
CALE: Continuous Arcade Learning Environment

Jesse Farebrother
McGill University

Mila - Québec AI Institute
Google DeepMind

jfarebro@cs.mcgill.ca

Pablo Samuel Castro
Google DeepMind

Université de Montréal
Mila - Québec AI Institute

psc@google.com

Abstract

We introduce the Continuous Arcade Learning Environment (CALE), an exten-
sion of the well-known Arcade Learning Environment (ALE) [Bellemare et al.,
2013]. The CALE uses the same underlying emulator of the Atari 2600 gaming
system (Stella), but adds support for continuous actions. This enables the bench-
marking and evaluation of continuous-control agents (such as PPO [Schulman
et al., 2017] and SAC [Haarnoja et al., 2018]) and value-based agents (such as
DQN [Mnih et al., 2015] and Rainbow [Hessel et al., 2018]) on the same envi-
ronment suite. We provide a series of open questions and research directions that
CALE enables, as well as initial baseline results using Soft Actor-Critic. CALE
is available as part of the ALE at https://github.com/Farama-Foundation/
Arcade-Learning-Environment.

1 Introduction

Generally capable autonomous agents have been a principal objective of machine learning research,
and in particular reinforcement learning, for many decades. General in the sense that they can handle
a variety of challenges; capable in that they are able to “solve” or perform well on these challenges;
and they are able to learn autonomously by interacting with the system or problem by exercising their
agency (e.g. making their own decisions). While deploying and testing on real systems is the ultimate
goal, researchers usually rely on academic benchmarks to showcase their proposed methods. It is
thus crucial for academic benchmarks to be able to test generality, capability, and autonomy.

Bellemare et al. [2013] introduced the Arcade Learning Environment (ALE) as one such benchmark.
The ALE is a collection of challenging and diverse Atari 2600 games where agents learn by directly
playing the games; as input, agents receive a high dimensional observation (the “pixels” on the screen),
and as output they select from one of 18 possible actions (see Section 2). While some research had
already been conducted on a few isolated Atari 2600 games [Cobo et al., 2011, Hausknecht et al.,
2012, Bellemare et al., 2012], the ALE’s significance was to provide a unified platform for research
and evaluation across more than 100 games. Using the ALE, Mnih et al. [2015] demonstrated, for
the first time, that reinforcement learning (RL) combined with deep neural networks could play
challenging Atari 2600 games with super-human performance. Much like how ImageNet [Deng et al.,
2009] ushered in the era of Deep Learning [LeCun et al., 2015], the Arcade Learning Environment
spawned the advent of Deep Reinforcement Learning.

In addition to becoming one of the most popular benchmarks for evaluating RL agents, the ALE has
also evolved with new extensions, including stochastic transitions [Machado et al., 2018], various
game modes and difficulties [Machado et al., 2018, Farebrother et al., 2018], and multi-player support
[Terry and Black, 2020]. What has remained constant is the suitability of this benchmark for testing
generality (there is a wide diversity of games), capability (many games still prove challenging for
most modern agents), and agency (learning typically occurs via playing the game).

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/Farama-Foundation/Arcade-Learning-Environment
https://github.com/Farama-Foundation/Arcade-Learning-Environment

Figure 1: Left panel: Atari CX10 controller. Right panel: Discrete joystick positions (top left)
versus continuous joystick positions with varying values of the threshold τ . The black circle
corresponds to a joystick at position (r, θ) = (0.61, 2.53).

There are a number of design choices that have become standard when evaluating agents on the
ALE, and which affect the overall learning dynamics. These choices involve modifying the temporal
dynamics through frame skipping; adjusting the input observations with frame stacking, grey-scaling,
and down-sampling; and converting the range of joystick movements into a standardized set of 18
discrete actions to be shared across all games.1 The design of the action space resulted in a rather
profound impact on the type of research conducted on the ALE. In particular, it is only compatible
with discrete-action agents. This has led to certain classes of agents, often based on Q-learning
[Watkins, 1989], to focus primarily on the ALE. On the other hand, agents based on policy gradient
[Sutton et al., 1999] or actor-critic [Konda and Tsitsiklis, 1999] methods, while sometimes evaluating
on the ALE by using discrete variants, tend to focus on entirely different benchmarks, such as
MuJoCo [Todorov et al., 2012] or DM-Control [Tassa et al., 2018].

In this paper, we introduce the Continuous Arcade Learning Environment (CALE) that introduces a
continuous action space making for an interface that more closely resembles how humans interact
with the Atari 2600 console. Our work enables the evaluation of both discrete and continuous action
agents on a single unified benchmark, providing a unique opportunity to gain an understanding of
the challenges associated with the action-space of the agent. Additionally, we present baselines with
the popular Soft-Actor Critic [SAC; Haarnoja et al., 2018] algorithm that underscore the need for
further research towards general agents capable of handling diverse domains. Finally, we identify key
challenges in representation learning, exploration, transfer, and offline RL, paving the way for more
comprehensive research and advancements in these areas.

2 From Atari VCS to the Arcade Learning Environment

The Atari Video Computer System (VCS), later renamed the Atari 2600, is a pioneering gaming
console developed in the late 1970s that aimed to bring the arcade experience to the home. Game
designers had to operate under a variety of constraints, including writing code that could execute in
time with the electron beam displaying graphics on the CRT screen and rendering graphics using the
limited set of primitives provided by the system. Although designed to support a variety of controllers,
the majority of games were played with an Atari CX10 “digital” controller (see left panel of Figure 1).
Players move a joystick along two axes to trigger one of nine discrete events (corresponding to three
positions on each axis) on the Atari VCS. Combined with a “fire” button, this results in 18 possible
events the user could trigger.2

1Certain games, such as Pong and Breakout, were originally played using a different set of paddle controllers,
but were given the same action space in the ALE.

2For the interested reader, Montfort and Bogost [2009] provide a great historical overview of the design and
development of the Atari VCS.

2

The Atari 2600 was one of the first widely popular home gaming devices and even became synony-
mous with “video games”, marking the beginning of exponential growth in the video game industry
over the following decades. A likely reason for its popularity was the use of external cartridges
containing read-only memory (ROM), which allowed for a scalable plug and play experience. Over
500 games were developed for the original console, offering a wide variety of game dynamics
and challenges that appealed to an ever-growing audience. As personal computing became more
widespread, emulators such as Stella [Mott et al., 1996] emerged, allowing enthusiasts to continue
playing Atari 2600 games without needing the original hardware.

Building upon the Stella emulator, Bellemare et al. [2013] introduced the Arcade Learning Environ-
ment (ALE) as a challenging and diverse environment suite for evaluating generally capable agents.
The authors argue the ALE contains three crucial features which render it a meaningful baseline
for agent evaluation: variety – it contains a diverse set of games; relevance – the varied challenges
presented are reflective of challenges agents may face in practically-relevant environments; and
independence – it was developed independently for human enjoyment, free from researcher bias.

This seminal benchmark was used by Mnih et al. [2015] to showcase super-human performance when
combining temporal-difference learning [Sutton, 1984] with deep neural networks. The performance
of their DQN agent was compared against the average performance of a single human expert; these
average human scores now serve as the standard way to normalize and aggregate scores on the ALE
[Agarwal et al., 2021]. Since its introduction, numerous works have improved on DQN, such as
Double DQN [Hasselt et al., 2016], Rainbow [Hessel et al., 2018], C51 [Bellemare et al., 2017], A3C
[Mnih et al., 2016], IMPALA [Espeholt et al., 2018], R2D2 [Kapturowski et al., 2019], and Agent57
[Badia et al., 2020]; the ALE continues to serve as a simulator-based test-bed for evaluating new
algorithms and conducting empirical analyses, especially with limited compute budgets.

3 CALE: Continuous Arcade Learning Environment

The original Atari CX10 controller (left panel of Figure 1) used a series of pins to signal to the
processor when the joystick is in one of nine distinct positions, visualized in the ‘Discrete’ sub-panel
in Figure 1 [Sivakumaran, 1986]. When combined with a boolean “fire” button, this results in 18
distinct joystick events. Indeed, player control in the Stella emulator is built on precisely these distinct
events [Mott et al., 1996], and they also correspond to the 18 actions chosen by the ALE.

However, although the resulting events are discrete, the range of joystick motion available to
players is continuous. We add this capability by introducing the Continuous Arcade Learning
Environment (CALE), which switches from a set of 18 discrete actions to a three-dimensional
continuous action space. Specifically, we use the first two dimensions to specify the polar
coordinates (r, θ) in the unit circle corresponding to all possible joystick positions, while the
last dimension is used to simulate pressing the “fire” button. Concretely, the action space
is [0, 1] × [−π, π] × [0, 1]. The implementation of CALE is available as part of the ALE
at https://github.com/Farama-Foundation/Arcade-Learning-Environment (under GPL-
2.0 license). See Appendix A for usage instructions.

As in the original CX10 controller, this continuous action space still needs to trigger discrete events.
For this, we use a threshold τ to demarcate the nine possible position events the joystick can trigger.
Figure 1 illustrates these for varying values of τ , as well as the different events triggered when the
joystick is at position (r, θ) = (0.61, 2.53). As can be seen, lower values of τ result in more sensitive
control, while higher values can result in less responsive controllers, even to the point of completely
occluding certain events (the corner events are unavailable when τ = 0.9, for example).

It is worth highlighting that, since CALE is essentially a wrapper around the original ALE, it is only
changing the agent action space. Since both discrete and continuous actions ultimately trigger the
same events, the underlying game mechanics and learning environment remain unchanged. This is an
important point, as it means that we now have a unified benchmark on which to directly compare
discrete and continuous control agents.

An important difference is that the ALE supports “minimal action sets”, which reduce the set of
available actions from 18 to the minimum required to play the game. For example, in Breakout
only the LEFT, RIGHT, and FIRE events have an effect on game play, resulting in a minimal set
of 4 actions. By default, minimum action sets are enabled in the ALE and used by many existing

3

https://github.com/Farama-Foundation/Arcade-Learning-Environment

2 4 6 8 10
Agent steps (x 10K)

0.01

0.00

0.01

0.02

Hu
m

an
 N

or
m

al
ize

d
IQ

M 0.1
0.3
0.5
0.7
0.9

0 50 100 150 200
Env frames (millions)

0.0

0.2

0.4

0.6

Figure 2: CALE comparison with varying τ on the 100k (left) and 200m (right) training regimes.

implementations [Castro et al., 2018]. Given the manner in which continuous actions have been
parameterized, this minimal action set is unavailable when running with the CALE. Thus, for many
games, continuous-action agents trained on the CALE may be at a disadvantage when compared with
discrete-action agents trained on the ALE (see comparison in Section 4.5 and Figure 7 in particular).
For completeness, we list the minimum action sets for all 60 games in Appendix D.

4 Baseline results

We present a series of baseline results on CALE using the soft actor-critic agent [SAC; Haarnoja
et al., 2018]. SAC is an off-policy continuous-control method that modifies the standard Bellman
backup with entropy maximization [Ziebart et al., 2008, Ziebart, 2010]. DQN and the agents derived
from it are also off-policy methods, thereby rendering SAC a more natural choice for this initial set
of baselines than other continuous control methods such as PPO. We use the SAC implementation
and experimental framework provided by Dopamine [Castro et al., 2018]. We detail our experimental
setup and hyper-parameter selection below, and provide further details in Appendix C.

4.1 Experimental setup

We use the evaluation protocol proposed by Machado et al. [2018]. Namely, agents are trained for
200 million frames with “sticky actions” enabled, 4 stacked frames, a frame-skip of 4, and on 60
games. Additionally, we use the Atari 100k benchmark introduced by Łukasz Kaiser et al. [2020],
which evaluates agents using only 100,000 agent interactions (corresponding to 400,000 environment
steps due to frame-skips) over 26 games. The Atari 100k benchmark has become a popular choice for
evaluating the sample efficiency of RL agents [D’Oro et al., 2023, Schwarzer et al., 2023]. We follow
the evaluation protocols of Agarwal et al. [2021] and report aggregate results using interquartile mean
(IQM), with shaded areas representing 95% stratified bootstrap confidence intervals. All experiments
were run on P100 GPUs; the 200M experiments took between 5-7 days to complete training, while
the 100K experiments took between 1 and 2 hours to complete.

4.2 Threshold selection

As mentioned in Section 3, the choice of threshold τ affects the overall performance of the agents.
Consistent with intuition, Figure 2 demonstrates that higher values of τ result in degraded performance.
For the remaining experimental evaluations we set τ to 0.5. This choice has consequences for SAC,
due to the way its action outputs are initialized, which we discuss in the next subsection.

4.3 Network architectures

Given an input state x ∈ X , the neural networks used by actor-critic methods usually consist of an
“encoder” φ : X → Rd, and actor and critic heads ψA : Rd → A and ψC : Rd → R, respectively,
where A is the (continuous) action space. Typically the action outputs are assumed to be Gaussian
distributions with mean µ and standard deviation σ. Thus, for a state x, the value of the state is
ψC(φ(x)) and the action selected is distributed according to ψA(φ(x)).

4

2 4 6 8 10
Agent steps (x 10K)

0.00

0.01

0.02

0.03

Hu
m

an
 N

or
m

al
ize

d
IQ

M

SAC

DQN

0 20 40 60 80 100
Env frames (millions)

0.0

0.1

0.2

0.3

Figure 3: CALE comparison of φSAC and φDQN on the 100k (left) and 200m (right) training regimes.

The SAC implementation we use initializes µ in the middle of the action ranges. Thus, for the CALE
action space, µ is initialized at (0.5, 0.0, 0.5). With τ = 0.5, this means the r and “fire” dimensions
will be initially straddling the threshold, where action variations are most significant. On the other
hand, this initialization produces an initial θ value of 0.0, which results in an initial bias towards the
RIGHT event (since polar coordinates (0.5, 0.0) correspond to (0.5, 0.0) Cartesian coordinates). See
Figure 7 and the surrounding discussion for more details.

For all our experiments we use a two-layer multi-layer perceptron (MLP) with 256 hidden units each
for both ψA and ψC . Haarnoja et al. [2018] benchmarked SAC on non-pixel environments, where
φ consisted purely of an MLP. For pixel-based environments like the ALE, however, convolutional
networks are typically preferred encoders. Yarats et al. [2021b] proposed a convolutional encoder
network for SAC (based on the encoder proposed by Tassa et al. [2018] for the DeepMind Control
Suite), which was further used by Yarats et al. [2021a]. We refer to this encoder as φSAC . We refer
to the three-layer convolutional encoder originally used by DQN [Mnih et al., 2015] (and used by
most DQN-based algorithms) as φDQN .

As Figure 3 demonstrates, φSAC outperforms φDQN in both the 100K and 200M training regimes.
Although DQN has not been explicitly tested with φSAC , it begs the question of whether certain
algorithms benefit from certain types of encoder architectures over others; this relates to questions of
representation learning, which we discuss below.

4.4 Exploration strategies

Due to its objective including entropy maximization and the fact that the actor is parameterized as
a Gaussian distribution, SAC induces a natural exploration strategy obtained by sampling from ψA

(and simply using µ when acting greedily). We refer to this as the standard exploration strategy.
However, the exploration strategy typically used on the ALE is ε-greedy, where actions are chosen
randomly with probability ε; a common choice for ALE experiments is to start ε at 1.0 and decay it to
0.01 over the first million environment frames. For our continuous action setup we sample uniformly
randomly in [0, 1]× [−π, π]× [0, 1] with probability ε. Perhaps surprisingly, standard outperforms
ε-greedy exploration in the 200 million training regime, as demonstrated in Figure 4. This may be
due to the way the action outputs are parameterized, and merits further inquiry.

4.5 Comparison to existing discrete-action agents

We compare the performance of our SAC baseline against DQN in the 200 million training regime,
given that both are off-policy methods which have similar value estimation methods; for the 100k
training regime we compare against Data-Efficient Rainbow [DER; Van Hasselt et al., 2019], a popular
off-policy method for this regime that is based on DQN. As Figure 6 shows, SAC dramatically under-
performs, relative to both these methods. While there may be a number of reasons for this, the most
likely one is the fact that SAC was not tuned for CALE, whereas both DER and DQN were tuned
specifically for the ALE.

We additionally compared to a version of SAC with a categorical action parameterization which
allows us to run it on the original ALE. The hyper-parameters (listed in Appendix C) are based on

5

2 4 6 8 10
Agent steps (x 10K)

0.000

0.005

0.010

0.015

0.020

0.025

Hu
m

an
 N

or
m

al
ize

d
IQ

M Standard
-Greedy

0 50 100 150 200
Env frames (millions)

0.0

0.1

0.2

0.3

0.4

Figure 4: CALE comparison of default SAC exploration with the more common ε-greedy exploration
used in discrete action agents on the 100k (left) and 200m (right) training regimes.

those suggested by Christodoulou [2019]. Surprisingly, this discrete-action SAC on the ALE agent
dramatically underperforms even against our continuous-action SAC on the CALE.

Aggregate performance curves can often conceal interesting per-game differences. Indeed, Fig-
ure 5 demonstrates that SAC can sometimes surpass the performance of DQN (Asteroids, Bowling,
Centipede), sometimes have comparable performance (Asterix, Boxing, MsPacman, Pong), and
sometimes under-perform (BankHeist, Breakout, SpaceInvaders). Minimal action sets (as discussed
in Section 3) do not appear to correlate with these performance differences (Bowling, Pong and
SpaceInvaders all use a minimal set of 6 actions in the ALE); similarly, reward distributions (as
we will discuss below) do not appear to correlate with performance differences between these two
agents either. The differences may be due to differences in transition dynamics, as well as exploration
challenges, which we discuss below.

Figure 7 displays the distribution of discrete joystick events triggered by both DER and SAC and
confirms that, while some games like Breakout on the ALE only trigger 4 events, most events are
triggered on the CALE. It is interesting to observe that, as discussed in Section 4.3, SAC has a bias
towards the RIGHT action, due to the action parameterization and initialization.

0

5000

10000

15000

20000

25000

Re
tu

rn

Asterix

600

800

1000

1200

1400

1600

1800

2000

Asteroids

0

200

400

600

800

BankHeist

20

30

40

50

60

70

80
Bowling

20

0

20

40

60

80

100
Boxing

0 50 100 150 200
0

50

100

150

200

Re
tu

rn

Breakout
SAC
DQN

0 50 100 150 200

 Environment frames (in millions)

5000

10000

15000

20000

25000

Centipede

0 50 100 150 200

500

1000

1500

2000

2500

3000

3500

MsPacman

0 50 100 150 200

20

15

10

5

0

5

10

15

20
Pong

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000
SpaceInvaders

Figure 5: CALE comparison of SAC with DQN (using the default Dopamine implementation [Castro
et al., 2018]) on a selection of games. Returns averaged over 5 independent runs, with shaded areas
representing 95% confidence intervals.

6

2 4 6 8 10
Agent steps (x 10K)

0.000

0.025

0.050

0.075

0.100

0.125

Hu
m

an
 N

or
m

al
ize

d
IQ

M SAC
SAC-D
PPO
DER

0 50 100 150 200
Env frames (millions)

0.00

0.25

0.50

0.75

1.00

1.25

1.50 SAC
DQN

Figure 6: Aggregate comparison of SAC and PPO on the CALE with DER and SAC-D on the ALE
[Van Hasselt et al., 2019] (left), and DQN on the the ALE [Mnih et al., 2015] (right).

5 Comparison to other continuous control environments

The most commonly used continuous control methods are centered around robotics tasks such as
locomotion [Todorov et al., 2012, Wołczyk et al., 2021, Khazatsky et al., 2024], where transition
dynamics are relatively smooth and can thus be approximated reasonably well with Gaussian distribu-
tions. This assumption is often critical to certain methods, for instance in the reparameterization of the
Wasserstein-2 for the DBC algorithm proposed by Zhang et al. [2021]). Thus, the “non-smoothness”
of the CALE yields a novel challenge for continuous control agents, which could help us better
understand, and improve, them.

Additionally, the reward structures in these environments tend to be much denser than in the ALE.
In Figure 8 we plot the reward distributions for an exploratory policy in both the Arcade Learning
Environment [Bellemare et al., 2013] and the DeepMind Control Suite [DMC; Tunyasuvunakool
et al., 2020]. Specifically, for the ALE we take the rewards collected in the first 1M frames for all
games in the RL Unplugged dataset [Gulcehre et al., 2020] corresponding to the exploratory phase
of a DQN agent. For DMC we leverage the ExoRL dataset [Yarats et al., 2022] and collect rewards
on the Cheetah, Walker, Quadruped, and Cartpole domains from an exploratory random network
distillation policy. Figure 8 shows that the proportion of rewards that are 0 in Atari is higher than in
most of the DMC tasks, indicating that rewards are relatively more sparse in Atari.

In addition to robotics/locomotion tasks, there have been a number of recent environments simulating
real-world continuous control scenarios. These include optimal control problems (continuous in both
time and space) [Howe et al., 2022, Ma et al., 2024], simulated industrial manufacturing and process
control [Zhang et al., 2022], power consumption optimization [Moriyama et al., 2018], process
control [Bloor et al., 2024], dynamic algorithm configuration [Eimer et al., 2021], among others.

6 Research directions

Since its release, the Arcade Learning Environment has been extensively used by the research
community to explore fundamental problems in decision making. However, most of this research has
focused specifically on value-based methods with discrete action spaces. On the other hand, many of
the challenges presented by the ALE, such as exploration and representation learning, are not always
central to existing continuous control benchmarks (see discussion in Section 5). In this section, we
identify several research directions that the CALE facilitates. While many of these questions can be
explored in different environments, the advantage of the CALE is that it has a direct analogue in the
ALE, thereby enabling a more direct comparison of continuous- and discrete-control methods.

Exploration As discussed in Section 4.4, ε-greedy is the default exploration strategy used by
discrete-action agents on the ALE. Despite the existence of a number of more sophisticated methods,
Taiga et al. [2020] argues that these were over-fit to well-known hard exploration games such as
Montezuma’s Revenge; they demonstrated that, when aggregating with easier exploration games,
ε-greedy out-performs the more sophisticated methods. In contrast, the results in Section 4.4
demonstrate that ε-greedy under-performs simply sampling from µ in SAC. This may be an instance

7

0.0

0.1

0.2

0.3

Br
ea

ko
ut

DER
Env steps (x10k)

1
2
3
4
5
6
7
8
9
10

0.0

0.1

0.2

0.3 SAC

NO
OP FI
RE UP

RI
GH

T
LE

FT
DO

W
N

UP
RI

GH
T

UP
LE

FT
DO

W
NR

IG
HT

DO
W

NL
EF

T
UP

FI
RE

RI
GH

TF
IR

E
LE

FT
FI

RE
DO

W
NF

IR
E

UP
RI

GH
TF

IR
E

UP
LE

FT
FI

RE
DO

W
NR

IG
HT

FI
RE

DO
W

NL
EF

TF
IR

E0.000

0.025

0.050

0.075

0.100

Ce
nt

ip
ed

e

NO
OP FI
RE UP

RI
GH

T
LE

FT
DO

W
N

UP
RI

GH
T

UP
LE

FT
DO

W
NR

IG
HT

DO
W

NL
EF

T
UP

FI
RE

RI
GH

TF
IR

E
LE

FT
FI

RE
DO

W
NF

IR
E

UP
RI

GH
TF

IR
E

UP
LE

FT
FI

RE
DO

W
NR

IG
HT

FI
RE

DO
W

NL
EF

TF
IR

E0.0

0.1

0.2

0.3

0.4

0.5

Figure 7: Comparison of joystick event distributions during training of DER on the ALE (left column)
and SAC on the CALE (right column) in the 100K benchmark. These are on a single run when
training on Breakout (where DQN strongly outperforms SAC) and Centipede (where SAC strongly
outperforms DQN).

of policy churn, which has been shown to have implicit exploratory benefits in discrete-action
agents [Schaul et al., 2022]. Interestingly, our results show that for SAC-D (SAC with discrete
actions explored in Section 4.5), ε-greedy outperforms sampling from the categorical distribution for
exploration (see Appendix F). We believe the CALE provides a novel opportunity for developing
exploration methods for continuous-control agents in non-robotics tasks.

Network architectures Recent work has demonstrated the value in exploring alternative network
architectures for RL agents [Espeholt et al., 2018, Graesser et al., 2022, Obando-Ceron et al., 2024a,b].
Similarly, notions of “learned representations” [Schwarzer et al., 2020, Castro et al., 2021, Zhang
et al., 2021, Yarats et al., 2021b, Farebrother et al., 2023] may benefit from different techniques based
on the type of action space and losses used (a fact confirmed by the results in Figure 3). Indeed,
Farebrother et al. [2024] demonstrated a stark performance difference resulting from switching from
regression to classification losses; given their evaluations was limited to value-based discrete-action
agents, it remains an open question whether similar findings carry over to continuous action spaces.

Offline RL Offline RL, where RL agents trained on a fixed dataset [Levine et al., 2020], has seen
a significant growth in interest over the last few years. One of the main challenges in this setting
is when there is insufficient state-action coverage in the dataset; this is particularly pronounced in
discrete-action settings, where there is no clear notion of similarity between actions. Continuous
control settings perhaps do provide a more immediate notion of action similarity, which could help
mitigate out-of-distribution issues in offline RL. For instance, would the tandem effect [Ostrovski
et al., 2021] still be present when training from offline data in continuous action spaces?

Plasticity Nikishin et al. [2022] demonstrated that SAC benefits from full network resets in MuJoCo,
where a multi-layer perceptron network is used. For SPR [Schwarzer et al., 2020] on the 100k ALE,
the authors originally had to limit resets to the penultimate (dense) layer; only by switching to shrink
and perturb [Ash and Adams, 2020] does this network benefit from “resets” [D’Oro et al., 2023,
Schwarzer et al., 2023]. An interesting question is whether the benefit of full resets are tied to the
use of a continuous-control actor-critic method like SAC, or to the fact that only dense layers are
needed for MuJoCo. More generally, do findings related to plasticity loss [Sokar et al., 2023, Lyle
et al., 2023] apply equally to discrete- and continuous-control agents?

8

Gr
av

ita
r

Ice
Ho

ck
ey

Za
xx

on
Ro

bo
ta

nk
Ja

m
es

bo
nd

Ba
ttl

eZ
on

e
W

iza
rd

Of
W

or
Ti

m
eP

ilo
t

Do
ub

le
Du

nk
Po

ng
Fr

ee
wa

y
Ka

ng
ar

oo
Ch

op
pe

rC
om

m
an

d
Be

am
Ri

de
r

At
la

nt
is

Br
ea

ko
ut

Ph
oe

ni
x

St
ar

Gu
nn

er
Ku

ng
Fu

M
as

te
r

De
m

on
At

ta
ck

Am
id

ar
Se

aq
ue

st
Sp

ac
eI

nv
ad

er
s

Ba
nk

He
ist

As
te

rix
As

sa
ul

t
Up

ND
ow

n
Na

m
eT

hi
sG

am
e

Go
ph

er
Ri

ve
rra

id
Fr

os
tb

ite
Vi

de
oP

in
ba

ll
Bo

xi
ng

Po
oy

an
Fis

hi
ng

De
rb

y
En

du
ro

Ya
rs

Re
ve

ng
e

He
ro

Ro
ad

Ru
nn

er
Al

ie
n

Qb
er

t
Ce

nt
ip

ed
e

Cr
az

yC
lim

be
r

M
sP

ac
m

an
Ca

rn
iv

al
Kr

ul
l0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 R
ew

ar
ds

Atari Reward Distributions

Ca
rtp

ol
e

Ba
la

nc
e_

Sp
ar

se

Ca
rtp

ol
e

Sw
in

gu
p_

Sp
ar

se

Ch
ee

ta
h

Ru
n_

Ba
ck

wa
rd

Ch
ee

ta
h

Ru
n

W
al

ke
r R

un

W
al

ke
r W

al
k

Ch
ee

ta
h

W
al

k_
Ba

ck
wa

rd

Ca
rtp

ol
e

Ba
la

nc
e

Ca
rtp

ol
e

Sw
in

gu
p

Ch
ee

ta
h

W
al

k

Qu
ad

ru
pe

d
Ru

n

Qu
ad

ru
pe

d
W

al
k

W
al

ke
r S

ta
nd

W
al

ke
r S

pi
n

Qu
ad

ru
pe

d
Ju

m
p

Qu
ad

ru
pe

d
St

an
d

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 R
ew

ar
ds

DM-control Reward Distributions

Figure 8: Comparison of reward distributions between ALE (left) and the DM-control (right). For each
environment 1M rewards are collected from exploratory agents. Each color in the plot corresponds to
a reward value between 0 and 1 with the height of that color corresponding to the relative proportion
of that reward in the dataset, i.e., the quantile function of the empirical reward distribution.

Action parameterizations The choice of Gaussian distributions for each of the action dimensions,
initialized in the middle of the action ranges (as used by SAC) is by no means the only option. It
would be interesting to explore alternative action parameterizations, different inductive biases, and
evaluate agents already making use of similar re-parameterizations [Hafner et al., 2020].

7 Discussion

Academic benchmarks in machine learning are meant to provide a standardized and reproducible
methodology with which to evaluate and compare algorithmic advances. In RL, these benchmarks
have historically been divided between those suitable for discrete control (such as the ALE), and
those suitable for continuous control (such as MuJoCo and DM-Control)3. This has made it difficult
to directly compare the performance of these two types of algorithms, resulting in less transfer of
advances between the continuous- and discrete-control communities than one would hope for.

One of the advantages of the CALE is that it provides a unified suite of environments on which to
evaluate both types of algorithms, given that both the ALE and the CALE use the same underlying
joystick events and Stella emulator. The ALE has been used in a large number of research papers,
and there is a growing sentiment that it is no longer interesting; the CALE provides a fresh take on
this benchmark, while benefiting from the familiarity that the community already has with it.

One could argue that human evaluations, introduced by Mnih et al. [2015] and used to normalize most
ALE experiment scores, are more relevant with the CALE since the human evaluator presumably
played on a real joystick. Given that our SAC baseline achieves only 0.4 IQM (where a 1.0 indicates
human-level performance), the CALE provides a new challenge to achieve human-level performance
on the suite of Atari 2600 games, and aid in the development of generally capable agents.

Limitations One limitation of this work is the number of baselines evaluated. We used the
Dopamine framework [Castro et al., 2018] for our evaluations, which unfortunately only provides
SAC and a recently added implementation of PPO as continuous-control agents. It would be useful to
evaluate other continuous-control agents, as well as other agent implementations, on the CALE to
build a broader set of baselines for future research. While most games use the joystick illustrated in
Figure 1, Pong and Breakout were originally played on non-discrete paddles [Montfort and Bogost,
2009]; for this version of the CALE we decided to maintain the same action dynamics across all
games, but it would be interesting to add support for paddles, where continuous actions are no longer
mapped to discrete events.4

3Tang and Agrawal [2020] showed that discretizing actions can improve performance on DMC tasks.
4In the ALE, discrete actions are mapped to hard-coded paddle displacements, which we replicated in our

implementation.

9

Acknowledgements The authors would like to thank Georg Ostrovski for providing us with a
valuable review of an initial version of this work. Additionally, we thank Hugo Larochelle, Marc
G. Bellemare, Harley Wiltzer, Doina Precup, and the Google DeepMind Montreal team for helpful
discussions during the preparation of this submission. We would also like to thank the Python
community [Van Rossum and Drake Jr, 1995, Oliphant, 2007] for developing tools that enabled this
work, including NumPy [Harris et al., 2020], Matplotlib [Hunter, 2007] and JAX [Bradbury et al.,
2018]. Finally, we would like to thank Mark Towers and Jet and the Farama Foundation for their help
reviewing the code to integrate CALE into the ALE.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc Bellemare. Deep

reinforcement learning at the edge of the statistical precipice. In Neural Information Processing
Systems (NeurIPS), 2021.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. In Neural Information
Processing Systems (NeurIPS), 2020.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari human benchmark.
In International Conference on Machine Learning (ICML), 2020.

Marc Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness using atari
2600 games. AAAI Conference on Artificial Intelligence, 2012.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research
(JAIR), 47:253–279, 2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning (ICML), 2017.

Max Bloor, Jose Neto, Ilya Sandoval, Max Mowbray, Akhil Ahmed, Mehmet Mercangoz, Calvin
Tsay, and Antonio Del Rio-Chanona. pc-gym: Reinforcement learning envionments for process
control, 2024. URL https://github.com/MaximilianB2/pc-gym.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax: compos-
able transformations of python+ numpy programs. 2018.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. CoRR, abs/1812.06110,
2018.

Pablo Samuel Castro, Tyler Kastner, P. Panangaden, and Mark Rowland. Mico: Improved representa-
tions via sampling-based state similarity for markov decision processes. In Neural Information
Processing Systems (NeurIPS), 2021.

Petros Christodoulou. Soft actor-critic for discrete action settings. CoRR, abs/1910.07207, 2019.

Luis C. Cobo, Peng Zang, Charles L. Isbell, and Andrea L. Thomaz. Automatic state abstraction
from demonstration. In International Joint Conference on Artificial Intelligence (IJCAI), 2011.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In
International Conference on Learning Representations (ICLR), 2023.

Theresa Eimer, André Biedenkapp, Maximilian Reimer, Steven Adriaensen, Frank Hutter, and Marius
Lindauer. Dacbench: A benchmark library for dynamic algorithm configuration. In International
Joint Conference on Artificial Intelligence (IJCAI), 2021.

10

https://github.com/MaximilianB2/pc-gym

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. In International
Conference on Machine Learning (ICML), 2018.

Jesse Farebrother, Marlos C. Machado, and Michael H. Bowling. Generalization and regularization
in dqn. CoRR, abs/1810.00123, 2018.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel
Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learning with
auxiliary tasks. In International Conference on Learning Representations (ICLR), 2023.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: The unreasonable effectiveness of classification in deep reinforcement learning.
In International Conference on Machine Learning (ICML), 2024.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning (ICML), 2022.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, Gabriel Dulac-Arnold,
Jerry Li, Mohammad Norouzi, Matthew Hoffman, Nicolas Heess, and Nando de Freitas. Rl
unplugged: A suite of benchmarks for offline reinforcement learning. In Neural Information
Processing Systems (NeurIPS), 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning (ICML), 2018.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Representations
(ICLR), 2020.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI Conference on Artificial Intelligence, 2016.

Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, and Peter Stone. Hyperneat-ggp: a
hyperneat-based atari general game player. In Conference on Genetic and Evolutionary Computa-
tion (GECCO), page 217–224, 2012.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

Nikolaus Howe, Simon Dufort-Labbé, Nitarshan Rajkumar, and Pierre-Luc Bacon. Myriad: a
real-world testbed to bridge trajectory optimization and deep learning. In Neural Information
Processing Systems (NeurIPS), 2022.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(03):
90–95, 2007.

Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Rémi Munos. Recurrent
experience replay in distributed reinforcement learning. In International Conference on Learning
Representations (ICLR), 2019.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree

11

Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon
Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin Black,
Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pannag R
Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe, Ted Xiao,
Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Baijal, Mateo Gua-
man Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul Foster, Jensen
Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovon Jackson, Charlotte
Le, Yunshuang Li, Kevin Lin, Roy Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani,
Daniel Morton, Tony Nguyen, Abigail O’Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen
Tian, Emi Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu
Zhang, Osbert Bastani, Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek
Gupta, Dinesh Jayaraman, Joseph J Lim, Jitendra Malik, Roberto Martín-Martín, Subramanian
Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar,
Sergey Levine, and Chelsea Finn. Droid: A large-scale in-the-wild robot manipulation dataset.
CoRR, abs/2403.12945, 2024.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Neural Information Processing Systems
(NeurIPS), 1999.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. CoRR, abs/2005.01643, 2020.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning
(ICML), 2023.

Michel Ma, Tianwei Ni, Clement Gehring, Pierluca D’Oro, and Pierre-Luc Bacon. Do transformer
world models give better policy gradients? In International Conference on Machine Learning
(ICML), 2024.

Marlos C. Machado, Marc G. Bellemare, Erin Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research (JAIR), 61:523–562, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning (ICML), 2016.

Nick Montfort and Ian Bogost. Racing the Beam: The Atari Video Computer System. The MIT Press,
2009. ISBN 026201257X.

Takao Moriyama, Giovanni De Magistris, Michiaki Tatsubori, Tu-Hoa Pham, Asim Munawar,
and Ryuki Tachibana. Reinforcement learning testbed for power-consumption optimization. In
Methods and Applications for Modeling and Simulation of Complex Systems, pages 45–59. Springer
Singapore, 2018. ISBN 978-981-13-2853-4.

Bradford W. Mott, Stephen Anthony, and Stella Contributors. Stella: A multi-platform atari 2600 vcs
emulator. https://github.com/stella-emu/stella, 1996.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International Conference on Machine Learning
(ICML), 2022.

12

https://github.com/stella-emu/stella

Johan Obando-Ceron, Aaron Courville, and Pablo Samuel Castro. In deep reinforcement learning, a
pruned network is a good network. In International Conference on Machine Learning (ICML),
2024a.

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster,
Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock
parameter scaling for deep RL. In International Conference on Machine Learning (ICML), 2024b.

Travis E. Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):
10–20, 2007. doi: 10.1109/MCSE.2007.58.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2021.

Tom Schaul, Andre Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn. In
Neural Information Processing Systems (NeurIPS), 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations (ICLR), 2020.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal,
and Pablo Samuel Castro. Bigger, better, faster: Human-level Atari with human-level efficiency.
In International Conference on Machine Learning (ICML), 2023.

Soori Sivakumaran. Electronic Computer Projects for Commodore and Atari Personal Computers.
COMPUTE! Publications, 1986. ISBN 0-87455-052-1.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning
(ICML), 2023.

Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University
of Massachusetts Amherst, 1984.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Neural Information Processing
Systems (NeurIPS), 1999.

Adrien Ali Taiga, William Fedus, Marlos C. Machado, Aaron Courville, and Marc G. Bellemare. On
bonus based exploration methods in the arcade learning environment. In International Conference
on Learning Representations (ICLR), 2020.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5981–5988, Apr. 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. CoRR, abs/1801.00690, 2018.

J K Terry and Benjamin Black. Multiplayer support for the arcade learning environment. CoRR,
abs/2009.09341, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems (IROS), 2012.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
2023. URL https://zenodo.org/record/8127025.

13

https://zenodo.org/record/8127025

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Hado P Van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? Neural Information Processing Systems (NeurIPS), 2019.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

Christopher Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, 1989.

Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual world:
A robotic benchmark for continual reinforcement learning. In Neural Information Processing
Systems (NeurIPS), 2021.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International Conference on Learning Representations
(ICLR), 2021a.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving
sample efficiency in model-free reinforcement learning from images. In AAAI Conference on
Artificial Intelligence, 2021b.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. CoRR, abs/2201.13425, 2022.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations (ICLR), 2021.

Mohan Zhang, Xiaozhou Wang, Benjamin Decardi-Nelson, Song Bo, An Zhang, Jinfeng Liu, Sile Tao,
Jiayi Cheng, Xiaohong Liu, Dengdeng Yu, Matthew Poon, and Animesh Garg. SMPL: Simulated
industrial manufacturing and process control learning environments. In Neural Information
Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2022.

Brian D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. PhD thesis, 2010.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, 2008.

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In International Conference on Learning Representations (ICLR), 2020.

14

A How to run CALE

CALE is included as of version 0.10 of the Arcade Learning Environment [Bellemare et al., 2013]
which can be installed with the command pip install ale-py. A Gymnasium [Towers et al.,
2023] interface is also provided and can be installed via pip install gymnasium[atari]. Once
installed the keyword argument continuous can enable continuous actions as shown in Listing 1.

import gymnasium

`env.action_space` will be continuous
env = gymnasium.make("Pong-v5", continuous=True)

Listing 1: Enabling continuous action spaces in the Arcade Learning Environment [Bellemare et al.,
2013] via the Gymnasium [Towers et al., 2023] Python interface.

B Code specifications

The implementation of CALE is available as part of the ALE: https://github.com/
Farama-Foundation/Arcade-Learning-Environment (under GPL-2.0 license).

For SAC and PPO, we used the Dopamine [Castro et al., 2018] implementations. Taking Dopamine’s
root directory https://github.com/google/dopamine/, the specific code paths used are:

• The SAC implementation is available at labs/cale/sac_cale.py
• The PPO implementation is available at labs/cale/ppo_cale.py
• All networks used are available at labs/cale/networks.py
• For SAC-D we simply modified the SAC actor outputs to emit a categorical distribution

with jax.random.categorical. From this, we can easily extract the log probabilities
with jax.nn.log_softmax, and select actions greedily with jnp.argmax.

C Hyper-parameters

In the following table we specify the hyper-parameters used for the various agents considered. For
the most part we used the default hyper-parameters specified in the Dopamine gin files for DER,
DQN, and SAC. For SAC-D, we modified settings according to what was suggested by Christodoulou
[2019].

The full hyper-parameter specifications for SAC are available at labs/cale/configs/sac_cale.gin and
labs/cale/configs/sac_cale_100k.gin.

The full hyper-parameter specifications for PPO are available at labs/cale/configs/ppo_cale.gin and
labs/cale/configs/ppo_cale_100k.gin.

Table 1: Hyper-parameter setting for all agents.

Hyper-parameter DER DQN SAC SAC-D PPO

Adam ε 0.00015 1.5e-4 1.5e-4 1.5e-4 1e-5
Batch Size 32 32 32 64 1024

Number of hidden units 512 512 512 512 512
Discount Factor 0.99 0.99 0.99 0.99 0.99
Learning Rate 0.0001 6.25e-5 6.25e-5 0.0003 2.5e-4
Exploration ε 0.01 0.01 0.01 0.01 0.01

Minimum Replay History 1600 20000 20000 20000 -
Update Horizon 10 1 1 1 -
Update Period 1 4 4 4 -

15

https://github.com/Farama-Foundation/Arcade-Learning-Environment
https://github.com/Farama-Foundation/Arcade-Learning-Environment
https://github.com/google/dopamine/
https://github.com/google/dopamine/blob/master/dopamine/labs/cale/sac_cale.py
https://github.com/google/dopamine/blob/master/dopamine/labs/cale/ppo_cale.py
https://github.com/google/dopamine/blob/master/dopamine/labs/cale/networks.py
https://github.com/google/dopamine/blob/master/dopamine/labs/atari_100k/configs/DER.gin
https://github.com/google/dopamine/blob/master/dopamine/jax/agents/dqn/configs/dqn.gin
https://github.com/google/dopamine/blob/master/dopamine/jax/agents/sac/configs/sac.gin
https://github.com/google/dopamine/blob/master/dopamine/labs/cale/configs/sac_cale.gin
https://github.com/google/dopamine/blob/master/dopamine/labs/cale/configs/sac_cale_100k.gin
https://github.com/google/dopamine/blob/master/dopamine/labs/cale/configs/ppo_cale.gin
https://github.com/google/dopamine/blob/master/dopamine/labs/cale/configs/ppo_cale_100k.gin

D ALE game specifications

In the following list we indicate the minimum action values for each game. Games with an asterisk
next to them are games which are part of the 26 games for the Atari 100K benchmark [Łukasz Kaiser
et al., 2020].

• AirRaid (6)

• Alien* (18)

• Amidar* (10)

• Assault* (7)

• Asterix* (9)

• Asteroids (14)

• Atlantis (4)

• BankHeist* (18)

• BattleZone* (18)

• BeamRider (9)

• Berzerk (18)

• Bowling (6)

• Boxing* (18)

• Breakout* (4)

• Carnival (6)

• Centipede (18)

• ChopperCommand* (18)

• CrazyClimber* (9)

• DemonAttack* (6)

• DoubleDunk (18)

• ElevatorAction (18)

• Enduro (9)

• FishingDerby (18)

• Freeway* (3)

• Frostbite* (18)

• Gopher* (8)

• Gravitar (18)

• Hero* (18)

• IceHockey (18)

• Jamesbond* (18)

• JourneyEscape (16)

• Kangaroo* (18)

• Krull* (18)

• KungFuMaster* (14)

• MontezumaRevenge (18)

• MsPacman* (9)

• NameThisGame (6)

• Phoenix (8)

• Pitfall (18)

16

• Pong* (6)
• Pooyan (6)
• PrivateEye* (18)
• Qbert* (6)
• Riverraid (18)
• RoadRunner* (18)
• Robotank (18)
• Seaquest* (18)
• Skiing (3)
• Solaris (18)
• SpaceInvaders (6)
• StarGunner (18)
• Tennis (18)
• TimePilot (10)
• Tutankham (8)
• UpNDown* (6)
• Venture (18)
• VideoPinball (9)
• WizardOfWor (10)
• YarsRevenge (18)
• Zaxxon (18)

17

E Per-game results

0 50 100 150 200

2000

4000

6000

8000

10000
Re

tu
rn

ChopperCommand
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

2000

4000

6000

8000

10000

Qbert
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

500

1000

1500

2000

2500

3000

3500

Frostbite

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

20

40

60

80

Bowling

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Robotank

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

200

400

600

800

1000

DemonAttack

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

1000

2000

3000

4000

5000

TimePilot

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

Solaris
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

1000

2000

3000

4000

5000

6000

7000

Re
tu

rn

Zaxxon

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

1000

1500

2000

2500

NameThisGame

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0.04

0.02

0.00

0.02

0.04

Tutankham
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
100

200

300

400

500

600

700

800

900

SpaceInvaders

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

80

60

40

20

0
Skiing

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
200

400

600

800

1000

1200

1400

1600

1800
StarGunner

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

200

400

600

800

1000

1200

1400

AirRaid
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
100

90

80

70

60

50

40

30
FishingDerby

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

100

200

300

400

Re
tu

rn

Jamesbond

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500
UpNDown

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

25000

50000

75000

100000

125000

150000

175000
Berzerk

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0.04

0.02

0.00

0.02

0.04

MontezumaRevenge
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

20

0

20

40

60

80

100
Boxing

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

5000

10000

15000

20000

25000

Krull
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Amidar

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

5000

10000

15000

20000

25000

30000
Centipede

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

5000

10000

15000

20000

25000

Re
tu

rn

VideoPinball
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

20

40

60

80

100

120

140

Hero

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

200

400

600

800

1000

1200

1400

1600

WizardOfWor

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

200

400

600

800

1000

Gravitar
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

5

10

15

20

25

30

35

40

Breakout
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
25

20

15

10

5

0

DoubleDunk

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

1000

2000

3000

4000

5000
Kangaroo

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

MsPacman

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

100000

200000

300000

400000

Re
tu

rn

Atlantis
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

20

40

60

80

100

120

140

160
Enduro

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0.04

0.02

0.00

0.02

0.04

RoadRunner
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

100

200

300

400

500
Gopher

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

1400

1200

1000

800

600

400

200

0
Pitfall

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

2000

4000

6000

8000

10000

12000

14000

PrivateEye
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

20

15

10

5

0
Tennis

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

2000

4000

6000

8000

10000

12000
Asteroids

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
500

1000

1500

2000

2500

Re
tu

rn

Riverraid
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

10000

20000

30000

40000

Asterix
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

400

500

600

700

800

900

1000
BeamRider

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

500

1000

1500

2000

2500

3000

3500

4000
Carnival

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

1000

2000

3000

4000

5000

6000

7000

KungFuMaster
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150
30000

25000

20000

15000

10000

5000

0

5000
JourneyEscape

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

25

50

75

100

125

150

175
ElevatorAction

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

20

15

10

5

0

5

10

15

20
Pong

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

500

1000

1500

2000

2500

Re
tu

rn

Alien

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

5000

10000

15000

20000

25000

BattleZone
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

50

100

150

200

250

300

350

BankHeist
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

2000

4000

6000

8000

10000

CrazyClimber

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

17.5

15.0

12.5

10.0

7.5

5.0

2.5

IceHockey

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0.04

0.02

0.00

0.02

0.04

Venture
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
0

1000

2000

3000

4000

Phoenix
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200

0

5

10

15

20

25

30

Freeway
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
Step

0

200

400

600

800

1000

Re
tu

rn

Seaquest
Threshold

0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
Step

0

200

400

600

800

1000
Assault

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
Step

5000

10000

15000

20000

25000

30000
YarsRevenge

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0 50 100 150 200
Step

0

2000

4000

6000

8000

10000
Pooyan

Threshold
0.1
0.3
0.5
0.7
0.9

Exploration
Standard
-Greedy

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Per-game learning curves for agents trained on 200M.

18

F SAC-D extra results

2 4 6 8 10
Agent steps (x 10K)

0.004

0.002

0.000

0.002

0.004

Hu
m

an
 N

or
m

al
ize

d
IQ

M
SAC

DQN

2 4 6 8 10
Agent steps (x 10K)

0.03

0.02

0.01

0.00

standard
eps_greedy

Figure 10: Left: Comparison of encoders on SAC-D with ε-greedy exploration; Right: Comparison
of exploration strategies with the ψDQN encoder. Reporting IQM averaged over the 26 Atari 100K
games 5 runs with 95% stratified bootstrap intervals [Agarwal et al., 2021].

19

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

Impact statement This paper presents a new benchmark to promote the advancement of the field
of Reinforcement Learning, and Machine Learning in general. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here.

20

	Introduction
	From Atari VCS to the Arcade Learning Environment
	CALE: Continuous Arcade Learning Environment
	Baseline results
	Experimental setup
	Threshold selection
	Network architectures
	Exploration strategies
	Comparison to existing discrete-action agents

	Comparison to other continuous control environments
	Research directions
	Discussion
	How to run CALE
	Code specifications
	Hyper-parameters
	ALE game specifications
	Per-game results
	SAC-D extra results

