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ABSTRACT

Spiking Neural Networks (SNNs) are biologically plausible models that have been
identified as potentially apt for deploying energy-efficient intelligence at the edge,
particularly for sequential learning tasks. However, training of SNNs poses sig-
nificant challenges due to the necessity for precise temporal and spatial credit
assignment. Back-propagation through time (BPTT) algorithm, whilst the most
widely used method for addressing these issues, incurs a high computational cost
due to its temporal dependency. In this work, we propose S-TLLR, a novel three-
factor temporal local learning rule inspired by the Spike-Timing Dependent Plas-
ticity (STDP) mechanism, aimed at training deep SNNs on event-based learning
tasks. Furthermore, S-TLLR is designed to have low memory and time complex-
ities, which are independent of the number of time steps, rendering it suitable
for online learning on low-power edge devices. To demonstrate the scalability of
our proposed method, we have conducted extensive evaluations on event-based
datasets spanning a wide range of applications, such as image and gesture recog-
nition, audio classification, and optical flow estimation. In all the experiments, S-
TLLR achieved high accuracy, comparable to BPTT, with a reduction in memory
between 5−50× and multiply-accumulate (MAC) operations between 1.3−6.6×.

1 INTRODUCTION

Over the past decade, the field of artificial intelligence has undergone a remarkable transforma-
tion, driven by a prevalent trend of continuously increasing the size and complexity of neural net-
work models. While this approach has yielded remarkable advancements in various cognitive tasks
(Brown et al., 2020; Dosovitskiy et al., 2021), it has come at a significant cost: AI systems now
demand substantial energy and computational resources. This inherent drawback becomes increas-
ingly apparent when comparing the energy efficiency of current AI systems with the remarkable
efficiency exhibited by the human brain (Roy et al., 2019; Gerstner et al., 2014; Christensen et al.,
2022; Eshraghian et al., 2023). Motivated by this observation, the research community has shown a
growing interest in brain-inspired computing. The idea behind this approach is to mimic key features
of biological neurons, such as spike-based communication, sparsity, and spatio-temporal processing.

Bio-plausible Spiking Neural Network (SNN) models have emerged as a promising avenue in this
direction. SNNs have already demonstrated their ability to achieve competitive performance com-
pared to more traditional Artificial Neural Networks (ANNs) while significantly reducing energy
consumption per inference when deployed in the right hardware (Davies et al., 2018; Roy et al.,
2019; Sengupta et al., 2019; Neftci et al., 2019; Christensen et al., 2022). One of the main advan-
tages of SNNs lies in their event-driven binary sparse computation and temporal processing based
on membrane potential integration. These features make SNNs well-suited for deploying energy-
efficient intelligence at the edge, particularly for sequential learning tasks (Ponghiran & Roy, 2022;
Bellec et al., 2020; Christensen et al., 2022).

Despite their promise, training SNNs remains challenging due to the necessity of solving precisely
temporal and spatial credit assignment problems. While traditional gradient-based learning algo-
rithms, such as backpropagation through time (BPTT), are highly effective, they incur a high com-
putational cost (Eshraghian et al., 2023; Bellec et al., 2020; Bohnstingl et al., 2022). Specifically,
BPTT has memory and time complexity that scales linearly with the number of time steps (T ), such
as O(Tn) and O(Tn2), respectively, where n is the number of neurons, making it unsuitable for
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edge systems where memory and energy budgets are limited. This has motivated several studies
that propose learning rules with approximate BPTT gradient computation with constant memory
(Bellec et al., 2020; Bohnstingl et al., 2022; Quintana et al., 2023; Ortner et al., 2023; Xiao et al.,
2022). However, most of those learning rules have a complexity scaling with the number of synapses
(O(n2)), as shown in Table 1, which makes them too expensive for deep convolutional SNN models
on practical scenarios (where n ≫ T ). Moreover, as most of those learning rules have been derived
from BPTT, they only leverage causal relations between the timing of pre- and post-synaptic ac-
tivities, overlooking non-causal relations used in other learning mechanisms, such as Spike-Timing
Dependent Plasticity (STDP) (Bi & Poo, 1998; Song et al., 2000).

To overcome the above limitations, in this paper, we propose S-TLLR, a novel three-factor temporal
local learning rule inspired by the STDP mechanism. Specifically, S-TLLR is designed to train
SNNs on event-based learning tasks while incorporating both causal and non-causal relationships
between the timing of pre- and post-synaptic activities for updating the synaptic strengths. This
feature is inspired by the STDP mechanism from which we propose a generalized parametric STDP
equation that uses a secondary activation function to compute the post-synaptic activity. Then, we
take this equation to compute an instantaneous eligibility trace (Gerstner et al., 2018) per synapse
modulated by a third factor in the form of a learning signal obtained from the backpropagation of
errors through the layers (BP) or by using fixed random feedback connections directly from the
output layer to each hidden layer (Trondheim, 2016). Notably, S-TLLR exhibits constant (in time)
memory and time complexity, making it well-suited for online learning on resource-constrained
devices.

In addition to this, we demonstrate through experimentation that including non-causal information
on the learning process results in improved generalization and task performance. Also, we explored
S-TLLR in the context of several event-based tasks with different amounts of spatio-temporal infor-
mation, such as image and gesture recognition, audio classification, and optical flow estimation. For
all such tasks, S-TLLR can achieve performance comparable to BPTT and other learning rules, with
much less memory and computation requirements.

The main contributions of this work can be summarized as:

• We introduce a novel temporal local learning rule, S-TLLR, for spiking neural networks,
drawing inspiration from the STDP mechanism, while ensuring a memory complexity that
scales linearly with the number of neurons and remains constant over time.

• Demonstrate through experimentation the benefits of considering non-causal relationships
in the learning process of spiking neural networks, leading to improved generalization and
task performance.

• Validate the effectiveness of the proposed learning rule across a diverse range of network
topologies, including VGG, U-Net-like, and recurrent architectures.

• Investigate the applicability of S-TLLR in various event-based camera applications, such as
image and gesture recognition, audio classification, and optical flow estimation, broadening
the scope of its potential uses.

2 RELATED WORK

2.1 EXISTING METHODS FOR TRAINING SNNS

Several approaches to train SNNs have been proposed in the literature. In this work, we focus on
surrogate gradients(Neftci et al., 2019; Li et al., 2021), and bio-inspired learning rules (Diehl &
Cook, 2015; Thiele et al., 2018; Kheradpisheh et al., 2018; Bellec et al., 2020).

Training SNNs based on surrogate gradient methods Neftci et al. (2019); Li et al. (2021) extends the
traditional backpropagation through time (BPTT) algorithm to the domain of SNNs, where the non-
differentiable firing function is approximated by a continuous function during the backward pass to
allow the propagation of errors. The advantage of these methods is that they can exploit the temporal
information of individual spikes so that they can be applied to a broader range of problems than
just image classification (Paredes-Vallés & de Croon, 2021; Cramer et al., 2022). Moreover, such
methods can result in models with low latency for energy-efficient inference (Fang et al., 2021a).
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(a) BPTT (b) STDP (c) S-TLLR

Figure 1: Comparison of weight update computation of a feed-forward spiking layer for (a) BPTT,
(b) STDP, and (c) our proposed learning rule S-TLLR. The spiking layer is unrolled over time for the
three algorithms while showing the signals involved in the weight updates. The top-down learning
signal is shown in green, while the signals locally available to the layer are represented as red for
the causal term and blue for non-causal terms. Also, note that the learning signal in BPTT relies on
future time steps, whereas in S-TLLR, this signal is computed locally in time.

However, training SNNs based on surrogate gradients with BPTT incurs high computational and
memory costs because BPTT’s requirements scale linearly with the number of time steps. Hence,
such methods can not be used for training online under the hardware constraints imposed by edge
devices (Neftci et al., 2019).

Another interesting avenue is the use of bio-inspired learning methods based on the principles of
synaptic plasticity observed in biological systems, such as STDP (Bi & Poo, 1998; Song et al.,
2000) or eligibility traces (Gerstner et al., 2014; 2018), which strengthens or weakens the synaptic
connections based on the relative timing of pre- and post-synaptic spikes optionally modulated by
a top-down learning signal. STDP methods are attractive for on-device learning as they do not
require any external supervision or error signal. However, they also have several limitations, such
as the need for a large number of training examples and the difficulty of training deep networks or
complex ML problems (Diehl & Cook, 2015). In contrast, three-factor learning rules using eligibility
traces (neuron local synaptic activity) modulated by an error signal, like e-prop Bellec et al. (2020),
can produce more robust learning overcoming limitations of unsupervised methods such as STDP.
Nevertheless, such methods’ time and space complexity typically make them too costly to be used
in deep SNNs (especially in deep convolutional SNNs).

2.2 LEARNING RULES ADDRESSING THE TEMPORAL DEPENDENCY PROBLEM

As discussed in the previous section, the training methods based on surrogate gradient using BPTT
results in high-performance models. However, their major limitations are associated with high com-
putational requirements that are unsuitable for low-power devices. Such limitations come from the
fact that BPTT has to store a copy of all the spiking activity to exploit the temporal dependency
of the data during training. In order to address the temporal dependency problem, several methods
have been proposed where the computational requirements are time-independent while achieving
high performance. For instance, the Real-Time Recurrent Learning (RTRL) Williams & Zipser
(1989) algorithm can compute exact gradients without the cost of storing all the intermediate states.
Although it has not been originally proposed to be used on SNNs, it could be applied to them by
combining with surrogate gradients (Neftci et al., 2019). More recently, other methods such as e-
prop (Bellec et al., 2020), OSTL (Bohnstingl et al., 2022), and OTTT (Xiao et al., 2022), derived
from BPTT, allows learning on SNNs using only temporally local information (information that can
be computed forward in time). However, with the exception of OTTT, all of these methods have
memory and time complexities of O(n2) or worse, as shown in Table 1, making them significantly
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Table 1: Comparison of S-TLLR with learning methods from the literature (Where n is the number
of neurons and T total number of time steps) [Note that complexities are expressed in big O notation
for one single layer]

Method Memory
Complexity

Time
Complexity

Temporal
Local

Leverage
Non-Causality

BPTT Tn Tn2 X X
RTRL (Williams & Zipser, 1989) n3 n4 ✓ X
e-prop (Bellec et al., 2020) n2 n2 ✓ X
OSTL (Bohnstingl et al., 2022) n2 n2 ✓ X
ETLP (Quintana et al., 2023) n2 n2 ✓ X
OSTTP (Ortner et al., 2023) n2 n2 ✓ X
OTTT (Xiao et al., 2022) n n2 ✓ X
S-TLLR (Ours) n n2 ✓ ✓

more expensive than BPTT, when used for deep SNNs in practical scenarios (where n ≫ T ). More-
over, since those methods (with the exception of RTRL) have been derived as approximations of
BPTT, they only use causal relations in the timing between pre- and post- synaptic activity, leaving
non-causal relations (as those used in STDP shown in Fig. 1) unexplored.

2.3 COMBINING STDP AND BACKPROPAGATION

As previously discussed, STDP has been used to train SNNs models in an unsupervised manner
Diehl & Cook (2015); Thiele et al. (2018); Kheradpisheh et al. (2018). However, such approaches
suffer from severe drawbacks, such as requiring a high number of timesteps (latency), resulting
in low accuracy performance and being unable to scale for deep SNNs. So, to overcome such
limitations, there have been some previous efforts to use STDP in combination with backpropagation
for training SNNs, by either using STDP followed for fine-tuning with BPTT Lee et al. (2018) or
modulating STDP with an error signal Tavanaei & Maida (2019); Hu et al. (2017); Hao et al. (2020).
However, such methods either do not address the temporal dependency problem of BPTT or do not
scale for deep SNNs or complex computer vision problems.

3 BACKGROUND

3.1 SPIKING NEURAL NETWORKS (SNNS)

To model the neuronal dynamics of biological neurons, we are going to use the leaky integrate and
fire (LIF). The LIF model can be mathematically represented as follows:

ui[t] = γ(ui[t− 1]− vthyi[t− 1]) + wijxj [t] (1)

yi[t] = Θ(ui[t]− vth) (2)

where ui represents the membrane potential of the i-th neuron, wij is the forward synaptic strength
between the i-th post-synaptic neuron and the j-th pre-synaptic neuron.Moreover, γ is the leak factor
that reduces the membrane potential over time, vth is the threshold voltage, and Θ is the Heaviside
function. So when ui reaches the vth, the neuron produces an output binary spike (yi). Such output
spike triggers the reset mechanism, represented by the reset signal vthyi[t], which reduces the mag-
nitude of ui. The following sections focus on feed-forward models, for discussion on models with
recurrent synaptic connections see Appendix D.

3.2 SPIKE-TIMING DEPENDENT PLASTICITY (STDP)

STDP is a learning mechanism observed in various neural systems, from invertebrates to mam-
mals, and is believed to play a critical role in the formation and modification of neural connections
in the brain in processes such as learning and memory (Gerstner et al., 2014). STDP describes
how the synaptic strength (wij) between two neurons can change based on the temporal order of
their spiking activity. Specifically, STDP describes the phenomenon by which wij is potentiated
if the pre-synaptic neuron fires just before the post-synaptic neuron fires, and wij is depressed if
the pre-synaptic neuron fires just after the post-synaptic neuron fires. This means that STDP re-
wards causality and punishes non-causality. However, Anisimova et al. (2022) suggests that STDP
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favoring causality can be a transitory effect, and over time, STDP evolves to reward both causal and
non-causal relations in favor of synchrony. Such general dynamics of STDP can be described by the
following equation:

Φ(ti, tj) =

{
αpreλ

ti−tj
pre if ti ≥ tj (causal term)

αpostλ
tj−ti
post if ti < tj (non-causal term)

(3)

where Φ(ti, tj) represents the magnitude of the change in the synaptic strength (∆wij), ti and tj
represent the firing times of the post- and pre-synaptic neurons, αpre and λpre are strength and
exponential decay factor of the causal term, respectively. Similarly, αpost and λpost parameterize
the non-causal effect. Note that when αpost < 0, STDP favors causality while αpost > 0, STDP
favors synchrony.

Based on STDP, the change of the synaptic strengths at time t can be computed forward in time
using local variables by the following learning rule (Gerstner et al., 2014):

∆wij [t] = αpreyi[t]

t∑
t′=0

λt−t′

pre xj [t
′] + αpostxj [t]

t−1∑
t′=0

λt−t′

postyi[t
′] (4)

wij [t+ 1] = wij [t] + ∆wij [t] (5)

where yi[t] and xj [t] are binary values representing the existence of post- and pre-synaptic activity
(spikes) at time t, respectively. Note that both summations in (4) can be computed forward in time
as a recurrent equation of the form trxj [t] = λpretrxj [t− 1] + xj [t], where trxj [t] is a trace of xj .
Hence, (4) can be expressed as:

∆wij [t] = αpreyi[t]trxj [t] + αpostxj [t](tryi[t]− yi[t]) (6)

3.3 BPTT AND THREE-FACTOR (3F) LEARNING RULES

BPTT is the algorithm by default used to train spiking neural networks (SNNs) as it is able to solve
spatial and temporal credit assignment problems. BPTT calculates the gradients by unfolding all
layers of the network in time and applying the chain rule to compute the gradient as:

dL
dw

=

T∑
t

∂L
∂y[t]

∂y[t]

∂u[t]

∂u[t]

∂w
(7)

Although BPTT can yield satisfactory outcomes, its computational requirements scale with time,
posing a limitation. Moreover, it is widely acknowledged that BPTT is not a biologically plausible
method, as highlighted in Lillicrap & Santoro (2019).

In contrast, 3F learning rules Gerstner et al. (2018) are a more bio-plausible method that uses the
combination of inputs, outputs, and a top-down learning signal to compute the synaptic plasticity.
The general idea of the 3F rules is based on that synapses are updated only if a signal called eligibility
trace eij is present. This eligibility trace is computed based on general functions of the pre- and post-
synaptic activity decaying over time. Such behavior is modeled in a general sense on the following
recurrent equation:

eij [t] = βeij [t− 1] + f(yi[t])g(xj [t]) (8)
Here β is an exponential decay factor, f(yi[t]) and g(xj [t]) are element-wise functions of the post-
and pre- synaptic activity, respectivetly. Then, the change of the synaptic strengths (wij) is obtained
by modulating eij with a top-down learning signal (δi) as:

∆wij =
∑
t

δi[t]eij [t] (9)

3F learning rules have demonstrated their effectiveness in training SNNs, as shown by Bellec et al.
(2020). Additionally, it is possible to approximate BPTT using a 3F rule when the learning signal
(δi[t]) is computed as ∂L[t]

∂y[t] (instantaneous error learning signal), and the eligibility trace approxi-

mates ∂y[t]
∂u[t]

∂u[t]
∂w , as discussed by Bellec et al. (2020) and Martı́n-Sánchez et al. (2022). However, it is

important to note that 3F rules using eligibility traces formulated as (8) exhibit a memory complexity
of O(n2), rendering them very expensive in terms of memory requirements for deep convolutional
SNNs.
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4 STDP-INSPIRED TEMPORAL LOCAL LEARNING RULE (S-TLLR)

4.1 OVERVIEW OF S-TLLR AND ITS KEY FEATURES

We propose a novel 3F learning rule, S-TLLR, which is inspired by the STDP mechanism discussed
in Section 3.2. S-TLLR is characterized by its temporally local nature, leveraging non-causal rela-
tions in the timing of spiking activity while maintaining a low memory complexity O(n).

Regarding memory complexity, a conventional 3F learning rule requires an eligibility trace (eij)
which involves a recurrent equation as described in (8). In such formulation, the eij is a state
requiring a memory that scales linearly with the number of synapses (O(n2)). For the S-TLLR, we
dropped the recurrent term and considered only the instantaneous term (i.e. β = 0 in (8)). Instead of
requiring O(n2) memory to store the state of eij , we need to keep track of only two variables (f(yi)
and g(xi)) with O(n) memory. Hence, eij [t] can be computed as the right-hand side of (6) which
exhibits a memory complexity O(n). This low-memory complexity is a key aspect of S-TLLR since
it enables the method to be used in deep neural models where methods such as Williams & Zipser
(1989); Bellec et al. (2020); Bohnstingl et al. (2022); Ortner et al. (2023); Quintana et al. (2023) are
considerably more resource-intensive.

Finally, since BPTT is based on the propagation of errors in time, it only uses causal relations
to compute gradients, that is, the relation between an output y[t] and previous inputs x[t], x[t −
1], . . . , x[0]. These causal relations are shown in Fig. 1a (red dotted line). Also, methods derived
from BPTT (Bellec et al., 2020; Bohnstingl et al., 2022; Ortner et al., 2023; Quintana et al., 2023;
Xiao et al., 2022) use exclusively causal relations. In contrast, we took inspiration from the STDP
mechanisms, which use both causal and non-causal relations in the spike-timing (Fig. 1b, red and
blue dotted lines), to formulate S-TLLR as a 3F learning rule with a learning signal modulating
instantaneous eligibility trace signal as shown in Fig. 1c.

4.2 TECHNICAL DETAILS AND IMPLEMENTATION OF S-TLLR

As discussed in the previous section, our proposed method, S-TLLR has the form of a three-factor
learning rule, ∆wij [t] = δi[t]eij [t], involving a top-down learning signal δi[t] and an eligibility
trace, eij [t]. To compute eij [t], we use a generalized version of the STDP equation described in (4)
that can use a secondary activation function to compute the postsynaptic activity.

eij [t] = αpreΨ(ui[t])

t∑
t′=0

λt−t′

pre xj [t
′] + αpostxj [t]

t−1∑
t′=0

λt−t′

postΨ(ui[t
′]) (10)

Here, Ψ is a secondary activation function that can differ from the firing function used in (34). We
found empirically that using a function Ψ(u) with

∫
Ψ(u)du ≤ 1 yields improved results, specific Ψ

functions are shown in Appendix B.3. Note that (10) can be computed forward in time (expressing
it in the form of (6)) and using only information locally available to the neuron. Furthermore, (10)
considers both causal (first term on the right side) and non-causal (second term) relations between
the timing of post- and pre-synaptic activity, which are not captured in BPTT (or its approximations
(Bellec et al., 2020; Bohnstingl et al., 2022; Xiao et al., 2022)). The causal (non-causal) relations
are captured as the correlation in the timing between the current post- (pre-) synaptic activity and
the low-pass filtered pre- (post-) synaptic activity.

The learning signal, δi[t], is computed as the instantaneous error back-propagated from the top layer
(L) to the layer (l), as shown in (11), and the synaptic update is done as shown in (12).

δ
(l)
i [t] =

{
∂L(yL[t],y∗)

∂y
(l)
i [t]

if t ≥ Tl

0 otherwise
(11)

wij := wij + ρ

T∑
t=Tl

δi[t]eij [t] (12)

Here, ρ is the learning rate, T is the total number of time steps for the forward pass, Tl is the initial
time step for which the learning signal is available, y∗ is the ground truth label vector, yL[t] is
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the output vector of layer L at time t, and L is the loss function. Note that the backpropagation
occurs through the layers and not in time, so the S-TLLR is temporally local. Depending on the
task, good performance can be achieved even if the learning signal is available just for the last time
step (Tl = T ).

While our primary focus is on error-backpropagation to generate the learning signal, it is worth not-
ing that employing random feedback connections, such as direct feedback alignment (DFA) (Trond-
heim, 2016; Frenkel et al., 2021), for this purpose is also feasible. In such cases, S-TLLR also
exhibits spatial locality. We present some experiments in this direction in Appendix E.1. The com-
plete algorithm for a multilayer implementation can be found in Appendix A.

5 EXPERIMENTAL EVALUATION

5.1 EFFECTS OF NON-CASUAL TERMS ON LEARNING

Table 2: Effects of including the non-causal terms in the eligibility traces during learning [Accuracy
(mean±std) reported over 5 trials ]

Dataset Model T Tl (λpost, λpre, αpre) αpost = 0 αpost = +1 αpost = −1
DVS Gesture VGG9 20 15 (0.2, 0.75, 1) 94.61± 0.73% 94.01± 1.10% 95.07± 0.48%
DVS CIFAR10 VGG9 10 5 (0.2, 0.5, 1) 72.93± 0.94% 73.42± 0.50% 73.93± 0.62%
N-CALTECH101 VGG9 10 5 (0.2, 0.5, 1) 62.24± 1.22% 53.42± 1.50% 66.33± 0.86%
SHD RSNN 100 10 (0.5, 1, 1) 77.09± 0.33% 78.23± 1.84% 74.69± 0.47%

We performed ablation studies on the DVS Gesture, DVS CIFAR10, N-CALTECH101, and SHD
datasets to evaluate the effect of the non-causal factor (αpost) on the learning process.

For this purpose, we train a VGG9 model, described in Appendix B.1, five times with the same
random seeds for 30, 30, and 300 epochs in the DVS Gesture, N-CALTECH101, and DVS CIFAR10
datasets, respectively. Similarly, a recurrent SNN (RSNN) model, described in Appendix B.1, was
trained five times during 200 epochs on the SHD. To analyze the effect of the non-causal term, we
evaluate three values of αpost, −1, 0, and 1. According to (10), when αpost = 0, only causal terms
are considered, while αpost = 1 (αpost = −1) means that the non-causal term is added positively
(negatively). As shown in Table 2, for vision tasks, it can be seen that using αpost = −1 improves
the average accuracy performance of the model with respect to only using causal terms αpost = 0. In
contrast, for SHD, using αpost = 1 improves the average performance over using only casual terms,
as shown in Table 2. This indicates that considering the non-casual relations of the spiking activity
(either positively or negatively) in the learning rule helps to improve the network performance. An
explanation for this effect is that the non-causal term acts as a regularization term that allows better
exploration of the weights space. Additional ablation studies are presented in Appendix E.3 that
support the improvements due to the non-causal terms.

5.2 PERFORMANCE COMPARISON

5.2.1 IMAGE AND GESTURE RECOGNITION

We train a VGG-9 model for 300 epochs using the Adam optimizer with a learning rate of 0.001. The
models were trained five times with different random seeds. The baseline was set using BPTT, while
the models trained using S-TLLR used the following STDP parameters (λpost, λpre, αpost, αpre):
(0.2, 0.75,−1, 1) for DVS Gesture and (0.2, 0.5,−1, 1) for DVS CIFAR10 and N-CALTECH101.

The test accuracies are shown in Table 3. In all those tasks, S-TLLR shows a competitive perfor-
mance compared to the BPTT baseline. In fact, for DVS Gesture and N-CALTECH101, S-TLLR
outperforms the average accuracy obtained by the baseline trained with BPTT. Because of the small
size of the DVS Gesture dataset and the complexity of the BPTT algorithm, the model overfits
quickly resulting in lower performance. In contrast, S-TLLR avoids such overfitting effect due to its
simple formulation and by updating the weights only on the last five timesteps. Table 3 also includes
results from previous works using spiking models on the same datasets. For DVS Gesture, it can
be seen that S-TLLR outperforms previous methods such as Xiao et al. (2022); Shrestha & Orchard
(2018); Kaiser et al. (2020), in some cases with significantly less number of time-steps. In the case of
DVS CIFAR10, S-TLLR demonstrates superior performance compared to the baseline with BPTT
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Table 3: Comparison of accuracy performance
Method Model Time-steps (T ) Accuracy

(mean±std)
DVS CIFAR10

BPTT (Zheng et al., 2021) ResNet-19 10 67.8%
BPTT (Fang et al., 2021b) PLIF (7 layers) 20 74.8%
TET (Deng et al., 2022) VGG-11 10 83.17± 0.15%
DSR (Meng et al., 2022) VGG-11 10 77.27± 0.24%
BPTT (Li et al., 2021) ResNet-18 10 75.4± 0.05%
OTTTA(Xiao et al., 2022) VGG-9 10 76.27± 0.05%
BPTT (baseline) VGG-9 10 75.44± 0.76%
S-TLLR (Ours, Tl = 5, αpost = −1 ) VGG-9 10 73.93± 0.62%
S-TLLR (Ours, Tl = 0, αpost = −1 ) VGG-9 10 75.6± 0.10%
S-TLLR (Ours, Tl = 0, αpost = 0 ) VGG-9 10 74.8± 0.15%

DVS Gesture
SLAYER (Shrestha & Orchard, 2018) SNN (8 layers) 300 93.64± 0.49%
DECOLLE(Kaiser et al., 2020) SNN (4 layers) 1800 95.54± 0.16%
OTTTA(Xiao et al., 2022) VGG-9 20 96.88%
BPTT (baseline) VGG-9 20 95.58± 1.08%
S-TLLR (Ours) VGG-9 20 97.72± 0.38%

N-CALTECH101
BPTT (She et al., 2022) SNN (12 layers) 10 71.2%
BPTT (Kim et al., 2023) VGG-16 5 64.40%
BPTT (baseline) VGG-9 10 65.92± 0.82%
S-TLLR (Ours) VGG-9 10 66.058± 0.92%

SHD
ETLP (Quintana et al., 2023) ALIF-RSNN 100 74.59± 0.44%
OSTTP (Ortner et al., 2023) LIF-RSNN 100 77.33± 0.8%
BPTT Bouanane et al. (2022) LIF-RSNN 100 83.41
BPTT Cramer et al. (2022) LIF-RSNN 100 83.2± 1.3
BPTT (baseline) LIF-RSNN 100 70.57± 0.96
S-TLLRBP (Ours) LIF-RSNN 100 78.24± 1.84%
S-TLLRDFA (Ours) LIF-RSNN 100 74.60± 0.52%

when the learning signal is utilized across all time steps (Tl = 0). Furthermore, S-TLLR surpasses
the outcomes presented in Zheng et al. (2021); Fang et al. (2021b); Li et al. (2021), yet it lags behind
others such as Xiao et al. (2022); Deng et al. (2022); Meng et al. (2022). However, studies such as
Deng et al. (2022); Meng et al. (2022) showcase exceptional results primarily focused on static tasks
without addressing temporal locality or memory efficiency during SNN training. Consequently, al-
though serving as a reference, they do not fairly compare to S-TLLR. The most pertinent comparison
lies with Xiao et al. (2022), which shares similar memory and time complexity with S-TLLR. No-
tably, S-TLLR (Tl = 0, αpost = −1) exhibits a performance deficit of 0.67%. This difference is
primarily attributed to the difference in batch size during training. While Xiao et al. (2022) uses a
batch size of 128, we were constrained to 48 due to hardware limitations. To validate this point,
we trained another model utilizing only causal terms: S-TLLR (Tl = 0, αpost = 0), equating it to
Xiao et al. (2022) considering the selection of STDP parameters and secondary activation function
(Ψ) in DVS CIFAR10 experiments. The comparison reveals that S-TLLR (αpost = −1) outper-
forms S-TLLR (αpost = 0) (equivalent to Xiao et al. (2022)) under the same conditions, further
corroborating the advantages of including non-causal terms (αpost ̸= 0) during training. Finally,
when compared to BPTT, S-TLLR signifies a 5× memory reduction. By using the learning signal
for the last five time steps, it effectively diminishes the number of multiply-accumulate (MAC) op-
erations by 2.6× for DVS Gesture, and by 1.3× for DVS CIFAR10 and N-CALTECH101. Refer to
Appendix C.3 for a detailed discussion on improvement estimations.

5.2.2 AUDIO CLASSIFICATION

In order to set a baseline, we train the same RSNN with the same hyperparameters using BPTT for
five trials, and with the following STPD parameters (0.5, 1, 1, 1). As shown in Table 3, the model
trained with S-TLLR outperforms the baseline trained with BPTT. The result shows the capability
of S-TLLR to achieve high performance and generalization. One reason why the baseline does not
perform well, as suggested in Cramer et al. (2022), is that RSNN trained with BPTT quickly overfits.
This also highlights a nice property of S-TLLR. Since it has a simpler formulation than BPTT, it can
avoid overfitting, resulting in a better generalization. However, note that works such as Cramer et al.
(2022); Bouanane et al. (2022) can achieve better performance after carefully selecting the hyperpa-
rameters and using data augmentation techniques. In comparison with such works, our method still
shows competitive performance with the advantage of having a 50× reduction in memory.

Furthermore, we compared our results with Quintana et al. (2023); Ortner et al. (2023), which uses
the same RSNN network structure with LIF and ALIF (LIF with adaptative threshold) neurons and
temporal local learning rules. Table 3 shows that using S-TLLR with BP for the learning signal
results in better performance than those obtained with other temporal local learning rules, with
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Table 4: Comparison of the Average End-Point Error (AEE) on the MVSEC Zhu et al. (2018b)
dataset [AEE lower is better]

Models Training
Method Type OD1

AEE
IF1

AEE
IF2

AEE
IF3

AEE
AEE
Sum

FSFNαpost = −0.2 (Ours) S-TLLR Spiking 0.50 0.76 1.19 1.00 3.45
FSFNαpost = 0.2 (Ours) S-TLLR Spiking 0.54 0.78 1.28 1.09 3.69
FSFNαpost = 0 (Ours) S-TLLR Spiking 0.50 0.77 1.25 1.08 3.60
FSFN (baseline) BPTT Spiking 0.45 0.76 1.17 1.02 3.40
Apolinario et al. (2023) BPTT Spiking 0.51 0.82 1.21 1.07 3.61
Kosta & Roy (2023) BPTT Spiking 0.44 0.79 1.37 1.11 3.78
Hagenaars et al. (2021) BPTT Spiking 0.45 0.73 1.45 1.17 3.80
Zero prediction - - 1.08 1.29 2.13 1.88 6.38

the advantage of having a linear memory complexity instead of squared. Moreover, using DFA to
generate the learning signal results in competitive performance with the advantage of being local in
both time and space.

5.2.3 EVENT-BASED OPTICAL FLOW

The optical flow estimation is evaluated using the average endpoint error (AEE) metric that measures
the Euclidean distance between the predicted flow (ypred) and ground truth flow (ygt) per pixel. For
consistency, this metric is computed only for pixels containing events (P ), similar to Apolinario
et al. (2023); Kosta & Roy (2023); Lee et al. (2020); Zhu et al. (2018a; 2019), given by the following
expression:

AEE =
1

P

∑
P

∥ypred
i,j − ygt

i,j∥2 (13)

For this experiment, we trained a Fully-Spiking FlowNet (FSFN) model, discussed in Appendix B.1,
with S-TLLR using the following STDP parameters (λpost, λpre, αpre) = (0.5, 0.8, 1) and αpost =
[−0.2, 0.2, 0]. The models were trained during 100 epochs using the Adam optimizer with a learning
rate of 0.0002, a batch size of 8, and with the learning signal obtained from the photometric loss just
for the last time step (Tl = 1). As it is shown in Table 4, the FSFN model trained using S-TLLR
with αpost = −0.2 shows a performance close to the baseline implementation trained with BPTT.
Although we mainly compared our model with BPTT, to take things into perspective, we include
results from other previous works. Among the spiking models, our model trained with S-TLLR has
the second-best average performance (AEE sum) in comparison with such spiking models of similar
architecture and size trained with BPTT (Apolinario et al., 2023; Kosta & Roy, 2023; Hagenaars
et al., 2021). The results indicate that our method achieves high performance on a complex spatio-
temporal task, such as optical flow estimation, with 5× less memory and a 6.6× reduction in the
number of MAC operations by just updating the model in the last time step.

6 CONCLUSION

Our proposed learning rule, S-TLLR, can achieve competitive performance in comparison to BPTT
on several event-based datasets with the advantage of having a constant memory requirement. In
contrast to BPTT (or other temporal learning rules) with high memory requirements O(Tn) (or
O(n2)), S-TLLR memory is just proportional to the number of neurons O(n). Moreover, in con-
trast with previous works that are derived from BPTT as approximations, and therefore using only
causal relations in the spike timing, S-TLLR explores a different direction by leveraging causal and
non-causal relations based on a generalized parametric STDP equation. We have experimentally
demonstrated on several event-based datasets that including such non-causal relations can improve
the SNN performance in comparison with temporal local learning rules using just causal relations.
Also, we could observe that tasks where spatial information is predominant, such as DVS CIFAR-
10, DVS Gesture, N-CALTECH101, and MVSEC, benefit from causality (αpost = −1). In contrast,
tasks like SHD, where temporal information is predominant, benefit from synchrony (αpost = 1).
Moreover, by computing the learning signal just for the last few time steps, S-TLLR reduces the
number of MAC operations in the range of 1.3× to 6.6×. In summary, S-TLLR can achieve high
performance while being memory-efficient and requiring only information locally in time, therefore
enabling online updates.
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A S-TLLR PSEUDO-CODE

In this section, we present the pseudocode necessary for implementing S-TLLR in the training of a
multilayer SNN. The forward pass is detailed in Algorithm 1, which elucidates the computation of
intermediate states. Subsequently, Algorithm 2 outlines the generation of the learning signal and its
utilization in conjunction with the eligibility trace for weight updates. Note, Algorithm 2 delineates
the learning signal’s derivation through either backpropagation across layers or with direct feedback
alignment (DFA).

Algorithm 1 S-TLLR algorithm
Require: x,y∗,w, T, Tl, ρ

1: Initialize δL = ∇yL[t]L(yL[t],y∗)
2: for t = 1, 2, . . . , T do
3: for l = 1, 2, . . . , L do
4: Update membrane potential u(l)[t] with (1)
5: Produce output spikes y(l)[t] with (34)
6: Update eligibility trace e(l)[t] with (10)
7: end for
8: if t ≥ Tl then
9: Compute ∆w[t] with Algorithm 2

10: end if
11: end for
12: for l = 1, 2, . . . , L do
13: Update weights w(l) := w(l) + ρ

∑
T ∆w(l)[t]

14: end for
15: return w
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Algorithm 2 S-TLLR algorithm - learning signal generation
Require: x,y,y∗,w,u, t

1: Initialize δL = ∇yL[t]L(yL[t],y∗)
2: Initialize a(L) := 1
3: for l = L− 1, L− 2, . . . , 2 do
4: if learning signal produced by backpropagation then
5: δ(l) = a(l+1) ⊙ (w(l+1)⊤δ(l+1))
6: a(l) = δ(l) ⊙Θ′(u(l)[t]) {Θ′ is a surrogate gradient}
7: else if learning signal produced by random feedback then
8: δ(l) = B(l)δ(L) {B(l) is a fixed random matrix}
9: end if

10: end for
11: ∆w

(L)
ij [t] = δLi y

(L−1)
j [t] {Last layer}

12: ∆w
(l)
ij [t] = δ

(l)
i e

(l−1)
ij [t] {Hidden layers}

13: return ∆w[t]

B DATASETS AND EXPERIMENTAL SETUP

We conducted experiments on various event-based datasets, including DVS Gesture (Amir et al.,
2017), N-CALTECH101 (Orchard et al., 2015), DVS CIFAR-10 (Li et al., 2017), SHD (Cramer
et al., 2022), and MVSEC (Zhu et al., 2018b). These datasets encompass a wide range of applica-
tions, such as image and gesture recognition, audio classification, and optical flow estimation. In
this section, we outline the experimental setup employed in Section 5, covering SNN architectures,
dataset preprocessing, and loss functions.

B.1 NETWORK ARCHITECTURES

For experiments on image and gesture recognition, we use a VGG-9 model with the follow-
ing structure: 64C3-128C3-AP2S2-256C3-256C3-AP2S2-512C3-512C3-AP2S2-512C3-512C3-
AP2S2-FC. In this notation, ’64C3’ signifies a convolutional layer with 64 output channels and
a 3x3 kernel, ’AP2S2’ represents average-pooling layers with a 2x2 kernel and a stride of 2, and
’FC’ denotes a fully connected layer. In addition, instead of batch normalization, we use weight
standardization Qiao et al. (2019) similar to Xiao et al. (2022). Also, the leak factor and threshold
for the LIF models (1) are γ = 0.5 and vth = 0.8, respectively.

For experiments with the SHD dataset, we employ a recurrent SNN (RSNN) consisting of one
recurrent layer with 450 neurons and a leaky integrator readout layer with 20 neurons, following a
similar configuration as in Ortner et al. (2023); Quintana et al. (2023). Both layers are configured
with a leak factor of γ = 0.99, and the recurrent LIF layer’s threshold voltage is set to vth = 0.8.

We utilize the Fully-Spiking FlowNet (FSFN) for optical flow estimation, as introduced by Apoli-
nario et al. (2023). The FSFN adopts a U-Net-like architecture characterized by performing binary
spike computation in all layers. Notably, we enhance the model by incorporating weight standard-
ization (Qiao et al., 2019) in all convolutional layers. Additionally, our training approach involves
ten time steps without temporal input encoding, in contrast to Apolinario et al. (2023) that uses
the encoding method proposed by Lee et al. (2020). Also, the leak factor and threshold of the LIF
neurons used for our FSFN are 0.88 and 0.6, respectively.

B.2 DATA PRE-PROCESSING

Here we describe the data pre-processing for each dataset:

• DVS Gesture: the recordings were split into sequences of 1.5 seconds of duration, and the
events were accumulated into 20 bins, with each bin having a 75 ms time window. Then,
the event frames were resized to a size of 32 × 32, while maintaining the positive and
negative polarities as channels.
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• N-CALTECH: the recordings were wrapped into ten bins with the same time window size
for each bin (30 ms). Then, the event frames were resized to a dimension of 60× 45.

• DVS CIFAR10: the recordings were wrapped into ten bins with the same time window size
for each bin. Then, the event frames were resized to a dimension of 48× 48. Additionally,
a random crop with a padding of 4 was used for data augmentation.

• SHD: the events in each sequence were wrapped into 100 bins, each with a time window
duration of 10 ms. No data augmentation techniques were used for SHD.

• MVSEC: the events between two consecutive grayscale frames were wrapped into ten bins,
keeping the negative and positive polarities as channels. Then, the event frames are fed to
the SNN model sequentially.

B.3 LOSS FUNCTIONS AND SECONDARY ACTIVATION FUNCTIONS (Ψ)

For image, gesture, and audio classification tasks, we utilized cross-entropy (CE) loss and computed
the learning signal using (11) with ground truth labels (y∗). In contrast, for optical flow, we em-
ployed a self-supervised loss based on photometric and smooth loss, as detailed in Equation (5) in
Lee et al. (2020).

Regarding the generation of the learning signal (δ), in the context of image and gesture recognition,
it is exclusively generated for the final five time steps (Tl = 5). For audio classification, we employ
Tl = 90, while for optical flow, we use Tl = 1. This setting reduces the number of computations
compared to BPTT by factors of 4×, 1.1×, and 10×, respectively.

Finally, we consider the following secondary activation functions for the computation of the eligi-
bility traces (10):

Ψ(ui[t]) =
1

(100|ui[t]− vth|+ 1)2
(14)

Ψ(ui[t]) = 0.3×max(1.0− |ui[t]− vth|, 0) (15)

Ψ(ui[t]) = 4× sigmoid(ui[t]− vth)(1− sigmoid(ui[t]− vth) (16)

Ψ(ui[t]) =
1

1 + (10(ui[t]− vth))2
(17)

Here, max(a, b) returns the maximum between a and b, and | · | represents the absolute value func-
tion. These activation functions (14), (15), (16), and (17) are specifically used for SHD, DVS Ges-
ture, DVS CIFAR10, and MVSEC, respectively.

C LOCALITY AND COMPUTATIONAL ANALYSIS OF BPTT AND S-TLLR

C.1 BPTT ANALYSIS

To analyze BPTT, we follow a similar analysis as Bellec et al. (2020). Here, we will utilize a three-
layer feedforward SNN as illustrated in Fig. 2a. Our analysis is based on a regression problem with
the target denoted as y∗ across T time steps, and our objective is to compute the gradients for the
weights of the first layer (w(1)). The Mean Squared Error (MSE) loss function (L) is defined as
follows:

L =
1

2
∥y∗ −

T∑
t=0

y(3)[t]∥22 (18)

Here y(3)[t] is the output of the third layer (last layer) at the time step (t). Then, the gradients with
respect to w(1) can be computed as follows:

dL
dw(1)

=

T∑
t=0

∂L
∂u(1)[t]

∂u(1)[t]

∂w(1)
(19)

If we expand the term ∂L
∂u(1)[t]

, we obtain the following expression:
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(a) BPTT (b) S-TLLR

Figure 2: Comparison of weight update computation of three feed-forward spiking layers for (a)
BPTT and (b) S-TLLR. The spiking layers are unrolled over time for both algorithms while showing
the signals involved in the weight updates. The top-down learning signal for BPTT ( ∂L

∂y[t] ) is shown
in green, note that at time step t this learning signal depends on future time steps. In contrast, for S-
TLLR the learning signal ([ ∂L

∂y[t] ]local) and all the variables involved are computed with information
available only the time step t.

∂L
∂u(1)[t]

=
∂L

∂y(1)[t]

∂y(1)[t]

∂u(1)[t]
+

∂L
∂u(1)[t+ 1]

∂u(1)[t+ 1]

∂u(1)[t]
(20)

Note that the right-hand side contains the term ∂L
∂u(1)[t+1]

that could be further expanded. If we

apply (20) recursively, replace it on (19), and factorize the ∂L
∂y(1)[t]

terms, we obtain the following
expression:

dL
dw(1)

=

T∑
t=0

T∑
t′=t

∂L
∂y(1)[t′]

∂y(1)[t′]

∂u(1)[t′]
(

t′−t∏
k=0

∂u(1)[t′ − k]

∂u(1)[t′ − k − 1]
)
∂u(1)[t]

∂w(1)
(21)

By doing a change of variables between t and t′, we can rewrite (21) as:

dL
dw(1)

=

T∑
t′=0

∂L
∂y(1)[t′]

∂y(1)[t′]

∂u(1)[t′]

t′∑
t=0

(

t′−t∏
k=0

∂u(1)[t′ − k]

∂u(1)[t′ − k − 1]
)
∂u(1)[t]

∂w(1)
(22)

Further replacing the LIF equation (1) on (22), we obtain:

dL
dw(1)

=

T∑
t′=0

∂L
∂y(1)[t′]

Θ′(u(1)[t′])

t′∑
t=0

γt′−ty(0)[t] (23)

∆w(1)[t′] =
∂L

∂y(1)[t′]
Θ′(u(1)[t′])

t′∑
t=0

γt′−ty(0)[t] (24)
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The total update of the weight for the first layer is shown in (23) where at each time step, the
synaptic updated is represented by (24). Here, it can be seen that the contribution of any time
step (t′) has two components, Θ′(u(1)[t′])

∑t′

t=0 γ
t′−ty(0)[t] that at time-step t′ depends only on

previous information (0, 1, ..., t′−1, t′), and an learning signal ( ∂L
∂y(1)[t′]

) depends on information of
future time steps (t′ + 1, t′ + 2, ..., T ). Those components are visualized in Fig. 2a. Since the error
signal depends on future time steps it can not be computed locally in time, that is with information
available only at the time step (t′). Therefore, BPTT is not a temporal local learning rule.

Since BPTT requires the information of all the time steps, its memory requirements scale linearly
with the total number of time steps (T ). Then, the total memory required, for an SNN model with L
layers and N (l) neurons at the lth-layer, can be computed as:

MemBPTT = T ×
L∑

l=0

N (l) (25)

To estimate the number of operations, specifically multiply-accumulate (MAC) operations, we will
exclude any element-wise operations. Referring to (24), we can ascertain that the number of op-
erations depends on both the number of inputs and outputs, resulting in a total of N (l) × N (l−1)

operations. Additionally, we need to account for the operations involved in propagating the learning
signals to the previous layer, equating to N (l) × N (l−1). Consequently, the estimated number of
operations can be calculated as follows:

OpsBPTT = 2T ×
L∑

l=1

N (l) ×N (l−1) (26)

C.2 S-TLLR ANALYSIS

For S-TLLR, the weight updates are described by the following equation:

∆w(1)[t] = [
∂L

∂y(1)[t]
]local(αpreΨ(u(1)[t])

t∑
t′=0

λt−t′

pre y(0)[t′] + αposty
(0)[t]

t−1∑
t′=0

λt−t′

postΨ(u(1)[t′]))

(27)

The summation in (27) can be written locally in time as a recurrent equation of the form trx[t] =
λpretrx[t− 1] + x[t], where trx is named as the trace of x. Then, (27) can be written as follows:

∆w(1)[t] = [
∂L

∂y(1)[t]
]local(αpreΨ(u(1)[t])try(0)[t] + αposty

(0)[t](trΨ(u(1)[t])−Ψ(u(1)[t]))

(28)

To preserve the temporal locality, the error signal, [ ∂L
∂y(1)[t]

]local, is computed as the instantaneous

contribution of y(1)[t] to the loss function, as represented on Fig. 2b.

Because, (28) only uses variables locally in time, the memory requirements are constant and inde-
pendent of the number of weight updates. Therefore, the total memory required, for an SNN model
with L layers and Mk neurons at the kth-layer, can be computed as:

MemS−TLLR = 2×
L∑

l=0

N (l) (29)

The factor 2 in (29) is produced by the use of the traces to keep the temporal information.

To compute the number of operations, we first must note that S-TLLR only updates the weights
when the learning signal is present at time Tl, that is weights are updated T − Tl times. Therefore,
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the number of operations for S-TLLR is:

OpsS−TLLR = 3(T − Tl)×
L∑

l=1

N (l) ×N (l−1) (30)

Where the factor 3 comes from the operations required by the non-causal term.

C.3 COMPUTATIONAL IMPROVEMENTS

The improvements in memory (Smem) and number of operations (Sops) can be obtained as follows:

Smem =
MemBPTT

MemS−TLLR
=

T ×
∑L

l=0 N
(l)

2×
∑L

l=0 N
(l)

=
T

2
(31)

Sops =
OpsBPTT

OpsS−TLLR
=

2T ×
∑L

l=1 N
(l) ×N (l−1)

3(T − Tl)×
∑L

l=1 N
(l) ×N (l−1)

=
2T

3(T − Tl)
(32)

C.4 EXAMPLE OF REAL GPU MEMORY USAGE

This section shows the substantial memory demands associated with BPTT and their correlation
with the number of time steps (T ). To illustrate this point, we employ a simple regression problem
utilizing a synthetic dataset (x, y∗), where x denotes a vector of dimension 1000 and y∗ represents
a scalar value. The batch size used is 512. The structure of the SNN model comprises five layers,
structured as follows: 1000FC-1000FC-1000FC-1000FC-1FC. In addition, the loss is computed
solely for the final time step as L = (y[T ] − y∗)2. This evaluation is conducted on sequences of
varying lengths (10, 25, 50, 100, 200, and 300). To simplify, these sequences are generated by
repeating the same input (x) multiple times. Throughout these experiments, we utilized an NVIDIA
GeForce GTX 1060 and recorded the peak memory allocation. The obtained results are visualized
in Fig. C.4. These results distinctly highlight how the memory usage of BPTT scales linearly with
the number of time steps (T ), while S-TLLR remains constant.

Figure 3: GPU memory usage for BPTT and S-TLLR for a five-layer fully connected SNN models
with different number of time steps (T ).
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D S-TLLR FOR MODELS WITH RECURRENT SYNAPTIC CONNECTIONS

In this section, we discuss recurrent spiking models and their utilization of S-TLLR. Similar to the
equation (1), the LIF model featuring explicit recurrent connections can be mathematically repre-
sented as:

ui[t] = γ(ui[t− 1]− vthyi[t− 1]) + wff
ijxj [t] + wrec

ik yk[t− 1] (33)

yi[t] = Θ(ui[t]− vth) (34)

Here, ui denotes the membrane potential of the i-th neuron. Moreover, wffij represents the forward
synaptic connection between the i-th post-synaptic neuron and the j-th pre-synaptic neuron, while
wrecik signifies the recurrent synaptic connection between the i-th and k-th neurons in the same
layer. Other terms remain consistent with the description in (1).

Concerning the forward connections, S-TLLR is implemented following the methodology described
in (10). In contrast, for the recurrent connections, the following expression is employed:

erec
ik [t] = αpreΨ(ui[t])

t∑
t′=1

λt−t′

pre yk[t
′ − 1] + αpostyk[t− 1]

t−1∑
t′=0

λt−t′

postΨ(ui[t
′]) (35)

In recurrent connections, the neuron outputs from a previous time step (t − 1) serve as inputs for
the current time step (t). This behavior is encapsulated in (35). It is noteworthy that for recurrent
models, the memory requirements remain constant, thereby upholding temporal locality.

E ADDITIONAL EXPERIMENTS ON THE EFFECTS OF STDP PARAMETERS ON
LEARNING

E.1 EFFECTS OF CAUSALITY AND NON-CAUSALITY FACTORS USING DFA

In Section 5.1, we examined the impact of introducing non-causal terms in the computation of the
instantaneous eligibility trace (10) when using error-backpropagation (BP) to generate the learning
signal. In this section, we conduct a similar experiment, but this time, we employ direct feedback
alignment (DFA) for the learning signal generation.

As in Section 5.1, we vary the values of αpost, including −1, 0, and 1, to assess the effect of non-
causal terms. Interestingly, when the learning signal is produced via random feedback with DFA,
there is no significant difference observed when including non-causal terms or not. For example, in
the RSNN model, using αpost = 1 yields slightly better performance, as depicted in Fig. 4b, but the
difference is marginal. Similarly, for the VGG9 model, the performance of αpost = 1 and αpost = 0
is comparable and superior to αpost = −1, as shown in Fig. 4a. This suggests that a more precise
learning signal, such as BP, may be necessary to fully exploit the benefits of non-causal terms.

E.2 EFFECTS OF λpre ON THE LEARNING

In this section, we explore the impact of using a λpre value different from the leak parameter γ of
the LIF model (1) on the S-TLLR eligibility trace (10). This parameter, which controls the decay
factor of the input trace, offers an opportunity to optimize the model’s performance. While previous
works aiming to approximate BPTT Xiao et al. (2022); Bellec et al. (2020); Bohnstingl et al. (2022)
set λpre equal to the leak factor (γ), our experiments, as depicted in Fig. E.2, suggest that using a
slightly higher λpre can lead to improved average accuracy performance.

E.3 ABLATION STUDIES ON THE SECONDARY ACTIVATION FUNCTION (Ψ)

In this section, we present ablation studies on the secondary activation function using the DVS
Gesture, NCALTECH101, and SHD datasets, with the same configurations used for experiments on
Table 2. The results are presented in Table 5, where it can be seen that independent of Ψ function
using a non-zero αpost result in better performance than using αpost = 0.

20



Under review as a conference paper at ICLR 2024

(a) DVS Gesture (b) SHD

Figure 4: Evaluating the effect of αpost on (a) DVS Gesture and (b) SHD datasets using DFA for
learning signal generation. Constant STDP parameters for DVS Gesture are (λpost, λpre, αpre) =
(0.2, 0.75, 1), and for SHD, they are (λpost, λpre, αpre) = (0.5, 1, 1). The solid purple line repre-
sents the median value, and the dashed black line represents the mean value averaged over five trials.

Figure 5: Effects of using a decaying factor, λpre, different from the leak spiking parame-
ter (γ = 0.5) to compute the causal term on the eligibility trace, with constant parameters
(λpost, αpost, αpre) = (0.2,−1, 1) when the learning signal is generated using BP. Plots are based
on five trials. The solid purple line represents the median value, and the dashed black line represents
the mean value.

F CODE AVAILABLE

Our code will be made publicly available on GitHub after the review process.
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Table 5: Ablation studies on the secondary activation function Ψ [Accuracy (mean±std) reported
over 5 trials ]
Ψ function Model T Tl (λpost, λpre, αpre) αpost = 0 αpost = +1 αpost = −1

DVS128 Gesture
(14) VGG9 20 15 (0.2, 0.75, 1) 73.61± 2.92% 81.89± 5.13% 65.45± 2.92%
(15) VGG9 20 15 (0.2, 0.75, 1) 94.61± 0.73% 94.01± 1.10% 95.07± 0.48%
(16) VGG9 20 15 (0.2, 0.75, 1) 94.46± 0.45% 94.46± 0.45% 95.85± 0.66%

NCALTECH101
(14) VGG9 10 5 (0.2, 0.5, 1) 35.11± 0.40% 37.19± 1.17% 28.53± 0.56%
(15) VGG9 10 5 (0.2, 0.5, 1) 63.34± 0.96% 54.07± 2.37% 66.05± 0.92%
(16) VGG9 10 5 (0.2, 0.5, 1) 62.24± 1.22% 53.42± 1.50% 66.33± 0.86%

SHD
(14) RSNN 100 10 (0.5, 1, 1) 77.09± 0.33% 78.23± 1.84% 74.69± 0.47%
(15) RSNN 100 10 (0.5, 1, 1) 76.25± 0.44% 76.28± 0.25% 74.40± 0.59%
(16) RSNN 100 10 (0.5, 1, 1) 75.22± 0.79% 76.29± 0.25% 74.46± 0.65%
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