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How Classifiers Extract General Features for Downstream Tasks:
An Asymptotic Analysis in Two-Layer Models

Anonymous Authors1

Abstract
Neural networks learn effective feature represen-
tations through intermediate layers, enabling fea-
ture transfer without additional training for new
tasks. However, the conditions for successful fea-
ture transfer remain underexplored. In this paper,
we investigate feature transfer in classifier-trained
networks, focusing on clustering in unseen dis-
tributions. In binary classification, we find that
higher similarity between training and unseen dis-
tributions improves Cohesion and Separability,
while Separability further requires unseen data to
be assigned to different training classes. In multi-
class classification, our analysis shows that the
feature extractor maps input point based on their
similarity to training classes, i.e. that unrelated
training classes to input have negligible impact
on feature extraction. We validate our theoretical
findings in synthetic dataset and demonstrate prac-
tical applicability utilizing ResNet and variations
of CAR, CUB, SOP, ISC, and ImageNet datasets.

1. Introduction
Neural networks have the remarkable ability to adapt to
specific tasks, learning representations through penultimate
layers. Training these intermediate layers is crucial for neu-
ral network generalization (Damian et al., 2022). Also, these
layers can extract semantically meaningful and transferable
features from new data, enabling feature transfer for new
tasks (Yosinski et al., 2014; Kornblith et al., 2019). A wide
range of techniques, from open set clustering (Roth et al.,
2020; Huang et al., 2024) to vision-language models (Li
et al., 2023) and language models (Brown et al., 2020; Ko-
jima et al., 2023), leverage feature transfer for downstream
tasks. However, the specific conditions where features can
be effectively transferred remain underexplored.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Among various applications, classification based visual
open-set clustering (Musgrave et al., 2020) serves as a funda-
mental benchmark for evaluating whether a feature extractor
can generalize to unseen data. Typically, this task involves
classifier training on one set of classes and then testing it
on disjoint classes to assess whether the extracted features
form cohesive and separable class-wise clusters on unseen
data (Wang et al., 2018; Seidenschwarz et al., 2021; Deng
et al., 2022). Given this context, we aim to investigate
feature clustering with the following research questions:

Can we capture the presences of feature learning
in classification and identify the conditions where
features cluster effectively on new distributions?

To address this question, we analyze a two-layer nonlin-
ear network network trained with a single large gradient
descent step on a mean-squared classification loss in the
proportional regime (in section 2). The proportional regime
intuitively represents a scenario where the network width
and the size of the dataset are of similar scales, aligning
with common practices in model scaling (Ba et al., 2022),
and they are known to effectively capture the phenomena oc-
curring during the actual training process, as demonstrated
in studies such as Mei & Montanari (2020); Moniri et al.
(2024). We capture that the dominant part of the trained
feature is composed of random initialization and spikes (Def.
3.4) associated with the training classes (section 3). Lever-
aging dominant features, we identify conditions for effective
clustering on new distributions (section 4).

In a binary classification setting, we assess the intra-class
cohesion and inter-class separability of trained features in
a numerical-analytical manner representing the clustering
population risks (Def. 4.3) (Clémençcon, 2011; Papa
et al., 2015; Li & Liu, 2021) and goals for clustering
performance (Liu et al., 2017). As a result, Cohesion
increases as the train-unseen similarity (in Def. 4.1) grows
larger. Meanwhile, for Separability, if classes classes are
assigned (Notes 4.2, E.1) to different training classes,
Separability increases as the train-unseen similarity grows
larger; otherwise, it decreases, as illustrated in Figure 1.
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Figure 1: Mapping data from the input space (left) to the
learned feature space (right). Training classes are shown as
balls, and unseen classes as dashed lines (a, b, p, n). Cohe-
sion: Strong cohesion occurs for a, p, n, which have high
similarity to the training classes compared to b. Separa-
bility of a, n: a and n, assigned to different training class,
demonstrate high Separability. Separability of a, p: a and p,
assigned to the same training class, exhibit low Separability.

In the multi-class classification setting, we analyze the
spikes of features and find that spikes map new inputs based
on a linear combination of randomly initialized classifier
heads’ weight with coefficients that represent the similarity
of the training classes. Therefore, the more spikes aligned
with the input data the greater their contribution to feature
extraction, enhancing the expressiveness of the features.

In the experiments, we empirically observe train-unseen
similarity, cohesion, Separability, and recall@1 under our
theoretical assumptions in synthetic datasets. As a result,
we confirm that the theoretical interpretation aligns with the
actual findings (subsection 5.2). Additionaly, we explore
practical metric learning settings and find evidence support-
ing the validity of our analysis results in a practical setup
(subsection 5.4). In most cases, we observe that clustering
performance is higher when the unseen classes share the
same sementic domain as the training classes. Moreover,
adding semantically relevant training classes improves per-
formance, whereas adding unrelated training classes does
not lead to performance improvement.

Our contributions are summarized into following:

• We analyze the classifier feature, providing insights into
how feature extractors operate:

– Higher train-unseen similarity increases cohesion.
– Higher train-unseen similarity increases separabil-

ity between data assigned to different classes but
reduces it otherwise.

– Expressiveness of feature improves with an increased
number of spikes non-orthogonal to input.

• We generalize the distribution assumption of prior works
and present novel proof techniques for classifier analysis.

• The theoretical results are validated through diverse ex-
periments, including synthetic and real-world datasets.

1.1. Related Works

Metric Learning and Open Set Clustering Metric learn-
ing is proposed to cluster visually similar unseen classes
using classification or triplet loss (Movshovitz-Attias et al.,
2017; Zhai & Wu, 2019; Boudiaf et al., 2021). Several
recent approaches have focused on increasing the number
of classes in the training data to improve clustering. One
approach adds virtual classes (Chen et al., 2018; Qian et al.,
2020; Gu et al., 2021). Another approach suggested lever-
aging a larger number of classes induced from Schuhmann
et al. (2021) to achieve state-of-the-art performance (An
et al., 2023). This aligns with our analysis, which suggests
that performance improves as the number of relevant classes
in clustering increases.

Neural Collapse (NC) and Unconstrained Layer-Peeled
Model (ULPM) Recent studies have introduced the con-
cept of Neural Collapse (Papyan et al., 2020) to explain the
emergence of intra-class features and feature-weight align-
ment in trained neural networks. Several studies propose
the ULPM to understand training dynamics of NC treat-
ing features and weights as unconstrained free variables
(Fang et al., 2021; Zhu et al., 2021; Ji et al., 2022; Tirer
& Bruna, 2022). However, ULPM, unlike the two layer
network model we use, assumes the free variable features,
which limits analyzability about input distribution and, con-
sequently, prevents studying feature transferability.

Feature Learning in Two-Layer Networks Many
works (Louart et al., 2017; Goldt et al., 2020; Hu & Lu,
2022) study the Conjugate Kernel (CK), which enables the
analysis of the structure of the first layer in two-layer net-
works. Ba et al. (2022); Moniri et al. (2024); Ba et al. (2023)
argue that feature learning aids in reducing the population
risk when evaluated on distributions same to the training
data. Unlike these studies, we claim that the CK feature
learning model not only explains this generalization but also
enables the analysis of features from non-identical distribu-
tions, facilitating a deeper understanding of feature transfer.

Additional related works are provided in Appendix A.

2. Problem Statement
Notations Let ∥·∥ be L2 or the operator norm. Let ⊙ be
the Hadamard product. Let A◦k be the Hadamard power.
Let C, c > 0 and κ ∈ R be constants that may change
from line to line. Define [d] ≜ {1, 2, · · · , d}. For o,O,Θ
notations we follow Moniri et al. (2024)

Training Data We define data for one vs. one classifi-
cation with #cls classes. The number of problem #P ≜
#cls(#cls−1)

2 . Let #cls be the number of training classes,
and let C1, · · · ,C#cls

represent the class-conditional distri-
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butions of the training data. Define the training dataset
as D = (X,Y ), where X ∈ Rn×d, Y ∈ [#cls]

n,
X = ({x ∼ C1} ×m ∪ · · · ∪ {x ∼ C#cls

} ×m), where
#clsm = n and m is the number of instances per class. Let
D̃ = (X̃, Ỹ ) an i.i.d. copy of D.

Network Structure We consider two-layer networks. The
initial weight of the first layer, W0 ∈ Rd×N, is initialized as
W0[i] ∼ Unif(Sd−1) for i ∈ [d]. We denote W obtained
via a single step of gradient descent. The initial weights of
the second layer, aij ∈ RN for i, j ∈ [#cls] s.t. i < j, are
initialized as aij ∼ N(0, 1

NI). We define the initialized fea-
ture as F0(x) ≜ σ(W⊤

0 x) and the one-step trained feature
as F (x) ≜ σ(W⊤x). The network output is defined as the
following #P -dimensional vector:

(
F (x)⊤aij

)
|ij .

Proportional Regime We consider the two-layer neural
networks in the proportional regime. n, d, and N are sample
size, data and feature dimension, respectively. We perform
our analysis under d/n,N/n→ c as n,d,N→∞.

Optimization Problem Denote the set of all network pa-
rameters as θ = {W,a12, · · · , a#P−1,#P

}. Let Xij be a
matrix in R2m×d, where the first m rows contain samples
x ∼ ci and the last m rows contain samples x ∼ cj . Let
y ≜ [1, 1, . . . , 1,−1, . . . ,−1]⊤ ∈ R2m be a vector consist-
ing of m ones followed by m negative ones. To classify the
given data, we use the Mean Squared Error,

L(x, y; θ) =
1

2n

c∑
i<j

∥y − σ(XijW )aij∥2. (1)

The weight update formula for the first layer is given by
W = W0 +G, where G ≜ − ∂L

∂w =
∑
i<j Gij , s.t.

Gij = −
1

n

[
XT
ij [(σ(XijW )aij − y)aTij ⊙ σ′(XijW )]

]
.

(2)
Now, we introduce the assumptions for theoretical analysis.

Assumption 2.1 (Activation Function). Let σ(x) be an
element-wise activation s.t. σ, σ′, σ′′ is bounded by λσ
almost surely. It admits a Hermite decomposition i.e.
σ(z) =

∑∞
k=0 ckHk(z), where ck = 1

k!E[σ(z)Hk(z)] for
standard gaussian z. We assume c0 = 0, c1 > 0 and
c2kk! ≤ Ck−3/2−w, for constants C,w > 0. For example,
Shifted ReLU max(x, 0)− 1√

2π
satisfies this condition.

Assumption 2.2 (Training Data). Let the class-conditional
training data distributions Ci be non-centered Sub-
Gaussians (Vershynin, 2018; Cao et al., 2021; Cole & Lu,
2024). This distribution family is suitable for classification,
including distributions with limited support that are sepa-
rable. It is an extension of the Gaussian assumption of Ba
et al. (2022).

3. Feature Decomposition
This section analyzes the learning dynamics during a sin-
gle gradient descent step. First, we demonstrate that the
gradient with respect to the W0 exhibits an almost Rank-
#P property within the proportional regime. Subsequently,
we prove that the learned features can be predominantly ex-
pressed as Rank-#P components, establishing the dominant
components for subsequent analyses.

Gradient Decomposition We decompose the gradient
(equation 2) using Hermite decomposition, which allows us
to extract the essential rank-one matrix structure for each
ij-th classification problem. Note that σ′ = c1 + σ′

⊥.

Gij =
c1
n
XT
ijya

T
ij +

1

n
XT
ijya

T
ij ⊙ σ′

⊥(XijW0)

− 1

n
XT
ijσ(XijW0)(aija

T
ij)⊙ σ′(XijW0)

≜ Aij + Bij + Cij .

(3)

We derive the norm bound for the terms Aij , Bij , and Cij in
Lemma I.1. Using these bounds, we establish the following
Theorem 3.1. For the proof, please refer to Appendix I

Theorem 3.1 (Approximation of Gradient). Under the as-
sumptions in section 2, and when n satisfies 1

2 > κ log2 n√
n

,

the following holds w.p. 1− C(ne−c log
2 n + e−cn):

∥G−
∑
i<j

Aij∥ ≤ κ
log2 n

n
. (4)

Feature Decomposition Now we utilize
∑
i<j Aij to de-

compose the feature extractor. We decompose the one-step
trained feature function F (x) = σ((W0 + G)⊤x), which
serves as a key step in deriving our main analysis. For the
proof, please refer to Appendix J.

Definition 3.2 (Data-Label Covariance). Data-Label Co-
variance for Xij is defined as βij = 1

nX
⊤
ijy ∈ Rd.

Theorem 3.3 (Decomposition of Trained Features). Un-
der the assumptions in section 2, let F0 = σ(X̃W0),
L ≜ log n, FL0 =

∑L
k=1 ckHk(X̃W0), and spikeL =∑L

k=1 c
k
1ck(X̃

∑
i<j βija

T
ij)

ok. With probability 1− o(1),

F = FL0 + spikeL +∆. (5)

Moreover, ∥spikeL∥ is greater than
√
n, ∥FL0 ∥ = Θ(

√
n),

and ∥∆∥ = o(
√
n).

Based on these results, we analyze the feature representation
using the approximation FL, which dominates the residual
term ∥∆∥ = o(

√
n) with probability 1− o(1).

3
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(a) Cohesion (b) Separability

Figure 2: Numerical Observation of Cohesion and Sep-
arability. Plot of Cohesion and Heatmap of Separability
calculated by adjusting β⊤µ1 and β⊤µ2.

Definition 3.4 (Dominant Feature FL = FL0 + spikeL).

FL(x) ≜
L∑
k=1

ck[Hk(X̃W0) + ck1(
∑
i<j

(β⊤
ijx)a

T
ij)

◦k]. (6)

Using the feature decomposition conducted so far, the next
section analyzes clustering risk and explores the conditions
for effective clustering of unseen data.

4. Feature Analysis
4.1. Clustering Risk Analysis in binary classification

In this section, we analyze clustering risks. We show train
(β)-unseen (µ) similarity governs the the clustering pop-
ulation risk i.e. Cohesion and Separability of FL from
Definition 3.4 under condition 4.4. We derive cohesion
and separability of FL for two “unseen” class-conditional
distributions.

Definition 4.1 (Train-Unseen Similarity). Given Train Data-
Label Covariance β in Definition 3.2 and mean of Unseen
distribution µ, Train-Unseen Similarity is defined as β⊤µ.

Note 4.2 (Explanation of assignment and β⊤µ). βij repre-
sents the normal vector of the linear decision boundary, i.e.
the direction determining class i vs. j based on the sign
of its inner product with data. Therefore, the sign of β⊤µ
indicates the class assignment of unseen data with µ.

Definition 4.3 (Cohesion and Separability). We define the
clustering risks based on similarity between feature vectors
using inner products.
Cohesion measures the expected similarity between i.i.d.
features of the same class over network parameters θ and
data x, x′ ∼ c1, i.e.

Eθ[Ex∼c1
F (x)TEx′∼c1

F (x′)].

Separability measures the expected dissimilarity between
independent features of different classes over θ, x ∼ c1 and
x′ ∼ c2 i.e.

−Eθ[Ex∼c1F (x)TEx′∼c2F (x′)].

Condition 4.4. We fix n,d,N large enough. Under as-
sumptions 2.1, 2.2, let ci = N(µi, Id) for i ∈ [2]

be the class conditional distributions. Define ρ
(1)
k,k′ >

0, ρ
(2)
k,k′(cos(µ1, µ2)), ρ

(3)
k,k′,r > 0, ρ

(4)
k,k′,r,r′ > 0 as func-

tions of N, d. Note that ρ
(2)
k,k′ increases as cos(µ1, µ2)

grows. Exact definitions are in Def. K.1. The Shifted
ReLU, as stated in Assumption 2.1, is used as the activation.

Proposition 4.5 (Cohesion). Following condition 4.4, the
Cohesion of FL for ci, i ∈ [2] is given by:

L∑
k=1,k′=1

ckck′


ρ
(1)
k,k′∥µ∥k+k

′

+2
∑k′

r′=0 ρ
(3)
k,k′,r′ |µTβ|k

′−r′∥β∥r′∥µ∥k

+
(k,k′)∑

r,r′=(0,0)

ρ
(4)
k,k′,r,r′ |µTβ|k+k

′−r−r′∥β∥r+r′ .

(7)

Proposition 4.6 (Separability). Following condition 4.4, the
Separability of FL for c1,c2 is given by:

−
L∑

k=1,k′=1

ckck′


ρ
(2)
k,k′(cos(µ1, µ2))∥µ1∥k∥µ2∥k

′

+
∑k
r=0 ρ

(3)
k,k′,r|µT1 β|k−r∥β∥r

′∥µ2∥k
′

+
∑k′

r′=0 ρ
(3)
k,k′,r′ |µT2 β|k

′−r′∥β∥r′∥µ1∥k

+
(k,k′)∑

r,r′=(0,0)

ρ
(4)
k,k′,r,r′(µ

T
1 β)

k−r(µT2 β)
k′−r′∥β∥r+r′ .

(8)

The proofs of Propositions 4.5 and 4.6 are provided in Ap-
pendix K. We numerically analyze the results of propo-
sitions 4.5 and 4.6 to investigate Cohesion and Separa-
bility further. For this numerical observations, we set
∥µ1∥ = ∥µ2∥ = ∥β∥ = 1, µ1 = −µ2 ∈ R320000 and
L = log10 n. We calculate equation 7 and equation 8 by ad-
justing µT1 β and µT2 β, as shown in Figure 2, which demon-
strates the Cohesion and Separability of FL. Cohesion
increases when the |µTβ| increases. Separability increases
when µT1 β and µT2 β grow with opposite signs and decreases
when they grow with the same sign. Moreover, we observe
that this phenomenon is governed by the last term of equa-
tion 7, 8 (related to ρ(4)) , as shown by separately computing
this term and the others numerically in Appendix B. Ad-
ditionally, under the theoretical setup, we observe that our
hypothesis tends to hold over a wider range as n increases
(please refer to Appendix B).

The analytical results in equation 7 and equation 7 can be
explained as follows. With ρ(4) > 0, the last term inside
the bracket of Cohesion in equation 7 increases in value as
Train-Unseen Similarity grows. The last term of Separa-
bility is influenced by (µT1 β)

k−r(µT2 β)
k′−r′ . Provided that

k− r and k′− r′ are odd, this term implies that if the Train-
Unseen Similarities have opposite signs and increase, then
this term improves; otherwise, if the signs are the same and
increase, Separability decreases. According to the analysis

4
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β4

x1

x2

β1

β2

β3

a4

a3

a2

a1
β⊤
1 x1=β⊤

1 x2

β⊤
2 x1β⊤

2 x2

β⊤
3 x1β⊤

3 x2

β⊤
1 x1=β⊤

1 x2

Figure 3: As shown in equation 6, after one step of training
with spike β1, β2, β3, β4, the inner product between input
xi and βi acts as the coefficient in the linear combination of
ai, forming the spikes structure of the feature.

in Appendix H, the first coefficient c1 of Shifted ReLU is
a large positive value, and subsequent Hermite coefficients
approach zero while oscillating around it. Thus, we hypoth-
esize that the positive part is likely to dominate

∑
ckck′ ,

but further work is needed to confirm this.

4.2. Spike Component Analysis

Thoery FL Two-Layer Network F

Figure 4: When trained along the directions β2 and β3, we
observe significant changes in the feature space distance as
x1 and x2 vary, compared to β1, β4.

In this section, based on the previous feature decomposi-
tion and extend it to examine the impact of a multi-class
classifier’s spike structure on unseen data clustering. We
examine the spike structure in FL = FL0 + spikeL and
its influence on feature mapping. This examination allows
us to explore the impact of the training data’s structure
β on the feature generation of unseen data. The spike
structure inside the Hadamard power involves the linear
combination coefficient β⊤

ijx and the random initialized
classifier head aij (equation 3.4). Thus, the feature ex-
traction is closely linked to the inner product between βij
and the input point x. If the direction of x is not orthog-
onal to βij , then spike of βij involve feature extraction.

(a) Theory (b) Two-layer Networks

Figure 5: Comparison of log average slope between Theory
and Two-layer Networks. Midpoint (β1) Interpolation
(β2) Extrapolation (β3) Orthogonal (β4). The intersec-
tion implies learning intersecting β.

Conversely, when x is orthogonal to βij , the impact of
spike βij is eliminated. To validate this, we define fol-
lowing four spikes, given test input x1, x2 ∈ Sd−1(

√
d),

β1 = x1+x2

2 , β2 = x1+3x2

4 , β3 = −x1+5x2

4 and β4, a ran-
dom vector orthogonal to x1, x2. Then, the magnitudes are
adjusted to

√
d. By definition, β1, β4 cannot contribute to

feature extraction because they are Midpoint or Orthogo-
nal, while β2 and β3 can distinguish the two inputs. For
illustration see Figure 3.

Now, we demonstrate this explanation using the approxi-
mated features FL and the two layer neural network F with
the four disjoint sub-classification problem 1 defined as fol-
lows: We generated four classification problems by creating
Gaussian training data with means βi and −βi, and a co-
variance of 0.1I for n,d,N = 211, enabling the networks
to learn βi as their spike. F is trained by this data and FL
is calculated by its definition. We observed the feature dis-
tance between F (x1), F (x2) and between FL(x1), FL(x2)
for
(
4
k

)
combinations of βi in this problem by varying the

angle between x1, x2. Please refer to Figure 4 and 21 for
results. It can be observed that the feature from β1 and β4

hardly captures variations in the angle of test input x1, x2

within the data space. In contrast, the feature from β2 and
β3 is highly sensitive to such variations, suggesting that it
effectively preserves the structural changes in the input data.
Both FL(x1) and F (x1) exhibit the same trends, which
supports the validity of our feature approximation. To aggre-
gate these combinatorial results, we measure the log of the
average slope, which indicates that features with sensitive
changes tend to have larger values, as shown in Figure 5.

As a result in Figure 5, we observe that when multiple βs
are used in training, features are more sensitive to changes

1Instead of studying all combinations for 8 classes classifica-
tion, we simplify the task by grouping four pairs, performing only
four combinations of classifications.
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Train Data 1, 2, 3 Eval 1, 2

Figure 6: Examples of training datasets (Data 1, 2, 3) and evaluation data Eval 1, 2.

in distance within the data space. Meanwhile, the Midpoint
β1 and Orthogonal spike β4 seem ineffective for feature
extraction, even when learned alongside other spikes. Ex-
periments show that learning representations with unrelated
classes limits expressiveness, while related classes enhance
the model’s ability to capture fine-grained features of un-
seen data. This trend is consistently observed in real-world
datasets in Expr V, VI at subsection 5.4. Additionally, to
clarify the effect of the spikes, we compute FL0 and spikeL
separately as shown in Figure 22. The results show that the
spikeL created by β1 and β4 embeds x1 and x2 as the same
feature. Therefore, it confirms that the distinction between
x1 and x2 created by the model trained with β1 and β4 is
due to the random feature FL0 .

5. Experiments
Remark 5.1. recall@1 ≜ Exi,yi1yi=ŷi,1-NN . ŷi,1-NN is class
of the closest feature to xi. This is a feasible measure for
evaluating whether new classes form clusters.

In this section, we conduct seven experimental setups to vali-
date our theoretical results. First, in Experiments I, II and III,
we utilize a synthetic dataset to confirm that, as discussed
in subsection 4.1, Cohesion, Separability are determined by
the Train-unseen similarity. Second, to demonstrate how our
theoretical explanations can provide intuition in practical
settings, we conduct Experiments IV, V, VI, and VII. For
this purpose, we analyze the open-set clustering problem
using fine-grained real image datasets.

5.1. Setup for Theory Vaildation: Expr. I, II, III

We use three types of different non-centered Sub-Gaussian
distributions as training datasets that are symmetric about
the origin. For the evaluation, we introduce two distribution
i.e. Eval 1, Eval 2 with translation parameter e and rotation
parameter R ∈ R ⊆ SO(n) to control the train-unseen
similarity β⊤µ. e.g. as e increases from 0 towards 1, β⊤µ
increases, and as R approaches the identity matrix I , β⊤µ
increases. For illustration of the data, see Figure 6. For
detail, refer to subsection D.1. We follow the condition
described in section 2 and subsection 4.1.

Now we explain Expr. I, II, III. For each experiment, we
utilize all datasets 1, 2, 3, with distinct Eval data usage.
Expr. I uses two Eval 1 data with translation parameter
e1 ∈ [−0.9, 0.9] and e2 = −e1, so they are assigned to
opposite training classes (say pos-neg). Experiments II and
III are based on two Eval 2 data distributions, each param-
eterized by a small-angle random rotation matrix R ∈ R.
In Experiment II, considering the case where the datasets
are assigned to opposite classes, the first distribution uses
R and the second distribution is origin symmetry of the first
distribution. In Experiment III, considering the situation
where the datasets are assigned to the same class (say pos-
pos), the first distribution uses R and the second uses R⊤ to
slightly rotate given means.

5.2. Results of Theory Vaildation: Expr. I, II, III

In this experiment, we examine the relationships between
the train-unseen similarity( i.e. β⊤µ), Cohesion, Separa-
bility that we discussed in subsection 4.1 and Recall@1 to
evaluate performance using practical measures. All test data
are generated symmetrically, so for simplicity in visualiza-
tion, we report the measurement for a single class. For Expr
I, we present a summary of the results in Figure 8. We
observe that for large values of |β⊤µ|, strong Cohesion and
Separability occur across all datasets. For Expr II and III,
in accordance with the Separability structure observed in
subsection 4.1, when the signs of β⊤µ1, β

⊤µ2 are opposite
(Expr II), we observed an increase in Separability, whereas
in the other case (Expr III), we observed a decrease Figure 7.
For recall@1, we observed a similar trend as Separability.
These results correspond to our theoretical findings. For
individual graphs, refer to Appendix D.

5.3. Setup for Practical Vaildation: Expr. IV, V, VI, VII

We designed experiments to examine whether these in-
sights are also applicable to clustering performance in image
datasets and practical neural networks. In these scenarios,
we utilize train-unseen similarity to conceptualize semantic
similarity between training and unseen classes (Expr. IV).
The number of non-orthogonal spikes is interpretable as the
number of semantically similar or dissimilar training classes

6
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(d) Cohesion: Expr II (e) Separability: Expr II (f) Recall@1(IP): Data 1, , Expr II

(a) Cohesion: Expr III (b) Separability: Expr III (c) Recall@1(IP): Expr III

Figure 7: Data 1 evaluated in the Eval 2 setup. Upper row: In Expr II, all metrics increase as |β⊤µ| increases. Lower row:
In Expr III, where two test classes are assigned to a single train class, recall@1 and Separability tend to decrease as |β⊤µ|
increases. This aligns with our predictions. The red line represents the values after one step training. Tje blue line
represents the values from initialization.

Figure 8: Summary of Expr. I. Di denotes Data i and C, S
denote Cohesion and Separability. Dark and large points
indicate low |β⊤µ| values, while the opposite indicates high
values. All measurements increase with respect to |β⊤µ|.
We scaled using the absolute value at the 85th percentile.

(Expr. V, VI). Additionally, we validate whether removing
the duplicatively assigned unseen classes improve cluster-
ing risk compared to random removal, as suggested by the
results of Separability (Expr. VII).

For this investigation, we used the benchmark datasets
CAR(Vehicle) (Krause et al., 2013), CUB(Bird) (Wah et al.,
2011), SOP(Product) (Song et al., 2015), and ISC (Cloth-
ing) (Liu et al., 2016), referred to as Domain. Additionally,
we utilized ImageNet subsets corresponding to the domains
Vehicle, Bird, Product, and Clothing, denoted as I(V), I(B),
I(P), and I(C), referred to as sub In1k for extra classes. Also,

we performed experiments on the whole classes ImageNet
by sampling 100 instances per class (say subsampled whole
In1k). Details are in Appendix N. The objective function
and most experimental configurations followed the approach
outlined in Zhai & Wu (2019), which is a seminal baseline.
We use ResNet18 and ResNet50 (He et al., 2015). In addi-
tion to the randomly initialized networks in the main text, we
conducted experiments with pre-trained networks common
in feature learning, and results are included in Appendix E.
The two setups exhibited similar trends.

5.4. Results of Practical Vaildation: Expr. IV, V, VI, VII

ResNet18 (init) ResNet50(init)

Figure 9: Expr. IV, recall@1 measurements. Most cases
show the highest performance when the domain of the Train
and Test corresponds.

7
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For Expr. IV, we trained with each Domain dataset (CAR,
CUB, SOP, and ISC train datasets) and Domain+sub In1k
dataset (CAR+I(V), CUB+I(B), SOP+I(P), and ISC+I(C)),
and then measured how each model well cluster on all of the
test datasets (CAR, CUB, SOP, ISC test datasets). As shown
in Figure 9, we verify whether clustering the test dataset
related to the train classes is more effective than clustering
unrelated data, analogous to result in subsection 4.1.

Figure 10: Expr V in ResNet50(init). The pink , red
, and blue bars represent Domain, Domain+sub In1k,

Domain+subsampled whole In1k, respectively.

In Expr. V, we measured the clustering performance for
corresponding test datasets after learning the Domain, Do-
main+sub In1k, and Domain+subsampled whole In1k. We
find that adding classes from the entire ImageNet dataset
during training, rather than including only related classes,
does not significantly improve clustering (Figure 10, 32).

Figure 11: Expr VI, Recall@1 values for the CAR, CUB,
SOP, and ISC datasets are shown with dashed lines for
ResNet18 and solid lines for ResNet50.

In Expr. VI, experiments are conducted by dividing the
Domain datasets into four steps to observe the impact of
increasing the number of related classes on recall@1 perfor-
mance (Figure 11). From Step 0 to Step 3, 25%, 50%, 75%,
and 100% of the Domain dataset classes are sequentially
added for training. The added classes are randomly selected,
and each experiment is repeated three times. For the number
of classes, refer to Table 6. Furthermore, we observed that
some results of Expr. V align with those of Expr. VI, as
discussed in detail in subsection E.1.

For Expr. VII, in evaluation, removing duplicatively as-
signed of unseen classes resulted in a 1.73± 2.87% improve-
ment in recall@1 compared to random removal of same
amount of unseen classes, with max improve: 13.65%, min
decrease: -3.28%, a success rate: 79% and p = 9.40×10−7.
This suggest that duplicate assignments hinder clustering,
which aligns with our theory. Details are in subsection E.2.

6. Conclusion
In this study, we explored the feature learning dynamics of a
two-layer classifier in the proportional regime to uncover the
mechanisms underlying feature transferability. Specifically,
we analyzed the conditions where the learned features of
unseen classes form cohesive and separable cluster. Our the-
oretical analysis extends the Conjugate Kernel framework
to classification tasks. As a result, our numerical-analytical
theory demonstrated that feature cohesion increases with
greater similarity between training and unseen data, while
feature separability is influenced not only by similarity but
also by avoiding duplicate class assignments in binary clas-
sification. Additionally, we showed that only when the
spikes are non-orthogonal to the input, do they get involved
in feature extraction. In addition to validation on synthetic
datasets, we observed that our theory offers valuable insights
even when applied to real-world datasets.

Our empirical findings suggest that clustering performance
improves when the test data share the same semantic do-
main as the training data. Furthermore, adding semantically
relevant classes to the training set leads to performance
gains, whereas introducing unrelated classes has little effect.
Contrary to existing research that focuses on performance
improvement through large-scale learning on broad domains
(Brown et al., 2020; An et al., 2023), our study provides
evidence that only certain relevant knowledge, closely re-
lated to the domain, influences feature transfer. This ev-
idence mirrors classical problems in the field of artificial
intelligence, such as the frame problem and the installation
problem. Specifically, AI agents do not require all available
knowledge to solve a given problem; only specific, detailed
knowledge is necessary. Dennett (1984) states about this as
follows: “People in AI ... take the shortcut of installing all
that an agent has to know to solve a problem. This may, of
course, be a dangerous shortcut.” We hope that our study
may remind the AI community of the longstanding principle
that it may not be the scale of the data that matters. We have
also discussed the limitations and future research directions
related to the Hermite expansion approximation and general
results for cohesion and separability in Appendix F.
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Impact Statement
This paper presents work aimed at advancing the field of
Machine Learning. In this research, we analyze the poten-
tial for clustering performance improvement through the
classification training of a large number of highly granular
classes. Such an approach may lead to a reduction in the
level of personal data masking required for fine-grained data
differentiation, which could trigger new ethical discussions
regarding privacy protection. Additionally, to effectively
implement this approach, there may be a tendency to collect
more data, which can have significant implications for the
scale and scope of data collection, as well as data manage-
ment practices.

References
An, X., Deng, J., Yang, K., Li, J., Feng, Z., Guo, J., Yang,

J., and Liu, T. Unicom: Universal and compact rep-
resentation learning for image retrieval, 2023. URL
https://arxiv.org/abs/2304.05884.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D.,
and Yang, G. High-dimensional asymptotics of feature
learning: How one gradient step improves the representa-
tion, 2022. URL https://arxiv.org/abs/2205.
01445.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., and Wu, D.
Learning in the presence of low-dimensional structure: A
spiked random matrix perspective. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 17420–17449. Curran Associates,
Inc., 2023.

Bai, Z. and Silverstein, J. W. Spectral Analysis of
Large Dimensional Random Matrices. Springer New
York, 2010. ISBN 9781441906618. doi: 10.1007/
978-1-4419-0661-8. URL http://dx.doi.org/
10.1007/978-1-4419-0661-8.

Bellet, A. and Habrard, A. Robustness and generalization for
metric learning. Neurocomputing, 151:259–267, March
2015. ISSN 0925-2312. doi: 10.1016/j.neucom.2014.
09.044. URL http://dx.doi.org/10.1016/j.
neucom.2014.09.044.

Bienstman, P. Mathematics for photonics. Course
Syllabus, September 2023. URL https:
//studiekiezer.ugent.be/studiefiche/
en/E002640/current. Course size: 4.0 credits,
Study time: 120 hours. Offered in English and Dutch.

Boudiaf, M., Rony, J., Ziko, I. M., Granger, E., Pedersoli,
M., Piantanida, P., and Ayed, I. B. A unifying mutual
information view of metric learning: cross-entropy vs.

pairwise losses, 2021. URL https://arxiv.org/
abs/2003.08983.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020. URL https://
arxiv.org/abs/2005.14165.

Cao, Y., Gu, Q., and Belkin, M. Risk bounds for
over-parameterized maximum margin classification on
sub-gaussian mixtures. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 8407–8418. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
46e0eae7d5217c79c3ef6b4c212b8c6f-Paper.
pdf.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers, 2021. URL https:
//arxiv.org/abs/2104.14294.

Chang, Y., Hu, C., and Turk, M. Manifold of facial ex-
pression. In 2003 IEEE International SOI Conference.
Proceedings (Cat. No.03CH37443), pp. 28–35, 2003. doi:
10.1109/AMFG.2003.1240820.

Chen, B., Deng, W., and Shen, H. Virtual class enhanced
discriminative embedding learning, 2018. URL https:
//arxiv.org/abs/1811.12611.

Chopra, S., Hadsell, R., and LeCun, Y. Learning a simi-
larity metric discriminatively, with application to face
verification. In 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pp. 539–546 vol. 1, 2005. doi:
10.1109/CVPR.2005.202.
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A. Additional Related Works
Feature Transferability in Deep Metric Learning The explanation for how Deep Metric Learning learns transferable
features towards unseen data remains insufficient. Chopra et al. (2005) suggested that CNNs’ robustness to geometric
distortions enables the creation of generalizable features. This explanation has been replaced in transformer-based research
by the idea that, without the inductive biases of CNNs, transformers are less constrained and thus capable of extracting
generalizable features (El-Nouby et al., 2021; Caron et al., 2021). Additionally, following the manifold hypothesis (Chang
et al., 2003; Lee et al., 2003; Talwalkar et al., 2008; Goodfellow et al., 2016), Liu et al. (2018); Ermolov et al. (2022)
explained that normalized softmax for metric learning works well because hyperspherical/hyperbolic feature space and the
data lies on a manifold. However, these studies do not provide a detailed analysis of how features are learned and transferred
through classification.

Neural Collapse (NC) and Features learned by Classifiers There exist studies exploring Neural Collapse (NC) and
features learned by classifiers that cannot be explained under the free variable assumption. Hui et al. (2022) argue that
NC does not manifest on test data. Sohoni et al. (2020); Yang et al. (2023) claim that even on training data, NC is not
fully realized, with critical fine-grained structures concealed. Notably, Yang et al. (2023) utilized a two-layer network to
analyze training data features. Regarding NC on novel data, Galanti et al. (2022) statistically analyze NC in transfer learning,
suggesting that NC generalizes not only to new samples within training classes but also to unseen classes with empirical
observations. However, their analysis is constrained by focusing on general function spaces rather than specific neural
network architectures.

MSE for Classification Utilizing MSE in classification is as well-established as using softmax-cross entropy, especially
in theoretical analyses of classification problems (Han et al., 2022; Zhou et al., 2022).

Generalization Bound for Metric Learning Research on the generalization bounds of metric learning related to the
U-process we use is also ongoing (Bellet & Habrard, 2015; Huai et al., 2019; Zhou et al., 2024). However, these studies do
not analyze the exact feature learning structure.

B. Empirical Insights into High-Dimensional Asymptotics
In asymptotic analysis, n,d,N → ∞ is crucial for observe result. Please see Figure 12, Figure 13 for the cohesion and
Separability in R2000,R20000,R320000. As the dimension increases, the range where cohesion and Separability align with
our expectations expands.

For component analysis, please see Figure 14, Figure 15, Figure 16 , Figure 17, Figure 18, Figure 19

C. Additional Observation of Multi Classes Feature Analysis
See Figure 21 for multi-directional training result. For FL0 , and spikeL term depiced in Figure 22, Figure 23.

D. Additional Results of two-classes Experiments
D.1. Additional setup for Experiment I, II, III

We set d = n = N = 211 and use Shifted ReLU. We repeat each experiment with 3 different initializations of the neural
network parameters.

Training Datasets (Data 1) two uniform distributions over a radius-
√
d ball, (Data 2) two multi-dimensional element-wise

truncated Gaussian distributions, and (Data 3) two uniform distributions over a radius-
√
d sphere, symmetric about the origin

2. The two means of training class are denoted as v and −v, respectively. For Data 1, 3 v ≜ 2r · u, with u ∼ Unif
(
Sd−1

)
.

For Data 2, one class has support on [1,∞) across all dimensions, while the other class has support on (−∞,−1].

Evaluation Datasets Eval 1, 2 use the projected Gaussian distribution, which is projected onto the mean direction of
one training data v, as defined in equation 9. For Eval 1, we translate mean of projected Gaussian distribution with e, and

2The Sub-Gaussian property is proven for Data 1 and 3 in Vershynin (2018), and for Data 2 in Lemma L.1.
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Figure 12: Cohesion in R2000,R20000,R320000 (left to right), with the computed range expanding from top to bottom.
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Figure 13: Separability in R2000,R20000,R320000 (left to right), with the computed range expanding from top to bottom.
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Figure 14: Component analysis of Cohesion in R2000,R20000,R320000 (left to right) in range [−100, 100], top: the dominant
last component, bottom: sum of the other terms.

Figure 15: Component analysis of Cohesion in R2000,R20000,R320000 (left to right) in range [−500, 500], top: the dominant
last component, bottom: sum of the other terms.
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for Eval 2, we Rotate mean of projected Gaussian distribution with R ∈ R and fixed e. We generate 300 distinct rotation
matrices R using the process in Appendix O. The projected gaussian distribution is sampled as follows,

z − z⊤νν

∥ν∥4
+ ν, where z ∼ N(0, cI). (9)

For Eval 1, ν ≜ ev, c = 1 and for Eval 2, ν ≜ Rev, c = 10−1 with e = 0.01 for Data 2 experiment and e = 0.008 for Data
1 and 3 experiments, R ∈ SO(d).

D.2. Comprehensive Results of All Experiments

The overall experimental results for Cohesion and Separability are shown in Figure 24. The results for Eval 1 experimental
settings are presented in linear scale in Figure 25 and in logarithmic scale in Figure 26. Additionally, as presented in
Figure 7, experiments for Eval 2 settings on Data 2 and 3 are shown in linear scale in Figure 27, with results for Cohesion,
Separability, and Recall@1 (IP). Furthermore, results for Recall@1 (cos) are presented in linear scale in Figure 28. All
observed results align with the theoretical predictions.

E. Additional Results of Real-world dataset Experiments
Figure 29 summarizes the experimental results and the purpose of the experiment. Expr. IV is in Figure 30, 31, 1. Expr. V is
e in Figure 32, Table 2. Expr. VI is in Figure 33. Expr. VII is in Figure 34, 35, 36, 37, Table 3, and 4.

E.1. Relation between Expr. V and VI

On the other hand, certain results from Expr. V align with those from Expr. VI. As shown in Table 5, for datasets such as
CAR and CUB, the number of additional classes introduced by the sub In1k dataset is significantly larger compared to SOP.
For these data, inclusion of the additional sub In1k dataset contributes to improved recall@1 performance when trained
using a Random Initialized Network. Meanwhile, the performance of the pre-trained network is not significantly affected
by the additional dataset. We attribute this to the fact that the pre-trained model is additionally re-trained using the same
ImageNet dataset sub In1k. These findings suggest that further research on the behavior of pre-trained networks is necessary.

E.2. Expr. VII: Removing Duplicately Assigned Eval Classes

In Expr. VII, as suggested by the theoretical results on Separability, we validated whether eliminating duplicate in the
assignments improves performance. To clarify, we will provide an example of duplicate assignment at Note E.1.

Note E.1 (Example of duplicate assignment). For two train classes C(train)
1 ,C

(train)
2 and two test classes c(test)

1 ,c
(test)
2 ,

if most instances of c(test)
1 and c

(test)
2 are classified as C(train)

1 , both test classes are assigned to C
(train)
1 , resulting in

duplication. Conversely, if c(test)
1 is classified as C(train)

2 and c
(test)
2 as C(train)

1 , they are assigned without duplication.

To validate, we introudce treatment and control groups. For treatment group, we eliminate duplicate in the textitassignments
for the train classes, i.e. , for each unseen class, the most frequently classified training class is aggregated, and the classes
are randomly removed to ensure that the selected training classes become unique (2). For the control group, we performed
random selection of the same number of classes of treatment group (1). These two groups are evaluated using recall@1.
This process was repeated five times, and the average was reported. The experimental results are presented in 34, 35, 36,
37, Table 3, and 4. A total of 64 experiments are conducted, of which 51 demonstrated performance improvements: the
estimated success rate is 79%. There is a 1.73%± 2.87% average improvement in recall@1, with a maximum improvement
of 13.65%, a minimum decrease of -3.28%. These findings suggest that the duplicate reduction treatment group outperforms
the randomly removed group with a binomial test p-value of 9.40× 10−7.

F. Limitations and Future Work
While our study provides valuable insights into feature learning and transferability, several important directions remain for
future research. First, while the Hermite approximation aided our feature analysis, it posed numerical challenges due to the
discrepancy between polynomials and nonlinear neural networks. Specifically, the need for extremely high-dimensional
approximations Figure 2 and the lack of precise scaling alignment between the approximation and the neural networks in
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Algorithm 1 Random Sampling

Input: Number if unseen classes u, number of classes |L|
Output: Sampled class set Srandom
Set Srandom ← random.sample({0, 1, . . . , u− 1}, |L|)
return Srandom

Algorithm 2 Duplicated assignment reduction sampling

Input: Model f , unseen data loader D, number of train classes Ctrain, number of unseen classes Cunseen
Output: Sampled class set Snondup
Initialize counter matrix counter← 0Cunseen×Ctrain

for (img,label) in D do
pred← f(img) Predicted class indices
Update counter: counter[label,pred] += 1

end for
top1 index← argsort(counter, dim = 1, descending = True)[..., 0]
unique label← unique(top1 index)
Initialize Snondup ← ∅
for each label ℓ in unique label do
Iℓ ← {i | top1 index[i] = ℓ} Indices corresponding to label ℓ
isample ← random.sample(Iℓ, 1) Select one random index
Snondup ← Snondup ∪ {isample}

end for
return Snondup

finite dimensions Figure 4.

These limitations highlight the need for alternative approximation techniques or analytical approaches. Second, the
relationship between semantic similarity and train-unseen similarity requires further theoretical exploration. Third, an
important direction for future research is expanding the concepts of cohesion and Separability to multi-class softmax
classification problems, incorporating normalization and temperature scaling to better align with practical settings or Neural
Collapse research. Finally, recently Zavatone-Veth et al. (2023) suggest neural networks tend to compress the feature space
around training data while expanding the regions between decision boundaries. We consider this phenomenon appears
closely related to the train-unseen similarity-driven cohesion and Separability observed in our study. Investigating this
connection through the lens of Riemannian geometry could yield novel insights into the fundamental structure of learned
representations.
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Figure 16: Component analysis of Cohesion in R2000,R20000,R320000 (left to right) in range [−1000, 1000], top: the
dominant last component, bottom: sum of the other terms.
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Figure 17: Component analysis of Separability in R2000,R20000,R320000 (left to right) in range [−500, 500], top: the
dominant last component, bottom: sum of the other terms.
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Figure 18: Component analysis of Separability in R2000,R20000,R320000 (left to right) in range [−500, 500], top: the
dominant last component, bottom: sum of the other terms.
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Figure 19: Component analysis of Separability in R2000,R20000,R320000 (left to right) in range [−1000, 1000], top: the
dominant last component, bottom: sum of the other terms.
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Two-Layer Network with two β direction Two-Layer Network with multi β direction

Theory estimation with two β direction Figure 20: Theory estimation with multi β direction

Figure 21: Extra results of subsection 4.2 experiments for multiple βi direction
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FL0 with single β direction FL0 with two β direction FL0 with multi β direction

spikeL with single β direction spikeL with two β direction spikeL with multi β direction

Figure 22: Extra results of subsection 4.2 experiments for seperate term FL0 , and spikeL.

(a) FL0 (b) spikeL

Figure 23: Comparison of log average slope between FL0 , and spikeL. Midpoint (β1) Interpolation (β2) Extrapolation
(β3) Orthogonal (β4) FL0 is not influenced by spikes and generates random features in all cases. spikeL is influenced only
by spikes, so when using only the β1 or β4 spikes, the two features are always mapped to the same position.
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(a) (b) (c)

Figure 24: Summary of the synthetic data experiments: The large and dark circles represent low train-unseen similarity,
while the small and light circles indicate high train-unseen similarity. The datasets D1, D2, and D3 correspond to synthetic
Data 1, 2, and 3, respectively. C denotes Cohesion, and S denotes Separability. In panels (a) and (b), the two unseen
classes are assigned to different training classes (i.e., a positive-negative), and as the train-unseen similarity increases, both
Separability and Cohesion increase accordingly. In contrast, in panel (c), the two unseen classes are assigned to the same
training class (i.e., a positive-positive), leading to a decrease in Separability. These observations are consistent with our
theoretical predictions. We scaled all measurement using the absolute value at the 85th percentile.
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(a) Cohesion: Data 1 (b) Cohesion: Data 2 (c) Cohesion: Data 3

(d) Separability: Data 1 (e) Separability: Data 2 (f) Separability: Data 3

(g) Recall@1(IP): Data 1 (h) Recall@1(IP): Data 2 (i) Recall@1(IP): Data 3

(j) Recall@1(cos): Data 1 (k) Recall@1(cos): Data 2 (l) Recall@1(cos): Data 3

Figure 25: Expr. I: translation(e) variation case (linear scale). is after one step training. is from initialization. As the
train-unseen similarity increases, both cohesion and Separability become larger due to pos-neg setup.
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(a) Cohesion: Data 1 (b) Cohesion: Data 2 (c) Cohesion: Data 3

(d) Separability: Data 1 (e) Separability: Data 2 (f) Separability: Data 3

(g) Recall@1(IP): Data 1 (h) Recall@1(IP): Data 2 (i) Recall@1(IP): Data 3

(j) Recall@1(cos): Data 1 (k) Recall@1(cos): Data 2 (l) Recall@1(cos): Data 3

Figure 26: Expr. I: translation(e) variation (log scale). is after one step training. is from initialization. As the
train-unseen similarity increases, both cohesion and Separability become larger due to pos-neg setup.
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(d) Cohesion: Data 2, Expr. II (e) Separability: Data 2, Expr. II (f) Recall@1(IP): Data 2, Expr. II

(j) Cohesion: Data 3, Expr. II (k) Separability: Data 3, Expr. II (l) Recall@1(IP): Data 3, Expr. II

(a) Cohesion: Data 2, Expr. III (b) Separability: Data 2, Expr. III (c) Recall@1(IP): Data 2, Expr. III

(g) Cohesion: Data 3, Expr. III (h) Separability: Data 3, Expr. III (i) Recall@1(IP): Data 3, Expr. III

Figure 27: Expr. II, Expr. III: rotation(R) variation (linear scale). is after one step training. is from initialization.
Expr. II is pos-neg. Expr. III is pos-pos.
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(d) Recall@1(cos): Data 1, Expr. II (e) Recall@1(cos): Data 2, Expr. II (f) Recall@1(cos): Data 3, Expr. II

(a) Recall@1(cos): Data 1, Expr. III (b) Recall@1(cos): Data 2, Expr. III (c) Recall@1(cos): Data 3, Expr. III

Figure 28: Recall@1 with cosine similarity of Expr. II, Expr. III: rotation(R) variation (linear scale). is after one step
training. is from initialization. Expr. II is pos-neg. Expr. III is pos-pos.

Expr. IV Expr. V
Expr. VI Expr. VII

Figure 29: Expr. IV: High clustering performance with same train-unseen domain. Expr. V: Extra unrelated training classes
do not affect recall@1 performance. Expr. VI: Extra related training classes improve recall@1 performance. Expr. VII:
Removing duplicately assigned eval classes improves performance over random removal.

ResNet18 (pre) ResNet50(pre)

Figure 30: Expr. IV on ResNet18 with Domain datasets (CAR, CUB, SOP, ISC)
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ResNet18 (init) ResNet50 (init)

ResNet18 (pre) ResNet50 (pre)

Figure 31: Expr. IV on ResNet18, ResNet50 with Domain + In(S) e.g. CAR+I(V), CUB+I(B), SOP+I(P), ISC+I(C)
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(a) ResNet18 (init)

(b) ResNet18 (pre)

(c)ResNet50 (pre)

Figure 32: Expr. V, additional results, it is represented as follows Domain Domain + Related Subset of In1k Domain
+ Whole In1k subsampled Adding unrelated classes for training does not significantly affect the performance.
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Figure 33: Expr VI, it is represented as follows: ResNet18 , ResNet50 , Dataset car, cub, sop, isc. As the steps
increased and related classes were added, performance generally improved consistently.
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Figure 34: Expr. VII, ResNet18 (Init), depending on the experimental setup, there are three cases: removing redundancy,
randomly selecting the same number of classes as those with redundancy removed, and using all test classes. For

dataset we use, we denote as ‘Train data(Test data)’. ‘In’ denote using whole classes of subsampled ImageNet.
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Figure 35: Expr. VII, ResNet18 (Pre), depending on the experimental setup, there are three cases: removing redundancy,
randomly selecting the same number of classes as those with redundancy removed, and using all test classes. For

dataset we use, we denote as ‘Train data(Test data)’. ‘In’ denote using whole classes of subsampled ImageNet.
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Figure 36: Expr. VII, ResNet50 (Init), depending on the experimental setup, there are three cases: removing redundancy,
randomly selecting the same number of classes as those with redundancy removed, and using all test classes. For

dataset we use, we denote as ‘Train data(Test data)’. ‘In’ denote using whole classes of subsampled ImageNet.
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Figure 37: Expr. VII, ResNet50 (Pre), depending on the experimental setup, there are three cases: removing redundancy,
randomly selecting the same number of classes as those with redundancy removed, and using all test classes. For

dataset we use, we denote as ‘Train data(Test data)’. ‘In’ denote using whole classes of subsampled ImageNet.
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Table 1: Table results for Expr. IV

ResNet18 (Randomly Initialized)

CAR CUB SOP ISC
CAR+I(V) 0.3922 0.0847 0.3126 0.2079
CAR 0.2383 0.0685 0.2766 0.1994
I(V) 0.1117 0.0618 0.2610 0.1793
CUB+I(B) 0.1456 0.1205 0.3117 0.2067
CUB 0.1432 0.1089 0.3179 0.1998
I(B) 0.0973 0.0640 0.2658 0.1703
SOP+I(P) 0.1753 0.0748 0.3720 0.3304
SOP 0.1754 0.0876 0.3790 0.3306
I(P) 0.1405 0.0586 0.3129 0.2327
ISC+I(C) 0.1409 0.0613 0.3295 0.4870
ISC 0.1328 0.0685 0.3338 0.4887
I(C) 0.0908 0.0471 0.2485 0.1823

ResNet50 (Randomly Initialized)

CAR CUB SOP ISC
CAR+I(V) 0.3280 0.0879 0.3226 0.2000
CAR 0.2067 0.0495 0.2611 0.1583
I(V) 0.1048 0.0459 0.2670 0.1410
CUB+I(B) 0.0755 0.0527 0.2303 0.1414
CUB 0.0626 0.0393 0.1950 0.1081
I(B) 0.0456 0.0358 0.1954 0.1074
SOP+I(P) 0.1662 0.0829 0.3812 0.2934
SOP 0.1725 0.0743 0.3750 0.2754
I(P) 0.0940 0.0422 0.2716 0.1697
ISC+I(C) 0.1090 0.0550 0.3001 0.5318
ISC 0.1022 0.0503 0.2699 0.4581
I(C) 0.0625 0.0412 0.2294 0.1446

ResNet18 (ImageNet 1K Pretrained)

CAR CUB SOP ISC
CAR+I(V) 0.8610 0.1131 0.4104 0.2133
CAR 0.8680 0.1008 0.3966 0.1931
I(V) 0.4210 0.1698 0.4618 0.2507
CUB+I(B) 0.3474 0.5289 0.4745 0.2171
CUB 0.3476 0.5366 0.4872 0.2527
I(B) 0.3771 0.3400 0.5062 0.2278
SOP+I(P) 0.4073 0.1565 0.4775 0.2827
SOP 0.3802 0.1499 0.4827 0.3261
I(P) 0.4003 0.2076 0.4838 0.2569
ISC+I(C) 0.2420 0.0976 0.4616 0.7098
ISC 0.2130 0.0847 0.4550 0.7115
I(C) 0.3738 0.2227 0.4994 0.2457

ResNet50 (ImageNet 1K Pretrained)

CAR CUB SOP ISC
CAR+I(V) 0.9081 0.1268 0.4192 0.1805
CAR 0.9078 0.1020 0.3945 0.1673
I(V) 0.4013 0.1648 0.4815 0.2330
CUB+I(B) 0.2831 0.5657 0.4580 0.1895
CUB 0.3075 0.5778 0.4794 0.2203
I(B) 0.3212 0.3337 0.4781 0.1846
SOP+I(P) 0.4662 0.2264 0.6367 0.3702
SOP 0.4666 0.2200 0.6276 0.3700
I(P) 0.3547 0.2208 0.4602 0.2337
ISC+I(C) 0.2301 0.1207 0.5376 0.8718
ISC 0.2230 0.1274 0.5390 0.8710
I(C) 0.3655 0.2311 0.5167 0.2413

Table 2: Table results of performance for Expr. V.

ResNet18 (Randomly Initialized)

CAR CUB SOP ISC
D 0.2383 0.1089 0.3790 0.4887

D+I(Sub) 0.3922 0.1205 0.3720 0.4870
D+I 0.3074 0.1404 0.3591 0.4532

ResNet50 (Randomly Initialized)

CAR CUB SOP ISC
D 0.2067 0.0393 0.3750 0.4581

D+I(Sub) 0.3280 0.0527 0.3812 0.5318
D+I 0.3276 0.0968 0.3726 0.4992

ResNet18 (ImageNet 1K Pretrained)

CAR CUB SOP ISC
D 0.8680 0.5366 0.4827 0.7115

D+I(Sub) 0.8610 0.5289 0.4775 0.7098
D+I 0.7604 0.5357 0.4766 0.6897

ResNet50 (ImageNet 1K Pretrained)

CAR CUB SOP ISC
D 0.9078 0.5778 0.6276 0.8710

D+I(Sub) 0.9081 0.5657 0.6367 0.8718
D+I 0.7603 0.4689 0.6360 0.8481
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Table 3: Expr. VII from (Randomly Initialized)

ResNet18 (Randomly Initialized)

Test Train Treatment Random ∆ Total

CAR Test

CAR 35.26 34.49 0.77 23.83
I(V) 29.02 26.96 2.06 11.17
CAR+I(V) 49.27 46.73 2.54 39.22
In 39.51 36.48 3.03 25.70

CUB Test

CUB 20.01 18.49 1.52 10.89
I(B) 16.36 14.75 1.61 6.40
CUB+I(B) 19.58 18.39 1.19 12.05
In 32.16 28.74 3.42 21.49

ISC Test

ISC 60.64 59.45 1.19 48.87
I(C) 60.93 57.78 3.15 18.23
ISC+I(C) 59.59 59.11 0.48 48.70
In 45.01 46.92 -1.91 24.75

SOP Test

SOP 43.58 42.96 0.62 37.90
I(P) 49.76 48.45 1.31 31.29
SOP+I(P) 42.57 42.12 0.45 37.20
In 51.84 54.03 -2.19 38.82

Average Improvement 1.20
Success Rate 0.875

ResNet50 (Randomly Initialized)

Test Train Treatment Random ∆ Total

CAR Test

CAR 30.45 29.95 0.50 20.67
I(V) 24.49 22.16 2.33 10.48
CAR+I(V) 42.25 42.67 -0.42 32.80
In(CAR) 51.69 42.39 9.30 30.06

CAR Test

CUB 13.24 15.84 -2.60 3.93
I(B) 21.20 16.65 4.55 3.58
CUB+I(B) 16.30 13.66 2.64 5.27
In 48.10 39.59 8.51 28.06

CAR Test

ISC 60.63 59.41 1.22 45.81
I(C) 53.67 51.22 2.45 14.46
ISC+I(C) 67.46 66.88 0.58 53.18
In 44.60 44.85 -0.25 22.85

CAR Test

SOP 44.02 43.34 0.68 37.50
I(P) 44.93 45.22 -0.29 27.16
SOP+I(P) 43.51 43.70 -0.19 38.12
In 59.49 59.47 0.02 42.93

Average Improvement 1.81
Success Rate 0.6875
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Table 4: Expr. VII (ImageNet 1K Pretrained)

ResNet18 (ImageNet 1K Pretrained)

Test Train Treatment Random ∆ Total

CAR Test

CAR 90.90 90.33 0.57 86.80
I(V) 64.51 65.03 -0.52 42.10
CAR+I(V) 90.06 88.79 1.27 86.10
In(CAR) 71.77 73.08 -1.31 26.00

CAR Test

CUB 66.19 63.12 3.07 53.66
I(B) 48.67 46.90 1.77 34.00
CUB+I(B) 64.48 63.89 0.59 52.89
In 44.95 39.30 5.65 30.32

CAR Test

ISC 78.81 77.15 1.66 71.15
I(C) 70.48 66.47 4.01 24.57
ISC+I(C) 78.58 77.35 1.23 70.98
In 32.65 35.78 -3.13 13.85

CAR Test

SOP 52.45 51.81 0.64 48.27
I(P) 66.72 66.81 -0.09 48.38
SOP+I(P) 51.34 51.01 0.33 47.75
In 46.31 46.95 -0.64 30.66

Average Improvement 0.94
Success Rate 0.6875

ResNet50 (ImageNet 1K Pretrained)

Test Train Treatment Random ∆ Total

CAR Test

CAR 93.78 93.57 0.21 90.77
I(V) 70.12 63.34 6.78 40.13
CAR+I(V) 94.45 93.34 1.11 90.81
In(CAR) 84.20 77.43 6.77 32.51

CAR Test

CUB 71.44 68.51 2.93 57.78
I(B) 47.78 46.19 1.59 33.37
CUB+I(B) 70.63 67.15 3.48 56.56
In 75.96 62.32 13.64 35.53

CAR Test

ISC 91.35 90.49 0.86 87.10
I(C) 68.62 71.90 -3.28 24.13
ISC+I(C) 91.60 90.59 1.01 87.18
In 39.54 35.39 4.15 8.68

CAR Test

SOP 68.40 68.07 0.33 62.75
I(P) 66.24 64.09 2.15 64.02
SOP+I(P) 68.83 68.40 0.43 63.66
In 59.94 54.78 5.16 28.87

Average Improvement 2.96
Success Rate 0.9375
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G. Additional Notations
The operator diag(·) creates a matrix with the elements of the input vector placed along the diagonal. Let 1condition be 1 if
the condition is true and 0 otherwise. Let m! be factorials of m. Let n!! be double factorial. We define (−1)!! = 0!! = 1.
For oP, OP,ΘP notations we follow Moniri et al. (2024) ∥·∥F is the Frobenius norm. ∥·∥∞ is the infinity norm. ∥·∥ψ2 is
orlicz-2 norm e(i) Standard basis vector with 1 at position i. ⌊n/2⌋ denotes the floor of n/2. Γ(z) is the Gamma function.

Additional information of Hermite Polynomials We employ the probabilist’s Hermite polynomials (Szegő, 1975;
Bienstman, 2023; Moniri et al., 2024). We denote Hk(x) as k-th Hermite polynomial.

The n-th Hermite polynomials, Hn(·), are defined by the recurrence relation: Hn+1(x) = xHn(x)−nHn−1(x), for n ≥ 1,
with the initial conditions H0(x) = 1, H1(x) = x. Using this recurrence, we have H2(x) = x2 − 1, H3(x) = x3 − 3x, · · · .

Hermite polynomials can be represented as the following explicit form:

Hn(x) = (−1)ne x2

2
dn

dxn
e−

x2

2 .

for n ∈ N0. Lastly, there are another expression:

Hn(x) = n!

⌊n
2 ⌋∑

m=0

(−1)m

m!(n− 2m)!

xn−2m

2m

The probabilist’s Hermite polynomials form an orthogonal set with respect to the standard normal weight function ϕ(x) =
1√
2π

e−
x2

2 on the interval (−∞,∞). Their orthogonality condition is given by:∫ ∞

−∞
Hm(x)Hn(x)

1√
2π

e−
x2

2 dx = n!1m=n.

H. hermite coef of shifted ReLU
One of the activation function that satisfy our condition 2.1 is shifted ReLU,

σ(x) = max(0, x)− 1√
2π

.

This allow hermite decomposition with coefficient is calculated as

cn =
1

n!
Ez[σ(z)Hn(z)].

Then for the zero-th coefficient is calculated as

c0 = Ez[σ(z)× 1] = Ez[max(0, x)]− 1√
2π

=

∫ ∞

0

xϕ(x)dx− 1√
2π

= 0

(10)

By the way, if n ̸= 0, E[ 1√
2π
×Hn] =

1√
2π

E[1×Hn] =
1√
2π

E[H0 ×Hn] = 0 by orthogonality. Thus, shift is only effects
on n = 0.

The coefficient cn of the expansion of Shifted-ReLU is defined as:

cn =

0, if n = 0,∑⌊n/2⌋
m=0

(−1)m·2
n−2m

2
−m·Γ(n−2m+2

2 )
m!·(n−2m)!·

√
2π

, otherwise.
(11)

We directly calculated equation 11 and obtained the following result in Figure 38.

40



2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

Submission and Formatting Instructions for ICML 2025

Figure 38: Hermite Coefficient of Shifted ReLU

I. Proof of Theorem 3.1
In this section, we follow the proof structure of Ba et al. (2022) to decompose gradient in our classification learning setting.
Unlike their assumption of centered Gaussian training data, we consider non-centered Sub-Gaussian data distributions. In
this process, we apply a novel approach involving the concentration of the operator norm on a random matrix. Also, since
our framework is not in a teacher-student setting, we use class labels instead of a teacher function.

We will omit the subscript ij since it does not cause any confusion untill equation 35. The following statements hold for ∀ij.
For the aforementinoed A, B, and C, we obtain bounds for each operator norm as follows
Lemma I.1.

P
(
∥A∥ ≤ C(

1√
N
− C

√
d√
nN

)

)
≤ 2
(
e−cN + e−cn

)
P
(
∥B∥ ≥ C

n
√
Nd

(
√
n+
√
d)(
√
n+
√
N) logN

)
≤ C

(
e−cN + e−cd +Ne−c log

2 n + e−(
√
n+

√
d)2
)

P
(
∥C∥ ≥ C√

nN
(2
√
d+
√
n) logn logN

)
≤ 2
(
ne−cd + ne−c log

2 n +Ne−c log
2 n
)
.

(12)

Proof of Lemma I.1 (A). We obtain
A =

c1

n
√
N

X⊤ya⊤. (13)

Then, we can find an explicit notation of the norm as

∥A∥ = c1

n
√
N
∥X⊤ya⊤∥ = c1

n
√
N
∥X⊤y∥2∥a∥2 =

c1

n
√
N

(
y⊤XX⊤y

)1/2∥a∥2 (14)

∥a∥2 study By definition, a ∼ N(0, 1
N ), so

√
Nα[i] is a sub-Gaussian. Use Thm 3.3.1 in Vershynin (2018),

P

(∣∣∣∣∥√Nα∥ −
√
N

∣∣∣∣ ≥ t

)
≤ 2e−ct

2

let t =
√
N

P(∥α∥2 ≤ 1) ≤ 2e−cN

(15)

(
y⊤XX⊤y

)1/2 study Note that the U, V matrices resulting from the SVD belong to the O-group, so there is no length
transformation.

y⊤XX⊤y = ∥X⊤y∥22 = ∥UΣV ⊤y∥22 = ∥ΣV ⊤y1∥

=
∑
i

σ2
i |V ⊤yi|2 ≥ σ2

min

∑
i

|V ⊤yi|2 = σ2
min∥y∥22 = nσ2

min
(16)
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We get
(
y⊤XX⊤y

)1/2 ≥ √nσmin. σmin is singular value of X which is a anistropic sub-Gaussian matrix. With the result
of Remark 1.2 in Liaw et al. (2016),

Pσmin ≤ (
√
n− c

√
d)) ≤ e−n. (17)

Therefore, P(∥A∥ ≤ C( 1√
N
− C

√
d√

nN
)) ≤ 2(e−cN + e−cn).

Fact I.2 (from Ba et al. (2022)). For m ∈ Rm, n ∈ Rn,M ∈ Rm×n,

mn⊤ ⊙M = diag(m)Mdiag(n)

∥mn⊤ ⊙M∥ ≤ ∥diag(m)∥ ∥M∥ ∥diag(n)∥ = ∥m∥∞∥M∥∥n∥∞
(18)

Lemma I.3. For Sub-Gaussian R.V. a,

P(∥a∥∞ ≤ t/
√
N) ≥ 1− 2Ne−ct

2

Proof. We use the Hoeffding inequality such that

P(∥a∥∞ ≥
t√
N

) = P
(
max
i
|ai| ≥

t√
N

)
≤ P

(⋃
i

{|ai| ≥
t√
N
}
)
≤
∑
i

P
(
|ai| ≥

t√
N

)
i.i.d.
= NP

(
|ai| ≥

t√
N

)
= P(|

√
Nai| ≥ t) ≤ 2N exp(−ct2)

(19)

Fact I.4. Let a sub-Gaussian random variable v s.t. ∥v∥ψ2
≤ k, and bounded function σ, then σ(v) is Sub-Gaussian, i.e.

∥σ(v)∥ψ2
≤ ∥λ∥ψ2

<∞.

Proof of Lemma I.1 (B).

B =
1

n
√
N

X⊤ya⊤ ⊙ σ′
⊥(XW0) (20)

∥B∥ ≤ 1

n
√
N
∥X∥ ∥ya⊤ ⊙ σ′

⊥(XW0)∥

≤ 1

n
√
N
∥X∥∥ya⊤ ⊙ σ′

⊥(XW0)∥

≤ 1

n
√
N
∥X∥∥y∥∞ ∥σ′

⊥(XW0)∥ ∥a∥∞

=
1

n
√
N
∥X∥ ∥σ′

⊥(XW0)∥∥a∥∞

(21)

∥σ′
⊥(XW0)∥ study Use the result of D.4 in Fan & Wang (2020), which is hold for orthogonal columns. X is sampled

from continuous support distribution c1, c2. The first vector is linearly independent with probability 1 due to the continuous
support of its distribution. For the second vector, which is drawn independently, the probability that it lies in the span of the
first vector is 0, as it also has a continuous density. This reasoning extends to n vectors, implying that, with high probability,
they are orthogonal or nearly orthogonal because no vector falls into the span of the others. Thus, ∀B > 0 following is hold.

P({∥σ′
⊥∥ ≥ C(

√
n+
√
N)λσB},AB) ≤ 2e−cN

AB = {{∥W0∥ ≤ B} ∪ {
N∑
i=1

(∥W0,i∥2 − 1)2 ≤ B2}}.
(22)

Therefore,
P(∥σ′

⊥∥ ≥ C(
√
n+
√
N)λσB) ≤ 2e−cN + P(Ac

B) (23)

P(AB) study We choose t = C
√

d
N , B = C

√
d
N .
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case of ∥W0,i∥ ≤ B By Lemma L.3,

P(∥
√
NW0∥ ≥ 2

√
N+

√
d) ≤ 2e−cN ⇒ P(∥W0∥ ≥ C

√
d

N
) ≤ 2e−cN (24)

Therefore, ∥W0∥ ≤ B at least w.p. 1− 2e−cN

case of
∑N
i=1(∥W0,i∥2 − 1)2 ≤ B2 By definition, ∥W0,i∥2 = 1, so 0 ≤ B2, trivialy.

We know P(Ac
B) ≤ 2e−cN .

P(∥σ′
⊥∥ ≥ C(

√
n+
√
N)

√
d

N
) ≤ 2e−cN (25)

Use Lemma I.3, and L.3,

∥σ′
⊥∥ ≤ C

(√
nN

d
+

√
N2

d

)
w.p. 1− C(e−cN + e−cd) (26)

∥a∥∞ ≤
t√
N

w.p. 1− 2Ne−ct
2

(27)

∥X∥ ≤
√
n+
√
d+ t′ w.p. 1− 2e−ct

′2
. (28)

In summary, we get

∥B∥ ≤ C

n
√
N

(
√
n+
√
d+ t′)

(√
nN

d
+

√
N2

d

)
t√
N

let t = logn, t′ =
√
n+
√
d

P(∥B∥ ≥ C

n
√
Nd

(√
n+
√
d)(
√
n+
√
N) logN

)
≤ C

(
e−cN + e−cd +Ne−c log

2 n + e−(
√
n+

√
d)2
)
.

(29)

This compelete the proof.

Proof of Lemma I.1 (C). We know that σ′ is bounded, so ∥σ′∥F ≤ λσ
√
nN

C = − 1

nN
X⊤σ(XW0)

(
aa⊤

)
⊙ σ′(XW0), (30)

ans we can bound the norm as follows

∥C∥ ≤ 1

nN
∥X∥∥σaa⊤ ⊙ σ′∥

≤ 1

nN
∥X∥∥σa∥∞∥a∥∞∥σ′∥F

≤ λσ√
nN
∥X∥∥σa∥∞∥a∥∞

(31)

Control of ∥σa∥∞ Let t =
√
d. Given X s.t. P(

∣∣Xi −
√
d
∣∣ ≥ √d) ≤ 2e−ct

2

, consider one element σ
(
X⊤
j W0

)
a =∑N

i aiσ
(
X⊤
j W0[i]

)
.

We know ai,
√
nW0,i is an independent centered sub-Gaussian, and use Fact I.4, then σ

(X⊤
j√
N

√
NW0

)
a is sub-exponential

and mean is zero, since ∥aσ(x⊤
j W0,i)∥ψ1

≤ ∥a∥ψ2
∥σ(x⊤

j W0,i)∥ψ2
< ∞. Apply the Bernstein inequality for the sub-

exponential,
P(|σ(X⊤

j a)| ≥ logn given {
∣∣Xj −

√
d
∣∣ ≥ √d}) ≤ 2e−c log

2 n. (32)

For every element ∥σ(XW0)a∥∞ ≤ logn w.p. 1− [2ne−c log
2 n+2ne−cd

]
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By Lemma I.3 P(∥a∥∞ ≤ t/
√
N) ≥ 1− 2Ne−ct

2

, and Lemma L.3 with t =
√
d

P
(
∥C∥ ≥ C√

nN
(2
√
d+
√
n) logn logN

)
≤ 2
(
ne−cd + ne−c log

2 n +Ne−c log
2 n
)
. (33)

Remark I.5. In the proportional regime, as n,d,N→∞, these quantities can be interchanged to a constant. Thus, Lemma
I.1 is reformulated as follows

P(∥A∥ ≤ κ/
√
n) ≤ Ce−cn)

P
(
∥B∥ ≥ C logN

n

)
≤ C(e−cn + ne−c log

2 n)

P
(
∥C∥ ≥ C log2 N

n

)
≤ C(ne−cn + ne−c log

2 n)

(34)

Also, for gradient, we have

||G|| = ||A+ B+ C|| ≤ ||A||+ ||B||+ ||C|| = OP(
1√
n
+

logn

n
+

log2 n

n
) = OP(

1√
n
) (35)

Now we denote subscript ij for summary.

Proof of Theorem 3.1. Using ∥Gij − Aij∥ = ∥Bij + Cij∥ ≤ ∥Bij∥+ ∥Cij∥ and Lemma I.5

P
(
∥Gij − Aij∥ ≥ C

log2 n

n

)
≤ P

(
∥Gij − Aij∥ ≥ C(

log n

n
+

log2 n

n
)

)
≤ Cne−c log

2 n. (36)

Therefore, almost surely, in the proportional limit,

∥Gij − Aij∥ ≤ C
log2 n

n
=

κ√
n

C

κ

log2 n√
n
≤ ∥Aij∥

C

κ

log2 n√
n
≤ κ′ log

2 n√
n

(
∥Gij∥+ ∥Gij − Aij∥

)
. (37)

We get (1− κ′ log2n√
n

)||Gij − A|| ≤ κ′ log2n√
n
||Gij ||. For large enough n for 1− κ′ log2n√

n
≥ 1

2 ,

||Gij − Aij || ≤ κ′ log
2 n√
n
||Gij || ≤ C

log2 n

n

Sum up for ∀ij,

||G−
∑
i<j

Aij || = ||
∑
i<j

Gij − Aij || ≤
∑
i<j

||Gij − Aij || ≤ C
log2 n

n

J. Proof of Theorem 3.3
Lemma J.1. The following facts will be used in subsequent proofs. Remark βij ≜ 1

nX
T
ijy in Theorem 3.2.

A. ∥Xij∥ = OP(
√
n), ∥y∥ = OP(

√
n), ∥βij∥ = OP(1)

B. ||Xijβijaij || = ||Xβij ||2||aij ||2 = OP(
√
n)

C. ∥W0∥ = OP(1), ||W || = ||W0 +G|| ≤ ||W0||+ ||G|| = OP(1)

D. ||XijG|| = OP(
√
n)

E. Ma ≜ ∥a∥∞ = max1≤i≤N |ai| ≤ C log1/2 n√
n

w.p 1− 2ne−c logn
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F. Mb ≜ ∥Xβ∥∞ = max1≤i≤n | < X̃[i], β > | ≤ C log1/2 n, w.p. 1− 2ne−c logn

G. MW0
≜ supk≥1 ||(W0W

⊤
0 )◦k|| ≤ C w.p. 1− o(1)

H. ||A◦k|| ≤ ||A||k

Proof. It is evident from Lemma L.3, equation 15 in the proportional regime, that A, B, C, and D hold. To proof E, F, and G,

we employ proof techniques adapted from Moniri et al. (2024). For E, by Lemma I.3, with t = log
1
2 n, Ma ≤ C log

1
2 n√
n

, w.p.
1− o(1).

For F,
P(C|xTβ| ≥ t) = P(C|xTβ − ExTβ + ExTβ| ≥ t)

≤ P(C|xTβ − ExTβ| ≥ t− C|ExTβ|) ≤ 2 exp(−ct2).
(38)

Then, P(|xTβ| ≥ t) ≤ 2 exp(−c(t− ExTβ)2) ≤ 2 exp(−ct2).

Therefore, Mb ≤ C log
1
2 n, w.p. 1− o(1) with t = log

1
2 n.

For G, refer Moniri et al. (2024). For H, refer Bai & Silverstein (2010) Corollary A.21.

Corollary J.2 (Corollary of Theorem 3.1). By Lemma J.1, we have w.p. 1− o(1),

∥X̃G− c1X̃
∑
i<j

βija
T
ij∥ = O(

log2 n

n
·
√
n) = O(

log2 n√
n

) (39)

Remark J.3. W1 = W0 +G, so X̃W1 = X̃W0 + X̃G. X̃ is i.i.d. copy of training data X

We generalize Corollary J.2 i.e. monomial approximation of data-gradient product in polynomial form as Lemma J.4 .

Lemma J.4 (Polynomial Approximation of Data-Gradient Product). For any k ∈ N, sufficiently large n, and w.p. 1 - o(1),

∥(X̃G)ok − ck1(X̃
∑
i<j

βija
T
ij)

ok∥ = O(n− k
2 log2k n) (40)

Proof of Lemma J.4. k = 1 is trivial Corollary J.2. We follow Moniri et al. (2024) for k ≥ 2. We need to show ∃C > 0,
w.p. 1-o(1)

∥(X̃G)ok − ck1(X̃
∑
i<j

βija
T
ij)

ok∥ ≤ Cn− k
2 log2k n (41)

(X̃G)ok = (X̃G− c1X̃
∑
i<j

βija
T
ij + c1X̃

∑
i<j

βija
T
ij)

ok

=

k∑
j=1

(kj)(X̃G− c1X̃
∑
i<j

βija
T
ij)

oj ⊙ (c1X̃
∑
i<j

βija
T
ij)

o(k−j) + ck1(X̃
∑
i<j

βija
T
ij)

ok

(42)

Thus,
(X̃G)ok − ck1(X̃

∑
i<j

βija
T
ij)

ok

=

k∑
j=1

(
k

j

)
(X̃G− c1X̃

∑
i<j

βija
T
ij)

oj ⊙ ck−j1 (
∑
i<j

(X̃βija
T
ij))

o(k−j)
(43)

Now we will show

||(X̃G− c1X̃
∑
i<j

βija
T
ij)

oj ⊙ ck−j1 (
∑
i<j

(X̃βija
T
ij))

o(k−j)|| = OP(log
k+j n · n− 1

2k).
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∥(X̃G− c1X̃
∑
i<j

βija
T
ij)

oj ⊙ ck−j1 (
∑
i<j

(X̃βija
T
ij))

o(k−j)∥

≤ C∥(X̃G− c1X̃
∑
i<j

βija
T )oj ⊙ (X̃βaT )o(k−j)∥

≤ C∥diag(X̃β)ok−j ||op||(X̃GT − c1X̃
∑
i<j

βija
T )oj ||op||diag(a)ok−j∥

≤ C(MaMb)
k−j∥(X̃G− c1X̃

∑
i<j

βija
T )oj∥j

≤ C(n− 1
2 (k−j) logk−j n) log2j n · n− 1

2 j

= OP(n
− 1

2k logk+j n)

(44)

Therefore,
∥(X̃G)ok − ck1(X̃

∑
i<j

βija
T
ij)

ok∥ = OP(n
− k

2 log2k n) (45)

Lemma J.5. Following condition in section 2, Assume event Ω = supk≥1 ||(W0W
T
0 )ok||op ≤ C occur, following statement

holds.
||Hj(X̃W0)||op = OP(

√
n log

3
2 n
√

j!)

Lemma J.6. Given random matrix A, Following statement holds,

P(||A||op ≥ t) ≤ P(|| 1
n
AAT − EAAT ||op ≥

t2

n
− ||EAAT ||op)

Proof of Lemma J.6.

P(||A||op ≥ t) = P(||A||2op ≥ t2) = P(|| 1
n
AAT ||op ≥

t2

n
)

= P(|| 1
n
AAT − EAAT + EAAT ||op ≥

t2

n
)

≤ P(|| 1
n
AAT − EAAT ||op + ||EAAT ||op ≥

t2

n
)

= P(|| 1
n
AAT − E(AAT )||op ≥

t2

n
− E||AAT ||op)

(46)

Lemma J.7. Following condition of Lemma J.5,

E||Hj(X̃W0)Hj(X̃W0)
⊤||op ≤ Cj!

Proof of Lemma J.7. For non-centered Sub Gaussian random variable X with mean µ,

E(e(X−µ)t) ≤ e
k2

2 t
2

EeXt ≤ e
k2

2 t
2+µt

(47)

Firstly, we proof µ = 0 case. For centered Sub Gaussian vector g, let z = g⊤u, z′ = g⊤v, ρ-correlated. s.t. ||u||2 =
||v||2 = 1, uT v = ρ, then by equation 47

E exp(sz + tz′) ≤ exp(
k2

2
||u||2s2 + k2 < u⃗, v⃗ > st+

k2

2
||v||2t2)

≤ exp(
k2

2
(s2 + 2ρst+ t2))
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Dividing by exp(k
2

2 (s2 + t2)), then

E[exp(sz − k2

2
s2) exp(tz′ − k2

2
t2)] ≤ exp(ρst) =

∞∑
j=0

ρj

j!
sjtj

Using proof techniques similar to those in Lemma M.1, one can acquire

EHj(u
T g)Hk(v

T g) ≤ j!ρj1j=k (48)

For µ ̸= 0 case, considering non-centered Sub Gaussian Random vector g with mean µ and centered Sub Gaussian Random
vector ξ s.t. g = ξ + µ. We use proof techniques similar to those in Theorem M.11.

Denote ν = min(j, k). Considering u⊤g, v⊤g,

E[Hj(u
Tµ+ uT ξ)Hk(v

Tµ+ vT ξ)]

= E[{
j∑
i=0

(
j

i

)
(uTµ)iHj−i(u

T ξ)} · {
k∑
h=0

(
k

h

)
(vTµ)hHk−h(v

T ξ)}]

= E[
ν∑
q=0

(
ν

q

)2

(uTµ)j−q(vTµ)k−qHq(u
T ξ)Hq(v

T ξ)] by equation 48

≤
ν∑
q=0

(
ν

q

)2

(uTµ)j−q(vTµ)k−q · ν!ρν

≤ Cmin(j, k)!

(49)

Proof of Lemma J.5. Let A = Hj(X̃W0), then

P(||A||op ≥ t) ≤ P
(
|| 1
n
AAT − EAAT ||op ≥

t2

n
− ||EAAT ||op

)
(by Lemma J.6)

≤ 1
t2

n − ||EAAT ||op
E

[
|| 1
n
AAT − EAAT ||op

]
(by Markov’s inequality)

≤
[
t2

n
− E

[
||AAT ||op

]]−1

δmax

(√
||EAAT ||op, δ

)
(by Theorem 5.48 in Vershynin (2010))

≤
[
t2

n
− E

[
||AAT ||op

]]−1

δmax

(√
E [||AAT ||op], δ

)
(by Jensen’s inequality).

Let M = Emaxi ||Hj(W0x̃i)||2 and δ = C
√

M logn
N . Moreover, we note that ||x̃i||2j

N is sub-weibull random variable and
bound of (Kuchibhotla & Chakrabortty, 2022) proposition A.6 can be applied.

Use property of ||x̃i||2j
N , W0 and hermite polynomials, we have

M ≤ cjEmax
i
||(W0x̃i)

◦j ||22 ≤ cjEmax
i
||x||2j ≤ cjN(log n)

1
2 .

Therefore, δ ≤ C log n. Let t2 = n · QnE||AAT ||op s.t. Qn is positive and increasing. Building on the result derived
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above, we can continue expanding the expression as follows:[
t2

n
− E

[
||AAT ||op

]]−1

δmax

(√
E [||AAT ||op], δ

)
≤ [

t2

n
− E||AAT ||op]−1C log nmax(

√
E||AAT ||op, log n)

= [E||AAT ||op(Qn − 1)]−1C log nmax(
√
E||AAT ||op, log n)

≤ C
log nmax(

√
E||AAT ||op, log n)

E||AAT ||opQn

(50)

Choosing Qn = log3 n, and using Lemma J.7, we conclude the proof.

Fact J.8. For any vector u, v and any matrix A,B

A. ||uvT ||op = ||u||2||v||2

B. ||u||∞ ≤ ||u||2 ≤
√
n||u||∞

C. ||u◦k|| ≤ ||u||k

D. ||u◦k||2 ≤
√
n||u◦k||∞ ≤

√
nmaxi(|uki |) =

√
n(maxi |ui|)k =

√
n||u||k∞

E. Schur product theorem

||A ◦B||op = sup
||x||=1

tr(AT diag(x)Bdiag(x)) ≤ ||A||op · ||B||op

Next, let L = O(log n).

Denote σL(z) =
∑L
k=1 ckHk(z), FL = σL(X̃W ) and FL0 = σL(X̃W0).

Then, F = FL + (σ − σL)(X̃W ).

Using Lemma J.5, w in assumption 2.1, w.p. 1− o(1)

||E[(σ − σL)(W0X)(σ − σL)(W0X)T ]||

≤ C

∞∑
k=L+1

k!c2k ≤ C

∞∑
k=L+1

k−3−w ≤ C

∫ ∞

L

k−
3
2−wdk ≤ CL−2−w.

(51)

Therefore, following same proof technique as Lemma J.5, J.6, J.7,

||(σ − σL)(X̃W0)||op = oP(

√
n log3 n · L−2−w) = oP(

√
n) (52)

Also, because ||W ||op = O(1),

||(σ − σL)(X̃W )||op = o(

√
n log3 n · L−2−w) = oP(

√
n) (53)

Finally, we proof Theorem 3.3.

Proof of Theorem 3.3. We write FL +FL0 = FL +FL0 , then FL = FL0 +
∑L
k=1 ck(Hk(X̃W )−Hk(X̃W0)). We have to

study Hk(X̃W )−Hk(X̃W0) term.

Hk(X̃W )−Hk(X̃W0)

= Hk(X̃WT
0 + X̃GT )−Hk(X̃W0)

= (X̃G)ok +

k−1∑
j=1

(
k

j

)
Hk−j(X̃W0) ◦ (X̃G)oj

(54)
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Thus,

FL = FL0 +

L∑
k=1

ck(X̃G)ok +

L∑
k=1

k−1∑
j=1

ck

(
k

j

)
Hk−j(XW0) ◦ (X̃G)◦j

= FL0 +

L∑
k=1

ck1ck(X̃
∑
i<j

βija
T
ij)

ok

∆1


−

L∑
k=1

ck1ck(X̃
∑
i<j

βija
T
ij)

ok

+

L∑
k=1

ck(X̃G)ok

∆2


+

L∑
k=1

k−1∑
j=1

ck

(
k

j

)
Hk−j(X̃W0) ◦ (X̃G)◦j

−
L∑
k=1

k−1∑
j=1

cj1ck

(
k

j

)
Hk−j(X̃W0) ◦ [X̃

∑
i<j

βija
T
ij ]

◦j

∆3

[
+

L∑
k=1

k−1∑
j=1

cj1ck

(
k

j

)
Hk−j(X̃W0) ◦ [X̃

∑
i<j

βija
T
ij ]

◦j

(55)

∥FL0 ∥ = Θ(
√
n) by Moniri et al. (2024).

∥
∑L
k=1 c

k
1ck(X̃

∑
i<j βija

T
ij)

ok∥ is bigger than
√
n.

For ∆1,∆2,∆3, it is derived as follows

∥∆1∥ ≤
L∑
k=1

ck∥(X̃G)ok − ck1(X̃
∑
i<j

βija
T
ij)

ok∥

≤ C
L∑

K=1

log2k n · n− k
2 = O(

log2 n√
n

) = o(1)

(56)

∥∆2∥ ≤
L∑
k=1

k−1∑
j=1

ck

(
k

j

)
∥Hk−j(X̃WT

0 ) ◦ [(X̃GT )◦j − cj1[X̃
∑
i<j

βija
T
ij ]

◦j ]∥

≤ C

L∑
k=1

k−1∑
j=1

∥Hk−j(X̃WT
0 )∥∥(X̃GT )◦j − cj1(X̃

∑
i<j

βija
T
ij)

◦j∥

≤ C

L∑
k=1

k−1∑
j=1

√
n log

3
2 n
√
j! · n− j

2 log2j n

≤ C

L∑
k=1

k−1∑
j=1

√
n
√
j! log

3
2+2j n

√
n
j

= O(log
7
2 n)

(57)
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∥∆3∥ ≤ C

L∑
k=1

k−1∑
j=1

∥Hk−j(X̃W0) ◦ [X̃
∑
i<j

βija
T
ij ]

◦j∥

≤ C

L∑
k=1

k−1∑
j=1

∥diag(X̃β)◦j∥∥Hk−j(X̃W0)∥∥diag(a)◦j∥

≤ C

L∑
k=1

k−1∑
j=1

(MaMb)
j∥Hk−j(X̃W0)∥

≤ C

L∑
k=1

k−1∑
j=1

n− 1
2 j logj n

√
n log

3
2 = O(log

5
2 n)

(58)

Therefore, we conclude the proof.

K. Proof of Clustering Risk Analysis in two-classes case
Definition K.1. Given N, d, let

S
(1)
d,k = Ew∼Unif(Sd−1)[(w

T e1)
k] ∈ R+

S
(2)
d,k,k′ = Ew[(w

T µ̂1)
k(wT µ̂2)

k′ ]

ρ
(1)
k,k′ = NS

(1)
d,k+k′1k+k′ is even ∈ R+

ρ
(2)
k,k′(cos(µ1, µ2)) = NS

(2)
d,k,k′1k+k′ is even ∈ R+

ρ
(3)
k,k′,r =

ck1S
(1)
d,k′

N
k
2−1

(
k

r

)
(r − 1)!!(k − 1)!!1k,k′,r is even ∈ R+

ρ
(4)
k,k′,r,r′ =

2ck+k
′

1 S
(1)
d,k

N
k′
2 −1

(
k′

r′

)
(r′ − 1)!!(k′ − 1)!!1k,k′,r′ is even ∈ R+

(59)

For S(2)
d,k,k′ , it depends on cos(µ1, µ2). As cos(µ1, µ2) increases, S(2)

d,k,k′ grows, while it decreases as cos(µ1, µ2) decreases.

e.g. when µ1 = µ2, S(2)
d,k,k′ = S

(1)
d,k+k′ , and when µ1 = −µ2 = −S(1)

d,k+k′ .

Lemma K.2. Let Cd,k ≜ Eω[(ω⊤e1)
k] s.t. ω ∼ Unif(Sd−1), then

Eω[(ω⊤µ)k] = ∥µ∥kS(1)
d,k1k is even (60)

Proof of K.2. The uniform distribution on the sphere is origin-symmetric. Therefore, when k is odd, Expectation is zero. In
the other case, also use isotropic property of uniform sphere,

Eω[(ω
⊤µ)k] = ∥µ∥kEω[(ω⊤e1)

k] = ∥µ∥kS(1)
d,k

In the proof below, we utilize the results of Corollary M.12, Corollary M.13, and Lemma K.2.
Lemma K.3. Given vector a ∈ RN β ∈ Rd and Gaussian Random vector x ∼ N(µ, I). Let b = x⊤β ∼ N(µ⊤β, ∥β∥2),
then

Ex(x⊤βa⊤)◦k =

k∑
r=0

(
k

r

)
(µ⊤β)k−r∥β∥r(r − 1)!!1r is evena

◦k⊤ (61)

Eaa◦k =
(k − 1)!!1k is even

N
k
2

1 (62)

Eaa◦k⊤a◦k
′
=

(k + k′ − 1)!!1k+k′ is even

N
k+k′

2 −1
(63)
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Proof. This follows directly from Corollary M.12.

Proof of Proposition 4.5. Let cohesion of initialized feature as

coh0 = EW0
[Ex∼c1FL0 (x)TEx′∼c1FL0 (x′)] (64)

Let cohesion of feature after training as

coh1 = EW0,a[Ex∼c1FL(x)TEx′∼c1FL(x′)] (65)

Calculate coh0 By Lemma K.2,

coh0 = EW0
[Ex∼c1 [

L∑
k=1

ckHk(W
T
0 x)]TEx′∼c1 [

L∑
k′=1

ck′Hk′(W
T
0 x)]]

=

L∑
k=1,k′=1

ckck′EW0 [

N∑
q=1

(W0[q]
Tµ1)

k+k′ ]

= N

L∑
k=1,k′=1

ckck′(∥µ1∥k+k
′
S
(1)
d,k+k′)1(k+k′)even

=

L∑
k=1,k′=1

ckck′ρ
(1)
k,k′∥µ∥

k+k′

(66)

Calculate coh1

coh1 = EW0,a[Ex∼c1 [
L∑
k=1

(ckHk(W
T
0 x) + ckc

k
1(x

Tβa)ok]TEx′∼c1 [
L∑

k′=1

(ck′Hk′(W
T
0 x) + ck1(x

Tβa)ok]]

= EW0,a[

L∑
k,k′=1

ckck′[ExHk(W
T
0 x)TEx′Hk′(W

T
0 x′)

+ 2ExHk(W
T
0 x)TEx′ck′1 (xTβa)ok′ + ck+k′1 Ex(xTβa)ok

T

Ex′(x′Tβa)ok′]]

= coh0 + 2

L∑
k,k′=1

ckck′c
k′

1 EW0
ExHk(W

T
0 x)TEaEx′(x′⊤βa)ok

′

+

L∑
k,k′=1

ckck′c
k+k′
1 Ea[Ex(x⊤βa)ok

TEx′(x′⊤βa)ok]

= coh0 + 2N

L∑
k,k′=1

ckck′c
k′
1 (∥µ1∥kS(1)

d,k)(
1

N
k′
2

k′∑
r′=0

(
k′

r′

)
(µT1 β)

k′−r′∥β∥r′(r′ − 1)!!(k′ − 1)!!1k,k′,r′is even

+

L∑
k,k′=1

ckck′c
k+k′
1

N
k+k′

2 − 1

k∑
r=0

k′∑
r′=0

(
k

r

)(
k′

r′

)
(µT1 β)

k+k′−r−r′∥β∥r+r
′
(r − 1)!!(r′ − 1)!!1k+k′,r,r′is even

Proof of Proposition 4.6. Let separability of initialized feature as

sep0 = −EW0
[Ex∼c1FL0 (x)TEx′∼c2F

L
0 (x′)] (67)

Let separability of feature after training as

sep1 = −EW0,a[Ex∼c1FL(x)TEx′∼c2FL(x
′)] (68)
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Calculate sep0 By Lemma K.2,

sep0 = −
L∑

k=1,k′=1

ckck′EW0
[

N∑
q=1

(W0[q]
Tµ1)

k(W0[q]
Tµ2)

k′]

= −N
L∑

k=1,k′=1

ckck′Ew∼Unif(Sd−1)[(w
Tµ1)

k(wTµ2)
k′]

= −N
L∑

k=1,k′=1

ckck′∥µ1∥k∥µ2∥k′Ew[(wT µ̂1)
k(wT µ̂2)

k′ ]

= −N
L∑

k=1,k′=1

ckck′∥µ1∥k∥µ2∥k
′
S
(2)
d,k,k′1k+k′ is even

= −
L∑

k=1,k′=1

ckck′∥µ1∥k∥µ2∥k
′
ρ
(1)
k,k′

(69)

Calculate sep1

sep1 = −
L∑

k,k′=1

ckck′EW0,a


Ex∼c1Hk(W

T
0 x)TEx′∼c2Hk′(W

T
0 x′)

+ Ex∼c1Hk(W
T
0 x)TEx′∼c2ck′1 (x′Tβa)ok′

+ Ex∼c1ck1(xTβa)ok
TEx′∼c2Hk′(W

T
0 x)

+ ck+k′1 Ex∼c1(xTβa)ok
TEx′∼c2(x′Tβa)ok′



= sep0 −
L∑

k,k′=1

ckck′



ck′1 (∥µ1∥kS(1)
d,k)

1

N
k′
2 −1

k′∑
r′=0

(
k′
r′

)
(µT2 β)

k′−r′∥β∥r
′
(r′ − 1)!!(k′ − 1)!!1k,k′,r′ is even

+ ck1(∥µ2∥k
′
S
(1)
d,k′)

1

N
k
2−1

k∑
r=0

(
k

r

)
(µT1 β)

k−r∥β∥r(r − 1)!!(k − 1)!!1k,r,k′ is even

+ ck+k′1

k∑
r=0

k∑
r′=0

(
k

r

)(
k′
r′

)
(µT1 β)

k−r(µT2 β)
k′−r′∥β∥r+r′(r − 1)!!(r′ − 1)!!

1

N
k+k′

2 −1
(k + k′ − 1)!!1k+k′,r,r′ is even



L. Additional Lemmas of Sub-Gaussian Distribution
For more detailed explanation and well known results of Sub-Gaussian we used, please refer to Vershynin (2010; 2018).
We show below that the truncated Gaussian distribution, utilized in our synthetic data experiments, is a sub-Gaussian
distribution.

Lemma L.1. Truncated Gaussian distribution which have support on (a, b) s.t. a, b ∈ (−∞,∞) is Sub-Gaussian.

Proof. Denote N(a,b)(0, σ
2) is Truncated Gaussian distribution which have support on (a, b) s.t. a, b ∈ (−∞,∞). support

(N(a,b)(0, σ
2)) ⊂ Rd. Therefore, P(|X| ≥ t) s.t. X ∼ N(a,b)(0, σ

2) have same tail behavior with Gaussian and Gaussian is
Sub-Gaussian.

L.1. Generalization of centered Sub-Gaussian results toward non-centered

We verify below that the results on centered sub-Gaussian distributions from Vershynin (2018) can be extended to non-
centered sub-Gaussian distributions.
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Lemma L.2. Sum of non-centered Sub-Gaussian random variable is Sub-Gaussian.

Proof. If the Orlicz 2 norm is bounded ||X||ψ2 < ∞, then X is Sub-Gaussian. Also, ||EX||ψ2 ≤ C||X||ψ2 , and Sum of
centered Sub-Gaussian random variable is Sub-Gaussian. We show ||

∑
Xi||ψ2

<∞, s.t. X is non-centered Sub-Gaussian.

||
∑

Xi||ψ2
≤ ||

∑
(Xi − EXi)||ψ2

+ ||
∑

EXi||ψ2

≤ ||
∑

(Xi − EXi)||ψ2
+
∑
||EXi||ψ2

≤ ||
∑

(Xi − EXi)||ψ2 + C
∑
||Xi||ψ2 <∞

(70)

Lemma L.3. (Operator norm bound for non-centered Sub-Gaussian matrix, generalization of 4.4.5 in Vershynin (2018)) let
A ∈ Rm×n, A[i][j] is independent, non-centered Sub-Gaussian. ∀t > 0,

||A|| ≤ CK(
√
m+

√
n+ t) w.p. 1− exp(−t2)

Alternatively, ||A|| ≤ CK(
√
m+ n+ t) w.p. 1− exp(−t2)

(71)

K = maxi,j ||A[i][j]||ψ2

Lemma L.4. (Expectation of operator norm for non-centered Sub-Gaussian matrix generalization of 4.4.6 in Vershynin
(2018))

E||A|| ≤ CK(
√
m+

√
n)

Alternatively, E||A|| ≤ CK(
√
m+ n), and, E||A||2 ≤ C(m+ n)

(72)

Proof of Lemma L.3 and Lemma L.4. Based on the result of Lemma L.2, one can follow the same proof process of Vershynin
(2018)

M. Additional Results of Expectation of Hermite Polynomials
The non standard gaussian expectation of the product of two Hermite polynomials is computed as follows. It is an
generalization of results of standard Gaussian distributions in O’Donnell (2021); Moniri et al. (2024) into a generalized
multivariate Gaussian. We start with previously known facts, and derive our generalized results. These findings provide a
useful analysis tool for Hermite polynomials, and may offer a foundation for broader applications in future works involving
nonlinear activations decomposable into Hermite polynomials under the assumption of a multivariate Gaussian distribution.

M.1. Expectation of a product of two Hermite polynomials

Here is the result of the expectation of the product of two Hermite polynomials, utilizing the orthogonality of Hermite
polynomials.

Lemma M.1 (Orthogonality of Hermite polynomials from Lemma C.1 Moniri et al. (2024)). See also derivation in Chapter
11.2 O’Donnell (2021).

Let (Z1, Z2) be jointly Gaussian with E[Z1] = E[Z2] = 0, E[Z2
1 ] = E[Z2

2 ] = 1, and E[Z1Z2] = ρ. Then for any
k1, k2 ∈ {0, 1, · · · , }

E[Hk1(Z1)Hk2(Z2)] = k1!ρ
k11k1=k2

In the other form, for d ∈ N, Z ∼ N(0, Id), a, b ∈ Sd−1,

E[Hk1(Z
⊤a)Hk2(Z

⊤b)] = k1!(a
⊤b)k11k1=k2

Fact M.2. Let W ∈ Rd×N s.t. ∀i W [i] ∈ Sd−1. For Z ∼ N(0, I),

EZ∼N(0,1)[Hj(W
⊤Z)Hk(W

⊤Z)⊤] = k!(W⊤W )◦j1j=k (73)

EZ∼N(0,1)[Hj(W
⊤Z)⊤Hk(W

⊤Z)] = k!
∑
||W [i]||2j1j=k = k!N1j=k (74)
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Proof. We apply Hj element-wise. By Lemma M.1, we can acquire the above result.

The following remark presents a modified condition of Lemma M.1 for the case where a, b /∈ Sd−1 in Lemma M.1. In
this case, the variances of Z⊤a and Z⊤b are not equal to 1, and the covariance may exceed the bounds [−1, 1]. Under this
condition, we will compute the expectation of the product of two Hermite polynomials as in Lemma M.1.
Remark M.3 (the modified condition of Lemma M.1). For d ∈ N, u, v ∈ Rd, Z ∼ N(0, Id),

Z1 = ⟨u, Z⟩ ∼ N(0, ||u||22), Z2 = ⟨v, Z⟩ ∼ N(0, ||v||22).

Then, Z1, Z2 is ρ =≜ ⟨ u
||u|| ,

v
||v|| ⟩ - correlated

corr(Z1, Z2) =
E[Z1Z2]√

V (Z1)
√

V (Z2)
=

EZ⟨u, Z⟩⟨v, Z⟩
||u|| ||v||

=
Eg
∑
i

∑
j uivjZiZj

||u|| ||v||
=

∑
i

∑
j uivjEZ [ZiZj ]
||u|| ||v||

=
⟨u, v⟩
||u|| ||v||

(75)

Additionally, (
Z1

Z2

)
∼ N

((
0

0

)
,

(
||u||2 ⟨u, v⟩
⟨v, u⟩ ||v||2

))
(76)

We first introduce Isserlis’ theorem, which is essential for the proof. This theorem allows the expectation of the product of
centered Gaussian random variables to be expressed as a product of covariances, making the computation feasible.

Theorem M.4 (Isserlis’ Theorem (Isserlis, 1918; Vignat, 2011)). Let X = (X1, · · · , Xd) Gaussian random vector s.t.
E[X] = 0 , and let A = {α1, · · · , αN} be set of integers s.t. 1 ≤ αi ≤ d, ∀i. Denote XA =

∏
αi∈AXαi

, and X∅ = 1.
Let
∏
(A) denote partitions of A into disjoint pairs and σ ∈

∏
(A) is pair.

E[XA] =
∑

σ∈
∏

(A)

∏
(i,j)∈σ

E[Xαi
Xαj

]1d is even. (77)

Now, we generalize the assumptions from the previous works so that Lemma M.1 holds for arbitrary vectors as Remark M.3.
This could allow the weights of the networks to become analyzable when they go beyond the assumption of lying on the unit
spheres.

Theorem M.5 (Generalization of Lemma M.1 for centered Gaussian distribution). For d ∈ N, u, v ∈ Rd, g ∼ N(0, Id),
⟨u, g⟩ ∼ N(0, ||u||22), ⟨v, g⟩ ∼ N(0, ||v||22).

Eg[Hj(u
⊤g)Hk(v

⊤g)]

=
j!⟨u, v⟩j

||u||2||v||2
1j=k −

(||u||2 − 1)(||v||2 − 1)

||u||2||v||2
Eg[(v⊤g)k(u⊤g)j ]

+
(||v||2 − 1)

||v||2
Eg[Hj(u

⊤g)(v⊤g)k] +
(||u||2 − 1)

||u||2
Eg[Hk(v

⊤g)(u⊤g)j ]

(78)

Remark M.6. The same results can be derived as in Lemma M.1 when the variance is 1 in Thm. M.5.

Proof of Theorem M.5. (Generalize Chapter 11.2 O’Donnell (2021)’s derivation to non unit variance)

Ez∼N(0,σ2)[e
tz] study
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First, we study about Eg∼N(0,σ2)[e
tg] in order to analysis non unit variance case.

Eg∼N(0,σ2)[e
tg] =

1√
2πσ

∫
etge−

g2

2σ2 dg

=
1√
2πσ

e
1
2 t

2

∫
exp(− (g − σ2t)2

2σ2
) complete square

= e
1
2 t

2

(79)

EZ,Z′ [exp(sZ + tZ ′)] study

Studying EZ,Z′ [exp(sZ + tZ ′)], we can derive what we need to show.

EZ,Z′ [exp(sZ + tZ ′)] = Eg∼N(0,I)[exp(s⟨u, g⟩) + exp(t⟨v, g⟩)]

=
∏
i

Eg∼N(0,1)[exp((sui + tvi)gi)] Use equation 79

=
∏
i

exp(
1

2
(sui + tvi)

2) =
∏
i

exp(
1

2
s2||u||2 + ⟨u, v⟩st+ 1

2
t2||v||2)

(80)

Therefore,

exp(⟨u, v⟩st) = Eg[exp(su⊤g − 1

2
s2||u||2) exp(tv⊤g − 1

2
t2||v||2)].

Fact M.7. One can verify below propositions with simple calculations.
Let Pj(z) + zj = Hj(z), Cu = ||u||2 − 1, a > 0.
Let f(s) = exp(sz − 1

2s
2), f̄(s) = exp(sz − 1

2as
2), then

A. By Taylor expansion, exp(⟨u, v⟩st) =
∑∞
j=0

1
j! ⟨u, v⟩

jsjtj .

B. By Taylor expansion, f̄(s) =
∑∞
j=0

1
j! f̄

(n)(0)sj

C. f̄ (n)(0) = Hn(z) + CuPn(z)

By using the fact that exp(⟨u, v⟩st) = Eg[exp(su⊤g − 1
2s

2||u||2) exp(tv⊤g − 1
2 t

2||v||2)], we can eliminate the different
orders of s t by a Taylor expansion and equating all monomials of the resulting polynomials.

j!⟨u, v⟩j1j=k = Eg
[
(Hj(u

⊤g) + Pj(u
⊤g)Cu)(Hj(v

⊤g) + Pj(v
⊤g)Cv)

]
= Eg

[
(Hj(u

⊤g) + (Hj(u
⊤g)− (u⊤g)j)Cu)(Hj(v

⊤g) + (Hj(v
⊤g)− (v⊤g)j)Cv)

]
= ||u||2||v||2Eg[Hj(u

⊤g)Hj(v
⊤g)] + (||u||2 − 1)(||v||2 − 1)Eg[(v⊤g)j(u⊤g)j ]

− ||u||2(||v||2 − 1)Eg[Hj(u
⊤g)(v⊤g)j ]− ||v||2(||u||2 − 1)Eg[Hj(v

⊤g)(u⊤g)j ]

(81)

Therefore,
Eg[Hj(u

⊤g)Hj(v
⊤g)]

=
j!⟨u, v⟩j

||u||2||v||2
1j=k −

(||u||2 − 1)(||v||2 − 1)

||u||2||v||2
Eg[(v⊤g)j(u⊤g)j ]

+
(||v||2 − 1)

||v||2
Eg[Hj(u

⊤g)(v⊤g)j ] +
(||u||2 − 1)

||u||2
Eg[Hj(v

⊤g)(u⊤g)j ]

(82)

Note that the result of Lemma M.8 can be applied for concrete calculation, and conclude the proof.

Lemma M.8. For d ∈ N, u, v ∈ Rd, g ∼ N(0, Id), Z̄1 = ⟨u, g⟩, Z̄2 = ⟨v, g⟩.(
Z̄1

Z̄2

)
∼ N

((
0

0

)
,

(
||u||2 ⟨u, v⟩
⟨v, u⟩ ||v||2

))
(83)
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Xαi
is defined at Thm. M.4

EZ̄1,Z̄2
[Hj(Z̄1)Z̄

k
2 ] = j!

⌊ j
2 ⌋∑

m=0

(−1)m

m!(j − 2m)!2m

∑
σ∈

∏
({{Z̄1}×j−2m}∪{{Z̄2}×k}})

∏
(p,q)∈σ

E[Xαp
Xαq

]1j+k−2m is even

EZ̄1,Z̄2
[Z̄j1Z̄

k
2 ] =

∑
σ∈

∏
({{Z̄1}×j}∪{{Z̄2}×k}})

∏
(p,q)∈σ

E[Xαp
Xαq

]1j+k is even

(84)

Proof. By explicit formula of Hermite polynomials

EZ̄1,Z̄2
[Hj(Z̄1)(Z̄2)

k] = j!

⌊ j
2 ⌋∑

m=0

(−1)m

m!(j − 2m)!2m
EZ̄1,Z̄2

[Z̄j−2m
1 Z̄k2 ] (85)

Therefore, we need to figure out EZ̄1,Z̄2
[Z̄p1 Z̄

q
2 ]. We know Z̄1, Z̄2 is mean zero Gaussian, so we can apply Thm. M.4 with

A = {{Z̄1} × p} ∪ {{Z̄2} × q}}, E[Z̄p1 Z̄
q
2 ] =

∑
σ∈

∏
(A)

∏
(τ,υ)∈σ E[Xατ

Xαυ
].1p+q is even

Corollary M.9 (Corollary of Lemma M.8). Remark Z1 ∼ N(0, ∥u∥2) For the case k = 0,

EZ̄1
[Z̄j1 ] = ∥u∥j(j − 1)!!1j is even (86)

Proof.

EZ̄1,Z̄2
[Z̄j1Z̄

k
2 ] = EZ̄1

[Z̄j1 ] =
∑

σ∈
∏

({Z̄1}×j})

∏
(p,q)∈σ

E[XαpXαq ]1j is even

=
∑

σ∈
∏

({Z̄1}×j})

∏
(p,q)∈σ

∥u∥21j is even =
∑

σ∈
∏

({Z̄1}×j})

∥u∥j1j is even = (j − 1)!!∥u∥j1j is even

(87)

M.2. Expectation of a product of two Hermite polynomials—Generalization toward non-centered Gaussian

We will change Theorem M.5 and Lemma M.8 to adopt a generalized Gaussian assumption with a mean of zero.

Lemma M.10 (Taylor expansion of Hermite polynomials from Lemma C.2 Moniri et al. (2024)). For any k1, k2 ∈
{0, 1, · · · , } and x, y ∈ R,

Hk(x+ y) =
k∑
j=0

(
k

j

)
xjHk−j(y). (88)

Theorem M.11 (Generalization of Thm. M.5 for any Gaussian distribution). For d ∈ N, u, v ∈ Rd, ξ ∼ N(0, 1),
g ∼ N(µ,Σ), Z1 = ⟨u, g⟩ ∼ N(µ⊤u, u⊤Σu), Z2 = ⟨v, g⟩ ∼ N(µ⊤v, v⊤Σv).

Eg[Hj(Z1)Hk(Z2)]

=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)β

×

[
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β −

(u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eg[(
√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eg[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eg[(
√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

]
(89)
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Proof of Theorem M.11. By reparametrization i.e. Z1 =
√
u⊤Σuξ + u⊤µ, Z2 =

√
v⊤Σvξ + v⊤µ, and Lemma M.10,

Hj(
√
u⊤Σuξ + u⊤µ) =

j∑
α=0

(
j

α

)
(u⊤µ)αHj−α(

√
µ⊤Σuξ). (90)

Eg[Hj(u
⊤g)Hk(v

⊤g)] = Eξ[Hj(
√
u⊤Σuξ + u⊤µ)Hk(

√
v⊤Σvξ + v⊤µ)]

= Eξ
[ j∑
α=0

(
j

α

)
(u⊤µ)αHj−α(

√
µ⊤Σuξ)

][ k∑
β=0

(
k

β

)
(v⊤µ)βHk−β(

√
µ⊤Σvξ)

]
=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)βEξ[Hj−α(

√
µ⊤Σuξ)Hk−β(

√
µ⊤Σvξ)]

(91)

Use same proof technique Thm. M.5, with
(√u⊤Σuξ√

v⊤Σvξ

)
∼ N

((
0
0

)
,

(
u⊤Σu u⊤Σv
v⊤Σu v⊤Σv

))

Eξ[Hj−α(
√
u⊤Σuξ)Hk−β(

√
v⊤Σvξ)]

=
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β −

(u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eg[(
√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eg[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eg[(
√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

(92)

In summary,

Eg[Hj(u
⊤g)Hk(v

⊤g)]

=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)β

×

[
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β −

(u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eξ[(
√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eξ[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eξ[(
√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

]
(93)

The following Corollary which calculates the Expectation of the Power of a Gaussian Random Variable can be derived using
the binomial expansion with the reparametrization technique and Corollary M.9. It corresponds to the case k = 0 in Lemma
M.8.

Corollary M.12 (Corollary of Lemma M.8). Given ω ∈ Rd, let Gaussian Random Variable Z ∼ N(µ⊤ω, ∥ω∥2), then

EZ(Z)k =

k∑
t=0

(
k

t

)
(µ⊤ω)k−tEZ̄∼N(0,∥ω∥2)[Z̄

t]

=

k∑
t=0

(
k

t

)
(µ⊤ω)k−t(t− 1)!! · ∥ω∥t1t is even .

(94)

The following corollary, which computes the Gaussian expectation of Hermite polynomials, is derived from the explicit
form of Hermite polynomials and Corollary M.9. It corresponds to the case k = 0 in Theorem M.11.
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Corollary M.13. Given ω ∈ Sd−1, let Gaussian Random Variable Z ∼ N(µ⊤ω, 1), then

Ex[Hk(ω
⊤x)] = Eξ∼N(0,1)[Hk(ω

⊤µ+ ξ)]

=

k∑
j=0

(
k

j

)
(ω⊤µ)◦jE[Hk(ξ)H0(ξ)] = (ω⊤µ)k

(95)

N. Information of ImageNet subset used in Experiments

Table 5: Configuration of Expr. V

Vehicle Bird Product Clothing
D 98 100 11316 3985

D+I(Sub) 138 159 11568 4031
D+I 1098 1100 12316 4985

Table 6: Configuration of Expr. VI

Step 0 Step 1 Step 2 Step 3
Vehicle 25 50 75 98
Bird 25 50 75 100
Product 2829 5658 8487 11316
Clothing 996 1992 2989 3985

In this section, we present the criteria used to select classes for constructing the ImageNet subsets. We manually verified
the label information to select the classes. The ImageNet subsets corresponding to the base fine-grained datasets were
constructed as follows: I(V), I(B), I(P), and I(C), representing the Vehicle, Bird, Product, and Clothing subsets, respectively.
These subsets consist of 59, 40, 353, and 46 classes, respectively. To balance the number of samples per class with those in
the base fine-grained datasets, we extracted 82, 58, 5, and 6 samples per class for I(V), I(B), I(P), and I(C), respectively.

N.1. I(V): The Vehicle classes chosen in ImageNet

Total 40 classes.

ambulance, cab, convertible, fire engine, forklift, freight car, garbage truck, go-kart, golfcart, half track, harvester, horse cart,
jeep, jinrikisha, limousine, minibus, minivan, Model T, moped, motor scooter, mountain bike, moving van, oxcart, passenger
car, pickup, police van, racer, recreational vehicle, school bus, snowmobile, snowplow, sports car, streetcar, tank, tow truck,
tractor, trailer truck, tricycle, trolleybus, unicycle

N.2. I(B): The bird classes chosen in ImageNet

Total 59 classes.

cock, hen, ostrich, brambling, goldfinch, house finch, junco, indigo bunting, robin, bulbul, jay, magpie, chickadee, water
ouzel, bald eagle, vulture, great grey owl, black grouse, ptarmigan, ruffed grouse, prairie chicken, peacock, quail, partridge,
African grey, macaw, sulphur-crested cockatoo, lorikeet, coucal, bee eater, hornbill, hummingbird, jacamar, toucan, drake,
red-breasted merganser, goose, black swan, tusker, white stork, black stork, spoonbill, flamingo, little blue heron, American
egret, bittern, crane, limpkin, European gallinule, American coot, bustard, ruddy turnstone, red-backed sandpiper, redshank,
dowitcher, oystercatcher, pelican, king penguin, albatross

N.3. I(P): The Product classes chosen in ImageNet

Total 353 classes.

abacus, accordion, acoustic guitar, altar, analog clock, apiary, ashcan, assault rifle, backpack, balance beam, balloon,
ballpoint, Band Aid, banjo, barbell, barber chair, barometer, barrel, barrow, baseball, basketball, bassinet, bassoon, bathing
cap, bath towel, bathtub, beach wagon, beacon, beaker, bearskin, beer bottle, beer glass, bell cote, bib, bicycle-built-for-two,
binder, binoculars, bobsled, bolo tie, bonnet, bookcase, bottlecap, bow tie, brass, breakwater, broom, bucket, buckle,
bulletproof vest, caldron, candle, cannon, canoe, can opener, car mirror, carousel, carpenter’s kit, carton, car wheel, cash
machine, cassette, cassette player, CD player, cello, cellular telephone, chain, chain saw, chest, chiffonier, chime, china
cabinet, cleaver, clog, cocktail shaker, coffee mug, coffeepot, coil, combination lock, computer keyboard, confectionery,
corkscrew, cornet, cradle, crash helmet, crate, crib, Crock Pot, croquet ball, crutch, dam, desk, desktop computer, dial
telephone, digital clock, digital watch, dining table, dishrag, dishwasher, disk brake, dogsled, doormat, drum, drumstick,
dumbbell, Dutch oven, electric fan, electric guitar, electric locomotive, envelope, espresso maker, face powder, feather boa,
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file, fire screen, flagpole, flute, folding chair, football helmet, fountain pen, four-poster, French horn, frying pan, gasmask, gas
pump, goblet, golf ball, gondola, gong, grand piano, grille, guillotine, hair slide, hair spray, hammer, hamper, hand blower,
hand-held computer, handkerchief, hard disc, harmonica, harp, hatchet, holster, honeycomb, hook, horizontal bar, hourglass,
iPod, iron, jack-o’-lantern, jigsaw puzzle, joystick, knot, ladle, lampshade, laptop, lawn mower, lens cap, letter opener,
lighter, lipstick, lotion, loudspeaker, loupe, magnetic compass, mailbox, maraca, marimba, matchstick, maypole, measuring
cup, medicine chest, microphone, microwave, milk can, mixing bowl, modem, monitor, mountain tent, mousetrap, muzzle,
nail, neck brace, necklace, nipple, notebook, oboe, ocarina, odometer, oil filter, organ, oscilloscope, oxygen mask, packet,
paddle, paddlewheel, padlock, paintbrush, paper towel, parachute, parallel bars, park bench, parking meter, pay-phone,
pedestal, pencil box, pencil sharpener, perfume, Petri dish, photocopier, pick, picket fence, piggy bank, pill bottle, pillow,
ping-pong ball, plastic bag, plate rack, plow, plunger, Polaroid camera, pole, pool table, pop bottle, pot, potter’s wheel,
power drill, prayer rug, printer, prison, projectile, projector, puck, punching bag, purse, quill, quilt, racket, radiator, radio,
radio telescope, rain barrel, reel, reflex camera, refrigerator, remote control, revolver, rifle, rocking chair, rotisserie, rubber
eraser, rugby ball, rule, safe, safety pin, saltshaker, sax, scabbard, scale, scoreboard, screen, screw, screwdriver, seat belt,
sewing machine, shield, shopping basket, shopping cart, shovel, shower cap, shower curtain, ski, sleeping bag, sliding door,
slot, snorkel, soap dispenser, soccer ball, sock, solar dish, soup bowl, space bar, space heater, spatula, spider web, spindle,
spotlight, steel drum, stethoscope, stole, stopwatch, stove, strainer, stretcher, studio couch, sunscreen, swab, switch, syringe,
table lamp, tape player, teapot, teddy, television, tennis ball, theater curtain, thimble, thresher, throne, tile roof, toaster,
tobacco shop, toilet seat, torch, totem pole, tray, tripod, trombone, tub, turnstile, typewriter keyboard, umbrella, vacuum,
vase, vault, velvet, vending machine, violin, volleyball, waffle iron, wall clock, wallet, wardrobe, washbasin, washer, water
bottle, water jug, water tower, whiskey jug, whistle, window screen, window shade, wine bottle, wing, wok, wooden spoon,
comic book, crossword puzzle, street sign, traffic light, book jacket, menu, plate

N.4. I(C): The Clothing classes chosen in ImageNet

Total 46 classes.

abaya, academic gown, apron, bikini, brassiere, breastplate, cardigan, chain mail, Christmas stocking, cloak, cowboy boot,
cowboy hat, cuirass, diaper, fur coat, gown, hoopskirt, jean, jersey, kimono, knee pad, lab coat, Loafer, mailbag, mask,
military uniform, miniskirt, mitten, overskirt, pajama, poncho, running shoe, sandal, sarong, ski mask, sombrero, suit,
sunglass, sunglasses, sweatshirt, swimming trunks, trench coat, vestment, wig, Windsor tie, wool

O. Rotation Matrix Generation Process of Setup 2

To generate a set of rotation matrices with diverse magnitudes of rotation, we constructed an algorithm that samples k = 300
random matrices, each formed by adding i.i.d. Gaussian noise matrix of varying variance to the identity matrix I . The
process ensures the generation of rotation matrices with varying extents of rotation, from slight to more substantial deviations
from the identity matrix.

The rotation matrices are generated as follows:

1. A matrix is initialized as I + ϵ ·M , where M is a i.i.d. standard random Gaussian matrix.

2. Using the QR decomposition, we orthogonalize this matrix to ensure it forms a valid rotation matrix.

3. Finally, if the determinant of the resulting matrix is negative, we flip the sign of the first column to maintain a
determinant of +1, ensuring it is a valid rotation.

In summary, this method provides a collection of matrices that progressively deviate from I , allowing us to observe and
sample rotations of increasing magnitude. Please refer Algorithm 3
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Algorithm 3 Gaussian-Sampled Random Rotation Matrix Generation

Input: Number of dimensions n, number of matrices k
Output: Stack of random rotation matrices
Initialize empty list Q
Set ϵ← 0.5
for i← 0 to k − 1 do

if i mod
(
k
16

)
= 0 and i ̸= 0 then

ϵ← ϵ× 0.22360679775
end if
Generate random matrix M : M ∼ N(0, 1)n×n

Compute perturbed matrix: A← In + ϵ×M
Compute QR decomposition: Q,R← QR(A)
if det(Q) < 0 then

Flip first column of Q: Q[:, 0]← −Q[:, 0]
end if
Add Q to Q

end for
return Q
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