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1 Introduction

Artificial intelligence (AI) methods for analysing medical images have vast potential for facilitating
more accurate and efficient clinical workflows [Topol, 2019]. In particular, in medical image comput-
ing (MIC), Al systems help tackle tasks such as pathology classification, anatomical segmentation,
lesion delineation, among many others. However, rapid growth in this research domain contrasts
starkly with the slow adoption rate of these technologies in clinical practice [Aristidou et al., 2022,
Wenderott et al., 2025]. There are multiple reasons for this gap, but a central one is the diminished
and often disparate performance of Al methods when transferred to clinical settings due to bias
[Adamson and Smith, 2018, Sarkar et al., 2021, Cross et al., 2024, Lara et al., 2022, Ma et al., 2025].

Various studies have shown that Al methods often result in unequal performance across different
subpopulations, which are typically defined in terms of protected attributes such as sex, gender, age, or
race. This has led to the study of fairness and bias in Al [Barocas et al., 2023, Chen et al., 2023]. One
of the primary factors driving performance disparities is biased data, such as the underrepresentation
of specific subpopulations in training datasets [Dulaney and Virostko, 2024]. Multiple studies have
shown that Al tools underperform on subgroups that were underrepresented in the training data.
[Wiens et al., 2019, Larrazabal et al., 2020, Seyyed-Kalantari et al., 2021, Esmaeilzadeh, 2024].

In a similar vein, spurious correlations between variables of interest often induce shortcut learning,
by which models appear effective in solving the task at hand, but do so relying on associations that
are brittle or irrelevant to the task and may not be present at deployment [D’ Amour et al., 2022,
Banerjee et al., 2023]. For example, disease detection models have been found to rely on site-specific
image acquisition features that are spuriously correlated with diagnostic labels [DeGrave et al., 2021,
Zhang et al., 2023]. Furthermore, models may use features associated with protected attributes as
harmful shortcuts [Brown et al., 2023, Gichoya et al., 2023, Xia et al., 2024]. Since data sets used to
train Al models are often sourced from various acquisition sites with diverse demographics, complex
confounders emerge, with no current systematic way to identify and disentangle their effects.

When datasets are not representative and confounding factors are omnipresent, the development of
methods aimed at detecting and mitigating these forms of bias becomes paramount. However, the
assessment and mitigation of such biases face significant challenges. Generating large and diverse
annotated datasets in the medical domain is expensive and time-consuming, and most available
datasets either lack demographic information or include a minimal fraction of images from minority
subpopulations. This means that it is highly challenging to comprehensively evaluate the fairness
of Al models and the impacts of bias detection and mitigation strategies. Furthermore, effectively
mitigating bias also requires a deep understanding of the underlying sources of bias present in a
dataset [Jones et al., 2024, 2025]. With the inherent complexity of hidden confounders in real-world
data, it seems impossible to use such data to validate and benchmark bias detection and mitigation
strategies. This calls for a more systematic and controlled approach that leverages synthetic data.

Recent work has proposed a framework for generating synthetic medical imaging datasets with
fully traceable confounding features, which enables the objective and systematic evaluation of how
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underrepresentation biases and shortcut learning are addressed by bias detection and mitigation
strategies [Stanley et al., 2023, 2024]. However, this framework is limited to a “toy” setup, as the
generated datasets are not intended to represent real diseases or confounders. Expanding on this
approach to model real-world subpopulations and pathologies would enable comprehensive and
conclusive evaluations while benefiting from diverse representation and traceable biases. In this
context, the recent development of powerful causal generative methods for creating synthetic images
represents a promising way forward. Generative models have shown effectiveness both in producing
high-quality images [Ho et al., 2020, Ribeiro et al., 2025, Dutt et al., 2025, Labs et al., 2025] and in
improving the robustness of Al methods in MIC [Gowal et al., 2021, Roschewitz et al., 2025]. The
key ability of causal generative models is that of creating counterfactual images [Pawlowski et al.,
2020, Monteiro et al., 2023, Ribeiro et al., 2023], whereby starting from an observed image, one can
generate images in which a particular attribute, e.g. pathology or protected group label, is modified.

To facilitate future research on bias and fairness challenges in medical Al models, we propose the
SynthFair dataset. We employ state-of-the-art causal generative models to create an unprecedentedly
large, diverse, annotated semi-synthetic dataset with traceable confounders, comprising over one
million chest radiographs in total. We focus on chest X-rays because they are widely used for clinical
assessment, publicly available, clinically relevant, and exhibit well-documented demographic and
acquisition-related biases [Johnson et al., 2023], making this modality an ideal candidate to study bias
and fairness in medical imaging Al. The dataset will be released with a balanced distribution across
covariates, organised into a taxonomy based on their nature (c.f. Appendix A). This will enable the
simulation of relevant subsets and real-world variations, inducing commonly encountered biases. The
dataset will be accompanied by a comprehensive statistical analysis and quantitative evaluation of
image fidelity, with concrete examples, tutorials, and ample opportunities for further extensions.

2 Dataset Requirements and Evaluation Criteria

Al task definition: What scientific question will the dataset enable? This dataset will enable
researchers to develop and evaluate urgently needed bias detection and mitigation methods for
medical imaging Al in a controlled yet highly realistic setting. SynthFair will facilitate research and
experiments aimed at advancing our insights into the mechanics of bias amplification by Al models.

Dataset rationale: Why is this dataset the bottleneck? The lack of large annotated datasets,
representative of the rich diversity of local and global populations, makes bias and fairness studies
challenging and intersectional analyses practically impossible. Currently, bias detection and mitiga-
tion methods can only be comprehensively tested on toy or non-medical datasets, whose findings are
known not to generalise well enough to the real-world medical domain to be clinically useful.

Acceleration potential: How will access to this dataset transform model development and
downstream science? SynthFair will bridge the gap between toy datasets, where synthetic biases
are known but overly simple, and real-world medical settings, where biases are hidden and often
too complex to fully account for. While final validation on real-world data will always be required,
SynthFair will propel research into bias detection and mitigation strategies by faithfully modelling
clinical pathologies, subpopulations, and confounders in a traceable manner, contributing directly to
the aim of developing robust and trustworthy Al systems for safety-critical applications.

Data-creation pathway: Where will the data come from? We employ one of the most advanced
causal generative Al models pre-trained on the MIMIC-CXR database [Johnson et al., 2019]. We
will expand the training data using images from multiple, geographically diverse sources, such as
CheXpert [Irvin et al., 2019] (US), VinDr-CXR [Nguyen et al., 2022] (Vietnam), Padchest [Bustos
et al., 2020] (Spain), BRAX [Reis et al., 2022] (Brazil), among others. These large and diverse
datasets will allow us to generate images with a wide range of characteristics and scale the SynthFair
dataset to an unprecedented size of over one million images across relevant demographic and clinical
attributes. SynthFair will enable the generation of any desired target distribution for comprehensive
analysis and better understanding of the effects of dataset bias on Al model performance.

Cost & scalability. This project will require high performance compute, using multiple high-end
GPUs in parallel for training the generative models. We estimate the costs of compute to be 2,000
USD for every thousand GPU hours. Our methods scale naturally using parallel processing.
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233 Appendix

23¢ A SynthFair: Taxonomy of Covariates
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Figure 1: SynthFair taxonomy of different covariates from which counterfactual examples can be
generated (inspired by the Medical Imaging Contextualized Confounder Taxonomy [Juodelyte et al.,
2024]). These are organised based on their nature, mainly being covariates related to the patient itself
or to external factors, such as the medical devices used to acquire the medical scans.

235 B Quantitative Evaluation: Counterfactual Image Quality
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Figure 2: Quantitative evaluation of the quality of generated counterfactual images. Following Mon-
teiro et al. [2023], we assess the axiomatic soundness of generated counterfactuals by measuring the
effectiveness of different interventions (denoted by do(-)) using external attribute classifiers/regressors,
which help determine whether the interventions produce the expected changes in the target attributes.
In all cases, we observe sufficiently good performance, confirming that the counterfactuals are faithful
and can be useful for identifying and measuring counterfactual fairness and bias in downstream
medical Al models. Further improvements are anticipated with an increase in model and dataset size.



235 C  Qualitative Evaluation: Examples of Generated Counterfactuals

Counterfactuals
Observation Race Sex Disease

45y > 87y Black -» White Male - Female Healthy - Effusion

46y - 69y White - Black Female -» Male Healthy - Effusion

N

20y » 73y Asian -» White Male -» Female Effusion - Healthy

84y - 63y Black -» White Male » Female Healthy - Effusion

Figure 3: Examples of generated counterfactuals of different observations (left) using our model
trained on MIMIC-CXR. In this case, age, race, sex and disease counterfactuals are shown. We
observed faithful, localised changes while preserving the identity of the initial subject well.
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