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Abstract

Neural networks learn effective feature represen-
tations through intermediate layers, enabling fea-
ture transfer without additional training for new
tasks. However, the conditions for successful fea-
ture transfer remain underexplored. In this paper,
we investigate feature transfer in classifier-trained
networks, focusing on clustering in unseen dis-
tributions. In binary classification, we find that
higher similarity between training and unseen dis-
tributions improves Cohesion and Separability,
while Separability further requires unseen data to
be assigned to different training classes. In multi-
class classification, our analysis shows that the
feature extractor maps input point based on their
similarity to training classes, i.e. that unrelated
training classes to input have negligible impact
on feature extraction. We validate our theoretical
findings in synthetic dataset and demonstrate prac-
tical applicability utilizing ResNet and variations
of CAR, CUB, SOP, ISC, and ImageNet datasets.

1. Introduction

Neural networks have the remarkable ability to adapt to
specific tasks, learning representations through penultimate
layers. Training these intermediate layers is crucial for neu-
ral network generalization (Damian et al., 2022). Also, these
layers can extract semantically meaningful and transferable
features from new data, enabling feature transfer for new
tasks (Yosinski et al., 2014; Kornblith et al., 2019). A wide
range of techniques, from open set clustering (Roth et al.,
2020; Huang et al., 2024) to vision-language models (Li
et al., 2023) and language models (Brown et al., 2020; Ko-
jima et al., 2023), leverage feature transfer for downstream
tasks. However, the specific conditions where features can
be effectively transferred remain underexplored.
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Among various applications, classification based visual
open-set clustering (Musgrave et al., 2020) serves as a funda-
mental benchmark for evaluating whether a feature extractor
can generalize to unseen data. Typically, this task involves
classifier training on one set of classes and then testing it
on disjoint classes to assess whether the extracted features
form cohesive and separable class-wise clusters on unseen
data (Wang et al., 2018; Seidenschwarz et al., 2021; Deng
et al., 2022). Given this context, we aim to investigate
feature clustering with the following research questions:

Can we capture the presences of feature learning
in classification and identify the conditions where
features cluster effectively on new distributions?

To address this question, we analyze a two-layer nonlin-
ear network network trained with a single large gradient
descent step on a mean-squared classification loss in the
proportional regime (in section 2). The proportional regime
intuitively represents a scenario where the network width
and the size of the dataset are of similar scales, aligning
with common practices in model scaling (Ba et al., 2022),
and they are known to effectively capture the phenomena oc-
curring during the actual training process, as demonstrated
in studies such as Mei & Montanari (2020); Moniri et al.
(2024). We capture that the dominant part of the trained
feature is composed of random initialization and spikes (Def.
3.4) associated with the training classes (section 3). Lever-
aging dominant features, we identify conditions for effective
clustering on new distributions (section 4).

In a binary classification setting, we assess the intra-class
cohesion and inter-class separability of trained features in
a numerical-analytical manner representing the clustering
population risks (Def. 4.3) (Clémengcon, 2011; Papa
et al.,, 2015; Li & Liu, 2021) and goals for clustering
performance (Liu et al., 2017). As a result, Cohesion
increases as the train-unseen similarity (in Def. 4.1) grows
larger. Meanwhile, for Separability, if classes classes are
assigned (Notes 4.2, E.1) to different training classes,
Separability increases as the train-unseen similarity grows
larger; otherwise, it decreases, as illustrated in Figure 1.
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Figure 1: Mapping data from the input space (left) to the
learned feature space (right). Training classes are shown as
balls, and unseen classes as dashed lines (a, b, p, n). Cohe-
sion: Strong cohesion occurs for a, p, n, which have high
similarity to the training classes compared to b. Separa-
bility of a,n: a and n, assigned to different training class,
demonstrate high Separability. Separability of a, p: a and p,
assigned to the same training class, exhibit low Separability.

In the multi-class classification setting, we analyze the
spikes of features and find that spikes map new inputs based
on a linear combination of randomly initialized classifier
heads’ weight with coefficients that represent the similarity
of the training classes. Therefore, the more spikes aligned
with the input data the greater their contribution to feature
extraction, enhancing the expressiveness of the features.

In the experiments, we empirically observe train-unseen
similarity, cohesion, Separability, and recall @ I under our
theoretical assumptions in synthetic datasets. As a result,
we confirm that the theoretical interpretation aligns with the
actual findings (subsection 5.2). Additionaly, we explore
practical metric learning settings and find evidence support-
ing the validity of our analysis results in a practical setup
(subsection 5.4). In most cases, we observe that clustering
performance is higher when the unseen classes share the
same sementic domain as the training classes. Moreover,
adding semantically relevant training classes improves per-
formance, whereas adding unrelated training classes does
not lead to performance improvement.

Our contributions are summarized into following:
* We analyze the classifier feature, providing insights into
how feature extractors operate:
— Higher train-unseen similarity increases cohesion.

— Higher train-unseen similarity increases separabil-
ity between data assigned to different classes but
reduces it otherwise.

— Expressiveness of feature improves with an increased
number of spikes non-orthogonal to input.

* We generalize the distribution assumption of prior works
and present novel proof techniques for classifier analysis.

* The theoretical results are validated through diverse ex-
periments, including synthetic and real-world datasets.

1.1. Related Works

Metric Learning and Open Set Clustering Metric learn-
ing is proposed to cluster visually similar unseen classes
using classification or triplet loss (Movshovitz-Attias et al.,
2017; Zhai & Wu, 2019; Boudiaf et al., 2021). Several
recent approaches have focused on increasing the number
of classes in the training data to improve clustering. One
approach adds virtual classes (Chen et al., 2018; Qian et al.,
2020; Gu et al., 2021). Another approach suggested lever-
aging a larger number of classes induced from Schuhmann
et al. (2021) to achieve state-of-the-art performance (An
et al., 2023). This aligns with our analysis, which suggests
that performance improves as the number of relevant classes
in clustering increases.

Neural Collapse (NC) and Unconstrained Layer-Peeled
Model (ULPM) Recent studies have introduced the con-
cept of Neural Collapse (Papyan et al., 2020) to explain the
emergence of intra-class features and feature-weight align-
ment in trained neural networks. Several studies propose
the ULPM to understand training dynamics of NC treat-
ing features and weights as unconstrained free variables
(Fang et al., 2021; Zhu et al., 2021; Ji et al., 2022; Tirer
& Bruna, 2022). However, ULPM, unlike the two layer
network model we use, assumes the free variable features,
which limits analyzability about input distribution and, con-
sequently, prevents studying feature transferability.

Feature Learning in Two-Layer Networks Many
works (Louart et al., 2017; Goldt et al., 2020; Hu & Lu,
2022) study the Conjugate Kernel (CK), which enables the
analysis of the structure of the first layer in two-layer net-
works. Ba et al. (2022); Moniri et al. (2024); Ba et al. (2023)
argue that feature learning aids in reducing the population
risk when evaluated on distributions same to the training
data. Unlike these studies, we claim that the CK feature
learning model not only explains this generalization but also
enables the analysis of features from non-identical distribu-
tions, facilitating a deeper understanding of feature transfer.

Additional related works are provided in Appendix A.

2. Problem Statement

Notations Let ||-|| be L? or the operator norm. Let ® be
the Hadamard product. Let A°* be the Hadamard power.
Let C,c > 0 and k € R be constants that may change
from line to line. Define [d] £ {1,2,--- ,d}. For 0,0,©
notations we follow Moniri et al. (2024)

Training Data We define data for one vs. one classifi-
cation with #.;, classes. The number of problem #p £
w Let #.;s be the number of training classes,
and let €1, -- , G4, represent the class-conditional distri-
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butions of the training data. Define the training dataset
as D = (X,Y), where X € R™4 YV € [#..]",
X={z~G}xmuU---U{x ~ Fx,.} x m), where
#csm = n and m is the number of instances per class. Let
D = (X,Y) ani.i.d. copy of D.

Network Structure We consider two-layer networks. The
initial weight of the first layer, W, € RY*N s initialized as
Woli] ~ Unif(S9~1) fori € [d]. We denote W obtained
via a single step of gradient descent. The initial weights of
the second layer, a;; € RN fori,j € [#as) st i < j, are
initialized as a;; ~ IN(0, 7;1). We define the initialized fea-
ture as Fy(x) = o(W, ) and the one-step trained feature
as F(z) £ o(W T x). The network output is defined as the
following # p-dimensional vector: (F(z) " a;;)|i;.

Proportional Regime We consider the two-layer neural
networks in the proportional regime. n, d, and N are sample
size, data and feature dimension, respectively. We perform
our analysis under d/n,N/n — casn,d, N — oco.

Optimization Problem Denote the set of all network pa-
rameters as § = {W, a2, -+ ,ax,—1,4,}. Let X;; be a
matrix in R?*? where the first m rows contain samples
2 ~ ¢; and the last m rows contain samples x ~ ¢;. Let
y=[1,1,...,1,-1,...,—1]" € R?>™ be a vector consist-
ing of m ones followed by m negative ones. To classify the
given data, we use the Mean Squared Error,

ley

z<j

L(z,y;0 o (XiW)aiz||*. 1)

The weight update formula for the first layer is given by
W =Wy + G, where G & — 9% =2 i<; Gij, sit.

1 /
Gij = _ﬁ X};[(O’(X”W)a” - y)az; ®©o (X”W)} .
@

Now, we introduce the assumptions for theoretical analysis.

Assumption 2.1 (Activation Function). Let o(x) be an
element-wise activation s.t. o,0’,c” is bounded by A,
almost surely. It admits a Hermite decomposition i.e.
o(2) = Yo ckHi(z), where ¢, = 5E[0(2)Hg(z)] for
standard gaussian z. We assume ¢y = 0,c; > 0 and
c2k! < Ck=3/27v_ for constants C,w > 0. For example,

Shifted ReLU max(x,0) — —i= satisfies this condition.

Assumption 2.2 (Training Data). Let the class-conditional
training data distributions %; be non-centered Sub-
Gaussians (Vershynin, 2018; Cao et al., 2021; Cole & Lu,
2024). This distribution family is suitable for classification,
including distributions with limited support that are sepa-
rable. It is an extension of the Gaussian assumption of Ba
et al. (2022).

3. Feature Decomposition

This section analyzes the learning dynamics during a sin-
gle gradient descent step. First, we demonstrate that the
gradient with respect to the W exhibits an almost Rank-
# p property within the proportional regime. Subsequently,
we prove that the learned features can be predominantly ex-
pressed as Rank-# p components, establishing the dominant
components for subsequent analyses.

Gradient Decomposition We decompose the gradient
(equation 2) using Hermite decomposition, which allows us
to extract the essential rank-one matrix structure for each
ij-th classification problem. Note that ¢’ = ¢; + o/, .

Gij = —XTya” + X”ya” © o' (Xi;Wo)

B gXT o(Xi;Wo)(aija; )Q o (XUWO) 3)

£ A+ By + Cyj.

We derive the norm bound for the terms A;;, B;;, and C;; in
Lemma I.1. Using these bounds, we establish the following
Theorem 3.1. For the proof, please refer to Appendix I

Theorem 3.1 (Approximation of Gradient). Under the as-

sumptions in section 2, and when n satisfies * 5 > KIO\gF ,

the following holds w.p. 1 — C(ne~ clog’n 4 ¢ —eny;

log? n
16 =Y Ayl < v @)

1<j

Feature Decomposition Now we utilize >, _; A;; to de-
compose the feature extractor. We decompose the one-step
trained feature function F(z) = o((Wy + G) " z), which
serves as a key step in deriving our main analysis. For the
proof, please refer to Appendix J.

Definition 3.2 (Data-Label Covariance) Data-Label Co-
variance for X;; is defined as §;; = XTy € R4,

Theorem 3.3 (Decomposition of Trained Features). Un-
der the assumptions in section 2, let Fy = o(XWy),
L = logn, ~F0L = Z£:1 e Hy(XWo), and spike; =
25:1 cen(X doicy Bijal;)°F. With probability 1 — o(1),

F = FL + spike; + A. (5)

vl = e(vn),

Moreover;

and || Al = o(\/n).

Based on these results, we analyze the feature representation
using the approximation F, which dominates the residual
term ||A|| = o(y/n) with probability 1 — o(1).
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Figure 2: Numerical Observation of Cohesion and Sep-
arability. Plot of Cohesion and Heatmap of Separability
calculated by adjusting 57 j1 and 8T us.

Definition 3.4 (Dominant Feature F;, = FL + spike; ).

L
Fr(z) £ e[ Ho(XWo) + £ (O (B2)al;) k. (6)
k=1

1<j

Using the feature decomposition conducted so far, the next
section analyzes clustering risk and explores the conditions
for effective clustering of unseen data.

4. Feature Analysis
4.1. Clustering Risk Analysis in binary classification

In this section, we analyze clustering risks. We show train
(5)-unseen (1) similarity governs the the clustering pop-
ulation risk i.e. Cohesion and Separability of F from
Definition 3.4 under condition 4.4. We derive cohesion
and separability of F, for two “unseen” class-conditional
distributions.

Definition 4.1 (Train-Unseen Similarity). Given Train Data-
Label Covariance ( in Definition 3.2 and mean of Unseen
distribution 1, Train-Unseen Similarity is defined as 5 ju.

Note 4.2 (Explanation of assignment and 3" ). 3;; repre-
sents the normal vector of the linear decision boundary, i.e.
the direction determining class ¢ vs. j based on the sign
of its inner product with data. Therefore, the sign of 5 ;1
indicates the class assignment of unseen data with p.

Definition 4.3 (Cohesion and Separability). We define the
clustering risks based on similarity between feature vectors
using inner products.

Cohesion measures the expected similarity between i.i.d.
features of the same class over network parameters 6 and
data z, 2’ ~ cq, ie.

Eg[Epme, F(2) By oe, F(2)].

Separability measures the expected dissimilarity between

independent features of different classes over 0,  ~ ¢; and
, .

T ~ Cc2 1.e.

—EG [Ew"v€1 F(x)TEI/~€2F<xl)]'

k=1,k'=1

Condition 4.4. We fix n,d, N large enough. Under as-
sumptions 2.1, 2.2, let ¢; = MN(p;,Ilq) for i € [2]
be the class conditional distributions.

O’Pl(j?c/ (005(M1,H2))7P$L >0 p,(:l,)ﬁ, e 0 as func-

tions of N,d. Note that pgc ,)C, increases as cos(u1, f12)
grows. Exact definitions are in Def. K.1. The Shifted
ReLU, as stated in Assumption 2.1, is used as the activation.

Define pg,l, >

Proposition 4.5 (Cohesion). Following condition 4.4, the
Cohesion of Fy, for ¢;, i € [2] is given by:

1 ’
p; )/Ilull’”’“
K’ T3 K —r i v k
S| %k/)opm AT B B ]

P [T BIETR == g,

+ X

r,r'=(0,0)
(7
Proposition 4.6 (Separability). Following condition 4.4, the
Separability of Fr, for ¢1,¢2 is given by:
Pick (cos(on, o))l o
L +E opk k’ 1% 1815 r”ﬁHr ||M2||k,

¥

— ) cxew +zr - o B = N8I |1

k=1,k'=1

TR =8|+
8

4 r
+ Z P (WE BT (1
r,r'=(0,0)

The proofs of Propositions 4.5 and 4.6 are provided in Ap-
pendix K. We numerically analyze the results of propo-
sitions 4.5 and 4.6 to investigate Cohesion and Separa-
bility further. For this numerical observations, we set
Hul = llp2ll = 18l = 1 jn = —p2 € R and

= log10 n. We calculate equation 7 and equation 8 by ad-
]ustlng ut B and p¥' B, as shown in Figure 2, which demon-
strates the Cohesion and Separability of Fr,. Cohesion
increases when the |u” 3| increases. Separability increases
when p7 3 and 2’ 3 grow with opposite signs and decreases
when they grow with the same sign. Moreover, we observe
that this phenomenon is governed by the last term of equa-
tion 7, 8 (related to p(*)) , as shown by separately computing
this term and the others numerically in Appendix B. Ad-
ditionally, under the theoretical setup, we observe that our
hypothesis tends to hold over a wider range as n increases
(please refer to Appendix B).

The analytical results in equation 7 and equation 7 can be
explained as follows. With p(*) > 0, the last term inside
the bracket of Cohesion in equation 7 increases in value as
Train-Unseen Similarity grows. The last term of Separa-
bility is influenced by (u )5~ (ud ) ="', Provided that
k —rand k' — v’ are odd, this term implies that if the Train-
Unseen Similarities have opposite signs and increase, then
this term improves; otherwise, if the signs are the same and
increase, Separability decreases. According to the analysis
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Figure 3: As shown in equation 6, after one step of training
with spike 31, 2, B3, B4, the inner product between input
x; and [3; acts as the coefficient in the linear combination of
a;, forming the spikes structure of the feature.

in Appendix H, the first coefficient c; of Shifted ReLU is
a large positive value, and subsequent Hermite coefficients
approach zero while oscillating around it. Thus, we hypoth-
esize that the positive part is likely to dominate > cpcy/,
but further work is needed to confirm this.

4.2. Spike Component Analysis

8000, log(slope) R log(slope)
(3,):8.97 s (3,): 6.60
(2,):8.75 600 (2,):6.12
~ 60007 ——— (4,):3.63 ~ - (L): 3.89
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g 4 2 400
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” RPN S S g4
0 o] e
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cos(xy, Xz} cos(x, X;)
Thoery Fp, Two-Layer Network F'

Figure 4: When trained along the directions 32 and 3, we
observe significant changes in the feature space distance as
x1 and x5 vary, compared to 31, By4.

In this section, based on the previous feature decomposi-
tion and extend it to examine the impact of a multi-class
classifier’s spike structure on unseen data clustering. We
examine the spike structure in F;, = FL + spike; and
its influence on feature mapping. This examination allows
us to explore the impact of the training data’s structure
[ on the feature generation of unseen data. The spike
structure inside the Hadamard power involves the linear
combination coefficient 5; x and the random initialized
classifier head a;; (equation 3.4). Thus, the feature ex-
traction is closely linked to the inner product between 3;;
and the input point z. If the direction of x is not orthog-
onal to 3;;, then spike of §;; involve feature extraction.

Inter Extra Inter Extra
8.75 8.97 6.13 6.60
9.63 6.82
8.92 8.97 6.09 6.60
979 9.63 679  6.82
3.63 9,79 3.63 3.87 6.0 3.69
9.34 8.75 6.61 6.13
! 934 892 ! 6.61 6.09
Mid 3.63 orth Mid 3.99 orth
(a) Theory (b) Two-layer Networks

Figure 5: Comparison of log average slope between Theory
and Two-layer Networks. - Midpoint (/31) == Interpolation
(82)  Extrapolation (/33) =~ Orthogonal (54). The intersec-
tion implies learning intersecting f3.

Conversely, when z is orthogonal to j3;;, the impact of
spike f3;; is eliminated. To validate this, we define fol-
lowing four spikes, given test input 21,z € S¥1(v/d),
By = 2fr2 g, = 2t gy - —0idkST2 gnd By a ran-
dom vector orthogonal to =, 2. Then, the magnitudes are
adjusted to v/d. By definition, (1, 34 cannot contribute to
feature extraction because they are Midpoint or Orthogo-
nal, while 5, and (83 can distinguish the two inputs. For
illustration see Figure 3.

Now, we demonstrate this explanation using the approxi-
mated features F;, and the two layer neural network F' with
the four disjoint sub-classification problem ' defined as fol-
lows: We generated four classification problems by creating
Gaussian training data with means /3; and —f;, and a co-
variance of 0.17 for n,d, N = 2!!, enabling the networks
to learn 3; as their spike. F' is trained by this data and F7,
is calculated by its definition. We observed the feature dis-
tance between F'(z1), F'(x2) and between F,(x1), Fr(z2)
for (2) combinations of j; in this problem by varying the
angle between x1, x5. Please refer to Figure 4 and 21 for
results. It can be observed that the feature from 31 and (34
hardly captures variations in the angle of test input x;, o
within the data space. In contrast, the feature from > and
(s is highly sensitive to such variations, suggesting that it
effectively preserves the structural changes in the input data.
Both Fp(z1) and F(z1) exhibit the same trends, which
supports the validity of our feature approximation. To aggre-
gate these combinatorial results, we measure the log of the
average slope, which indicates that features with sensitive
changes tend to have larger values, as shown in Figure 5.

As a result in Figure 5, we observe that when multiple 3s
are used in training, features are more sensitive to changes

'Instead of studying all combinations for 8 classes classifica-
tion, we simplify the task by grouping four pairs, performing only
four combinations of classifications.



Submission and Formatting Instructions for ICML 2025

® S

&

v, V,

8

Train Data 1, 2, 3

Eval 1,2

Figure 6: Examples of training datasets (Data 1, 2, 3) and evaluation data Eval 1, 2.

in distance within the data space. Meanwhile, the Midpoint
(1 and Orthogonal spike 54 seem ineffective for feature
extraction, even when learned alongside other spikes. Ex-
periments show that learning representations with unrelated
classes limits expressiveness, while related classes enhance
the model’s ability to capture fine-grained features of un-
seen data. This trend is consistently observed in real-world
datasets in Expr V, VI at subsection 5.4. Additionally, to
clarify the effect of the spikes, we compute F{ and spike ;
separately as shown in Figure 22. The results show that the
spike; created by 3, and 84 embeds x; and z as the same
feature. Therefore, it confirms that the distinction between
x1 and x5 created by the model trained with 81 and Sy is
due to the random feature F-.

5. Experiments

Remark 5.1. recall@] £ K, . 1y —¢. . ;1NN is class
of the closest feature to x;. This is a feasible measure for
evaluating whether new classes form clusters.

In this section, we conduct seven experimental setups to vali-
date our theoretical results. First, in Experiments I, IT and I,
we utilize a synthetic dataset to confirm that, as discussed
in subsection 4.1, Cohesion, Separability are determined by
the Train-unseen similarity. Second, to demonstrate how our
theoretical explanations can provide intuition in practical
settings, we conduct Experiments IV, V, VI, and VII. For
this purpose, we analyze the open-set clustering problem
using fine-grained real image datasets.

5.1. Setup for Theory Vaildation: Expr. I, I1, III

We use three types of different non-centered Sub-Gaussian
distributions as training datasets that are symmetric about
the origin. For the evaluation, we introduce two distribution
i.e. Eval 1, Eval 2 with translation parameter e and rotation
parameter R € R C SO(n) to control the train-unseen
similarity B j1. e.g. as e increases from 0 towards 1, 5 ;1
increases, and as R approaches the identity matrix I, 8"y
increases. For illustration of the data, see Figure 6. For
detail, refer to subsection D.1. We follow the condition
described in section 2 and subsection 4.1.

Now we explain Expr. I, II, III. For each experiment, we
utilize all datasets 1,2,3, with distinct Eval data usage.
Expr. I uses two Eval 1 data with translation parameter
e1 € [—0.9,0.9] and eo = —ey, so they are assigned to
opposite training classes (say pos-neg). Experiments II and
IIT are based on two Eval 2 data distributions, each param-
eterized by a small-angle random rotation matrix R € R.
In Experiment II, considering the case where the datasets
are assigned to opposite classes, the first distribution uses
R and the second distribution is origin symmetry of the first
distribution. In Experiment III, considering the situation
where the datasets are assigned to the same class (say pos-
pos), the first distribution uses R and the second uses R to
slightly rotate given means.

5.2. Results of Theory Vaildation: Expr. I, 11, ITI

In this experiment, we examine the relationships between
the train-unseen similarity( i.e. B i), Cohesion, Separa-
bility that we discussed in subsection 4.1 and Recall@] to
evaluate performance using practical measures. All test data
are generated symmetrically, so for simplicity in visualiza-
tion, we report the measurement for a single class. For Expr
I, we present a summary of the results in Figure 8. We
observe that for large values of |3 T |, strong Cohesion and
Separability occur across all datasets. For Expr II and 111,
in accordance with the Separability structure observed in
subsection 4.1, when the signs of 37 1, 8" j15 are opposite
(Expr II), we observed an increase in Separability, whereas
in the other case (Expr III), we observed a decrease Figure 7.
For recall@ 1, we observed a similar trend as Separability.
These results correspond to our theoretical findings. For
individual graphs, refer to Appendix D.

5.3. Setup for Practical Vaildation: Expr. IV, V, VI, VII

We designed experiments to examine whether these in-
sights are also applicable to clustering performance in image
datasets and practical neural networks. In these scenarios,
we utilize train-unseen similarity to conceptualize semantic
similarity between training and unseen classes (Expr. IV).
The number of non-orthogonal spikes is interpretable as the
number of semantically similar or dissimilar training classes
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Figure 7: Data 1 evaluated in the Eval 2 setup. Upper row: In Expr II, all metrics increase as |3 " | increases. Lower row:
In Expr III, where two test classes are assigned to a single train class, recall@1 and Separability tend to decrease as |3 " |
increases. This aligns with our predictions. The red line — represents the values after one step training. Tje blue line —
represents the values from initialization.

we performed experiments on the whole classes ImageNet

10°4 hi by sampling 100 instances per class (say subsampled whole
Inik). Details are in Appendix N. The objective function

1074 Q l and most experimental configurations followed the approach
s outlined in Zhai & Wu (2019), which is a seminal baseline.
107 We use ResNet18 and ResNet50 (He et al., 2015). In addi-
10-12/ tion to the randomly initialized networks in the main text, we
lo conducted experiments with pre-trained networks common

in feature learning, and results are included in Appendix E.

D1-C D1-S Dy-C D5-S D3-C D3-S and result
The two setups exhibited similar trends.

Figure 8: Summary of Expr. I. D; denotes Data ¢ and C, S . L
denote Cohesion and Separability. Dark and large points 5.4. Results of Practical Vaildation: Expr. IV, V, VI, VII

indicate low |3 11| values, while the opposite indicates high
values. All measurements increase with respect to |3 pl. Test Test

We scaled using the absolute value at the 85th percentile. CAR CUB SOP IsC CAR CUB SOP ISC

6.85 27.66 19.94 CAR. 495 26.11 15.83

31.79 19.98 CUB4 6.26 3.93 19.50 10.81

CAR

(Expr. V, VI). Additionally, we validate whether removing _ €UB

the duplicatively assigned unseen classes improve cluster-
ing risk compared to random removal, as suggested by the
results of Separability (Expr. VII).

Train
Train

SOP{17.54 8.76 SOP{17.25 27.54

ISC113.28 6.85 33.38 ISC110.22 5.03 26.99

For this investigation, we used the benchmark datasets
CAR(Vehicle) (Krause et al., 2013), CUB(Bird) (Wah et al.,
2011), SOP(Product) (Song et al., 2015), and ISC (Cloth- ResNet18 (init) ResNet50(init)
ing) (Liu et al., 2016), referred to as Domain. Additionally,
we utilized ImageNet subsets corresponding to the domains - i -
Vehicle, Bird, Product, and Clothing, denoted as I(V), I(B), show the highest performance when the domain of the Train
I(P), and 1(C), referred to as sub Inlk for extra classes. Also, ~ and Test corresponds.

Figure 9: Expr. 1V, recall@ ] measurements. Most cases
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For Expr. IV, we trained with each Domain dataset (CAR,
CUB, SOP, and ISC train datasets) and Domain+sub Inlk
dataset (CAR+I(V), CUB+I(B), SOP+I(P), and ISC+I(C)),
and then measured how each model well cluster on all of the
test datasets (CAR, CUB, SOP, ISC test datasets). As shown
in Figure 9, we verify whether clustering the test dataset
related to the train classes is more effective than clustering
unrelated data, analogous to result in subsection 4.1.

50

Recall@l
w B
o o

N
o

=
o

CAR CcuB SOP ISC

Figure 10: Expr V in ResNet50(init). The pink -, red
, and blue mm bars represent Domain, Domain+sub Inlk,
Domain+subsampled whole Inlk, respectively.

In Expr. V, we measured the clustering performance for
corresponding test datasets after learning the Domain, Do-
main+sub Inlk, and Domain+subsampled whole Inlk. We
find that adding classes from the entire ImageNet dataset
during training, rather than including only related classes,
does not significantly improve clustering (Figure 10, 32).

40 1

R@1

201

0 1 2 3

Figure 11: Expr VI, Recall@1 values for the CAR, ,
SOP, and ISC datasets are shown with dashed lines - - for
ResNet18 and solid lines — for ResNet50.

In Expr. VI, experiments are conducted by dividing the
Domain datasets into four steps to observe the impact of
increasing the number of related classes on recall@ I perfor-
mance (Figure 11). From Step 0 to Step 3, 25%, 50%, 75%,
and 100% of the Domain dataset classes are sequentially
added for training. The added classes are randomly selected,
and each experiment is repeated three times. For the number
of classes, refer to Table 6. Furthermore, we observed that
some results of Expr. V align with those of Expr. VI, as
discussed in detail in subsection E.1.

For Expr. VII, in evaluation, removing duplicatively as-
signed of unseen classes resulted in a 1.73 £ 2.87% improve-
ment in recall@1 compared to random removal of same
amount of unseen classes, with max improve: 13.65%, min
decrease: -3.28%, a success rate: 79% and p = 9.40 x 10~7.
This suggest that duplicate assignments hinder clustering,
which aligns with our theory. Details are in subsection E.2.

6. Conclusion

In this study, we explored the feature learning dynamics of a
two-layer classifier in the proportional regime to uncover the
mechanisms underlying feature transferability. Specifically,
we analyzed the conditions where the learned features of
unseen classes form cohesive and separable cluster. Our the-
oretical analysis extends the Conjugate Kernel framework
to classification tasks. As a result, our numerical-analytical
theory demonstrated that feature cohesion increases with
greater similarity between training and unseen data, while
feature separability is influenced not only by similarity but
also by avoiding duplicate class assignments in binary clas-
sification. Additionally, we showed that only when the
spikes are non-orthogonal to the input, do they get involved
in feature extraction. In addition to validation on synthetic
datasets, we observed that our theory offers valuable insights
even when applied to real-world datasets.

Our empirical findings suggest that clustering performance
improves when the test data share the same semantic do-
main as the training data. Furthermore, adding semantically
relevant classes to the training set leads to performance
gains, whereas introducing unrelated classes has little effect.
Contrary to existing research that focuses on performance
improvement through large-scale learning on broad domains
(Brown et al., 2020; An et al., 2023), our study provides
evidence that only certain relevant knowledge, closely re-
lated to the domain, influences feature transfer. This ev-
idence mirrors classical problems in the field of artificial
intelligence, such as the frame problem and the installation
problem. Specifically, Al agents do not require all available
knowledge to solve a given problem; only specific, detailed
knowledge is necessary. Dennett (1984) states about this as
follows: “People in Al ... take the shortcut of installing all
that an agent has to know to solve a problem. This may, of
course, be a dangerous shortcut.” We hope that our study
may remind the Al community of the longstanding principle
that it may not be the scale of the data that matters. We have
also discussed the limitations and future research directions
related to the Hermite expansion approximation and general
results for cohesion and separability in Appendix F.
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Impact Statement

This paper presents work aimed at advancing the field of
Machine Learning. In this research, we analyze the poten-
tial for clustering performance improvement through the
classification training of a large number of highly granular
classes. Such an approach may lead to a reduction in the
level of personal data masking required for fine-grained data
differentiation, which could trigger new ethical discussions
regarding privacy protection. Additionally, to effectively
implement this approach, there may be a tendency to collect
more data, which can have significant implications for the
scale and scope of data collection, as well as data manage-
ment practices.
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A. Additional Related Works

Feature Transferability in Deep Metric Learning The explanation for how Deep Metric Learning learns transferable
features towards unseen data remains insufficient. Chopra et al. (2005) suggested that CNNs’ robustness to geometric
distortions enables the creation of generalizable features. This explanation has been replaced in transformer-based research
by the idea that, without the inductive biases of CNNs, transformers are less constrained and thus capable of extracting
generalizable features (ElI-Nouby et al., 2021; Caron et al., 2021). Additionally, following the manifold hypothesis (Chang
et al., 2003; Lee et al., 2003; Talwalkar et al., 2008; Goodfellow et al., 2016), Liu et al. (2018); Ermolov et al. (2022)
explained that normalized softmax for metric learning works well because hyperspherical/hyperbolic feature space and the
data lies on a manifold. However, these studies do not provide a detailed analysis of how features are learned and transferred
through classification.

Neural Collapse (NC) and Features learned by Classifiers There exist studies exploring Neural Collapse (NC) and
features learned by classifiers that cannot be explained under the free variable assumption. Hui et al. (2022) argue that
NC does not manifest on test data. Sohoni et al. (2020); Yang et al. (2023) claim that even on training data, NC is not
fully realized, with critical fine-grained structures concealed. Notably, Yang et al. (2023) utilized a two-layer network to
analyze training data features. Regarding NC on novel data, Galanti et al. (2022) statistically analyze NC in transfer learning,
suggesting that NC generalizes not only to new samples within training classes but also to unseen classes with empirical
observations. However, their analysis is constrained by focusing on general function spaces rather than specific neural
network architectures.

MSE for Classification Utilizing MSE in classification is as well-established as using softmax-cross entropy, especially
in theoretical analyses of classification problems (Han et al., 2022; Zhou et al., 2022).

Generalization Bound for Metric Learning Research on the generalization bounds of metric learning related to the
U-process we use is also ongoing (Bellet & Habrard, 2015; Huai et al., 2019; Zhou et al., 2024). However, these studies do
not analyze the exact feature learning structure.

B. Empirical Insights into High-Dimensional Asymptotics

In asymptotic analysis, n,d, N — oo is crucial for observe result. Please see Figure 12, Figure 13 for the cohesion and
Separability in R2000 R20000 [R320000 ° Aq the dimension increases, the range where cohesion and Separability align with
our expectations expands.

For component analysis, please see Figure 14, Figure 15, Figure 16 , Figure 17, Figure 18, Figure 19

C. Additional Observation of Multi Classes Feature Analysis

See Figure 21 for multi-directional training result. For £, and spike; term depiced in Figure 22, Figure 23.

D. Additional Results of two-classes Experiments
D.1. Additional setup for Experiment I, I1, ITI

We setd = n = N = 2!! and use Shifted ReLU. We repeat each experiment with 3 different initializations of the neural
network parameters.

Training Datasets (Data 1) two uniform distributions over a radius-v/d ball, (Data 2) two multi-dimensional element-wise
truncated Gaussian distributions, and (Data 3) two uniform distributions over a radius-v/d sphere, symmetric about the origin
2. The two means of training class are denoted as v and —v, respectively. For Data 1, 3 v £ 2r - u, with u ~ Unif (S971).
For Data 2, one class has support on [1, co) across all dimensions, while the other class has support on (—oo, —1].

Evaluation Datasets Eval 1, 2 use the projected Gaussian distribution, which is projected onto the mean direction of
one training data v, as defined in equation 9. For Eval 1, we translate mean of projected Gaussian distribution with e, and

The Sub-Gaussian property is proven for Data 1 and 3 in Vershynin (2018), and for Data 2 in Lemma L.1.
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Figure 13: Separability in R2000, [R20000 [R320000 (left to right), with the computed range expanding from top to bottom.
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for Eval 2, we Rotate mean of projected Gaussian distribution with R € (R and fixed e. We generate 300 distinct rotation
matrices (R using the process in Appendix O. The projected gaussian distribution is sampled as follows,

ZTI/V

szJrl/, where z ~ 11(0,cl). 9)
12

For Eval 1, v £ ev, ¢ = 1 and for Eval 2, v £ Rev, ¢ = 10! with e = 0.01 for Data 2 experiment and e = 0.008 for Data
1 and 3 experiments, R € SO(d).

D.2. Comprehensive Results of All Experiments

The overall experimental results for Cohesion and Separability are shown in Figure 24. The results for Eval 1 experimental
settings are presented in linear scale in Figure 25 and in logarithmic scale in Figure 26. Additionally, as presented in
Figure 7, experiments for Eval 2 settings on Data 2 and 3 are shown in linear scale in Figure 27, with results for Cohesion,
Separability, and Recall@1 (IP). Furthermore, results for Recall@1 (cos) are presented in linear scale in Figure 28. All
observed results align with the theoretical predictions.

E. Additional Results of Real-world dataset Experiments

Figure 29 summarizes the experimental results and the purpose of the experiment. Expr. IV is in Figure 30, 31, 1. Expr. V is
e in Figure 32, Table 2. Expr. V1is in Figure 33. Expr. VII is in Figure 34, 35, 36, 37, Table 3, and 4.

E.1. Relation between Expr. V and VI

On the other hand, certain results from Expr. V align with those from Expr. VI. As shown in Table 5, for datasets such as
CAR and CUB, the number of additional classes introduced by the sub Inlk dataset is significantly larger compared to SOP.
For these data, inclusion of the additional sub Inlk dataset contributes to improved recall@ [ performance when trained
using a Random Initialized Network. Meanwhile, the performance of the pre-trained network is not significantly affected
by the additional dataset. We attribute this to the fact that the pre-trained model is additionally re-trained using the same
ImageNet dataset sub Inlk. These findings suggest that further research on the behavior of pre-trained networks is necessary.

E.2. Expr. VII: Removing Duplicately Assigned Eval Classes

In Expr. VII, as suggested by the theoretical results on Separability, we validated whether eliminating duplicate in the

assignments improves performance. To clarify, we will provide an example of duplicate assignment at Note E.1.

Note E.1 (Example of duplicate assignment). For two train classes %ftmm), %étmm) and two test classes c§t68t), cgt“t),

(est) and 25" are classified as @™, both test classes are assigned to &\

(test)
1

if most instances of ¢ , resulting in

duplication. Conversely, if ¢ is classified as %Q(tmm) and céte‘%) as %{tmm), they are assigned without duplication.

To validate, we introudce treatment and control groups. For treatment group, we eliminate duplicate in the textitassignments
for the train classes, i.e. , for each unseen class, the most frequently classified training class is aggregated, and the classes
are randomly removed to ensure that the selected training classes become unique (2). For the control group, we performed
random selection of the same number of classes of treatment group (1). These two groups are evaluated using recall@].
This process was repeated five times, and the average was reported. The experimental results are presented in 34, 35, 36,
37, Table 3, and 4. A total of 64 experiments are conducted, of which 51 demonstrated performance improvements: the
estimated success rate is 79%. There is a 1.73%= 2.87% average improvement in recall@ 1, with a maximum improvement
of 13.65%, a minimum decrease of -3.28%. These findings suggest that the duplicate reduction treatment group outperforms
the randomly removed group with a binomial test p-value of 9.40 x 107",

F. Limitations and Future Work

While our study provides valuable insights into feature learning and transferability, several important directions remain for
future research. First, while the Hermite approximation aided our feature analysis, it posed numerical challenges due to the
discrepancy between polynomials and nonlinear neural networks. Specifically, the need for extremely high-dimensional
approximations Figure 2 and the lack of precise scaling alignment between the approximation and the neural networks in
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Algorithm 1 Random Sampling

Input: Number if unseen classes u, number of classes |L|
Output: Sampled class set Sindom

Set Srandom ¢ random.sample({0,1,...,u — 1}, |L|)
return Sp.ndom

Algorithm 2 Duplicated assignment reduction sampling

Input: Model f, unseen data loader 2, number of train classes Ci,;, number of unseen classes Cypseen
Output: Sampled class set Spondup
Initialize counter matrix counter < 0
for (img, label) in @ do
pred « f(img) Predicted class indices
Update counter: counter|[label,pred] +=1
end for
topl-index ¢ argsort(counter,dim = 1, descending = True)]..., 0]
unique_label <« unique(topl,index)
Initialize Syondup < @
for each label £ in unique_label do

Cunseen X C[rain

Iy < {i| topl_index[i| = ¢} Indices corresponding to label ¢
Isample — random.sample(l,, 1) Select one random index
Snondup — Snondup U {isample}

end for

return Spondup

finite dimensions Figure 4.

These limitations highlight the need for alternative approximation techniques or analytical approaches. Second, the
relationship between semantic similarity and train-unseen similarity requires further theoretical exploration. Third, an
important direction for future research is expanding the concepts of cohesion and Separability to multi-class softmax
classification problems, incorporating normalization and temperature scaling to better align with practical settings or Neural
Collapse research. Finally, recently Zavatone-Veth et al. (2023) suggest neural networks tend to compress the feature space
around training data while expanding the regions between decision boundaries. We consider this phenomenon appears
closely related to the train-unseen similarity-driven cohesion and Separability observed in our study. Investigating this
connection through the lens of Riemannian geometry could yield novel insights into the fundamental structure of learned
representations.
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Figure 20: Theory estimation with multi 3 direction

Figure 21: Extra results of subsection 4.2 experiments for multiple 3; direction
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Figure 22: Extra results of subsection 4.2 experiments for seperate term F{, and spike; .
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Figure 24: Summary of the synthetic data experiments: The large and dark circles represent low train-unseen similarity,
while the small and light circles indicate high train-unseen similarity. The datasets D1, D2, and @3 correspond to synthetic
Data 1, 2, and 3, respectively. C denotes Cohesion, and S denotes Separability. In panels (a) and (b), the two unseen
classes are assigned to different training classes (i.e., a positive-negative), and as the train-unseen similarity increases, both
Separability and Cohesion increase accordingly. In contrast, in panel (c), the two unseen classes are assigned to the same
training class (i.e., a positive-positive), leading to a decrease in Separability. These observations are consistent with our
theoretical predictions. We scaled all measurement using the absolute value at the 85th percentile.
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Figure 25: Expr. I: translation(e) variation case (linear scale). — is after one step training. — is from initialization. As the

train-unseen similarity increases, both cohesion and Separability become larger due to pos-neg setup.
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Figure 26: Expr. I: translation(e) variation (log scale). — is after one step training. — is from initialization. As the

train-unseen similarity increases, both cohesion and Separability become larger due to pos-neg setup.
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Figure 27: Expr. II, Expr. III: rotation(R) variation (linear scale). — is after one step training. — is from initialization.
Expr. II is pos-neg. Expr. III is pos-pos.
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Figure 28: Recall@1 with cosine similarity of Expr. II, Expr. III: rotation(R) variation (linear scale). — is after one step
training. — is from initialization. Expr. II is pos-neg. Expr. III is pos-pos.
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Figure 29: Expr. IV: High clustering performance with same train-unseen domain. Expr. V: Extra unrelated training classes

do not affect recall@ ] performance. Expr. VI: Extra related training classes improve recall@ ] performance. Expr. VII:
Removing duplicately assigned eval classes improves performance over random removal.
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Figure 30: Expr. IV on ResNet18 with Domain datasets (CAR, CUB, SOP, ISC)
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Figure 31: Expr. IV on ResNet18, ResNet50 with Domain + In(S) e.g. CAR+I(V), CUB+I(B), SOP+I(P), ISC+I(C)
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Figure 32: Expr. V, additional results, it is represented as follows
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Domain == Domain + Related Subset of Inlk == Domain

+ Whole Inlk subsampled Adding unrelated classes for training does not significantly affect the performance.
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Pretrained

60
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Figure 33: Expr VI, it is represented as follows: ResNetl8 - -, ResNet50 —, Dataset car, cub, sop, isc. As the steps
increased and related classes were added, performance generally improved consistently.
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Figure 34: Expr. VII, ResNet18 (Init), depending on the experimental setup, there are three cases: == removing redundancy,
randomly selecting the same number of classes as those with redundancy removed, and == using all test classes. For
dataset we use, we denote as ‘Train data(Test data)’. ‘In’ denote using whole classes of subsampled ImageNet.
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Figure 35: Expr. VII, ResNet18 (Pre), depending on the experimental setup, there are three cases: == removing redundancy,
randomly selecting the same number of classes as those with redundancy removed, and == using all test classes. For
dataset we use, we denote as ‘Train data(Test data)’. ‘In’ denote using whole classes of subsampled ImageNet.
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Figure 36: Expr. VII, ResNet50 (Init), depending on the experimental setup, there are three cases: == removing redundancy,
randomly selecting the same number of classes as those with redundancy removed, and == using all test classes. For
dataset we use, we denote as ‘Train data(Test data)’. ‘In’ denote using whole classes of subsampled ImageNet.
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In(CUB) SC(ISC) C(I1sC)

Figure 37: Expr. VII, ResNet50 (Pre), depending on the experimental setup, there are three cases: == removing redundancy,
randomly selecting the same number of classes as those with redundancy removed, and == using all test classes. For
dataset we use, we denote as ‘Train data(Test data)’. ‘In’ denote using whole classes of subsampled ImageNet.
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Table 1: Table results for Expr. IV

ResNet18 (Randomly Initialized)

ResNet50 (Randomly Initialized)

CAR CUB SOP ISC CAR CUB SOP ISC
CAR+I(V) | 03922 0.0847 0.3126 0.2079 CAR+I(V) | 0.3280 0.0879 0.3226  0.2000
CAR 0.2383 0.0685 0.2766  0.1994 CAR 0.2067 0.0495 0.2611 0.1583
1(V) 0.1117 0.0618 0.2610 0.1793 1I(V) 0.1048 0.0459 0.2670 0.1410
CUB+I(B) | 0.1456  0.1205 0.3117  0.2067 CUB+I(B) | 0.0755 0.0527 0.2303 0.1414
CUB 0.1432  0.1089 0.3179  0.1998 CUB 0.0626  0.0393  0.1950 0.1081
1I(B) 0.0973 0.0640 0.2658 0.1703 I(B) 0.0456  0.0358 0.1954 0.1074
SOP+I(P) | 0.1753 0.0748  0.3720 0.3304 SOP+I(P) | 0.1662  0.0829 0.3812 0.2934
SOP 0.1754 0.0876  0.3790 0.3306 SOP 0.1725 0.0743  0.3750 0.2754
1(P) 0.1405 0.0586 0.3129 0.2327 1(P) 0.0940 0.0422 0.2716 0.1697
ISC+I(C) 0.1409 0.0613  0.3295 0.4870 ISC+I(C) 0.1090 0.0550 0.3001  0.5318
ISC 0.1328 0.0685 0.3338  0.4887 ISC 0.1022  0.0503 0.2699  0.4581
I(C) 0.0908 0.0471 0.2485 0.1823 I(C) 0.0625 0.0412 0.2294 0.1446
ResNet18 (ImageNet 1K Pretrained) ResNet50 (ImageNet 1K Pretrained)
CAR CUB SOP ISC CAR CUB SOpP ISC
CAR+I(V) | 0.8610 0.1131 0.4104 0.2133 CAR+I(V) | 0.9081 0.1268 0.4192  0.1805
CAR 0.8680 0.1008 0.3966 0.1931 CAR 0.9078 0.1020 0.3945 0.1673
1I(V) 0.4210 0.1698 0.4618 0.2507 I(V) 0.4013 0.1648 0.4815 0.2330
CUB+I(B) | 0.3474  0.5289 0.4745 0.2171 CUB+I(B) | 0.2831 0.5657 0.4580 0.1895
CUB 0.3476  0.5366 0.4872 0.2527 CUB 0.3075 0.5778 0.4794 0.2203
1I(B) 0.3771  0.3400 0.5062 0.2278 I(B) 0.3212 03337 0.4781 0.1846
SOP+I(P) | 0.4073 0.1565 04775 0.2827 SOP+I(P) | 04662 0.2264 0.6367 0.3702
SOP 0.3802 0.1499 0.4827 0.3261 SOP 0.4666 0.2200  0.6276 0.3700
1I(P) 0.4003 0.2076  0.4838 0.2569 I(P) 0.3547 0.2208 0.4602  0.2337
ISC+I(C) 0.2420 0.0976  0.4616  0.7098 ISC+I(C) 0.2301 0.1207 0.5376  0.8718
ISC 0.2130 0.0847 0.4550 0.7115 ISC 0.2230 0.1274 0.5390  0.8710
I(O) 0.3738 0.2227  0.4994 0.2457 I(C) 0.3655 0.2311 0.5167 0.2413
Table 2: Table results of performance for Expr. V.
ResNet18 (Randomly Initialized) ResNet50 (Randomly Initialized)
CAR CUB SOP ISC CAR CUB SOP ISC
D 0.2383  0.1089  0.3790 0.4887 D 0.2067 0.0393 03750 0.4581
D+I(Sub) | 0.3922 0.1205 0.3720 0.4870 D+I(Sub) | 0.3280 0.0527 0.3812 0.5318
D+I \ 0.3074 0.1404 0.3591 0.4532 D+I \ 0.3276  0.0968 0.3726  0.4992
ResNet18 (ImageNet 1K Pretrained) ResNet50 (ImageNet 1K Pretrained)
CAR CUB SOP ISC CAR CUB SOpP ISC
D 0.8680 0.5366 0.4827 0.7115 D 0.9078 0.5778 0.6276  0.8710
D+I(Sub) | 0.8610 0.5289 0.4775 0.7098 D+I(Sub) | 0.9081 0.5657 0.6367 0.8718
D+I \ 0.7604  0.5357 0.4766 0.6897 D+I \ 0.7603  0.4689  0.6360 0.8481
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Table 3: Expr. VII from (Randomly Initialized)

ResNet18 (Randomly Initialized)

Test Train H Treatment Random A Total
CAR 356 3449 077 23.83
(V) 29.02 2696 206 11.17
CARTest  caRs(v) || 49.27 4673 254 3922
In 39.51 3648  3.03 2570
CUB 20.01 1849 152 10.89
I(B) 16.36 1475 161 640
CUBTest  upiie) 19.58 1839  1.19 1205
In 32.16 2874 342 2149
ISC 60.64 5945  1.19 4887
1(C) 60.93 5778 3.15 18.23
ISCTest  5c410) 59.59 59.11 048 48.70
In 45.01 4692  -191 24.75
SOp 43.58 4296 0.62 37.90
1(P) 49.76 4845 131 3129
SOPTest  gopLip) 42.57 4212 045 3720
In 51.84 5403 219 38.82
Average Improvement 1.20
Success Rate 0.875
ResNet50 (Randomly Initialized)
Test Train | Treatment Random A Total
CAR 30.45 2995 050 2067
(V) 24.49 2216 233 1048
CARTest  capirv) || 42.25 4267  -042 3280
In(CAR) 51.69 4239 930  30.06
CUB 13.24 1584 260 3.93
I(B) 21.20 1665 455  3.58
CARTest 141y 16.30 13.66 264 527
In 48.10 3959 851  28.06
ISC 60.63 59.41 122 4581
1(C) 53.67 5120 245  14.46
CARTest  1scq10) 6746 6688 058 53.18
In 44.60 44.85 025 22.85
SOP 44.02 4334 068 3750
I(P) 44.93 4522 029 27.16
CARTest gopipy || 4351 4370 019  38.12
In 59.49 5947 002  42.93
Average Improvement 1.81
Success Rate 0.6875
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Table 4: Expr. VII (ImageNet 1K Pretrained)

ResNet18 (ImageNet 1K Pretrained)

Test Train H Treatment Random A Total
CAR 90.90 9033 057 $6.80
(V) 64.51 6503  -0.52 42.10
CARTest  capsrev) || 9006 8879 127  86.10
In(CAR) 71.77 7308 -131  26.00
CUB 66.19 6312 307 53.66
I(B) 48.67 4690 177  34.00
CARTest  yp4y() 64.48 63.89 059 5289
In 44.95 3930 565 3032
ISC 78.81 7715 166 7115
1(C) 70.48 6647 401  24.57
CARTest  15c410) 78.58 7735 123 7098
In 32.65 3578 313 13.85
SOP 52.45 51.81  0.64 4827
1(P) 66.72 66.81  -0.09 48.38
CARTest gopiapy || 5134 5101 033 4775
In 46.31 4695  -0.64  30.66
Average Improvement 0.94
Success Rate 0.6875

ResNet50 (ImageNet 1K Pretrained)

Test Train H Treatment Random A Total
CAR 93.78 9357 021 90.77
(V) 70.12 6334 678  40.13
CARTest  capsr(v) | 9445 9334 111 908l
In(CAR) 84.20 7743 677 3251
CUB 71.44 6851 293  57.78
I(B) 47.78 46.19 159 3337
CARTest  ~ipuiB) || 7063 6715 348  56.56
In 75.96 6232 13.64 3553
ISC 91.35 9049  0.86 87.10
1(C) 68.62 7190  -328  24.13
CARTest  15c410) 91.60 9059  1.01  87.18
In 39.54 3539 415  8.68
SOP 68.40 68.07 033 6275
I(P) 66.24 64.09 215  64.02
CARTest  gopLp) 68.83 6840 043  63.66
In 59.94 5478 5.6 28.87
Average Improvement 2.96
Success Rate 0.9375
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G. Additional Notations

The operator diag(-) creates a matrix with the elements of the input vector placed along the diagonal. Let 1 ondition be 1 if
the condition is true and 0 otherwise. Let m! be factorials of m. Let n!! be double factorial. We define (—1)!! = 0!l = 1.
For op, Op, ©p notations we follow Moniri et al. (2024) ||-|| ¢ is the Frobenius norm. ||-||o is the infinity norm. |||, is
orlicz-2 norm e(¥) Standard basis vector with 1 at position i. |n/2] denotes the floor of n/2. T'(2) is the Gamma function.

Additional information of Hermite Polynomials We employ the probabilist’s Hermite polynomials (Szegd, 1975;
Bienstman, 2023; Moniri et al., 2024). We denote Hy,(x) as k-th Hermite polynomial.

The n-th Hermite polynomials, H,, (-), are defined by the recurrence relation: H,,+1(z) = 2 H,,(z) —nH,_1(z), forn > 1,
with the initial conditions Hy(z) = 1, H;(z) = x. Using this recurrence, we have Hy(x) = 22 — 1, H3(x) = 23 — 32, - - -.

Hermite polynomials can be represented as the following explicit form:

n oo db a2
H,(x)=(-1)"e> i
for n € Ny. Lastly, there are another expression:
L5 _
_1)m " 2m
H,(z) =n!
() =n 4= ml(n—2m)t 27

The probabilist’s Hermite polynomials form an orthogonal set with respect to the standard normal weight function ¢(z) =

_132 . . . .. . .
—L_¢=" on the interval (—o0, o). Their orthogonality condition is given by:

Var €
1
V21

2
P
e” 2 dr=nlly_p.

|t @)

H. hermite coef of shifted ReLU

One of the activation function that satisfy our condition 2.1 is shifted ReLU,

o(xz) = max(0,z) — L

Nirs

This allow hermite decomposition with coefficient is calculated as

Then for the zero-th coefficient is calculated as

co = E:[0(2) x 1] = E;[max(0,z)] — —=
! 1 Ver (10)
= /0 xo(x)dx — Nor =0

By the way, if n # 0, IE[\/% x H,] = \/%E[l x H,] = \/%IE[HO x H,] = 0 by orthogonality. Thus, shift is only effects
onn = 0.

The coefficient c,, of the expansion of Shifted-ReL.U is defined as:

0, ifn =0,

Cp = 71)771,_2n7227n7771_1—\(7172771«#2) an

n/2] ( .
Sty ol zmivas »  Otherwise.

We directly calculated equation 11 and obtained the following result in Figure 38.
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Figure 38: Hermite Coefficient of Shifted ReLU

I. Proof of Theorem 3.1

In this section, we follow the proof structure of Ba et al. (2022) to decompose gradient in our classification learning setting.
Unlike their assumption of centered Gaussian training data, we consider non-centered Sub-Gaussian data distributions. In
this process, we apply a novel approach involving the concentration of the operator norm on a random matrix. Also, since
our framework is not in a teacher-student setting, we use class labels instead of a teacher function.

We will omit the subscript 7j since it does not cause any confusion untill equation 35. The following statements hold for Vj.
For the aforementinoed A, B, and C, we obtain bounds for each operator norm as follows

Lemma I.1.

P<|A|| <o _ o

\/N \/m)) < 2(676N + 67“‘)

(131> — (Vi VAV VR IogI) Ol 1 e ) 1)
<|(C|| 2 fN(z\F-i- Vn) lognlogN) 2(ne 4 ne¢lo8 M 4 Nemelos™ ),

Proof of Lemma 1.1 (A). We obtain

A= VN "
Then, we can find an explicit notation of the norm as
4l = =X TyaTl = I X Tyl llalle = —= (57X X T9) " all (14)
l|al|2 study By definition, a ~ N(0, &), so v'Na/[i] is a sub-Gaussian. Use Thm 3.3.1 in Vershynin (2018),
P(’H\/Nan—m‘ zt) <2 lett=vN as)

B(Jafle < 1) < 2N

(y"XXTy) 1/2 study Note that the U, V matrices resulting from the SVD belong to the O-group, so there is no length

transformation. . - - T e T
y XX y=[X"ylz= U2V y|5=|ZV y

16
= VY > 02, > IVl = o2illyl3 = no?y, (16)
7

g
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We get (y' XX Ty) 12 VMO min. Tumin is singular value of X which is a anistropic sub-Gaussian matrix. With the result

of Remark 1.2 in Liaw et al. (2016),
Pomin < (vn —eVd)) <e™. (17)

Therefore, P(||A|| < C( )) < 2(e=N 4 ¢—en), .

Fact 1.2 (from Ba et al. (2022)). Form € R™,n € R™", M € R™*",

mn' © M = diag(m)Mdiag(n)

. . (18)
lmn™ © M|| < ||diag(m)|| | M]| ||diag(n)]| = [Imlloo | MlI72]l 0
Lemma 1.3. For Sub-Gaussian R.V. a,
P(||aljs < ¢/VN) > 1 — 2Ne~¢"’
Proof. We use the Hoeffding inequality such that
t
Pl 2 ) = (maxlai 2 72) <#(Ulle 2 ) < S (el 2 )
VN ) <F U 2 VN o
iid. t
=" NP|( |a;| > —= | =P \/Nai > ) < 2N exp(—ct?
(1 = 5 ) = BVl 2 1) < 2N exp(-et?)
O

Fact1.4. Let a sub-Gaussian random variable v s.t. ||v||y, < k, and bounded function o, then o(v) is Sub-Gaussian, i.e.
lo(@)lly, < [Allp, < oo

Proof of Lemma 1.1 (B).

B= XTya" © o' (XWp) (20)

1
nvN

1Bl

IN

1
m”XH lya" ® o' (XWo)||

1
< ——|X|llya" ® o', (XW,
fn\/ﬁll Iy L(XWo)ll

1 2
< —=||X o o’ (XW, all oo
< s IXllylle 0% (XTW0)1|
1
= ——|1X|| oL (XWo)lllalleo
XL (XWo) lal

llo’ (XWy)|| study Use the result of D.4 in Fan & Wang (2020), which is hold for orthogonal columns. X is sampled
from continuous support distribution ¢y, co. The first vector is linearly independent with probability 1 due to the continuous
support of its distribution. For the second vector, which is drawn independently, the probability that it lies in the span of the
first vector is 0, as it also has a continuous density. This reasoning extends to n vectors, implying that, with high probability,
they are orthogonal or nearly orthogonal because no vector falls into the span of the others. Thus, VB > 0 following is hold.

P({l|lo’, | > C(vn+ VN)\,B}, Ap) < 2¢~N

al 2 2 2 (22)
A = {{[Woll < B} U {>_(IWo.ll* - 1)* < B*}}.
=1
Therefore,
P(|o’.|| > C(vn+ VN)A,B) < 2N + P(A5) (23)

P(Ap) study We chooset = Cy/&, B=Cy/&.
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case of |1V, ;|| < B ByLemmalL.3,

d
P(|VNWo|| > 2V N+ vVd) <2~ N = P(|[Wy > Cy/ ) <2 (24)
Therefore, |[Wy|| < B at least w.p. 1 — 2e=N
case of S (|[Wo.||> — 1)2 < B> By definition, ||[W;[|2 = 1, s0 0 < B2, trivialy.
We know P(A§) < 2e~<N.

Bl > C(va + VN[ ) < 2N es)

Use Lemma 1.3, and L.3,

N N2
o' || < C(\/ % + 4/ d) wp. 1 —Cle™N 4 ¢7cd) (26)

t 2
alloo < —= w.p. 1 — 2Ne™ ¢ 27
[[all S TR p (27)

X < va+vVd+t wp. 1 — 2", (28)

In summary, we get

c (NN
B < v vasn (NN L
lett =logn,t' = v/n + vd (29)

P(||B|| > Vi 4+ VaA) (Vi + VN)log N) < C(e™N 4 e=¢d 4 Ne~clog™n g o~ (Vv

e
nvNd
This compelete the proof. O

Proof of Lemma 1.1 (C). We know that ¢’ is bounded, so ||o’||F < Ao vVnN

b

€= nN

XTo(XWo)(aa") ® o' (X W), (30)
ans we can bound the norm as follows

1
ICl < =X lloaa” @ o]

!

< —lXlloalclalelo’|1» 31)
< 27| X|lloa]cal

U o0 oo
~ v/nN

Control of [oalls Lett = +/d. Given X s.t. P(|X; — Vd| > V/d) < 2¢=°"", consider one element o(X/ Wo)a =
S aio (X Woli]).

. . . x7T . .
We know aj, \/ﬁWo,i is an independent centered sub-Gaussian, and use Fact 1.4, then U(Tjﬁ\/ NWo)a is sub-exponential

and mean is zero, since |lac(x] Woi)lly, < [lally,llo(z] Woi)lly, < oo. Apply the Bernstein inequality for the sub-
exponential,
2
P(|o(X, a)| > logn given {|X; — Vd| > Vd}) < 2 ¢lo&" ™, (32)

For every element ||o(XWp)a|ae < logn w.p. 1 — [2ne—clog” n+2ne™]

43



Submission and Formatting Instructions for ICML 2025

By Lemma 1.3 P(||a||o < t/VN)>1— 2Ne~", and Lemma L.3 with t = /d
C
((C|| > =N —_(2vd + vn) lognlogN> < 2(ne~ 4 peclog’n | Neclog’n), (33)

O

Remark 1.5. In the proportional regime, as n,d, N — oo, these quantities can be interchanged to a constant. Thus, Lemma

1.1 is reformulated as follows
P(JJA| < k/vn) < Ce™™)

P(”]B” Z ClOgN) < C( —cn l,lefclog2 n)
n

(34
Clog*N _
(112 S5 < e ey
Also, for gradient, we have
161 = 1A + B+ €l < 1Al + Bl + ICl| = On(— + 282 18y _ g L (35)
B - N U n n ' n
Now we denote subscript ¢ for summary.
ProofofTheorem 3.1. USiIlg ||Gij — Aij” = ||[B” + (C”H < HB”H + H(CZ]H and Lemma 1.5
log logn  log’n eloe®n
P HG” A”H > <P ||Gij _Aijll > C( n =+ T) < Cne=€°8 ™, (36)
Therefore, almost surely, in the proportional limit,
log”n K Clog n C'log*n log
16y = Al < O= = = Bt~ m SIMlT—m <" 2 (IGisll + 1Gig — Assl). (37)
We get (1 — ! Lo n)||G” All < /{’lo\%nHGin.Forlarge enough n for 1 — /1222 > i
log”n log®n
IG5 — Al] < &’ Ja iyl <C
Sum up for Vij,
1og
1G =Y Ayl =11 Gy — Ayl <D 11Gy — Ayl < C
1<j 1<J 1<J
O
J. Proof of Theorem 3.3

Lemma J.1. The following facts will be used in subsequent proofs. Remark 3;; 21 =X Ty in Theorem 3.2.

A. [|Xi;]l = Or(vn), [ly|l = Or(v/n), [|Bi;]| = Or(1)
B. [|Xi;Bi5aii|| = X Bijl[2llas| |2 = Op(v/n)
C. [[Woll = Op(1),
D. [|Xi;Gl|| = Op(v/n)
12

E. M, £ ||a’||oo = IMaX1<;<N |aZ| < CIL\/HH w.p 1— Qne—clogn

I+ 1IG]] = Oe(1)
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F My 2 || XB|lo = maxi<icn | < X[i], 8> | < Clog"?n, wp. 1 — 2ne—closn
G. My, = SUPj>1 [|(WoW )°F|| < Cwp. 1—o(1)
H. ||AK|| < [[AF

Proof. Ttis evident from Lemma L.3, equation 15 in the proportional regime, that A, B, C, and D hold. To proof E, F, and G,

1
we employ proof techniques adapted from Moniri et al. (2024). For E, by Lemma 1.3, with £ = 1og% n, M, < 0107\/%2", W.D.
1-o0(1).

For F,
P(Cla" 8] > t) = P(Clz" 8 — Ex" B+ Ex" | > t) %)
<P(Cla" B — ExTB| >t — C|E2" B]) < 2exp(—ct?).
Then, P(|2T 8| > t) < 2exp(—c(t — ExT8)?) < 2exp(—ct?).
Therefore, M, < C’log% n, w.p. 1 —o(1) with ¢t = log% n.
For G, refer Moniri et al. (2024). For H, refer Bai & Silverstein (2010) Corollary A.21. O
Corollary J.2 (Corollary of Theorem 3.1). By Lemma J.1, we have w.p. 1 — o(1),
- ~ T log” n log”n
IXG — a1 X Bijal;] = O( -v/n) = O( ) (39)

i<j n vn

RemarkJ.3. Wy = Wy + G, s0 XW, = XWo + XG. X isi.id. copy of training data X

We generalize Corollary J.2 i.e. monomial approximation of data-gradient product in polynomial form as Lemma J.4 .

Lemma J.4 (Polynomial Approximation of Data-Gradient Product). For any k € N, sufficiently large n, and w.p. I - o(1),

I(XG)* — H(X Y Bijal) "] = O(n~ % log” n) (40)

i<j

Proof of Lemma J.4. k = 1 is trivial Corollary J.2. We follow Moniri et al. (2024) for k£ > 2. We need to show 3C > 0,
w.p. 1-0(1)

[(XG)™ = ef (X" Bijaly)™M|| < O3 les™ (41)

i<J

(K0P = (16 - X Y e sl

i<j <

k X X / X ; . (42)
= Z(kj)<XG — C1X25ija¢Tj)Oj ® (chZﬁijaz;)o(k—J) n C]f(X Zﬁijaz;)mf

j=1 i<j i1 —
Thus,
(XG)Ok - C]f(X Z Bijaz;)ok
i<j
- () X o ISR . (43)
=3 (5) k6 - X S gal o 4 (Rgal)t )

i<j i<j
Now we will show
- - , L . . . .
(XG — chZﬁija;fg)oj ® c]f ](Z(Xﬂija?j))o(k J)|| = Op(logkﬂ n-n"zk),
1<J 1<J
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I(XG =X 3 Bigaly)” © ™ (X Biyaly) ")

i<j 1<j
<CO(XG -1 XY Biza")™ © (XBa” )"k
i<j
< C|diag(X5)°* 1ol (XGT = e1X 3 By ) lopl dingla)” 7 | »
i<j
< C(MoMy)MVN[(XG =1 XY Bija” )|
1<j
< C’(n_%(k_j) log"~7 n)log? n - n~zl
= Op(n~ 2% log"* n)
Therefore, ~ ~ .
I(XG)™ = H(X D Bijafy)** | = Op(n~ % log™ n) (45)
i<j
O

Lemma J.5. Following condition in section 2, Assume event Q = supy~1 || WoW{)°%||op < C occur, following statement
holds. -

1 H;(XWo)llop = Op(v/nlog? ny/j1)

Lemma J.6. Given random matrix A, Following statement holds,

1 t2
P(l|Allop > ) < P(|| - AAT = EAAT||op > — — [[EAAT |op)
Proof of Lemma J.6.
1 t2
P(llAllop > 1) = P(I|AII5, > #*) = P(|| - AAT|op > —)
Lo T T t?
=P(||-AA" —EAA" + EAA ||op > —)
? o “
<P(||=AAT — EAAT||op + ||[EAAT||op > —)
n n
Lo T t? T
=P(||~AA" — E(AA7)lop 2 — — El|AA7[op)
O
Lemma J.7. Following condition of Lemma J.5,
E||H; (XWo)H;(XWo) " ||op < C1!
Proof of Lemma J.7. For non-centered Sub Gaussian random variable X with mean g,
E(eX—mt) < it
(47)

FEeXt <e 2t2+m‘

Firstly, we proof ;1 = 0 case. For centered Sub Gaussian vector g, let z = g u, 2’ = g v, p-correlated. s.t. ||ul|?> =
[[v]|? = 1, uTv = p, then by equation 47

Eexp(sz +t2') < exp( ||u|\232—|—k2 < U, 7> st+ ||v|| t%)
2

k
< exp(?(s2 + 2pst + t2))
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Dividing by exp(%2 (s2 +t%)), then

Elexp(sz — k—232)exp(tz' - k—gt 5] < exp(pst) Z i sjtj
2 2 P

Using proof techniques similar to those in Lemma M.1, one can acquire
EH;(u" g)Hy(v" g) < j'p" 1= (48)

For 1 # 0 case, considering non-centered Sub Gaussian Random vector g with mean g and centered Sub Gaussian Random
vector £ s.t. g = & + . We use proof techniques similar to those in Theorem M.11.

Denote v = min(j, k). Considering u" g,v" g,

B[, (o 0§ (o 4+ 79
=K ’ ) (u v H T§
02 () o m ey {Z() W) (076

v 2
=E[> (V) (u )’ =90 )" T Hy (u”€) Hy (v7'€)] by equation 48 (49)

q=0 q

v 2
< (V> (u" )= (" )0 wlp?
0

Proof of Lemma J.5. Let A = H;(XWy), then

1 2
P(||Allp > t) <P <||nAAT — BAAT||,, > —- ||EAAT||Op> (by Lemma J.6)

1

1
<~  FE|||-AAT — EAATY, } by Markov’s inequalit
< e s lus] oy qualiy

2 _1
< [11AAT]], \/[|EAAT|, by Th 48 in Vershynin (201
< {n [l Il p]] 5max( I Il p,6> (by Theorem 5.48 in Vershynin (2010))
2 -1
< [n |AAT|OP]] 6max< E[|AAT|OP],5> (by Jensen’s inequality).

Let M = Emax; ||H;(Woi;)||> and 6 = Cy/ %. Moreover, we note that w is sub-weibull random variable and
bound of (Kuchibhotla & Chakrabortty, 2022) proposition A.6 can be applied.

&[>
N

Use property of , Wy and hermite polynomials, we have
M < ¢; B max||(Wod)*|[3 < ¢;E max|[2][¥ < ¢;N(logn)?.
K3 K3

Therefore, § < C'logn. Lett> = n - Q,E||AAT||,, s.t. Q, is positive and increasing. Building on the result derived
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above, we can continue expanding the expression as follows:

2 -1
—E[|AAT|OPJ} 6max( E[|AAT|OPL6)

12
< [— — E||AAT||,,) " Clog nmax(y/ E||AAT||,p, logn)
" P Y P (50)

= [BIAAT [0y (Qn — 1)) Clognmax( /Bl AAT |, log n)
Clognmax VE|AAT||,p, logn)

- E[|AAT0p@n

Choosing Q,, = log® n, and using Lemma J.7, we conclude the proof. O

Fact J.8. For any vector u, v and any matrix A, B

A v lop = [Jull2][v] 2

B. |ulloe < lull2 < v/nlulle

C. JJu®|| < Jfull®

D. [[u|l2 < vallu||eo < Vrmax;(|uf|) = v/n(max; [u;])* = v/nl|ul|%
E. Schur product theorem

|[Ao Bllop = sup tr(ATdiag(x)Bdiag(x)) < ||Allop - [|Bllop

[lz[]=1
Next, let L = O(logn).
Denote o7,(2) = Sor_, e Hi(2), FF = o (XW) and F = o7, (XWy).
Then, F = FL + (0 — o) (XW).
Using Lemma J.5, w in assumption 2.1, w.p. 1 — o(1)

B0 = or)(WoX)(o — o) (WoX)]l|

<C Y KG<c Y kPv< C/ k=3 vdk < CL™2, S
k=L+1 k=L+1 L
Therefore, following same proof technique as Lemma J.5, J.6, J.7,
(e — O'L)(XWO)HOP = OP(\/nlog?’ n-L727") = op(y/n) (52)
Also, because ||W||,, = O(1),
(0 — o) (XW)||op = o(y/nlog® n - L727%) = op(y/n) (53)

Finally, we proof Theorem 3.3.
Proof of Theorem 3.3. We write F¥ + FF = FE 4 FL then FL = FF + Y ¢, cx(Hp(XW) — Hy(XWy)). We have to
study Hy(XW) — Hy,(XWp) term.

Hp(XW) — Hi(XW,)

= Ho(XWT + XGT) — Hy(XWo) 54

(XG)°F + Z < )Hk H(XWp) 0 (XG)%
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Thus,

L k-1

FL = F} +ch (X@) °’“+2ch< )Hk J(XWo) o (XG)%
k=1

k=1 j=1

:FO chck XZBU a;;)

1<j

Ay
+) en(XG)* (55)

A,

J
L k— ) k _ - Trod
As |+ el . |Hrj(XWo) o [X > Bijal;]™

|FE1| = ©(y/n) by Moniri et al. (2024).
Ik chen(X 32, Bijal)?F || is bigger than /.

For A+, Ao, Ag, it is derived as follows

L
AL <Y el (XG)F = (X Biyal) |
k 1<j (56)

L k-1
18al = 303 () 0y CEWE) 0 (46T LX)
k=1j= i<j
L k-1
<CY D N He s (XWHIIXGT) = (X Bijaly)™ |
k=1j=1 i<j
Lo 57
<C Z\/ﬁlog2 n/j!n 2log n
k=1 j=1
L k-1 3+2j
log2 d
SCZZ\/E\/» o8 n—O(logEn)
k=1 j=1
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L k-1
1As] < CY Y (1Hk—(XWo) o [X D Bijal]™|
k=1 j=1 i<j
L k-1
<CY Y |diag(XB)%7 ||| Hy—; (XWo)|[|diag(a)>||
k=1j=1
L k-1 ) (58)
<O N (Mo M) || H—y(XWo)|
k=1 j=1
L k-1
1. . 3 5
< CZ Znif] log’ nyv/nlog? = O(log2 n)
k=1j=1
Therefore, we conclude the proof. O
K. Proof of Clustering Risk Analysis in two-classes case
Definition K.1. Given NV, d, let
1
Si = Bununipee-nl(we)] € Ry
2 ~ ~ ’
SE) g = Bul(w” i) (w” jin)*
= NS T R
Pk = d,k+k’ Tk+k’ is even € Ry
pf,;)a(cos(m, p2)) = NSg(l,zlz,kflk-i-k’ iseven € Ry (59)
ks(l)
@) _ CiPaw (k 1k — 1) .
pk,k/,r - N§*1 <’I"> (T’ 1)(k ]-)'-]-k,k’,r iseven € R—i—
26k+kls(1) k/
(4) 20 d.k
pkvk/ﬂ’»’f' - N%,l (T’) (r/ - 1)”(kl - 1)!!1k,k’,r’ iseven € RJr
For Sff,l) 4> it depends on cos(jt1, f12). As cos(ju1, f12) increases, S ((12,1  grows, while it decreases as cos(ji1, f12) decreases.
e.g. when g = po, S(f,z,k, = Sg,hkh and when 1 = —pg = —5271,2.+k/.
Lemma K.2. Let Cyp 2 E,[(w'e1)¥] s.t. w ~ Unif(S41), then
Eol(w )] = [l1llF S L s even (60)

Proof of K.2. The uniform distribution on the sphere is origin-symmetric. Therefore, when & is odd, Expectation is zero. In
the other case, also use isotropic property of uniform sphere,

Eu[@Tw)"] = |l Eol(wTer)"] = [lul*S5)

In the proof below, we utilize the results of Corollary M.12, Corollary M.13, and Lemma K.2.
Lemma K.3. Given vector a € RN 8 € RY and Gaussian Random vector x ~ N(u,I). Letb =" 3 ~ N(u' 3, 8]%),

then i
o k —_ T o

(T80T = 3 () 0TI = DT (61)

r=0

RN
E,a" = %1 (62)
2
o ok’ k"‘k/_]- n " is even

E,a kT ok _ ( N}%ykjk (63)
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Proof. This follows directly from Corollary M.12. O

Proof of Proposition 4.5. Let cohesion of initialized feature as

coho = By, [Bome, FE (2) T Eypme, FE ()] (64)

Let cohesion of feature after training as

coh1 = Ewy.o[Eome, FL (@) gy, Fr(27)] (65)
Calculate cohy By Lemma K.2,
L L
coho = By [Bane, [ (W @) Earnes [ crrHin(Wg )]
k=1 kr=1

L N

_ Z crewEw, Z g 1)

k=1,k'=1 q=1
L (66)
’ 1

=N > arew (Il S5 ) Lacioyeven
k=1,k'=1
L

= > o ult

k=1,k'=1
Calculate coh,
L L
cohy = Ew, o[Ezmc, Z e H,(Wez) + epck (27 Ba) %) T E e, [Z (e Hpy(Wez) + (27 Ba)°]|
k=1 kr=1
L
=Ewoal D ckcr[Be He(Wg ) By Hyy (W 1)
ke k=1
+ QEka(WOT ) E,,cl (z Tﬂa)Ok/ + le+k/]Ex(xTﬂa)OkTEx/(xlTﬁa)Ok/”
L
=cohg+2 Y crcrck By, Bo Hy (WY 2) " EoEqy (27 Ba)
k,kr=1

+ Z CkChr Ck+k a[ z((ETB(L)OkTEz/(.’EITBa)Ok]

k,kr=1

= cohg + 2N Z excioe (S50 (g Z( )m?ﬁ)k BN = DUk = D! e s ven

k,kr=1 N= 15
CiC 'C S r+r
- Z kkikll ( ) ( ) ﬁ k+k Hﬁ” ' (’I’ - 1)”(7‘ - 1)”1k+k’ r,r’is even
k,k1= 1 r= 0 r1=0
O
Proof of Proposition 4.6. Let separability of initialized feature as
sepo = —Ewy [Eome, FE(2) By e, FE (2)] (67)
Let separability of feature after training as
Sep1 = _]EWO,GUE’QJNcl FL (:E)TEJ:’NCQ FL (LL'/)] (68)
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Calculate sepg

By Lemma K.2,

L N
sepo=— Y cxcwBu, [y (Wola) )" (Wolg]" 2)¥]
k=1,ki=1 q=1
L
=-N Y aewByovnipein (W p)" (w” p2)]
k=1,kr=1
L
=N > crewlmlFllpal Bul(w” in)* (" his)" )
k=1,k'=1
L
=-N Y ckewlmllFlalF SEL p ichr iseven
k=1,k'=1
L
7 (1
== > cxewlml ¥ i
k=1,k'=1

Calculate sep;

L
sepy = — E crCrEw, a
k,kr=1

L
= S€Po — E CkCly
k, k=1

]wavq Hy, (WoTx)TEWNCQ H’f/(WOTxl)
+ El‘NC] Hk (W(,)T‘r)TEl'/NCz le/(x/Tﬁa)Ok/
T
+Eimey C]1€ (xTBCL)Ok Egrne, Hk/(W(?fv)

T
L+ C]f+klEx~01 (xTBa)Ok Eyrmc, (x’Tﬁa)Ok/

k/

1 k! R
Al D () GE 9 18I = D0 = 1)k
/=0
1 [k
e —r r
+ clf(H/W”k Sfi,lz’)Ng_1 Z (T) (M{/B)k ”6” (T - 1)”(k - 1)”1k,r,kliseven
r=0
"GN (kN [k
w3 3 () () r oy d sl - e’ - 1

r=0 r/=0

1
@U{ + kr — 1)!!1k+k’,r,rl is even

L. Additional Lemmas of Sub-Gaussian Distribution

(69)

For more detailed explanation and well known results of Sub-Gaussian we used, please refer to Vershynin (2010; 2018).
We show below that the truncated Gaussian distribution, utilized in our synthetic data experiments, is a sub-Gaussian

distribution.

Lemma L.1. Truncated Gaussian distribution which have support on (a,b) s.t. a,b € (—o0, 00) is Sub-Gaussian.

Proof. Denote 1, (0, 0?) is Truncated Gaussian distribution which have support on (a,b) s.t. a,b € (—00,0). support
(Map)(0,0%)) C R? Therefore, P(|X| > t) s.t. X ~ 1(44)(0,0?) have same tail behavior with Gaussian and Gaussian is

Sub-Gaussian.

L.1. Generalization of centered Sub-Gaussian results toward non-centered

O

We verify below that the results on centered sub-Gaussian distributions from Vershynin (2018) can be extended to non-
centered sub-Gaussian distributions.
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Lemma L.2. Sum of non-centered Sub-Gaussian random variable is Sub-Gaussian.

Proof. 1f the Orlicz 2 norm is bounded || X ||y, < oo, then X is Sub-Gaussian. Also, ||[EX]||y, < C||X]||y,, and Sum of
centered Sub-Gaussian random variable is Sub-Gaussian. We show || > X;||y, < 0o, s.t. X is non-centered Sub-Gaussian.

1D Xillys <D (Xi =EX)|ly, + 1D EXi [,
<D (X —EX)lyy + > NEX ||y, (70)
<D (X = EX)|ly, +C Y |1 Xi |y, < 00

]

Lemma L.3. (Operator norm bound for non-centered Sub-Gaussian matrix, generalization of 4.4.5 in Vershynin (2018)) let
A e R™*™, Ali][j] is independent, non-centered Sub-Gaussian. ¥/t > 0,
JA|| < CK(v/m + /i +t) wp. 1 — exp(—t?)

71
Al < CK(Vm+n+t)wp. 1 —exp(—t?) 70

Alternatively,

| AL 5]
Lemma L.4. (Expectation of operator norm for non-centered Sub-Gaussian matrix generalization of 4.4.6 in Vershynin

(2018))
E||All < CK(Vm + v/n)
Alternatively, E||A|| < CK(vVm +n), and, E||A]|> < C(m +n)

K= max; ;

(72)

Proof of Lemma L.3 and Lemma L.4. Based on the result of Lemma L.2, one can follow the same proof process of Vershynin
(2018) O

M. Additional Results of Expectation of Hermite Polynomials

The non standard gaussian expectation of the product of two Hermite polynomials is computed as follows. It is an
generalization of results of standard Gaussian distributions in O’Donnell (2021); Moniri et al. (2024) into a generalized
multivariate Gaussian. We start with previously known facts, and derive our generalized results. These findings provide a
useful analysis tool for Hermite polynomials, and may offer a foundation for broader applications in future works involving
nonlinear activations decomposable into Hermite polynomials under the assumption of a multivariate Gaussian distribution.

M.1. Expectation of a product of two Hermite polynomials

Here is the result of the expectation of the product of two Hermite polynomials, utilizing the orthogonality of Hermite
polynomials.

Lemma M.1 (Orthogonality of Hermite polynomials from Lemma C.1 Moniri et al. (2024)). See also derivation in Chapter
11.2 O’Donnell (2021).

Let (Zy1, Z3) be jointly Gaussian with E[Z1] = E[Z,] = 0, E[Z2] = E[Z2] = 1, and E[Z1Z3) = p. Then for any
k17k2 € {0717 7}
E[Hy, (Z1)Hi, (Z2)] = k1 !p™ Ly 2,
In the other form, ford € N, Z ~ 11(0, 1), a,b € S%71,
E[Hkl (ZTa)sz (ZTb)] = kll(aTb)kl 1k1:k2
Fact M.2. Let W € RN st Vi W[i] € ST For Z ~ N(0, 1),
EzenonH; (W Z)Hy (W T 2Z)T] = k(W TW)*7 1 (73)
Ezno,uHi(W ' Z)THy(W T Z)] = kDY |[Wil||¥ 1j—x = kIN1j (74)
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Proof. We apply H; element-wise. By Lemma M.1, we can acquire the above result. O

The following remark presents a modified condition of Lemma M.1 for the case where a,b ¢ S~! in Lemma M.1. In
this case, the variances of Z"a and Z T b are not equal to 1, and the covariance may exceed the bounds [—1, 1]. Under this
condition, we will compute the expectation of the product of two Hermite polynomials as in Lemma M. 1.

Remark M.3 (the modified condition of Lemma M.1). Ford € N, u,v € R%, Z ~ n(o, 1),
Zy = (u, Z) ~ N(0, [[u]|3), Z2 = (v, Z) ~ (0, |v][3).
Then, Zy, Zs is p == (%, %7) - correlated

[l 1ol

corr(Z1, Z») = E[Z, Z5] _ Ez{u, Z){v, Z)
V(Z1)\/V(Zy) [[ul] []v]]
_ Eg>, Zj w0 Z; Z; _ > Zj uv;Ez[Z,Z;) (75)
[l []]] [l f]v]]
_ (uy,v)
IRIINIE

Additionally,
Z O\ (lul® <u7v>>
~MN 76
(2) ((o)’<<v,u> o] 7o

We first introduce Isserlis’ theorem, which is essential for the proof. This theorem allows the expectation of the product of
centered Gaussian random variables to be expressed as a product of covariances, making the computation feasible.

Theorem M.4 (Isserlis’ Theorem (Isserlis, 1918; Vignat, 2011)). Let X = (X1, -+, X4) Gaussian random vector s.t.
E[X] =0, andlet A = {aq,--- ,an} be set of integers s.t. 1 < o; < d, Vi. Denote X 4 =[] Xo,, and Xy = 1.
Let [[(A) denote partitions of A into disjoint pairs and o € [[(A) is pair.

a; €A

EXal= Y]] EXa.Xo,laiseren (77)
o€[1(A) (¢,5)€0

Now, we generalize the assumptions from the previous works so that Lemma M.1 holds for arbitrary vectors as Remark M.3.
This could allow the weights of the networks to become analyzable when they go beyond the assumption of lying on the unit
spheres.

Theorem M.5 (Generalization of Lemma M.1 for centered Gaussian distribution). Ford € N, u,v € R%, g ~ 11(0, ),
(u, g) ~N(0, |[ul[3), (v, g) ~N(0, ||v][3).

Eg[H;(u" g)Hi(v" g)]

My (P =D =Dy T
= Tul Pl 5= Taeloe ol 9 (o) 78)
loll? - 1) (lul? — 1)
o al]?

+ glH;(u"g) (v 9)"] + Eg[Hy(v g)(u'g)]

Remark M.6. The same results can be derived as in Lemma M.1 when the variance is 1 in Thm. M.5.

Proof of Theorem M.5. (Generalize Chapter 11.2 O’Donnell (2021)’s derivation to non unit variance)

E.n(0,02)[e'*] study
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First, we study about E 5 (0,52) [€9] in order to analysis non unit variance case.

1 92
Eo0.02)]€9] = 7/€t967md
g~11(0, 2)[ ] mo_ g

1 — o?t)?
= Joms ez’ / exp(—%) complete square (79)

142
— ot

EZ,Z/ [exp(sZ + tZ/)] study

Studying Ez 2 [exp(sZ + tZ')], we can derive what we need to show.

Ez z/lexp(sZ +tZ")] = Egun(o,n lexp(s(u, g)) + exp(t(v, g))]

= H Egno,1)lexp((su; + tvi)g;)] Use equation 79
' (80)
1

= 1:[exp( (su; + tv;)? Hexp $2||ul|? + (u,v)st + §t2||v|\2)

Therefore,
1 1
exp((u, v)st) = Eglexp(su’ g — 55%[[ul|?) exp(tv’ g = £*[|v[[*)].

Fact M.7. One can Verify below propositions with simple calculations.
Let Pj(z) + 27 = H;(2), Cy = |[u]|* = 1,a > 0.

Let f(s) = exp(sz — £5%), f(s) = exp(sz — Sas?), then
A. By Taylor expansion, exp({u, v)st) = Z?io %(u, V) st

B. By Taylor expansion, f(s) =72 %f(")(o)sj

C. f1(0) = H,(2) + CuPu(2)

By using the fact that exp({u, v)st) = Eylexp(su’ g — $5%[|ul[?) exp(tv " g — £t?||v||*)], we can eliminate the different
orders of s ¢ by a Taylor expansion and equating all monomials of the resulting polynomials.

3, 0 Ui = By [(H; (u” g) + Py (u” 9)Cu) (H; (07 g) + Py (07 9)Cu)]

= E, | (H;(u"g) + (H;(u" g) = (u 9)")CL)(H, (v 9) + (H, (v g) = (vT9))C.)| 1)
= [Jul Pl[o|*Eq [H, (u" ) H; (v " g)] + (ul® = 1)(|]o]]* = DE [( ' )j(u 9)’]
— [l P(Jo]* = DEg[H; (" g)(v 9)] = ol *([ull* — 1)Eg[H; (v " g)(u" g)’]
Therefore,
Eq[H;(u'g)H;(v" g)]
_ Mww)? (P =D (P =1 g
= lPRIP T Pl el P o] 52
+ =V, gy w70y + L 0T o
Note that the result of Lemma M.8 can be applied for concrete calculation, and conclude the proof. O

Lemma M.8. Ford € N, u,v € R%, g ~N(0, 1), Z1 = (u,g), Z> = (v, g).

(2)n((5 )
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X, is defined at Thm. M.4

12

1 m
EZl,Zz[H (Zl)Zk *]' Z 777,'](—2)777,)'2’” Z H E[Xaanq}lj-i-k—Qmixeven
m=0 o€[T({{Z1} xj—2m}u{{Z2} xk}}) (P.0)EC (84)
EZLZQ[Z{ZQC] = Z H E[Xaanq}lj-‘rkiseven

o€[T({{Z1} xjYu{{Z2} xk}}) (P,9) €0

Proof. By explicit formula of Hermite polynomials

P \Za)H] i ()"

Ez, z,[Hij(Z1 i = 2y a2 (2]~ Z§] (85)

~—
—~
S
~—
=
I
<

Therefore, we need to figure out Bz, 7, [Z7 Z]. We know Z1, Z5 is mean zero Gaussian, so we can apply Thm. M.4 with
A={Z1} xptU{{Z2} x q}}, E[Z{)Zg] = ZaeH(A) H(T,U)eg E[Xa, Xa,]- Iptqiseven

O
Corollary M.9 (Corollary of Lemma M.8). Remark Z; ~ 1(0, ||u||?) For the case k = 0,
EZ [Z{] - ”u”j(] - 1)”13 is even (86)
Proof.
Ezl,Zz[Z{ZS} :Ezl [Z{] = Z H E[Xaanq]lj is even
2UEH({ZI}><j}) (p,q)€c _ | &7)
= Z H ||UH 1j iseven — Z ||UHJ]—j iseven — (] - 1)””'“”]1_] is even
o€l1({Z1}x4}) (p.9)€o o€l1({Z1}x4})
O

M.2. Expectation of a product of two Hermite polynomials—Generalization toward non-centered Gaussian

We will change Theorem M.5 and Lemma M.8 to adopt a generalized Gaussian assumption with a mean of zero.

Lemma M.10 (Taylor expansion of Hermite polynomials from Lemma C.2 Moniri et al. (2024)). For any k1,ko €
{0,1,--- ,}and z,y € R,

k
Hy(z+y)=Y_ (’;) o Hy—(y). (88)

Jj=0

Theorem M.11 (Generalization of Thm. M.5 for any Gaussian distribution). For d € N, u,v € R? ¢ ~ n(o,1),
g~N(,X), Zy = (u,g) ~ N u,u’ Su), Zo = (v,g) ~ N(p v, 0" Xv).

Ey[H;(Z1)Hy(Z)]

) Z ( ) (5) @y

a=0p
Tyy)i—e u'Su—1) (v Zv — . (39)
[ e — R B U TRy (VTR
( Y — 1) - k—p (u'Xu—1) .
Ey[Hj—o(VaTSu€) (VoT50€) 7] + o R [(VaTSug) = Hy_ (Vo S0€)]

CuTYe AR
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Proof of Theorem M.11. By reparametrization i.e. Z; = Vu' Yué +u' p, Zo = Vo Xv€ + v i, and Lemma M. 10,

H (VTS ) = 3 (1) T o (Vi) ©0)
a=0
Eg[H;(u' g)Hi(v' g)] = Be[H;(VuT Su + u' p) Hy(VoTSvé + v )]
= y J u' ) U v WP H, TS
e[ (2) @ty o VTS fHﬁZ%(lg)( WP Hy (/i8] o

J k .
=300 (D) (5) W6 el (VTS (VTR

——— T T
Use same proof technique Thm. M.5, with (\/%g) ~N ((8), (:}LT;JZ z—r;f:j) )

Ee[Hj—o(VuTSu)Hy—p(Vo T Evf)]

—a)(uTXv)i—« TSu—-1)w"2v -1 - _
- ﬁ)z(uﬂ;g Lja=k—5 — lu ZTEiE}}rEUv )]Eg[(v uT Yug) = (Vo Svg) 7 92)
(’UTEU -1 e (uTEu -1 o
+ 2 g o (VaT5ue) (Vo 506) ) 4 T U (VTS iy (Vo S0
In summary,

Eq[H;(u" g)Hy(v' g)]

S (2)(5) e’

a=0 =0
(G — a)l(uT Sw)i— (W Su—1) (v Sv—1) NV A ©3)
: l u Suv T X li—a=i—p = u! YuvT Yo Eel(Vu2ug)’ ™ (Vo T2u) 7]

W' E0 =D e T (VaTsee A1 4 W BT D e /oTE
" R [H, o (VT Su) (Vo TS0~ + Ee (VTS0 = Hy (Vo Sut)]

v Sv uT Zu
O

The following Corollary which calculates the Expectation of the Power of a Gaussian Random Variable can be derived using

the binomial expansion with the reparametrization technique and Corollary M.9. It corresponds to the case k¥ = 0 in Lemma
M.8.

Corollary M.12 (Corollary of Lemma M.8). Given w € RY, let Gaussian Random Variable Z ~ N(u' w, ||w||?), then

k

Ez(2)F = Z <]:) (1" )" Bz ono w2 [£]

t=0

_Z< ) /.L OJ k t(t_l) ”W”tltiseven-

(94)

The following corollary, which computes the Gaussian expectation of Hermite polynomials, is derived from the explicit
form of Hermite polynomials and Corollary M.9. It corresponds to the case £k = 0 in Theorem M.11.
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Corollary M.13. Given w € S, let Gaussian Random Variable Z ~ N (u'w, 1), then

E, [Hk(WTiU)] = E5~71(0,1)[Hk(WTM + )]

k
k oj (95)
=3 (5) T B o) = T
=0 M
N. Information of ImageNet subset used in Experiments
Table 5: Configuration of Expr. V Table 6: Configuration of Expr. VI

Vehicle Bird Product Clothing i Step0 Stepl Step2 Step3

D 98 100 11316 3985 Vvehicle | 25 30 L& 98
D+I(Sub) | 138 159 11568 4031 Bird 25 30 75 100
Product | 2829 5658 8487 11316

D+l | 1098 1100 12316 4985 Clothing | 996 1992 2989 3985

In this section, we present the criteria used to select classes for constructing the ImageNet subsets. We manually verified
the label information to select the classes. The ImageNet subsets corresponding to the base fine-grained datasets were
constructed as follows: I(V), I(B), I(P), and I(C), representing the Vehicle, Bird, Product, and Clothing subsets, respectively.
These subsets consist of 59, 40, 353, and 46 classes, respectively. To balance the number of samples per class with those in
the base fine-grained datasets, we extracted 82, 58, 5, and 6 samples per class for I(V), I(B), I(P), and I(C), respectively.

N.1. I(V): The Vehicle classes chosen in ImageNet
Total 40 classes.

ambulance, cab, convertible, fire engine, forklift, freight car, garbage truck, go-kart, golfcart, half track, harvester, horse cart,
jeep, jinrikisha, limousine, minibus, minivan, Model T, moped, motor scooter, mountain bike, moving van, oxcart, passenger
car, pickup, police van, racer, recreational vehicle, school bus, snowmobile, snowplow, sports car, streetcar, tank, tow truck,
tractor, trailer truck, tricycle, trolleybus, unicycle

N.2. I(B): The bird classes chosen in ImageNet
Total 59 classes.

cock, hen, ostrich, brambling, goldfinch, house finch, junco, indigo bunting, robin, bulbul, jay, magpie, chickadee, water
ouzel, bald eagle, vulture, great grey owl, black grouse, ptarmigan, ruffed grouse, prairie chicken, peacock, quail, partridge,
African grey, macaw, sulphur-crested cockatoo, lorikeet, coucal, bee eater, hornbill, hummingbird, jacamar, toucan, drake,
red-breasted merganser, goose, black swan, tusker, white stork, black stork, spoonbill, flamingo, little blue heron, American
egret, bittern, crane, limpkin, European gallinule, American coot, bustard, ruddy turnstone, red-backed sandpiper, redshank,
dowitcher, oystercatcher, pelican, king penguin, albatross

N.3. I(P): The Product classes chosen in ImageNet
Total 353 classes.

abacus, accordion, acoustic guitar, altar, analog clock, apiary, ashcan, assault rifle, backpack, balance beam, balloon,
ballpoint, Band Aid, banjo, barbell, barber chair, barometer, barrel, barrow, baseball, basketball, bassinet, bassoon, bathing
cap, bath towel, bathtub, beach wagon, beacon, beaker, bearskin, beer bottle, beer glass, bell cote, bib, bicycle-built-for-two,
binder, binoculars, bobsled, bolo tie, bonnet, bookcase, bottlecap, bow tie, brass, breakwater, broom, bucket, buckle,
bulletproof vest, caldron, candle, cannon, canoe, can opener, car mirror, carousel, carpenter’s kit, carton, car wheel, cash
machine, cassette, cassette player, CD player, cello, cellular telephone, chain, chain saw, chest, chiffonier, chime, china
cabinet, cleaver, clog, cocktail shaker, coffee mug, coffeepot, coil, combination lock, computer keyboard, confectionery,
corkscrew, cornet, cradle, crash helmet, crate, crib, Crock Pot, croquet ball, crutch, dam, desk, desktop computer, dial
telephone, digital clock, digital watch, dining table, dishrag, dishwasher, disk brake, dogsled, doormat, drum, drumstick,
dumbbell, Dutch oven, electric fan, electric guitar, electric locomotive, envelope, espresso maker, face powder, feather boa,
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file, fire screen, flagpole, flute, folding chair, football helmet, fountain pen, four-poster, French horn, frying pan, gasmask, gas
pump, goblet, golf ball, gondola, gong, grand piano, grille, guillotine, hair slide, hair spray, hammer, hamper, hand blower,
hand-held computer, handkerchief, hard disc, harmonica, harp, hatchet, holster, honeycomb, hook, horizontal bar, hourglass,
iPod, iron, jack-o’-lantern, jigsaw puzzle, joystick, knot, ladle, lampshade, laptop, lawn mower, lens cap, letter opener,
lighter, lipstick, lotion, loudspeaker, loupe, magnetic compass, mailbox, maraca, marimba, matchstick, maypole, measuring
cup, medicine chest, microphone, microwave, milk can, mixing bowl, modem, monitor, mountain tent, mousetrap, muzzle,
nail, neck brace, necklace, nipple, notebook, oboe, ocarina, odometer, oil filter, organ, oscilloscope, oxygen mask, packet,
paddle, paddlewheel, padlock, paintbrush, paper towel, parachute, parallel bars, park bench, parking meter, pay-phone,
pedestal, pencil box, pencil sharpener, perfume, Petri dish, photocopier, pick, picket fence, piggy bank, pill bottle, pillow,
ping-pong ball, plastic bag, plate rack, plow, plunger, Polaroid camera, pole, pool table, pop bottle, pot, potter’s wheel,
power drill, prayer rug, printer, prison, projectile, projector, puck, punching bag, purse, quill, quilt, racket, radiator, radio,
radio telescope, rain barrel, reel, reflex camera, refrigerator, remote control, revolver, rifle, rocking chair, rotisserie, rubber
eraser, rugby ball, rule, safe, safety pin, saltshaker, sax, scabbard, scale, scoreboard, screen, screw, screwdriver, seat belt,
sewing machine, shield, shopping basket, shopping cart, shovel, shower cap, shower curtain, ski, sleeping bag, sliding door,
slot, snorkel, soap dispenser, soccer ball, sock, solar dish, soup bowl, space bar, space heater, spatula, spider web, spindle,
spotlight, steel drum, stethoscope, stole, stopwatch, stove, strainer, stretcher, studio couch, sunscreen, swab, switch, syringe,
table lamp, tape player, teapot, teddy, television, tennis ball, theater curtain, thimble, thresher, throne, tile roof, toaster,
tobacco shop, toilet seat, torch, totem pole, tray, tripod, trombone, tub, turnstile, typewriter keyboard, umbrella, vacuum,
vase, vault, velvet, vending machine, violin, volleyball, waffle iron, wall clock, wallet, wardrobe, washbasin, washer, water
bottle, water jug, water tower, whiskey jug, whistle, window screen, window shade, wine bottle, wing, wok, wooden spoon,
comic book, crossword puzzle, street sign, traffic light, book jacket, menu, plate

N.4. I(C): The Clothing classes chosen in ImageNet

Total 46 classes.

abaya, academic gown, apron, bikini, brassiere, breastplate, cardigan, chain mail, Christmas stocking, cloak, cowboy boot,
cowboy hat, cuirass, diaper, fur coat, gown, hoopskirt, jean, jersey, kimono, knee pad, lab coat, Loafer, mailbag, mask,
military uniform, miniskirt, mitten, overskirt, pajama, poncho, running shoe, sandal, sarong, ski mask, sombrero, suit,
sunglass, sunglasses, sweatshirt, swimming trunks, trench coat, vestment, wig, Windsor tie, wool

O. Rotation Matrix Generation Process of Setup 2

To generate a set of rotation matrices with diverse magnitudes of rotation, we constructed an algorithm that samples k = 300
random matrices, each formed by adding i.i.d. Gaussian noise matrix of varying variance to the identity matrix /. The
process ensures the generation of rotation matrices with varying extents of rotation, from slight to more substantial deviations
from the identity matrix.

The rotation matrices are generated as follows:

1. A matrix is initialized as I + ¢ - M, where M is ai.i.d. standard random Gaussian matrix.
2. Using the QR decomposition, we orthogonalize this matrix to ensure it forms a valid rotation matrix.

3. Finally, if the determinant of the resulting matrix is negative, we flip the sign of the first column to maintain a
determinant of +1, ensuring it is a valid rotation.

In summary, this method provides a collection of matrices that progressively deviate from I, allowing us to observe and
sample rotations of increasing magnitude. Please refer Algorithm 3
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Algorithm 3 Gaussian-Sampled Random Rotation Matrix Generation

Input: Number of dimensions n, number of matrices &
Output: Stack of random rotation matrices
Initialize empty list Q
Sete < 0.5
fori < Otok —1do
ifi mod (&) =0andi+# 0 then
€ < € x 0.22360679775
end if
Generate random matrix M: M ~ 11(0,1)"*"
Compute perturbed matrix: A « I, + e x M
Compute QR decomposition: @, R < QR(A)
if det(Q) < 0 then
Flip first column of Q: Q[:, 0] + —Q|[:, 0]
end if
Add Q to Q
end for
return Q
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