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1 Introduction1

Artificial intelligence (AI) methods for analysing medical images have vast potential for facilitating2

more accurate and efficient clinical workflows [Topol, 2019]. In particular, in medical image comput-3

ing (MIC), AI systems help tackle tasks such as pathology classification, anatomical segmentation,4

lesion delineation, among many others. However, rapid growth in this research domain contrasts5

starkly with the slow adoption rate of these technologies in clinical practice [Aristidou et al., 2022,6

Wenderott et al., 2025]. There are multiple reasons for this gap, but a central one is the diminished7

and often disparate performance of AI methods when transferred to clinical settings due to bias8

[Adamson and Smith, 2018, Sarkar et al., 2021, Cross et al., 2024, Lara et al., 2022, Ma et al., 2025].9

Various studies have shown that AI methods often result in unequal performance across different10

subpopulations, which are typically defined in terms of protected attributes such as sex, gender, age, or11

race. This has led to the study of fairness and bias in AI [Barocas et al., 2023, Chen et al., 2023]. One12

of the primary factors driving performance disparities is biased data, such as the underrepresentation13

of specific subpopulations in training datasets [Dulaney and Virostko, 2024]. Multiple studies have14

shown that AI tools underperform on subgroups that were underrepresented in the training data.15

[Wiens et al., 2019, Larrazabal et al., 2020, Seyyed-Kalantari et al., 2021, Esmaeilzadeh, 2024].16

In a similar vein, spurious correlations between variables of interest often induce shortcut learning,17

by which models appear effective in solving the task at hand, but do so relying on associations that18

are brittle or irrelevant to the task and may not be present at deployment [D’Amour et al., 2022,19

Banerjee et al., 2023]. For example, disease detection models have been found to rely on site-specific20

image acquisition features that are spuriously correlated with diagnostic labels [DeGrave et al., 2021,21

Zhang et al., 2023]. Furthermore, models may use features associated with protected attributes as22

harmful shortcuts [Brown et al., 2023, Gichoya et al., 2023, Xia et al., 2024]. Since data sets used to23

train AI models are often sourced from various acquisition sites with diverse demographics, complex24

confounders emerge, with no current systematic way to identify and disentangle their effects.25

When datasets are not representative and confounding factors are omnipresent, the development of26

methods aimed at detecting and mitigating these forms of bias becomes paramount. However, the27

assessment and mitigation of such biases face significant challenges. Generating large and diverse28

annotated datasets in the medical domain is expensive and time-consuming, and most available29

datasets either lack demographic information or include a minimal fraction of images from minority30

subpopulations. This means that it is highly challenging to comprehensively evaluate the fairness31

of AI models and the impacts of bias detection and mitigation strategies. Furthermore, effectively32

mitigating bias also requires a deep understanding of the underlying sources of bias present in a33

dataset [Jones et al., 2024, 2025]. With the inherent complexity of hidden confounders in real-world34

data, it seems impossible to use such data to validate and benchmark bias detection and mitigation35

strategies. This calls for a more systematic and controlled approach that leverages synthetic data.36

Recent work has proposed a framework for generating synthetic medical imaging datasets with37

fully traceable confounding features, which enables the objective and systematic evaluation of how38
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underrepresentation biases and shortcut learning are addressed by bias detection and mitigation39

strategies [Stanley et al., 2023, 2024]. However, this framework is limited to a “toy” setup, as the40

generated datasets are not intended to represent real diseases or confounders. Expanding on this41

approach to model real-world subpopulations and pathologies would enable comprehensive and42

conclusive evaluations while benefiting from diverse representation and traceable biases. In this43

context, the recent development of powerful causal generative methods for creating synthetic images44

represents a promising way forward. Generative models have shown effectiveness both in producing45

high-quality images [Ho et al., 2020, Ribeiro et al., 2025, Dutt et al., 2025, Labs et al., 2025] and in46

improving the robustness of AI methods in MIC [Gowal et al., 2021, Roschewitz et al., 2025]. The47

key ability of causal generative models is that of creating counterfactual images [Pawlowski et al.,48

2020, Monteiro et al., 2023, Ribeiro et al., 2023], whereby starting from an observed image, one can49

generate images in which a particular attribute, e.g. pathology or protected group label, is modified.50

To facilitate future research on bias and fairness challenges in medical AI models, we propose the51

SynthFair dataset. We employ state-of-the-art causal generative models to create an unprecedentedly52

large, diverse, annotated semi-synthetic dataset with traceable confounders, comprising over one53

million chest radiographs in total. We focus on chest X-rays because they are widely used for clinical54

assessment, publicly available, clinically relevant, and exhibit well-documented demographic and55

acquisition-related biases [Johnson et al., 2023], making this modality an ideal candidate to study bias56

and fairness in medical imaging AI. The dataset will be released with a balanced distribution across57

covariates, organised into a taxonomy based on their nature (c.f. Appendix A). This will enable the58

simulation of relevant subsets and real-world variations, inducing commonly encountered biases. The59

dataset will be accompanied by a comprehensive statistical analysis and quantitative evaluation of60

image fidelity, with concrete examples, tutorials, and ample opportunities for further extensions.61

2 Dataset Requirements and Evaluation Criteria62

AI task definition: What scientific question will the dataset enable? This dataset will enable63

researchers to develop and evaluate urgently needed bias detection and mitigation methods for64

medical imaging AI in a controlled yet highly realistic setting. SynthFair will facilitate research and65

experiments aimed at advancing our insights into the mechanics of bias amplification by AI models.66

Dataset rationale: Why is this dataset the bottleneck? The lack of large annotated datasets,67

representative of the rich diversity of local and global populations, makes bias and fairness studies68

challenging and intersectional analyses practically impossible. Currently, bias detection and mitiga-69

tion methods can only be comprehensively tested on toy or non-medical datasets, whose findings are70

known not to generalise well enough to the real-world medical domain to be clinically useful.71

Acceleration potential: How will access to this dataset transform model development and72

downstream science? SynthFair will bridge the gap between toy datasets, where synthetic biases73

are known but overly simple, and real-world medical settings, where biases are hidden and often74

too complex to fully account for. While final validation on real-world data will always be required,75

SynthFair will propel research into bias detection and mitigation strategies by faithfully modelling76

clinical pathologies, subpopulations, and confounders in a traceable manner, contributing directly to77

the aim of developing robust and trustworthy AI systems for safety-critical applications.78

Data-creation pathway: Where will the data come from? We employ one of the most advanced79

causal generative AI models pre-trained on the MIMIC-CXR database [Johnson et al., 2019]. We80

will expand the training data using images from multiple, geographically diverse sources, such as81

CheXpert [Irvin et al., 2019] (US), VinDr-CXR [Nguyen et al., 2022] (Vietnam), Padchest [Bustos82

et al., 2020] (Spain), BRAX [Reis et al., 2022] (Brazil), among others. These large and diverse83

datasets will allow us to generate images with a wide range of characteristics and scale the SynthFair84

dataset to an unprecedented size of over one million images across relevant demographic and clinical85

attributes. SynthFair will enable the generation of any desired target distribution for comprehensive86

analysis and better understanding of the effects of dataset bias on AI model performance.87

Cost & scalability. This project will require high performance compute, using multiple high-end88

GPUs in parallel for training the generative models. We estimate the costs of compute to be 2,00089

USD for every thousand GPU hours. Our methods scale naturally using parallel processing.90
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Appendix233

A SynthFair: Taxonomy of Covariates234

Figure 1: SynthFair taxonomy of different covariates from which counterfactual examples can be
generated (inspired by the Medical Imaging Contextualized Confounder Taxonomy [Juodelyte et al.,
2024]). These are organised based on their nature, mainly being covariates related to the patient itself
or to external factors, such as the medical devices used to acquire the medical scans.

B Quantitative Evaluation: Counterfactual Image Quality235
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Figure 2: Quantitative evaluation of the quality of generated counterfactual images. Following Mon-
teiro et al. [2023], we assess the axiomatic soundness of generated counterfactuals by measuring the
effectiveness of different interventions (denoted by do(·)) using external attribute classifiers/regressors,
which help determine whether the interventions produce the expected changes in the target attributes.
In all cases, we observe sufficiently good performance, confirming that the counterfactuals are faithful
and can be useful for identifying and measuring counterfactual fairness and bias in downstream
medical AI models. Further improvements are anticipated with an increase in model and dataset size.
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C Qualitative Evaluation: Examples of Generated Counterfactuals236

Figure 3: Examples of generated counterfactuals of different observations (left) using our model
trained on MIMIC-CXR. In this case, age, race, sex and disease counterfactuals are shown. We
observed faithful, localised changes while preserving the identity of the initial subject well.
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