evaluated several image augmentations in our preliminary experiments, as described in Appendix A.4.2. These
augmentations are illustrated in Figure 5, and are as follows:

• No augmentation: The image is fed as is to the agent.

• Crop: Randomly crops a portion of the image and resizes it back to the original dimensions. This helps learn translation
invariance by forcing the agent to recognize patterns regardless of their position in the frame.
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Figure 5. Example of image augmentations. The top left image shows the original observation, and the subsequent images show the
observation after each augmentation procedure is independently applied.

• Grayscale: Converts the RGB image to grayscale by averaging across color channels. This reduces the visual
complexity and helps the agent focus on structural features rather than color information.

• Channel Shuffle: Randomly permutes the RGB color channels. This encourages the agent to be invariant to color
transformations while preserving the image structure.

• Shift: Translates the image by a small random amount in both horizontal and vertical directions. Similar to crop, this
promotes translation invariance in the learned representations.

• Inversion: Inverts the pixel values by subtracting them from the maximum possible value (255 for 8-bit images). This
teaches the agent to recognize patterns independent of absolute intensity values.

• Color Jitter: Applies random color variations to the image, including brightness, contrast, saturation, and hue. This
helps the agent to be invariant to color transformations while preserving the image structure.

After extensive experimentation, we found that the combination of grayscale and channel shuffle consistently produced the
best results. This combination effectively reduces visual complexity while maintaining important structural information. We
adopted this augmentation pair as the standard for all our agents that use augmentation techniques.

A.4. Preliminary Experiments and Design Rationale

A.4.1. HYPERPARAMETER SELECTION PROCESS
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Figure 6. Performance comparison of different α values for SAC
agents on pool size 1. Fixed α = 0.05 outperforms automatic tuning
approaches across different learning rates.

For SAC agents, the entropy coefficient α significantly
impacts performance (Haarnoja et al., 2018a). While
Haarnoja et al. (2018b) proposed automatic tuning (au-
totune) based on policy entropy, we found this approach
ineffective for SPGym, even with various learning rates
(LRs). Through systematic Hyperband (Li et al., 2018)
sweeps over pools of size 1, we identified α = 0.05 as
optimal (Figure 6). This value provides a good balance be-
tween exploration and exploitation, allowing the agent to
efficiently learn the puzzle mechanics while maintaining
enough randomness to discover new solutions.

PPO and DreamerV3 agents proved more robust to hy-
perparameter choices, performing well with their default
configurations. This robustness is particularly valuable in
our benchmark setting, as it suggests these algorithms can
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adapt to new tasks without extensive tuning. Complete
hyperparameter settings are provided in Appendix A.2.

A.4.2. DATA AUGMENTATION ANALYSIS AND CHOICE

Building on insights from Laskin et al. (2020a) that environment-specific invariances influence optimal augmentation
strategies, we systematically evaluated augmentation pipelines for RAD, CURL, and SPR in SPGym. Our analysis focused
on sample efficiency to maintain consistency with our core experimental objectives. We tested the five augmentation
techniques detailed on Appendix A.3 on pools of 5 images, which offered a good balance between task complexity and
convergence speed. For SPR, specifically, we also experimented with shift + color jitter, as suggested by Schwarzer
et al. (2020). Across all algorithms, our experiments consistently converged to a simple two-stage augmentation process:
probabilistic grayscale conversion (with 20% chance) followed by channel shuffling (Figure 7). This pipeline’s effectiveness
likely stems from its ability to simultaneously reduce visual complexity through grayscale conversion while introducing
beneficial stochasticity via channel shuffling, with both transformations preserving critical structural information while
preventing overfitting to specific color patterns. We adopted this augmentation combination for all subsequent experiments.
While our current evaluation focused on sample efficiency, investigating how different augmentation strategies affect
generalization remains an important direction for future work.

A.5. Dataset Analysis and Choice

Our choice of ImageNet-1k as the primary dataset for SPGym was motivated by several key considerations. First,
ImageNet provides a diverse set of real-world images that challenge agents to learn generalizable visual representations.
We hypothesized that real-world images would provide unique insights related to representation learning that should be
applicable to other domains beyond the puzzle proposed in SPGym, as they contain the complex visual patterns and
structures that agents encounter in practical applications. However, as shown in Figure 8 and in comparison to Figure 4, the
performance scaling patterns we observe on ImageNet closely mirror those on DiffusionDB, suggesting that our findings are
not specific to a particular dataset but rather reflect fundamental properties of the algorithms being tested.

The similarity in scaling behavior between ImageNet and DiffusionDB is particularly noteworthy because these datasets
differ substantially in their composition and generation process. While ImageNet consists of real photographs, DiffusionDB
contains synthetic images generated by text-to-image models. The consistent performance patterns across these datasets
suggest that our results capture fundamental algorithmic behaviors rather than dataset-specific artifacts.

Our demonstration with DiffusionDB reveals promising directions for future work with procedurally generated datasets.
As shown in our analysis, agents perform similarly on ImageNet and DiffusionDB, suggesting that visual diversity rather
than semantic content drives difficulty. Procedurally generated images offer several compelling advantages worth further
investigation: they eliminate the need for large image storage by generating unique images on demand for each episode,
enable fine-grained control over the generalization challenge by gradually increasing visual differences between generated
images, and provide virtually unlimited training data diversity. These capabilities could enable more systematic studies of
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Figure 7. Comparative analysis of data augmentation strategies. Results show performance of SAC with RAD, CURL and SPR on
5-image pools. Grayscale conversion and channel shuffling emerge as the most effective combination, significantly outperforming other
augmentation strategies.
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Figure 8. Performance scaling with DiffusionDB images. Success rates for PPO, SAC, and DreamerV3 agents across different pool
sizes (1, 5, and 10) using DiffusionDB images. The performance patterns closely mirror those seen with ImageNet (Figure 4). Shaded
regions represent 95% confidence intervals across 5 independent seeds.

visual generalization in reinforcement learning.

This cross-dataset consistency strengthens our confidence in the generalizability of our findings. It indicates that the relative
performance of different representation learning methods is driven more by their core assumptions and architectural choices
than by the specific characteristics of the training data. This is particularly important for our goal of understanding how
different approaches handle increasing visual diversity, as it suggests our conclusions may extend to other domains beyond
the specific datasets used in our experiments.

A.6. Hardware Setup and Runtime

Our hardware setup consists of an AMD Ryzen 7 3700X CPU, an NVIDIA RTX 3090 GPU, 64GB of RAM, and 128GB of
swap space. Using this configuration, DreamerV3 experiments take approximately 20 hours per run, primarily because of
the heavy use of swap space for replay buffers, which must store hundreds of thousands of images in memory. SAC takes
between 2 (e.g. standard, RAD) to 11 hours (e.g. SPR, SB) depending on the representation learning components used.
For SAC, the longer runtimes are due to the number of sequential inference steps required to train the agent and auxiliary
networks. PPO experiments are significantly faster, with the longest runs completing in about 1 hour and 30 minutes.

B. Algorithms and Variations
We describe the algorithms and their variations used in this work in detail. Our experiments employ three main algorithms –
PPO, SAC, and DreamerV3 – each with different representation learning approaches. We focus particularly on how these
methods process and learn from visual observations, as this is crucial for performance in our benchmark.

B.1. Pretraining and PPO

Drawing inspiration from previous work on pretraining methods in RL (Higgins et al., 2017; Stooke et al., 2021; Schwarzer
et al., 2021), we implement a pretraining approach for PPO that focuses on learning task-relevant visual representations. The
pretraining process involves training a PPO agent to completion on a single environment instance, then extracting its CNN
weights. These pretrained weights are then used to initialize new PPO agents, while all other network components (policy
and value networks) start from random initialization. We evaluate two scenarios: in-distribution (ID), where new agents are
trained on the same pool of images used during pretraining, and out-of-distribution (OOD), where a different image pool is
sampled. The ID setting represents an upper bound on what pretraining can achieve with perfect visual alignment, while the
OOD setting reflects the more realistic scenario of deploying pretrained encoders on novel visual inputs, similar to how
general-purpose pretrained models would be used in practice.
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B.2. Data Augmentation and RAD

Reinforcement Learning from Augmented Data (RAD) (Laskin et al., 2020a) represents a simple yet effective approach to
visual representation learning in RL. The key insight is that applying data augmentation to observations can improve sample
efficiency by exposing the agent to transformed versions of experienced states. This creates an implicit regularization effect
that helps learn more robust representations.

In our implementation, we combine RAD with SAC and apply data augmentation consistently during both policy updates
and value function learning. These augmentations are applied to observations sampled from the replay buffer before being
processed by the encoder network. The augmentation pipeline consists of two key transformations identified through our
preliminary experiments (Appendix A.4.2): grayscale conversion and channel shuffling. Following the SPR approach
(Schwarzer et al., 2020), we apply augmentations independently to each transition after sampling batches from the replay
buffer, meaning that samples from the same episode may be augmented differently. We detail how each augmentation
procedure is implemented in Appendix A.3.

B.3. Contrastive Learning and CURL

Contrastive learning methods learn representations by maximizing similarity between different views of the same observation
while minimizing similarity to other observations. In the context of RL, CURL (Laskin et al., 2020b) applies this principle
by using data augmentation to create positive pairs, enabling agents to learn invariant representations. The method achieves
this by applying random crops to observations and treating differently augmented views of the same observation as positive
pairs.

The contrastive loss for a positive pair of observations (x, x+) and a set of negative examples {x−
i } is formulated as:

LCURL = − log
exp(fθ(x)

T fθ(x
+)/α)

exp(fθ(x)T fθ(x+)/α) +
∑
i exp(fθ(x)

T fθ(x
−
i )/α)

, (3)

where α is a temperature parameter and fθ is the encoder function.

In our implementation, we combine CURL with SAC and use the same augmentation strategy identified in Appendix A.3
(grayscale conversion and channel shuffling) rather than the random crops from the original CURL paper. The encoder is
trained jointly with the RL objective, allowing the representations to adapt to both the contrastive learning task and the
control problem. Negative examples are drawn from other observations within the same batch, providing a computationally
efficient way to obtain contrastive pairs without requiring additional memory storage.

B.4. State Metrics and DBC

Deep Bisimulation for Control (DBC) (Zhang et al., 2021) takes a different approach to representation learning by focusing
on behavioral similarity between states rather than visual similarity. The key idea is to learn an encoder that maps states to a
representation space where distances reflect how similarly states behave in terms of rewards and transitions, rather than how
visually similar they appear.

Given pairs of observations (xi, xj), DBC trains an encoder fθ to minimize:

J(ϕ) =
(
∥ẑi − ẑj∥1 − |ri − rj | − γW2(P̂(·|z̄i, ai), P̂(·|z̄j , aj))

)2

, (4)

where ẑi = fθ(xi) represents the encoded state, z̄i = sg(fθ(xi)) is the stop-gradient version of the encoding, and P̂ is a
probabilistic transition model that predicts the next state distribution. The W2 term represents the 2-Wasserstein distance
between predicted transition distributions, which for Gaussian distributions has a closed-form solution (Zhang et al., 2021).

In our implementation, we combine DBC with SAC, jointly training the encoder with both the bisimulation objective and
the RL objective. The transition model operates in latent space, predicting Gaussian distributions over next states. This
approach helps the agent learn representations that capture behaviorally meaningful features while ignoring visual distractors
that don’t affect the game dynamics. Unlike methods that rely on data augmentation or reconstruction, DBC’s focus on
behavioral similarity makes it particularly suited for environments where visually different states might require similar
actions.

20



Sliding Puzzles Gym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

B.5. Reconstruction-Based Methods and SAC-AE/VAE

Reconstruction-based methods learn representations by training an encoder-decoder architecture to compress and reconstruct
observations. We evaluate two variants combined with SAC: SAC-AE using a deterministic autoencoder and SAC-VAE
using a variational autoencoder (Yarats et al., 2021b).

For SAC-AE, given an observation x from the replay buffer, we train an encoder fθ and decoder gϕ to minimize:

LRAE = Ex∼D
[
∥x− gϕ(fθ(x))∥2 + λz∥fθ(x)∥22 + λϕ∥ϕ∥22

]
, (5)

where λz and λϕ are regularization coefficients that help prevent representation collapse and overfitting respectively (Ghosh
et al., 2020).

For SAC-VAE, we replace the deterministic encoder with a probabilistic encoder qψ that outputs a distribution over latent
states. The training objective becomes:

LV AE = Eqψ(ẑ|x)[log gϕ(x|ẑ)]− βDKL(qψ(ẑ|x)∥N (0, 1)), (6)

where β controls the trade-off between reconstruction quality and latent space regularization.

In both variants, we train the encoder jointly with the SAC objective, allowing the representations to adapt to both
reconstruction and control tasks. The encoded states are used as inputs to the policy and value networks. Unlike methods
that rely on data augmentation or behavioral similarity, these approaches learn representations by explicitly modeling the
visual structure of observations through reconstruction.

B.6. World Models and DreamerV3

World models learn to predict future states and outcomes by learning a compact latent representation of the environment.
DreamerV3 (Hafner et al., 2025) represents the state-of-the-art in world model-based reinforcement learning, employing an
online encoder fθ that maps observations xt into latent states ẑt. A recurrent dynamics model hω operates in this latent
space to predict future states conditioned on actions, while a reward predictor estimates immediate rewards.

The model is trained using multiple objectives that create a multi-task learning pressure. The encoder and a corresponding
decoder are trained to reconstruct observations, ensuring the latent space captures relevant visual features. The dynamics
model is trained to predict future latent states that lead to accurate reconstructions of future observations. This temporal
consistency objective forces the representations to be predictive of future states while supporting reconstruction and control.

DreamerV3 introduces several innovations for stable representation learning, including KL balancing to maintain informative
latent states and symmetric cross-entropy loss for better gradients. Unlike methods focused solely on visual similarity,
world models must learn representations that serve multiple purposes – capturing visual features, encoding dynamics, and
providing a suitable space for policy learning. We refer readers to Hafner et al. (2025) for implementation details.

B.7. Temporal Consistency Methods

Several methods leverage temporal consistency in the environment to learn better representations. These approaches are
based on the principle that a good representation should not only capture the current state but also be predictive of future
states and outcomes.

B.7.1. SELF-PREDICTIVE REPRESENTATIONS (SPR)

SPR (Schwarzer et al., 2020) represents a non-contrastive approach that learns by predicting future latent states. Given a
sequence of states and actions (xt:t+K , at:t+K) from the replay buffer, where K is the prediction horizon, SPR employs:

• An online encoder fθ that maps observations to latent states: ẑt = fθ(xt)

• A target encoder fθ′ providing stable training targets, updated via exponential moving average

• An action-conditioned transition model hω that predicts future latent states: ẑt+k+1 = hω(ẑt+k, at+k)

• Projection networks pξ, pξ′ and prediction head wζ that transform representations for the prediction task
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The model generates predictions ŷt+k = wζ(pξ(ẑt+k)) and compares them to target projections ỹt+k = pξ′(z̃t+k) using a
cosine similarity loss:

LSPR = −
K∑
k=1

(
ỹt+k

∥ỹt+k∥2

)T (
ŷt+k

∥ŷt+k∥2

)
(7)

B.7.2. SIMPLE BASELINE METHOD

Tomar et al. (2023) take a minimalist approach to temporal consistency by combining two predictive objectives: reward
prediction and transition prediction. We refer to this approach as the Simple Baseline (SB) method. While originally
intended as a baseline, it demonstrates the effectiveness of basic temporal prediction for representation learning.

The method augments standard RL algorithms with two predictive components in latent space:

• A transition model hω that predicts the next encoded state

• A reward predictor hreward that estimates immediate rewards

The transition loss Ldyn measures the mean squared error between predicted and actual next encoded states, while the reward
loss Lreward measures the error in reward predictions. These predictive losses are combined with the standard RL objective:

Ltotal = LRL + Lreward + Ldyn (8)

In our implementations, we combine both SPR and SB with SAC. For SPR, we apply the augmentation strategy identified in
Appendix A.3 before encoding observations. Both methods operate entirely in latent space, avoiding the computational cost
of pixel-space reconstruction while leveraging temporal structure to learn meaningful representations.

C. Supplementary Analyses and Results
C.1. Representation Learning Analysis

We further evaluate SPGym’s representation learning assessment capabilities through two analyses: (1) comparing raw pixel
vs. ground-truth state learning, and (2) linear probes of learned representations.

C.1.1. STATE-BASED VS. IMAGE-BASED OBSERVATIONS

To establish a baseline and understand the impact of the visual representation challenge, we trained PPO, SAC, and
DreamerV3 agents using SPGym’s one-hot encoding variation. These one-hot vectors represent the ground-truth puzzle
state, identical to the targets used for our linear probes (see Appendix C.1.2). We compared their sample efficiency (steps to
80% success, averaged over 5 seeds) against their image-based counterparts. For PPO and SAC agents processing one-hot
vectors, CNN encoders were replaced with 2-layer MLPs. DreamerV3 utilized its default non-image encoder, a 3-layer MLP.
Hyperparameters were kept consistent with image-based experiments, without specific tuning for the one-hot setting.

Table 9. Steps to 80% success on one-hot vs. image-based observations. Lower is better. ‘-’ indicates experiments were not run for that
specific configuration due to computational constraints.

Algorithm Grid Size One-hot Image (Pool 1) Image (Pool 5)

PPO 3x3 661.69k±81.44k 1.75M±444.81k 7.80M±1.08M
4x4 12.29M±467.84k 24.46M±7.58M -

SAC 3x3 672.51k±63.10k 334.26k±67.47k 907.21k±116.20k
4x4 5.09M±463.14k 8.14M±3.64M -

DreamerV3 3x3 834.86k±61.10k 417.09k±55.03k 1.23M±199.49k
4x4 3.68M±436.97k 2.26M±287.23k 5.81M ± 2.17M

The results in Table 9 offer several insights. For PPO (both grid sizes) and SAC (4x4 grid), learning directly from ground-
truth one-hot states is more sample efficient than learning from images. This is expected, as the one-hot encoding removes
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the burden of representation learning from pixels. The instances where image-based agents (SAC and DreamerV3 on 3x3
grid, pool 1) converged faster than their one-hot counterparts might be attributed to differences in network architectures
(MLP vs. CNN/Transformer backbones) and the absence of specific tuning for the one-hot setting.

Crucially, the one-hot encoding setting presents a fixed, minimal representation learning challenge. In contrast, SPGym’s
image-based variations allow for a systematic scaling of the visual diversity challenge by increasing the image pool size (e.g.,
Pool 1 vs. Pool 5 vs. Pool 10, etc., see Appendix C.2). Across all agents and grid sizes, increasing visual diversity from pool
size 1 to pool size 5 (and beyond) consistently increases sample complexity. This demonstrates SPGym’s ability to isolate
and stress the visual representation learning component, as the underlying task dynamics remain constant. This controlled
evaluation reveals limitations in how effectively different RL agents learn representations under scalable visual diversity,
insights not apparent from the one-hot setting alone. While perfect disentanglement of representation learning from policy
learning is challenging in end-to-end training, SPGym provides a valuable framework for structured, comparative evaluation
of visual representation learning capabilities in RL.

C.1.2. LINEAR PROBE ANALYSIS

To directly assess the quality of learned visual representations, we conducted linear probing experiments. For each trained
PPO and SAC agent, we froze its encoder and trained a single-layer MLP classifier on top of the features extracted by it
until convergence. The classifier’s task was to predict the one-hot encoded ground-truth puzzle state corresponding to the
input image. This setup allows us to quantify how much task-relevant spatial information is captured by the agent’s encoder.
High probe accuracy indicates the encoder has learned features that are linearly separable with respect to the underlying
game state.

Our analysis reveals several key insights. First, we find a strong, statistically significant correlation between linear probe
accuracy and agent sample efficiency (Pearson r=-0.81, p=1.1e-13), with higher probe accuracy being highly predictive of
fewer environment steps required to reach 80% success. This suggests that agents whose encoders capture more task-relevant
spatial information tend to learn the task more efficiently.

Second, examining probe accuracies across pool sizes and algorithms further clarifies this relationship. As image pool
size increases, both probe accuracy and task performance systematically degrade, isolating the effect of visual diversity
on representation learning. For example, standard SAC maintains high probe accuracy (100% at pool size 1, 97.63% at
pool size 5), mirroring its strong sample efficiency. In contrast, methods with lower sample efficiency show reduced probe
performance: SAC+VAE achieves only 78.21% probe accuracy at pool size 5, while SAC+RAD reaches 98.66%. Other
representation learning methods that underperform standard SAC, such as SPR and DBC, also exhibit declining probe
accuracy as pool size increases (e.g., SPR drops from 94.31% at pool size 5 to 75.48% at pool size 10).

These trends indicate that different algorithms develop representations with varying alignment to the spatial reasoning
demands of the task. The consistent link between probe accuracy and sample efficiency across diverse methods suggests that
SPGym can help identify which learning procedures lead to representations that better support task performance.

Full linear probe accuracy data for all agents and pool sizes are presented in Table 10 below. Comprehensive performance
metrics, including the sample efficiency data used in the correlation analysis, can be found in Appendix C.2.

C.2. Detailed Performance Analysis

This section provides comprehensive analysis of algorithmic performance in SPGym, examining how different representation
learning approaches handle increasing visual diversity. We present detailed learning curves showing the training dynamics
of each method, along with quantitative performance metrics across varying pool sizes.

The analysis includes detailed algorithmic variant analysis explaining why certain methods succeed or fail, and com-
prehensive performance curves for PPO (Figure 10), SAC (Figure 11), and DreamerV3 (Figure 12). Tables 11 to 13
provide quantitative metrics per pool size (Pool) including sample efficiency (Steps), and episode length (Length), across
algorithms and variants. Tables 11 and 12 also include in-distribution and out-of-distribution success rates (ID Success,
OOD Easy, OOD Hard), which were not computed for DreamerV3 due to complexities in the original codebase. The rare
non-zero success rates in Hard OOD likely stem from chance encounters with nearly-solved initial states rather than genuine
generalization.
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Table 10. Linear probe accuracy (%) for each agent and pool size. Accuracy of the linear probe indicates linearly separable features
capturing task-relevant spatial information. There is a statistically significant correlation between probe accuracy and agent sample
efficiency (steps to 80% success).

Agent Pool Size Steps (M) Linear Probe Accuracy (%)

PPO

1 1.75±0.44 99.81±0.14
5 7.80±1.08 96.42±1.06
10 9.73±0.36 87.84±1.40
20 10.00±0.00 66.97±5.28

PPO+PT(ID)
1 0.95±0.21 99.81±0.12
5 5.55±1.22 96.83±0.61
10 9.17±1.10 89.54±0.95

PPO+PT(OOD)
1 1.34±0.42 99.59±0.33
5 7.03±1.07 95.68±0.77
10 9.70±0.41 88.90±1.11

SAC

1 0.33±0.07 100.00±0.00
5 0.91±0.12 97.63±0.68
10 1.65±0.31 93.34±0.48
20 4.52±1.43 80.74±6.31
30 9.23±0.96 66.69±8.41
50 10.00±0.00 55.52±0.09

SAC+RAD
1 0.24±0.03 99.99±0.01
5 0.42±0.06 98.66±0.20
10 0.82±0.18 89.74±0.73

SAC+CURL
1 0.46±0.10 99.98±0.03
5 1.56±0.31 97.14±0.17
10 5.24±1.92 89.47±1.23

SAC+SPR
1 2.09±0.81 99.99±0.01
5 3.68±1.68 94.31±0.24
10 10.00±0.00 75.48±1.82

SAC+DBC
1 0.44±0.04 100.00±0.00
5 0.99±0.25 94.26±1.19
10 10.00±0.00 76.59±5.82

SAC+AE
1 0.42±0.09 100.00±0.00
5 1.04±0.24 95.52±4.56
10 2.03±0.38 88.66±1.88

SAC+VAE
1 1.13±0.14 99.66±0.06
5 5.30±0.68 78.21±2.35
10 10.00±0.00 64.76±0.11

SAC+SB
1 0.98±0.88 99.90±0.03
5 2.08±0.30 96.69±1.08
10 10.00±0.00 81.93±6.06
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C.2.1. ANALYSIS OF ALGORITHMIC VARIANTS

Our preliminary analysis of algorithmic variants suggests how method assumptions may influence effectiveness in SPGym.
PPO with in-distribution pretraining (PT (ID)) significantly boosts sample efficiency across all pool sizes, though this
advantage diminishes at pool size 10. Out-of-distribution pretraining (PT (OOD)) offers more modest gains that also decrease
with larger pools, suggesting limited transfer from general-purpose pretrained encoders. For SAC, data augmentation
via RAD consistently improves efficiency across all pool sizes, with particularly pronounced benefits for larger pools.
Conversely, many sophisticated auxiliary methods struggle: CURL, SPR, and VAE variants consistently require more
samples than standard SAC, with particularly poor performance on larger pools. DBC and AE generally underperform or
offer marginal improvements. DreamerV3 demonstrates particularly strong performance, consistently outperforming both
PPO and SAC variants across all pool sizes with remarkably stable performance. The variant without decoder gradients
shows reduced performance, highlighting the importance of the reconstruction objective and suggesting that learning a
predictive environment model provides an effective foundation for handling visual diversity. We now provide more detailed
hypotheses for these behaviors.

Pretraining. As shown in Figure 10, pretraining provides clear benefits for PPO, especially with larger pools. While in-
distribution pretraining provides strong gains, almost matching the performance of PPO with one-hot-based observations (see
Section C.1.1), this represents an optimistic upper bound since real-world scenarios rarely permit task-specific pretraining.
Interestingly, out-of-distribution pretraining also shows benefits compared to random initialization (90% vs 86% success
at pool size 5), suggesting some transfer of useful visual features from the pretrained encoder. This indicates that even
general-purpose pretrained encoders can provide a helpful initialization for RL tasks, though not matching the performance
of task-specific pretraining.

Data augmentation. RAD succeeds by enforcing spatial invariances through grayscale+channel shuffling, preserving
structural relationships critical for puzzle solving while adding beneficial stochasticity. Its weak assumptions make
it robust across diversity levels, maintaining strong and consistent performance across pool sizes through this simple
augmentation-based approach.

Contrastive learning. CURL underperforms as instance discrimination may prioritize whole-image features over tile-level
details needed for puzzle solving. This suggests contrastive learning’s focus on global image similarity may not align well
with the local spatial reasoning required for puzzle solving.

State similarity learning. DBC fails possibly because its core assumption – that states with similar dynamics should have
similar representations – breaks down in two ways: identical puzzle states appear radically distinct between episodes with
different sampled images, while different states can share visual patterns due to being from the same episode or having the
same base image.

Temporal consistency. While the environment’s underlying dynamics are deterministic, temporal consistency methods
such as SPR and SB face three key challenges: (1) The visual manifestation of state transitions varies dramatically between
episodes due to different base images, forcing the encoder to learn position-invariant representations that capture tile
relationships rather than visual content – a difficult disentanglement problem. (2) The assumption of smooth latent space
transitions is violated by the discrete nature of tile movements, where single actions induce significant changes in both
visual appearance and puzzle state. (3) Most crucially, these methods must simultaneously learn two competing objectives:
temporal predictability in latent space (for transition modeling) and visual discriminability (for representation learning). This
creates a conflict where features useful for predicting latent transitions (tile positions) are obscured by visually salient but
dynamically irrelevant image content. SPR’s prediction horizon mechanism exacerbates this by compounding representation
errors through multiple latent transition steps. Similarly, SB’s transition/reward prediction suffers because the latent space
conflates visual features with positional information – while rewards depend solely on tile positions, the visual diversity in
observations provides no direct positional cues. The same absolute position (e.g., top-left corner) shows completely different
visual content each episode, making position-aware latent representations particularly difficult to learn.

Reconstruction-based learning. The success of DreamerV3’s decoder highlights the value of the discrete reconstruction
loss in learning useful representations for SPGym. In contrast, simple autoencoders (AE) offer little benefit for SAC, and
variational autoencoders (VAE) hurt performance possibly because their continuous latent space assumptions conflict with
SPGym’s discrete state transitions.
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These findings align with observations from Tomar et al. (2023), who noted that many representation learning methods
underperform or fail completely when tested outside their original domain. We note that our evaluation focused on using
each algorithm’s suggested hyperparameters for visual RL with discrete actions, aiming to assess their out-of-the-box
performance. The results may not reflect the best possible performance achievable through extensive hyperparameter tuning.
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Table 11. Performance metrics for PPO agents across image pool sizes. ‘Steps’ indicates the number of environment steps (in millions)
required to reach 80% success rate during training. ‘ID Success’ shows the final success rate at the end of 10M training steps when
evaluating on the same pool used during training. ‘OOD Easy’ shows the success rate when evaluated on 100 unseen images from the
‘Easy’ distribution. ‘OOD Hard’ shows the success rate when evaluated on 100 unseen images from the ‘Hard’ distribution. ‘Length’
indicates the average number of steps required to solve an instance of the puzzle at the last 100 episodes.

Algorithm Variation Pool Steps (M) ID Success (%) OOD Easy (%) OOD Hard (%) Length

1 1.75±0.44 100±0 0.49±0.13 0.0±0.0 72.9±4.4

Standard 5 7.80±1.08 86±16 0.53±0.14 0.3±0.3 212.0±19.0

10 9.73±0.36 47±18 0.34±0.08 0.6±0.4 599.6±25.6

20 10.00±0.00 12±7 0.12±0.03 0.0±0.0 903.4±23.9

PPO 1 0.95±0.21 100±0 0.33±0.09 0.1±0.1 76.2±4.8

PT (ID) 5 5.55±1.22 100±0 0.53±0.16 0.3±0.4 83.2±7.2

10 9.17±1.10 38±20 0.27±0.07 0.9±0.7 658.4±25.3

1 1.34±0.42 100±0 0.49±0.12 0.2±0.3 72.7±4.0

PT (OOD) 5 7.03±1.07 90±16 0.52±0.14 0.3±0.3 156.0±16.0

10 9.70±0.41 46±19 0.34±0.08 0.8±1.2 572.0±26.0

Table 12. Performance metrics for SAC agents across image pool sizes. ‘Steps’ indicates the number of environment steps (in millions)
required to reach 80% success rate during training. ‘ID Success’ shows the final success rate at the end of 10M training steps when
evaluating on the same pool used during training. ‘OOD Easy’ shows the success rate when evaluated on 100 unseen images from the
‘Easy’ distribution. ‘OOD Hard’ shows the success rate when evaluated on 100 unseen images from the ‘Hard’ distribution. ‘Length’
indicates the average number of steps required to solve an instance of the puzzle at the last 100 episodes.

Algorithm Variation Pool Steps (M) ID Success (%) OOD Easy (%) OOD Hard (%) Length

1 0.33±0.07 100±0 0.45±0.12 0.0±0.0 86.7±19.5

5 0.91±0.12 100±0 0.58±0.12 0.0±0.0 76.8±16.2

Standard 10 1.65±0.31 100±0 0.46±0.12 0.0±0.0 78.7±16.5

20 4.52±1.43 98±2 0.35±0.11 0.0±0.0 63.2±18.4

30 9.23±0.96 47±38 0.19±0.04 0.0±0.0 525.0±63.1

50 10.00±0.00 7±5 0.06±0.02 0.0±0.0 917.0±35.5

1 0.24±0.03 100±0 0.62±0.15 0.0±0.0 50.9±6.8

RAD 5 0.42±0.06 100±0 0.42±0.13 0.0±0.0 76.9±12.0

10 0.82±0.18 100±0 0.30±0.11 0.0±0.0 144.1±25.4

1 0.46±0.10 100±0 0.76±0.09 0.0±0.0 77.2±13.1

CURL 5 1.56±0.31 100±0 0.44±0.10 0.2±0.4 84.9±17.7

10 5.24±1.92 100±0 0.37±0.11 0.0±0.0 88.0±20.3

1 2.09±0.81 100±0 0.65±0.13 0.6±1.2 206.4±23.8

SAC SPR 5 3.68±1.68 69±13 0.21±0.09 0.0±0.0 523.9±55.6

10 10.00±0.00 9±3 0.07±0.04 0.0±0.0 912.1±36.0

1 0.44±0.04 100±0 0.44±0.13 0.0±0.0 65.1±13.8

DBC 5 0.99±0.25 100±0 0.34±0.13 0.0±0.0 111.2±22.7

10 10.00±0.00 2±1 0.13±0.04 0.0±0.0 588.5±63.3

1 0.42±0.09 100±0 0.78±0.11 0.0±0.0 85.4±22.1

AE 5 1.04±0.24 100±0 0.64±0.16 0.0±0.0 102.6±22.6

10 2.03±0.38 100±0 0.55±0.12 1.3±2.6 78.0±17.1

1 1.13±0.14 100±0 0.64±0.15 0.0±0.0 75.1±15.6

VAE 5 5.30±0.68 100±0 0.30±0.08 0.0±0.0 81.2±18.2

10 10.00±0.00 25±17 0.12±0.03 0.4±0.5 834.3±47.5

1 0.98±0.88 100±0 0.89±0.08 0.0±0.0 130.1±25.0

SB 5 2.08±0.30 91±17 0.65±0.12 0.0±0.0 117.8±20.5

10 10.00±0.00 3±2 0.06±0.02 0.2±0.4 980.3±18.0
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Table 13. Performance metrics for DreamerV3 agents across image pool sizes. ‘Steps’ indicates the number of environment steps (in
millions) required to reach 80% success rate during training. ‘ID Success’ shows the final success rate at the end of 10M training steps
when evaluating on the same pool used during training. ‘Length’ indicates the average number of steps required to solve an instance of the
puzzle at the last 100 episodes.

Algorithm Variation Pool Steps (M) ID Success (%) Length

1 0.42±0.06 100±0 83.5±11.8

5 1.23±0.20 100±0 31.0±3.9

10 1.44±0.58 100±0 32.9±4.0

Standard 20 3.96±0.61 100±0 27.8±3.5

DreamerV3 30 5.84±0.71 99±1 38.0±6.2

50 6.62±2.67 87±14 177.8±24.8

100 8.18±2.33 29±14 676.1±32.8

1 1.13±0.12 100±0 36.0±2.5

w/o decoder 5 1.79±0.61 100±0 42.1±3.2

10 2.57±0.91 100±0 46.7±3.9
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Figure 9. Sample efficiency of different methods across pool sizes (lower is better). SPGym differentiates agents based on their
representation learning capabilities. Top left: DreamerV3 variants demonstrate the value of reconstruction learning. Top right: PPO results
show benefits of pretraining. Bottom: Comprehensive comparison of SAC variants reveals trade-offs between different representation
learning approaches.
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Figure 10. Learning curves for PPO variants. Success rate during training for baseline PPO and versions with pretrained encoders
across different pool sizes. Shaded regions represent 95% confidence intervals across 5 independent runs.
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Figure 11. Learning curves for SAC variants. Success rate during training for baseline SAC and versions with different representation
learning components across different pool sizes. Shaded regions represent 95% confidence intervals across 5 independent runs.
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Figure 12. Learning curves for DreamerV3 variants. Success rate during training for DreamerV3 with and without decoder across
different pool sizes. Shaded regions represent 95% confidence intervals across 5 independent runs.
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