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ABSTRACT

Vision Transformers (ViT) have revolutionized the field of computer vision by
leveraging self-attention mechanisms to process images. However, the computa-
tional cost of ViT increases quadratically with the number of tokens. Dynamic
token selection methods which aims to reduce computational cost by discard re-
dundant tokens during inference, are primarily based on non-differentiable binary
decisions methods and relaxations methods. However, Reinforcement Learning(
(RL) based methods, which have astonishing decision-making ability, is consid-
ered to have high variance and high bias, not adopted for dynamic token selection
task in previous work. Yet, RL-based methods have been successfully applied to
many binary decision problems such as neural pruning, routing, path selection. In
this paper, we propose Reinforcement Learning for Dynamic Vision Transformer
(RL4DViT), a novel framework for the dynamic token selection task in ViT using
RL. By harnessing the powerfull decision-making capabilities of Multi-Agent Re-
inforcement Learning(MARL) algorithms, our method dynamically prunes redun-
dant tokens based on input complexity, significantly reducing the computational
cost while maintaining high accuracy. Extensive experiments on the ImageNet
dataset indicate that our approach reduces the computational cost by up to 39%,
with only a 0.17% decrease in accuracy. To the best of our knowledge, this is
the first RL-based token selection method for efficient ViT. All our source code is
publicly available at [link].

1 INTRODUCTION

Vision Transformers (ViT) have achieved state-of-the-art performance in many computer vision tasks
while negating the need for convolution operations. However, they utilize a fixed token sequence
independent of the input during both training and inference. This fail to take into account the fact that
the complexity of a given computer vision task often varies depending on the input. For instance,
distinguishing a flower from other categories is generally easier than differentiating between two
similar species of flowers. Even within a single image, tokens containing detailed object features
are far more informative than those from the background. Previous work Chefer et al. (2021) has
shown that the final prediction of ViT is often based on a subset of the most informative tokens,
suggesting that many tokens can be removed without significantly affecting performance. Motivated
by this insight, we propose a framework that dynamically prunes redundant tokens based on input
complexity, with minimal impact on task performance. By discarding redundant tokens in simpler
cases and retaining more tokens for more complex ones, our approach significantly reduces the
computational cost of ViT.

Several works have explored dynamic token selection in the ViT. For instance, DynamicViT Rao
et al. (2021) introduces decision layers after each transformer block, trained with a loss function
that considers both accuracy and computational cost. A-ViT Yin et al. (2021) employs a halting
mechanism to discard less informative tokens without additional parameters. Moreover, A-ViT
Wang et al. (2021) adds decision layers that determine not only which tokens to discard but also
which attention heads and Transformer blocks to activate. Since dynamic inference in ViT is often
based on binary decisions, which are non-differentiable, these works employ the Gumbel-Softmax
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Figure 1: Reinforcement Learning for Dynamic Vision Transformers(RL4DViT). This architecture
incorporates Multi-Agent Proximal Policy Optimization (MAPPO) with ViT, where each agent cor-
responds to a token. The framework models the token selection process as a Markov Game, allowing
agents to decide whether to retain or discard tokens based on their relevance to the input image. This
dynamic pruning mechanism significantly reduces computational costs without a substantial loss in
accuracy by eliminating redundant tokens while preserving critical information.

trick to enable end-to-end training. An alternative solution to this task involves using Reinforcement
Learning (RL) to optimize the decision network through policy gradient methods.

Previous work on dynamic token selection in Vision Transformers has largely favored the Gumbel-
Softmax trick, claiming that RL-based methods converge slowly due to high variance in the training
signal, which scales with the dimensionality of the discrete variables. However, RL-based methods
have been successfully applied to binary decision problems, including neural pruning Lin et al.
(2017), behavior change Odena et al. (2017), dynamic routing Wang et al. (2018), and path selection
Wu et al. (2018). While Gumbel-Softmax-based approaches may suffer from challenges such as
regularization difficulties, stochasticity in training, and premature convergence, RL-based methods
have demonstrated superiority in many cases. Therefore, we challenge the notion, propagated by
previous studies, that variance and bias in RL algorithms hinder their application to dynamic token
selection. This work seeks to explore the use of RL-based methods, such as Multi-Agent Proximal
Policy Optimization (MAPPO), for dynamic token selection.

In this paper, we introduce Reinforcement Learning for Dynamic ViT (RL4DViT), an RL-based dy-
namic token selection framework for the ViT. The overall structure of this framework is illustrated
in Figure 1. RL4DViT consists of two parts: The ViT for inference and the MAPPO for token selec-
tion. When the input tokens in the ViT reach a specified block, we employ the MAPPO algorithm to
determine whether a subset of these tokens should be discarded. The decision is then communicated
back to the ViT. Based on this feedback, masked attention is applied as the tokens traverse the block,
cutting off the connections between the tokens discarded by MAPPO and the remaining tokens. To
the best of our knowledge, this is the first work to incorporate reinforcement learning for efficient
Vision Transformer architectures with dynamic token selection.

Our main contributions are as follows:

• We propose RL4DViT,a novel reinforcement learning-based framework for dynamic token
selection in Vision Transformers. By leveraging RL theroy, we model token selection task
as a Markov Game, enabling efficient and adaptive pruning of redundant tokens based on
input complexity.

• We conduct extensive experiments on the ImageNet dataset, demonstrating that RL4DViT
significantly reduces computational costs by up to 39% while maintaining high accuracy,
with only 0.17% drop in performance. Our results establish RL4DViT as a state-of-the-art
solution for efficient ViT with dynamic token selection.
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• We provide detailed visualizations of the token selection process, highlighting how
RL4DViT discards redundant tokens early in the model’s inference stages. This visualiza-
tion demonstrates the efficiency of our approach in identifying and removing non-essential
tokens.

The rest of this work is organized as follows: Section 2 discusses previous work on dynamic token
selection task in ViT. Section 3 presents the pipeline of applying MAPPO to the dynamic token
selection task. Section 4 reports the experimental results on ImageNet 1k. Section 5 concludes this
paper.

2 RELATED WORK

2.1 DYNAMIC TOKEN SELECTION IN VISION TRANSFORMER

Inference speed is crucial for deploying deep models on edge devices. Numerous techniques can
accelerate the inference speed of deep models, including quantization Osmanović (2021); Jacob
et al. (2018), pruning Frankle & Carbin (2018), and knowledge distillation Gou et al. (2021); Pham
et al. (2022). Several works also focus on accelerating the inference speed of transformer models.
For instance, TinyBERT Jiao et al. (2019) introduces a distillation method to speed up transformer
inference, while Swin-Transformer Liu et al. (2021) reduces the quadratic space and time complexity
to linear by replacing the fully connected structure with a star-shaped topology. However, most of
these works focus on natural language processing (NLP) tasks.

Our method, on the other hand, dynamically prunes less important tokens by exploiting the sparsity
of informative image patches in Vision Transformers. The key to implementing dynamic inference in
Vision Transformers is to prune tokens with less information as much as possible while maintaining
model performance. Serveral techniques can be employed for this task, such as the Gumbel-Softmax
Jang et al. (2016) trick, halting mechanisms Yin et al. (2021), and RL-based methods. For example,
DynamicViT addresses this issue by adding decision layers after each transformer block, training
these layers using a loss function designed to balance both accuracy and computational cost Rao
et al. (2021). Similarly, A-ViT Wang et al. (2021) implements a halting mechanism to discard less
informative tokens without adding extra parameters, modifying the Vision Transformer architecture
in the process. Moreover, AdaViT introduces decision layers to not only determine which tokens to
discard but also which attention heads and transformer blocks to activate. Unlike Gamble-Softmax
trick and halting mechanisms, RL-based methods has not yet been applied to this task, even though
it has strong decision-making capabilities.

3 THE PROPOSED FRAMEWORK

We propose RL4DViT, a MARL-based adaptive computation framework designed to reduce the
computational cost of ViT with minimal impact on performance. Given an input image, RL4DViT
learns to adaptively derive policies for selecting which tokens to discard or retain in the Vision
Transformer backbone, conditioned on the input image. An overview of our method is illustrated
in Figure 1. In this section, we present how to apply MARL techniques, such as MAPPO, to the
dynamic token selection task in Section 3.1. Then, we elaborate on reward engineering and attention
masks in Sections 3.2 and 3.3.

3.1 DYNAMIC TOKEN SELECTION WITH MAPPO

We aim to integrate dynamic token selection with MAPPO by mapping each token in the ViT to an
agent in the MAPPO framework. By representing each token as an agent, we can make decisions on
whether to discard or retain the token.

After establishing the mapping between tokens and agents, we proceed to model the dynamic token
selection process in ViT as a Markov Game within the MAPPO framework. From a multi-agent rein-
forcement learning perspective, we consider the computation process of all tokens Ti(i = 0, 1, ...t)
from the first transformer block to the last transformer block. Consequently, we model the dynamic
token selection process as a Markov Game, defined as follows:
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States (S) : We denote a state by si. We define the state of current environment as the token vector
Ti itself, which means one agent can only observe one single token and the computation process of
this single token as its observation as State si.

Joint Action (A) : We denote joint action as A = (a1, a2, ..., ai), We define two actions, namely ai
= 0 and ai = 1. The former means to discard token Ti, and the latter means to keep token Ti.

Transitions (T) : Given a current state si and joint actions A to take, the probability that we would
observe a specific state s

′

i is P (s′|s, a1, a2, ..., ai).
Rewards (R) : We denote a reward for agent i as Ri(s, a1, a2, ..., ai), the reward associated with the
transition from the state si to state s

′

i, after joint action action A is taken, a scalar reward was given
by the reward function, which will be illustrate in section 3.2. With the reward defined by reward
enginerring, the goal for MAPPO Algorithm is to maximize the accumalated rewards:

E[
∞∑
t=0

γlRi(sl, a
l
1, a

l
2, ..., a

l
i)]

where γ is the discount factor and l is the time step, whcich is the lthdecision block in ViT.

The detailed training procedure of MAPPO for dynamic token selection is presented in Algorithm
1, which we go through as follows.

We begin by initializing the actor network πθt(a|s) with random weights θ and the critic network
Vϕ(s, a) with random weights ϕ. Next, we configure a series of hyperparameters for the RL algo-
rithm, including the learning rates for both the actor and critic networks, the Adam optimizer’s ϵ
parameter, and the maximum number of training steps. Subsequently, we initialize ViT with pre-
trained weights, keeping these weights fixed while training our MARL algorithms.

With all the initial preparations completed, we can begin sampling trajectory data for the training
process of our MARL algorithm. Using the symbols defined earlier, a trajectory can be expressed as
follows:

s0, A0, r0, s1, A1, r1, ..., sl, Al, rl, ...

where sl is the token vectors before transformer block l(l = 0, 1, ..., L), Al means the union action
of made by all agents before transformer block l.

To sample trajectory data, the inference process of vision transformer need to be started first. To
achieve this, a batch of image which batch size equas to B as input I were send to ViT-base, the
input I will be split into 196 tokens and one cls-token was appended so that T = 197. For each
token t in input IB×T , before those token flow through transformer block l, we token the token
vetor t (in this case, the dimension of t is 768) as sbtl , a decision of to determine whether to keep or
discard token t was achived by following abtl ∼ pbtl = πθ(s

bt
l ). The decision is executed by masked

attention mechanism when the tokens flow through vision transformer block l and the output of
block l is taken as sbtl+1, in the same way, we can derive abtl+1 from sbtl+1. Thus, we can get the
decision trajectory for each token by interact actor network πθ with vision transformer.

After sampling process, we use minibatch data sampled from data buffer D to train our actor network
πθ and critic network Vϕ.

The actor network is trained to maximize the loss function:

L(θ) =
1

mn

m∑
i=1

n∑
t=1

min
(
r
(t)
θ,iÂ

(t)
i , clip

(
r
(t)
θ,i, 1− ϵ, 1 + ϵ

)
Â

(t)
i

)
+ c · 1

mn

m∑
i=1

n∑
t=1

S
[
πθ

(
o
(t)
i

)]

where m is size of minibatch, t is number of agents, Âb
i is computed using the GAE method, S is

the policy entropy, and c is the entropy coefficient hyperparameter, r(t)θ,i =
πθ

(
a
(t)
i |o(t)i

)
πθold

(
a
(t)
i |o(t)i

) .

The citic network is trained to minimize the loss function:

L(ϕ) =
1

mn

m∑
i=1

n∑
t=1

max

[(
Vϕ

(
s
(t)
i

)
− R̂i

)2

,
(
clip

(
Vϕ

(
s
(t)
i

)
, Vϕold

(
s
(t)
i

)
± ε

)
− R̂i

)2
]
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After the training process of the reinforcement learning algorithm is completed, we fine-tune the
weights of ViT while keeping the MAPPO weights fixed. This approach is intended to mitigate the
influence of distribution shifts in the ViT caused by token selection.

3.2 REWARD ENGINEERING

We developed two reward functions to assist the agents in optimizing the trade-off between compu-
tational cost and accuracy:

reward1i =

{
0, if agent i is died

−1, if agent i is alive
reward2i =

{
0, if classify wrongly

R/n, if classify correctly

where R is a variable designed to encourage the agents to discard tokens that contain redundant
or noisy information, and n represents the total number of active tokens, motivating the agents to
discard as many tokens as possible.

the total reward is:
Ri = α ∗ reard1i + β ∗ reward2i

where α and β are parameters used to balance the trade-off between computational cost and accu-
racy. Additionally, although these agents are homogeneous, their relationships are both competitive
and cooperative. Therefore, we do not use a shared reward for the agents.

Algorithm 1 RL4DViT
Input: input
Output: output

1: initialize θ, the parameter for policy π. intialize ϕ, the parameter for critic V
2: set learning rate α
3: initialize vision transformer m with pretarined weights.
4: while step ≤ stepmax do
5: set data buffer D = {}
6: for b = 0 to B do
7: τ = [] empty list
8: for l = 0 to L do
9: observe sbl

10: for agent t do
11: pbtl = πθt(s

bt
l )

12: abtl ∼ pbtl
13: Ab

l = concat : abtl
14: end for
15: execute action Ab

l , observe rbl , sbl+1

16: τ+ = [sbl , A
b
l , r

b
l , s

b
l+1]

17: end for
18: compute advantage estimate Â via GAE on τ
19: D = D ∪ τ
20: end for
21: Shuffle and split data buffer D into minibatches of size batch size
22: for each minibatch m do
23: compute L(θ) on minibatch m
24: compute L(ϕ) on minibatch m
25: Adam update θ with L(θ)
26: Adam update ϕ with L(ϕ)
27: learning ratet α decay
28: end for
29: end while
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3.3 TOKEN SELECTION WITH ATTENTION MASK

To execute action A in the Vision Transformer, we need to mask out the tokens that have been dis-
carded. We can simply prune the tokens that the MARL algorithm has decided to discard. However,
the action A is usually unstructured, and the actions for different samples are not the same. There-
fore, for samples within a batch, simply pruning tokens where At = 0 would result in a non-uniform
number of tokens, making it difficult to parallelize the computation. To maintain a consistent num-
ber of tokens across samples within a batch, we opt to zero out the values of the discarded tokens,
which is akin to padding operations in NLP tasks. However, merely zeroing out those discarded to-
kens is insufficient, as these zeroed tokens can still affect other tokens through the softmax function
in the calculation of the self-attention matrix Vaswani et al. (2017):

Attn = Softmax(
QKT

√
dk

)

One way to address this problem is to set the corresponding elements in the attention matrix to
a negative value, such as -1000, after calculating the scores and before applying softmax. This
approach ensures that the corresponding values after passing through softmax are almost 0 Yin
et al. (2021). Alternatively, after applying softmax, we can set the corresponding elements in the
attention matrix to 0 Rao et al. (2021). By doing so, we can effectively cuts the connection between
the discarded tokens and the other tokens.

The masking strategy described above keeps the computational cost of our training iterations similar
to that of the original Vision Transformer’s training cost. During inference, we simply prune the
discarded tokens from computation to measure the actual computational efficiency gained by our
reinforcement learning algorithms.

4 EXPERIMENT

In this section, we will demonstrate the superiority of reinforcement learning-based dynamic token
selection through extensive experiments. In all of our experiments, we fix the number of transformer
blocks that adopt token selection to L = 3. Furthermore, inspired by previous work, the token
selection is performed hierarchically in three stages: at block 3, 6, and 9. We train the MARL agents
with ViT weights fixed for one epoch and fine-tune the ViT with MARL agents’ weights fixed for
another epoch. All the experiments are carried out on a single NVIDIA RTX 3090 GPU. More
implement details can be found in the supplementary material.

RL4DViT can be trained very fast. While previous work had to train the entire network from scratch
or train the selection network for many epochs, RL4DViT can achieve comparable performance
within one epoch. Another advantage of RL4DViT is that the total number of parameters for token
selection is much smaller. In DynamicViT, it was necessary to introduce MLP into three decision
blocks. In A-ViT, it was necessary to implement an h-gate in each transformer block, while in
RL4DViT, the network for token selection consists solely of the Actor (which is one MLP) with a
total parameter count of 0.1M, reducing the number of parameters utilized for decision-making by
a factor of 9 compared to DynamicViT.

4.1 MAIN RESULT

We summarize the main results on ImageNet 1k Deng et al. (2009) in Table 1. We report the top-1
accuracy under different model complexity(GFlops) . We demonstrate that RL4DViT can reduce the
computational costs by 39%, with the influence on performance down to -0.5%. Furthermore, after
eliminating the distribution shift by fine-tuning the parameters of ViT in RL4DViT, the influence
on performance can be reduced down to -0.17%. To put it more intuitively, we can cover half of a
picture during inference while the influence on performance is negligible.

4.2 FINE-TUNE

Different from previous work like DynamicViT or A-ViT, where the MLP or h-gate for token se-
lection is trained alongside the Vision Transformer, RL4DViT trains the agents separately from the

6
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Table 1: Comparisons with State of the art on ImageNet. We compare our RL4DViT models with
state-of-the-art dynamic token selection models with comparable GFlops and number of parameters.
We use Vit and RL4DViT as base model, we aslo include the results of DynamicVit and A-ViT as
references. It’s worth mentioning that by discarding a small portion of tokens, a higher accuracy
than the original Deit-B can be achieved, implying that there may be noisy token present rather than
just redundant token.

Model Parameters(M) GFLOPs Top-1 Acc(%)
Deit-T 5 1.2 71.3
Deit-S 22.1 4.6 79.8
Deit-B 86.6 17.5 81.8360
DynamicVit-T 5.9 1.2 71.3
DynamicVit-S 23 3.4 78.3
DynamicVit-B 87.5 11.2 81.3
A-Vit-T 5 0.8 71.0
A-Vit-T + distl. 5 0.8 72.4
MAPPO-Deit-B 86.8 10.0 81.1360
MAPPO-Deit-B 86.8 10.8 81.3080
MAPPO-Deit-B 86.8 11.6 81.3860
MAPPO-Deit-B 86.8 11.8 81.6180
MAPPO-Deit-B 86.8 13.1 81.6380
MAPPO-Deit-B 86.8 14.7 81.6700
MAPPO-Deit-B 86.8 16.1 81.7680
MAPPO-Deit-B 86.8 16.6 81.8380
MAPPO-Deit-B 86.8 17.2 81.8760

training process of the Vision Transformer. The training data for the reinforcement learning algo-
rithm is collected by executing token selection in the Vision Transformer with pretrained weights.

Table 2: The impact of fine-tuning on MAPPO-Deit-B after dynamic token selection. We fine
tuned two RL4DViT models under different complexity. The results show that fine-tuning improves
the Top-1 accuracy while maintaining lower computational costs (GFLOPs), demonstrating how
fine-tuning helps mitigate the distribution shift caused by token pruning.

Model Parameters(M) GFLOPs Top-1 Acc(%)
Deit-B 86.6 17.5 81.8360(-0.0)
DynamicVit-B 87.5 11.2 81.3(-0.54)
MAPPO-Deit-B 86.8 10.8 81.3080(-0.53)
MAPPO-Deit-B 86.8 11.6 81.3860(-0.44)
MAPPO-Deit-B-FT 86.8 10.8 81.5700(-0.27)
MAPPO-Deit-B-FT 86.8 11.6 81.6620(-0.17)

Training the RL agents alone in RL4DViT can make the training process very efficient. However,
without updating the weights of the ViT, the input to the ViT after token selection undergoes a
notable distribution shift, and the unupdated weights of the ViT can impair the performance of
RL4DViT. Thus, after the training of the RL algorithm, we fine-tune the ViT to mitigate the adverse
impact of the distribution shift.

4.3 VISULIZATIONS

To further investigate the token selection policy performed by RL4DViT, we visualize the token
selection process in Figure 2. We show the original input image and the token selection results after
the three token selection blocks, where the color of the patch (area) corresponds to the discarded
tokens that were replaced with white.

We found that the selection policy performed by RL4DViT is much different from previous work.
In contrast to the tokens discarded hierarchically in DynamicVit or A-Vit, which means tokens were

7
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Figure 2: The original input image is displayed alongside the selection results from transformer
blocks [3, 6, 9], with discarded tokens highlighted in white. The token selection process in RL4DViT
contrasts with previous methods like DynamicVit and A-Vit. Unlike the step-by-step approach of
earlier models, RL4DViT discards redundant tokens in bulk during the first selection stage, demon-
strating its ability to swiftly identify and eliminate non-essential information. This method not only
prioritizes background details near the subject but also discards low-information tokens within the
subject itself, revealing the underlying patterns of redundancy in the data.

discarded step by step, RL4DViT discards as many tokens as possible in the first token selection
block; the token selection policy remains almost static in the subsequent token selection blocks. In
fact, such an extreme strategy aligns with intuition: if we can identify a token as redundant, we do
not want to discard it step by step; on the contrary, we should discard it as soon as possible to save
more computational cost. This extreme selection policy discovered by RL itself, compared to other
step-by-step selection policies, means our algorithm can actually recognize a redundant token and
uncover the underlying patterns of redundancy.

Besides the sample-wise visualization shown above, we are also interested in the underlying pattern
of redundant tokens. In DynamicVit, tokens outside the outline of the subject are recognized as
redundant, allowing DynamicVit to focus on the main object in the image. RL4DViT employs a
similar token selection strategy with a slight difference: instead of just keeping tokens inside the
outline of the subject like DynamicVit, RL4DViT also tends to keep tokens near the outline of the
subject, which usually contain parts of the background information.

4.4 THE EFFECT OF REWARD FUNCTION PARAMETER TO TOKEN SELECTION

In the reward engineering, we use hyperparameters such as α and β to balance MAPPO’s trade-
off between accuracy and computational cost. A larger α encourages the algorithm to select fewer
tokens for better computational efficiency, while a larger beta encourages the algorithm to select

8
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more tokens for better prediction accuracy. We explored the impact of different ratios of α/β on the
token selection strategy in Figure 3.
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Figure 3: During inference in ViT, the total tokens needs to calculate besides cls token is 196*12
equals to 2352, through multiple evaluations, we calculated the total number of kept tokens under
different ratios, and in general, as the ratio of α/β decreased, the algorithm tended to select fewer
tokens.

4.5 COMPARE TO RANDOM POLICY

We show the comparasion between random token selection with different blocks in Figure 4. The
token was randomly discard with ratio [ρ, ρ2, ρ3]. With same token keep ratio, the further forward
the block is, the less accurate it is. We then compare the random token selection policy with the
un-finetuned token selection policy under same model complexity(GFlops).
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Figure 4: Comparison of Random vs. RL-Based Token Selection The graph shows the effect of
token discard ratio at various layers of the Vision Transformer. It demonstrates that random token
selection at different layers negatively impacts accuracy, while the RL-based token selection method
consistently achieves higher accuracy across various model complexities (GFlops).
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5 CONCLUSION

In this paper, we proposed the dynamic token selection framework RL4DViT, which significantly
enhances the efficiency of ViT in computer vision tasks. By modeling the token selection task as a
Markov game, we utilized Multi-Agent Reinforcement Learning (MARL) to dynamically adapt to
input complexity. This method not only effectively reduces computational overhead by up to 39%
but also results in only a 0.17% minor decrease in accuracy, demonstrating its feasibility and effec-
tiveness in practical applications. Our research indicates that reinforcement learning-based strate-
gies offer greater flexibility and efficiency in dynamic token selection, providing a new direction for
future research in the field of Vision Transformer.
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A IMPLEMENT DETAILS

A.1 PARAMETER SHARING

Agents in MAPPO are homogeneous, meaning they possess identical observation and action spaces.
We utilize parameter sharing to reduce the number of parameters in our RL4DViT framework. Ad-
ditionally, previous works have demonstrated that this approach improves learning efficiency Chris-
tianos et al. (2021) Terry et al. (2020). In our implementation of MAPPO for dynamic Vision
Transformer, the agents share both the policy and value function parameters.

A.2 FEATURE CONSTRUTION

As mentioned earlier, MAPPO operates within the centralized training with decentralized execution
(CTDE) framework, enabling individual PPO agents to communicate through a global value func-
tion. The input to the value function typically consists of the global state information s

(t)
i . This

global state transforms a partially observable Markov decision process (POMDP) into a Markov
decision process (MDP). Proper design of the global state information s

(t)
i is crucial.

One approach is to concatenate the local observation information of all agents as the input for the
critic. While this can be effective in most cases, in our scenario, where the number of agents is
significant (in our case, t = 196), this may lead to an excessively high input dimension for the value
function compared to the policy function, complicating the learning of value functions, as noted in
Lowe et al. (2017).

An alternative is to use an Environment Provided global state (EP), which contains general global
information about the environment state. However, the EP state typically encompasses information
common to all agents and may overlook critical local agent-specific details Foerster et al. (2018). A
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third approach is to construct an Agent-Specific Global State (AS), which generates a global state
for agent t by concatenating the EP state with the local observation of agent t, as discussed in the
original MAPPO paper Yu et al. (2022).

In our case, we construct the Agent-Specific Global State by utilizing the class token in the Vision
Transformer as the Environment Provided global state (EP). By concatenating tokencls and tokent,
we create the global state for agent t. Thus, the Agent-Specific Global State for agent t is given by:

s
(t)
i = concat(tokent, tokencls),

and the dimension of s(t)i is 768× 2, which equals 1536.

A.3 GAE

We adopt Generalized Advantage Estimation (GAE) Schulman et al. (2015) with advantage normal-
ization and value clipping in the implementation of MAPPO.

A.4 AGENT POSITION POLICY

The agents in MAPPO are homogeneous, and the number of agents (in our case, n = 196) is
significantly higher than the usual number of agents in typical scenarios (which is 3 to 12). To help
the agents understand their location in the environment, we add a one-hot agent ID to the observation
for agents in MAPPO. This means the input to the critic and actor in MAPPO is the Agent-Specific
Global State concatenated with the one-hot agent ID.
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