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Abstract: In order for robots to be useful, they must perform practically relevant
tasks in the real world, outside of the lab. While vision-language-action (VLA)
models have demonstrated impressive results for end-to-end robot control, it re-
mains an open question how far such models can generalize in the wild. We
describe 7y 5, a new model based on 7y that uses co-training on heterogeneous
tasks to enable broad generalization. 7 5 uses data from multiple robots, high-
level semantic prediction, web data, and other sources to enable broadly gener-
alizable real-world robotic manipulation. Our system uses a combination of co-
training and hybrid multi-modal examples that combine image observations, lan-
guage commands, object detections, semantic subtask prediction, and low-level
actions. Our experiments show that this kind of knowledge transfer is essential for
effective generalization, and we demonstrate for the first time that an end-to-end
learning-enabled robotic system can perform long-horizon and dexterous manip-
ulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.

Website: www.pi.website/blog/pi05

Keywords: VLA, Generalization, Mobile Manipulator

Multimodal Data . . : Robot Action Data
I m,sVision-Language-Action Policy ( : ;
Subtask Commands Detection ;2;;?2_;3&$t é:;t:s’;z;it
- - ' ,
@ s S - | High-Level Low-Level Action Expert — N
1 i\ ) <
Dk_, | S— T I—> Robot Action =

S e
Pick up the mitten Dress 0 Language shirt in basket Item in drawer
Instruction

Multimodal Web Data

= |= Q: Detect and label
- all objects in
L the scene.
o <loco112>
A P <locesss...

A
Q: What kind of pie
is on thi:

Deploy out-of-the-box in new homes In-Lab Static Robot

J=

Sweep table

w.? @
Open X

Fold laundry

plate?
Chocolate

>

_/ ~

Figure 1: The my.5 model transfers knowledge from a heterogeneous range of data sources, including other
robots, high-level subtask prediction, verbal instructions, and data from the web, to enable broad generalization
across environments and objects. 7.5 can control a mobile manipulator to clean kitchens and bedrooms in new
homes that were not present in the training data, performing complex behaviors with durations of 10+ minutes.

1 Introduction

Open-world generalization represents one of the biggest open problems in physical intelligence, and
scalable learning systems offer a path to enable such generalization, as they have in domains ranging
from natural language processing [1, 2, 3, 4] to computer vision [5, 6, 7, 8]. However, the diversity
of situations that a robot might encounter in the real world requires more than just scale: we need to
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“close the cabinets” “put the items in the drawer” “wipe the spill” “place the dishes in the sink”

Figure 2: 7.5 cleaning a new kitchen. The robot is tasked with cleaning a kitchen in a home that was not in
the training data. Given general tasks (close the cabinets, put the items in the drawer, wipe the spill, and put the
dishes in the sink), the model predicts subtasks (e.g., pick up the plate) and emits low-level actions.

design training recipes that can provide the breadth of knowledge that will allow robots to generalize
at many levels of abstraction, from physical behaviors (e.g., how to pick up a new plate) to scene
semantics (e.g., which object on the counter is most likely to be a drying rack). How can we structure
a training recipe for a robotic learning system that can enable this kind of flexible generalization?

A person can draw on a lifetime of experience to synthesize appropriate solutions to each of these
challenges. Analogously, generalizable robotic learning systems must be able to transfer experience
and knowledge from a variety of information sources, from firsthand experience on relevant tasks
to other robots and even other data types, such as verbal instructions, perceptual tasks based on web
data, or prediction of high-level semantic commands. The heterogeneity of these different sources of
data present a major obstacle, but recent advances in vision-language-action (VLA) models provide
us with a toolkit that can make this possible: by casting different modalities into the same sequence
modeling framework, VLAs can be adapted to train on robot data, language data, computer vision
tasks, and combinations of the above.

We leverage this observation to design a co-training framework for VLAs that can utilize heteroge-
neous and diverse knowledge sources to enable broad generalization, creating the 7 5 model (“pi oh
five””), which can control mobile manipulators to perform a variety of household tasks even in homes
that were never seen during training. 7o 5 draws on experience from many sources: in addition to a
medium-sized dataset collected directly with mobile manipulators in a variety of real homes (about
400 hours), 7.5 uses data from other non-mobile robots, data of related tasks collected under lab-
oratory conditions, training examples that require predicting “high-level” semantic tasks based on
robot observation, verbal language instructions provided to the robot by human supervisors, and a
variety of multi-modal examples created from web data (see Figure 1). The overwhelming major-
ity of training examples provided to 7y 5 (97.6% during the first training phase) do not come from
mobile manipulators performing household tasks. 7 5 is able to control mobile manipulators in en-
tirely new homes not seen during training, perform intricate tasks such as making beds, and perform
complex multi-stage tasks, like putting all the dishes into a sink.

Our central contribution is a system for training a highly generalizable VLA, 7 5, together with a
proof of concept that generalization can emerge from this model when it is trained on appropriately
diverse data. g 5 follows a simple hierarchical architecture: we first pre-train the model on the
heterogeneous mixture of training tasks, and then fine-tune it specifically for mobile manipulation
with both low-level action examples and high-level “semantic” actions, which correspond to pre-
dicting subtask labels such as “pick up the cutting board” or “rearrange the pillow.” At runtime,
during each step of inference, the model first predicts the semantic subtask, inferring the behavior
that is appropriate to perform next based on the task structure and the semantics of the scene, and
then predicts the robot action chunk based on this subtask. This provides the model with an ability
to reason through long horizon behaviors and leverage different sources of knowledge at both the
low and high level. We provide a detailed empirical evaluation of both 7 5’s generalization capa-
bilities and the relevance of different co-training ingredients. To our knowledge, our work is the
first to demonstrate an end-to-end learning-enabled robotic system that can perform long-horizon
and dexterous manipulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.
Our experiments and comparisons further show that this is enabled by transferring knowledge from
other robots, high-level semantic prediction, verbal language instruction from human supervisors,
web data, and other sources.



2 Related Work

Generalist robot manipulation policies. Recent works have demonstrated that broadening
the training data distribution for robot manipulation policies allows the resulting policies to
not only solve a wider range of tasks out of the box, but also improves their ability to gen-
eralize [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 12, 19, 20]. Vision-language-action models
(VLAs) [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] offer an appealing solution to
continue scaling to generalist policies: by fine-tuning pre-trained vision-language models for robot
control, VLAs can leverage the semantic knowledge acquired from web-scale pretraining and bring
it to bear on the robotics problem. When combined with highly expressive action decoding mecha-
nisms like flow matching [24], diffusion [27, 33, 36], or advanced action tokenization schemes [31],
VLAs can perform a wide range of complex manipulation tasks. While some studies suggest that
simple skills like picking up objects generalize simply by collecting robot data in a broader set of
environments [16, 31, 37, 38, 39], it is challenging to apply the same approach to more complex,
long-horizon tasks like cleaning up a kitchen, where covering all plausible scenarios with brute-
force scaling of robot data collection is infeasible. In our experiments, we present an architecture
and training procedure, 7 5, that can generalize to entirely new scenes by leveraging not only direct
experience on the target mobile manipulator platform, but also information from other data sources.

Non-robot data co-training. A number of prior works have sought to use diverse non-robot data
to improve the generalization of robot policies through initializing vision encoders from computer
vision datasets [40, 41, 42, 43], leveraging off-the-shelf task planners [44, 45, 46, 47], or training
VLA policies initialized from a pre-trained vision-language model [21, 22, 23]. Prior works have
demonstrated that co-training VLAs with data mixtures used for VLM training [21, 22, 48] can
improve generalization, e.g., when interacting with new objects or unseen scene backgrounds. In this
work, we go beyond VLM data co-training and design a system for co-training VLAs with a broader
set of robotics-relevant supervision sources, including data from other robots, high-level semantic
subtask predictions, and verbal language instructions. While multitask training and co-training are
not new ideas, we show that the specific combination of data sources in our system enables mobile
robots to perform complex and long-horizon behaviors in entirely new environments.

Robot reasoning and planning with language. A number of prior works have shown that augment-
ing end-to-end policies with high-level reasoning can improve performance [49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 32, 67], particularly when high-level subtask inference
can benefit from large pre-trained LLMs and VLMs. Our method also uses a two-stage inference
procedure, where we first infer a high-level semantic subtask (e.g., “pick up the plate”), and then
predict the action based on this subtask. Many prior methods have employed two separate models
for this purpose, with a VLM predicting semantic steps and a separate low-level policy executing
those steps [49, 53, 61, 62, 65, 66, 68]. Our method uses the same model for both high-level and
low-level inference, in a recipe that more closely resembles chain-of-thought [69] or test-time com-
pute [70] methods, though unlike embodied chain-of-thought methods [58, 71, 72], the high-level
inference process still runs at a lower frequency than low-level action inference.

Robotic learning systems with open-world generalization. While most robotic learning systems
are evaluated in environments that closely match the training data, a number of prior works have
explored broader open-world generalization. When the robot’s tasks are restricted to a more narrow
set of basic primitives, such as picking up objects, methods that allow for task-specific assumptions
(e.g., grasp prediction, or incorporating model-based planning and control) have been shown to
generalize broadly, even to entirely new homes [73, 74, 75, 76, 77]. However, such methods do not
readily generalize to the full range of possible tasks that a generalist robot might need to perform.
More recently, large-scale datasets collected across many domains [12, 13, 16, 37, 39, 78] have been
shown to enable generalization of simple but end-to-end learned tasks to new environments [16,
31, 38, 39, 79, 80, 81, 82]. However, the tasks in these demonstrations are still relatively simple,
typically less than a minute in length and often with relatively low success rates. We show that 7 5
can perform long, multi-stage tasks, such as putting all of the dishes in the sink or picking all of the
clothing off the floor of a new bedroom, while generalizing to entirely new homes.
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Figure 3: Model overview. w5 is trained in two stages. First, a pre-training stage combines all of the
different data sources to produce an initial VLA with discrete tokens. This stage uses data from diverse robotic
platforms, high-level semantic action prediction, and data from the web. Robotic data uses the FAST action
tokenizer to represent actions as discrete tokens [31]. Second, a post-training stage specializes the model for
low-level and high-level inferences for mobile manipulation, leveraging the most task-relevant data, including
verbal instructions from human supervisors. This stage uses flow matching to represent the action distribution,
enabling efficient real-time inference and the ability to represent fine-grained continuous action sequences. At
inference time, the model first infers a high-level subtask, and then predicts the actions based on this subtask.

post-training & inference

3 The 75 Model and Training Recipe

We provide an overview of the 7y 5 model and training recipe in Figure 3 and additional prelimi-
naries in Section A. The model weights are initialized from a standard VLM trained on web data,
and training then proceeds in two stages: a pre-training stage intended to adapt the model to diverse
robotic tasks, and a post-training stage intended to specialize it to mobile manipulation and equip
it with the mechanisms for efficient test-time inference. During pre-training, all tasks, including
tasks with robot actions, are represented with discrete tokens, which leads to scalable, and efficient
training [31]. During post-training, we adapt the model to also have an action expert, as with 7g, in
order to both represent actions with finer granularity and enable more compute-efficient inference
for real-time control. At inference-time, the model first produces a high-level subtask for the robot
to perform and then, conditioned on this subtask, predicts the low-level actions via the action expert.

3.1 The 7 5 architecture

The 7y 5 architecture can flexibly represent both action chunk distributions and tokenized text out-
puts, with the latter used both for co-training tasks (e.g., question-answering) and for outputting
high-level subtask predictions during hierarchical inference. The distribution captured by the model
can be written as 7 (az.¢4mH, i |o¢, £), where consists of the images from all of the cameras and the
robot’s configuration (joint angles, gripper pose, torso lift pose, and base velocity), £ is the overall
task prompt (e.g., “put away the dishes”), 1 represents the model’s textual output, which could be
either a predicted high-level subtask (e.g., “pick up the plate”) or the answer to a vision-language
prompt in web data, and a4 g7 is a predicted action chunk. We decompose the distribution as

Uy (at:t+H; g‘om Z) = Tp (at:t+H |0t7 g)ﬂe (£|0t, 5)7

where the action distribution does not depend on ¢, only on {. Thus, high-level inference captures
T (57 |ot, £), and low-level inference captures 7y (.t r|0¢, f) The model corresponds to a trans-
former that takes in N multimodal input tokens x1.y (we use the term token loosely here, referring
to both discretized and continuous inputs) and produces a sequence of multimodal outputs y;.y,
which we can write as y1.ny = f(xlzN, A(z1.n), p(xltN)). Each z; can be a text token (z;’ € N),
an image patch (z! € RP*P*3) or an intermediate denoising value of a robot action in flow match-
ing (x¢ € R?). The observations o; and ¢ form the prefix part of ;.. Depending on the token
type, as indicated by p(x;), each token can be processed not only by a different encoder, but also by
different expert weights within the transformer. For example, image patches are fed through a vision
encoder, and text tokens are embedded with an embedding matrix. Following 7y [24], we linearly
project action tokens z into the transformer embedding space and use separate expert weights in
the transformer to process the action tokens. The attention matrix A(z1.x) € [0, 1]V * indicates if
a token can attend to another token. As we want our model to output both text (to answer questions
about the scene or to output next tasks to accomplish) and actions (to act in the world), the output



of f is split into text token logits and action output tokens, respectively (y{,,/,y.;;). The first M

correspond to text token logits that can be used to sample ¢ and the later H tokens are produced by
a separate action expert, as in 7y, and projected via a linear mapping to continuous outputs used to
obtain a;..y iy (see next section). Note that M + H < N, i.e., not all outputs are associated with a
loss. More details about the architecture are in Appendix B.1.

3.2 Combining discrete & continuous action representations

Similarly to 7, we use flow-matching [83] to predict continuous actions in the final model. Given
a;’t“er = Taprmg + (1 — 7w, w ~ N(0,I), where 7 € [0, 1] is the flow matching time index, the
model is trained to predict the flow vector field w — a;. However, as shown in [31], VLA training
can be much faster when actions are represented by discrete tokens. Unfortunately, such discrete
representations are less well-suited for real-time inference, because they require expensive autore-
gressive decoding for inference [31]. Therefore, an ideal model design would train on discretized
actions but still allow for use of flow matching to produce continuous actions at inference time.

Our model is therefore trained to predict actions both through autoregressive sampling of tokens
(using the FAST tokenizer) and iterative integration of the flow field, combining the best of both
worlds. We use the attention matrix to ensure that the different action representations do not attend
to each other. Our model is optimized to minimize the combined loss

ED,T,UJ |:H(1:1:J\17 f&g(otae)) +a ||w — Att+H — fg(a;;-)}-H7ot7£)||2:|7 (D

where H (x1.01,9{.,,) is the cross entropy loss between the text tokens and predicted logits (in-
cluding the FAST encoded action tokens), . ;; = fg(az:’t‘j_ 11> 0t, £) is the output from the (smaller)
action expert, and o € R is a trade-off parameter. This scheme enables us to first pre-train our model
as a standard VLM transformer model by mapping actions to text tokens (o = 0), and then add ad-
ditional action expert weights predicting continuous action tokens in a non-autoregressive fashion
for fast inference in a post-training stage. At inference time we then use autoregressive decoding for
text tokens / followed by 10 denoising steps, conditioned on text tokens, to produce actions a;.; 4 pr.

3.3 Training

Our training proceeds in two stages, with additional detail in Appendix Section B and Figure 12.

Pre-training. 7 5 is trained as a standard auto-regressive transformer, performing next-token pre-
diction of text, object locations, and FAST encoded action tokens. This stage includes data from
Mobile Manipulators (MM) performing household tasks in about 100 different home environments,
Multi-Environment (ME) non-mobile robots performing similar tasks in home environments, Cross-
Embodiment (CE) data collected in a laboratory setting for a wide range of tasks (e.g., bussing a
table, folding shirts), High-Level (HL) bounding box and subtask prediction data breaking down
high-level task commands such as “clean the bedroom” into shorter subtasks like “pick up pillow”,
and finally (WD) multi-modal Web Data (including image captioning, VQA, and object location
tasks). For all action data, we train the model to predict target joint and end-effector poses. We
set the dimensionality of the action a to a fixed number to accommodate the largest action space
among all the datasets. For robots with lowntirelyr-dimensional configuration and action spaces, we
zero-pad the action vectors.

Post-training. After pre-training the model with discrete tokens for 280k gradient steps, we perform
a second stage. The purpose of this stage is to both specialize the model to our use-case (mobile
manipulation in homes), and to add an action expert that can produce continuous action chunks
via flow matching. This stage jointly trains with next-token prediction, to preserve text prediction
capabilities, and flow matching for the action expert (which is initialized with random weights at
the beginning of post-training). We optimize the objective in Equation (1), with a« = 10.0 for
80k additional steps. The post-training action dataset consists of the MM and ME robot data, fil-
tered down to successful episodes that are below a fixed length threshold, web data (WD), and the
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Figure 4: Evaluation environments. We evaluate 7 5 in entirely new kitchens and bedrooms that were not
seen during training, with novel objects, backgrounds, and layouts. We use a set of mock rooms for controlled,
reproducible quantitative comparisons (left) and real homes for a realistic final evaluation (right).

multi-environment slice of HL data. Additionally, to improve the model’s ability to predict appro-
priate high-level subtasks, we collect verbal instruction demonstrations (VI), which are constructed
by expert users providing “language demonstrations,” selecting appropriate sub-task commands to
command the robot to perform mobile manipulation tasks step by step. These examples are collected
by “teleoperating” the robot in real time with language to perform tasks with the learned low level
policy, providing demonstrations of good high-level subtask outputs for a trained policy.

4 Experimental Evaluation

The 7.5 model is designed to generalize broadly to new environments. While it is common to
evaluate VLAs in environments that match the training data, we conduct all of our experiments in
novel environments that were not seen in training. For quantitative comparisons, we use a set of
mock home environments to provide a controlled and reproducible setup, while the most realistic
final evaluation is conducted in three real homes that were not part of the training set (see Figure 4).
The two mobile manipulators used in our experiments are illustrated in Figure 13 (see Section B.4
for more details). Our experiments explore 7 5’s generalization abilities (4.1), environment scaling
(4.2), low-level data (4.3) and model (4.4) ablations, and high-level ablations (D.1).

4.1 Can 7 5 generalize to real homes?

We evaluated 7y 5 in three real homes that were not present in the training set, using both types of
robots. In each of the homes, the robots were instructed to perform bedroom and kitchen cleaning
tasks. The evaluation rubrics for each task are provided in Appendix C and roughly correspond to
the percentage of steps in each task that were completed successfully (e.g., placing half the dishes in
the sink corresponds to around 50%). The results in Figure 5 show that 7y 5 was able to consistently
succeed on a variety of tasks in each home (we note that, additionally, the model is capable of
performing many more tasks than used in our quantitative evaluation). Many of the tasks involve
multiple stages (e.g., moving multiple objects) lasting about 2 to 5 minutes. For these trials, the
model is provided with a simple high-level command (e.g., “place the dishes in the sink™), and the
high-level inference process autonomously determines appropriate steps (e.g., “pick up the cup”).
This level of in-the-wild generalization goes significantly beyond the results demonstrated with prior
vision-language-action models, both in terms of the degree of novelty that the model must handle,
and the task duration and complexity.

4.2 How does generalization scale with the number of scenes?

We aim to measure how generalization scales with the number of environments. Since applying
the entire pre-training and post-training recipe to each of these datasets is prohibitively compute-
intensive, for these experiments we pre-train on the mixture of robot action prediction data without
mobile manipulation data, and then compare models post-trained on datasets that comprise mobile
manipulation data from varying numbers of environments (3, 12, 22, 53, 82, and 104). While the
datasets split by location in principle differ in size, in practice the number of training steps (40k)
is chosen such that each model sees the same number of unique data samples, which allows us to
control for dataset size when varying the number of locations used within a post-training experiment.

Each model is evaluated in the mock environments shown in Figure 4, which are not seen in train-
ing. We conduct two types of evaluations: (1) overall performance on multi-stage tasks using the
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(a) Example rollouts. We visualize an exemplary mg.5 episode for one task
from each home. Top to bottom: putting items in a drawer in Home 1, followed
by putting dishes in the sink in Home 2, and putting clothes in the laundry basket
in Home 3. The human instruction for each is given on the left, and the high-level
subtask prediction from 7rq_ 5 is shown beneath each frame in blue.

(b) Quantitative evaluation. We show the task progress
per task and environment averaged over 10 trials. We find
that .5 s performance in the mock evaluation setups is
representative of its performance in real homes.

Figure 5: Evaluation in real homes. We evaluated 7o 5 in three kitchens and three bedrooms in real homes
that were not seen during training. We evaluate the tasks ‘items in drawer’, ‘laundry basket’, and ‘dishes in
sink,” and find 7.5 to be successful at these tasks in these completely new, real homes.
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Figure 7: Evaluating language following with dif-
ferent numbers of training locations. We evalu-
ate language following rate and success rate for pick-
ing up user-indicated items and placing them into
drawers or sinks, averaged over seen object cate-
gories (“in-distribution”) or unseen categories (“‘out-
of-distribution”). Performance increases steadily as
we increase the number of training locations.

standard rubric in Appendix C and (2) a more fine-grained evaluation of each model’s ability to
follow language instructions and interact with novel objects, where the robot must pick up specific
in- and out-of-distribution objects from a kitchen counter based on language commands. Details of
this experiment are discussed in Appendix D.

The results of the first experiment are shown in Figure 6. The average performance among the
tasks generally improves with more training locations and achieves parity with a control (shown
in green) trained directly on data from the test home. This suggests that our co-training recipe
effectively enables broad generalization. To confirm that this generalization performance requires
our full co-training recipe, we additionally include two baselines that do not use any of the other
co-training tasks in the pre-training phase, but instead train directly on either data from the test
environment (light green) or mobile manipulation data from the 104 training locations (light yellow).
The performance for both those baselines is significantly worse.

The results of the second experiment are shown in Figure 7. For seen and unseen objects, we report
the language following rate, which measures how often the robot selects the object indicated in
the language command, and success rate, which measures how often the robot successfully places
that object in the correct location. As the number of locations in the training data increases, both
language following performance and success rate improve. As expected, the performance on in-
distribution objects improves more quickly than that of out-of-distribution objects.
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4.3 How important is each part of our co-training recipe?

We compare our full 77y 5 model to other training mixtures. The task performance results on home
tasks are shown in Figure 8 (detailed breakdown in Appendix E) and language following in Figure 9.
For both experiments we see in the results that excluding either of the two cross-embodiment data
sources significantly degrades performance, indicating that 7y 5 benefits considerably from cross-
embodiment transfer, from both other environments (ME) and other tasks (CE). Excluding both
sources harms performance even more. Interestingly, the difference in performance with the no WD
ablation is not statistically significant for the performance experiment, though we see an impact in
OOD language following and for high-level subtask inference (Sec. D.1).

/= mos
mo-FAST+
= Flow (no HL)
mm 7o 300k
== np 80k

b D I L

dishes items laundry make bed
in sink in drawer basket

100%
4.4 How does 7y 5 compare to other VLAs?
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We compare 7 5 to mo as well as an improved
version of mg denoted as my-FAST+Flow,
which is trained via the joint flow matching and
FAST action prediction formulation from Equa-
tion (1), but on action data only, without the
HL or WD datasets. These models provide a
strong point of comparison, since my has been
demonstrated to perform strongly on complex,
dexterous tasks, and the enhancement in 7g-
FAST+Flow brings it as close to 7y 5 as possible. All models receive the same robot action data
set and are trained for a comparable number of steps. Results in Figure 10 show that g 5 signifi-
cantly outperforms g, 7 trained for longer to 300k steps, and our enhanced version.
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Figure 10: Comparing 7.5 with other models.
Our full model significantly outperforms both 7o and
mo-FAST+Flow in the mock home test environments.

5 Conclusions

We described 7 5, a co-trained model that builds on the my VLA to integrate a variety of data sources
and enable generalization to new environments. The 7y 5 VLA can control mobile manipulators to
perform tasks in homes that were never seen in the training data, cleaning kitchens and bedrooms,
making beds, hanging towels, and performing other multi-stage and dexterous behaviors. 7 5 is
trained on about 400 hours of mobile manipulation data, but includes a much larger amount of data
from other robots, including non-mobile manipulators in diverse environments and data collected
under laboratory conditions. It is also co-trained jointly with data from the web, as well as high-level
prediction data for outputting language commands based on robot observations. The generalization
capabilities of 7y 5 demonstrate that this co-training recipe facilitates effective transfer.



6 Limitations and Future Work

To.5 1S not without its limitations. While our VLA exhibits broad generalization, it still makes
mistakes. Some environments present persistent challenges (e.g., unfamiliar handles on drawers,
or cabinets that are physically hard for the robot to open), some behaviors present challenges with
partial observability (e.g., the robot arm occluding a spill that should be wiped), and in some cases
the high-level sub-task inference is easily distracted (e.g., closing and opening a drawer multiple
times while putting away items). Addressing these challenges with better co-training, transfer, and
larger datasets is a promising direction for future work. Other future work directions could address
the technical constraints of our method. While 7y 5 can perform a variety of behaviors to clean up
kitchens and bedrooms, it processes relatively simple prompts. The complexity of the prompts that
the model can accommodate is determined by the training data, and more complex preferences and
instructions could be incorporated by producing more intricate and diverse annotations, either with
human labelers or synthetically. The model also uses a relatively modest context, and incorporating
richer context and memory could make the model significantly more capable in settings with more
partial observability, such as tasks that require navigating between different rooms or remembering
where objects are stored. More broadly, 7y 5 explores a particular combination of heterogeneous
data sources, but the specific sources of data can be explored even more broadly. For instance, the
ability of our system to learn from verbal instructions provides a powerful new supervision modality,
and future work could explore this and other ways that people can provide robots with additional
contextual knowledge. We hope that our work will serve as a foundation for a new generation of
VLAs that exhibit broad generalization to diverse real-world environments.
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A Preliminaries

Vision-language-action models (VLAs) are typically trained via imitation learning on diverse robot
demonstration datasets D, by maximizing the log-likelihood of an action a; (or, more gener-
ally, an action chunk a;;4 ) given an observation o, and a natural language task instruction /:
maxg Eea, . 0.,0)~D 10g (ﬂg(at:pr 1o, 6)). The observation typically contains one or more im-
ages I}, ..., I and proprioceptive state q;, which captures the position of the robot’s joints. VLA
architectures follow the design of modern language and vision-language models, with modality-
specific tokenizers that map inputs and outputs to discrete (“hard”) or continuous (“soft”) token
representations, and a large, auto-regressive transformer backbone that is trained to map from input
to output tokens. The weights of these models are initialized from pre-trained vision-language mod-
els. By encoding policy inputs and outputs into tokenized representations, the imitation learning
problem described above can be cast as a simple next-token-prediction problem over a sequence
of observation, instruction and action tokens, and we can leverage the scalable tools of modern
machine learning to optimize it. In practice, the choice of tokenizers for image and text inputs
follows those of modern vision-language models. For actions, prior work has developed effective,
compression-based tokenization approaches [31], which we use in this work during pretraining.
A number of recent VLA models have also proposed to represent the action distribution via diffu-
sion [27, 33, 36] or flow matching [24], providing a more expressive representation over continuous-
valued action chunks. During the post-training phase of our model, we will build on the design of
the mp model [24], which represents the action distribution via flow matching. In this design, the
tokens corresponding to actions receive the partially denoised actions from the previous step of flow
matching as input, and output the flow matching vector field. These tokens also use a different set
of model weights, which we refer to as an “action expert,” analogously to a mixture of experts ar-
chitecture. This action expert can specialize to flow matching-based action generation, and can be
significantly smaller than the rest of the LLM backbone.

B Supplemental for Section 3: 75 Model and Training Recipe
B.1 Model technical details

The 7y 5 model builds upon 7y and adopts the PaliGemma VLM [84] as the backbone for visual-
language understanding as well as an “action expert” for fast action generation. The VLM backbone
takes in a sequence of images [I},...,I7] and a language prompt ¢ as in 7o, but also the robot’s
proprioceptive state g; in tokenized form and tokenized actions [31], which will be auto-regressively
predicted. The action expert is a smaller transformer that takes in a sequence of noisy action tokens
a;’t‘i y for an action horizon of 50, i.e. H = 49, and is trained with the flow matching objective.
The noisy action chunk (with action dimension d) is first projected to the transformer embedding
dimension using a single linear layer. Unlike 7 that fuses the flow-matching timestep 7 with the
noisy action before being fed into the transformer, 7 5 uses a separate MLP for projecting 7 only
and then applies adaptive RMSNorm to inject the timestep information to each layer of the action
expert. The timestep MLP takes in the form of swish(W5 - swish(Wj - ¢(7))), where ¢ : R — RY
is a sinusoidal positional encoding function [1] and W7, Wy € R™*™. The action expert outputs
action tokens y{. ;;, which are then decoded into the target vector field using a final linear projection.

The dimensions of the two transformers are the same as mg: {width=2048, depth=18,
mlp_dim=16,384, num_heads=18, num_kv_heads=1, head dim=256} for the 2B VLM initialized

16



Query
State Prompt  Image Image

FAST

Embeddings Action Tokens

Action Expert

FAST Action Expert
Action Tokens Embeddings

Image Image  Prompt State

Key
Figure 11: Example of the 7.5 attention masking pattern.

from PaliGemma weights, and the same except for {width=1024, mip_dim=4096} for the action
expert with 300M parameters.

The robot proprioceptive state is discretized and input to the model as text tokens. Embeddings
from the VLM and action expert interact only through self-attention. A full prefix mask is used on
images, prompt tokens, and proprioceptive state; FAST action tokens attend to this prefix and auto-
regressively on previous action tokens. Embeddings from the action expert embeddings attend to
the prefix and to one another, but do not attend to FAST action tokens to avoid information leakage
between the two representations of actions. In effect, information flows unidirectionally from the
VLM to the action expert; no VLM embedding attends to the action expert. An example of the
attention mask at each layer is visualized in Figure 11.

We follow 7y for sampling the flow-matching timestep 7. In summary we deviate from standard
uniform sampling 7 ~ U(0,1) [83, 85] or methods emphasizing midrange timesteps [86], and
instead use a time-step sampling distribution that emphasizes low time-steps [24], given by p(7) =
Beta(*<T;a = 1.5, = 1). Timesteps above the threshold s are excluded from sampling, as they
are not needed if the integration step J satisfies § > 1 — s. We use s = 0.999 in our experiments,

which accommodates up to 1,000 integration steps (6 > 0.001).

We apply image augmentation (random crop, resizing, rotation, and color jittering) to all input
images using the following hyper-parameters and in this order

transforms = [

augmax.RandomCrop (int (width = 0.95), int (height * 0.95)),
augmax.Resize (width, height),
augmax.Rotate ((=-5, 5)),
augmax.ColorJitter (brightness=0.3, contrast=0.4, saturation=0.5),

B.2 Pre-training

In the first training stage, 7 5 is trained with a broad range of robot and non-robot data, which we
summarize below and illustrate in Figure 12. It is trained as a standard auto-regressive transformer,
performing next-token prediction of text, object locations, and FAST encoded action tokens.

Diverse Mobile Manipulator data (MM). We use about 400 hours of data of mobile manipulators
performing household tasks in about 100 different home environments, some of which are shown in
Figure 5, using the robots in Section B.4. This slice of the training set is the most directly relevant
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Figure 12: Examples from pre-training and post-training tasks. 7 s is pre-trained on data from mobile ma-
nipulators (MM), non-mobile robots in diverse environments (ME), and cross-embodiment data collected under
laboratory conditions (CE), as well as high-level subtask prediction (HL), and multi-modal web data (WD). In
a post-training phase, we additionally use verbal instructions (VI), and omit the laboratory cross-embodiment
data (CE) to focus the model on mobile manipulation and diverse environments. The figure displays an exem-
plary subset of the tasks in each category.

to our evaluation tasks, which consist of similar cleaning and tidying tasks in new, unseen, home
environments.

Diverse Multi-Environment non-mobile robot data (ME). We also collected non-mobile robot
data, either with a single arm or two arms, in a variety of home environments. These arms were fixed
to surfaces or mounting platforms, and because they are significantly lighter and easier to transport,
we were able to gather a more diverse dataset in a wider range of homes with them. However, this
ME data comes from a different embodiment than the mobile robots.

Cross-Embodiment laboratory data (CE). We collected data for a wide range of tasks (e.g., buss-
ing a table, folding shirts) in the laboratory, with simpler tabletop environments and a variety of
robot types. Some of these tasks are highly relevant to our evaluation (e.g., putting dishes in a bin),
while others are not (e.g., grinding coffee beans). This data includes single-arm and dual-arm ma-
nipulators, and both static and mobile bases. We also include the open-source OXE dataset [87].
This dataset is an extended version of the dataset used by my[24].

High-Level subtask prediction (HL). Breaking down high-level task commands such as “clean the
bedroom” into shorter subtasks like “adjust the blanket” and “pick up pillow”, similar to chain-of-
thought prompting for language models, can help a trained policy reason about the current scene
and better determine the next action. For robot data in MM, ME, and CE where the task involves
multiple subtasks, we manually annotate all data with semantic descriptions of the subtasks and train
0.5 to jointly predict the subtask labels (as text) as well as the actions (conditioned on the subtask
label) based on the current observation and high-level command. This naturally leads to a model that
can act both as a high-level policy (outputting subtasks) and low-level policy that executes actions
for these subtasks. We also label relevant bounding boxes shown in the current observation and train
7.5 to predict them before predicting the subtask.

Multi-modal Web Data (WD). Finally we include a diverse set of web data involving image
captioning (CapsFusion [88], COCO [89]), question answering (Cambrian-7M [90], PixMo [91],
VQAV2 [92]), and object localization in pre-training. For object localization, we further extend the
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standard datasets with additional web data of indoor scenes and household objects with bounding
box annotations.

For all action data, we train the model to predict target joint and end-effector poses. To differentiate
the two, we add ‘<control_mode> joint/end effector <control_mode>’ to the text prompt. All
action data is normalized to [—1, 1] using the 1% and 99% quantile of each action dimension of the
individual dataset. We set the dimensionality of the action a to a fixed number to accommodate the
largest action space among all the datasets. For robots with lower-dimensional configuration and
action spaces, we zero-pad the action vectors.

The pre-trained model was trained for 280k gradient steps with a batch size of 2048.

B.3 Post-training

After pre-training the model with discrete tokens for 280k gradient steps, we perform a second stage
of training that we refer to as post-training. The purpose of this stage is to both specialize the model
to our use-case (mobile manipulation in homes), and to add an action expert that can produce con-
tinuous action chunks via flow matching. This stage jointly trains with next-token prediction, to
preserve text prediction capabilities, and flow matching for the action expert (which is initialized
with random weights at the beginning of post-training). We optimize the objective in Equation (1),
with ¢ = 10.0 for 80k additional steps at a batch size of 384. The post-training action dataset
consists of the MM and ME robot data, filtered down to successful episodes that are below a fixed
length threshold (set as the 90th-percentile of task length). We include web data (WD) to preserve
the model’s semantic and visual capabilities, and the slice of HL data corresponding to the multi-
environment datasets. Additionally, to improve the model’s ability to predict appropriate high-level
subtasks, we collect verbal instruction demonstrations (VI), which are constructed by expert users
providing “language demonstrations,” selecting appropriate sub-task commands to command the
robot to perform mobile manipulation tasks step by step. These examples are collected by “tele-
operating” the robot in real time with language to perform tasks with the learned low level policy,
essentially providing demonstrations of good high-level subtask outputs for a trained policy.

B.4 Robot system details

The robot systems used in our mobile manipulation experiments are illustrated in Figure 13. We
conducted all of our experiments using those two types of mobile manipulators. Both platforms
are equipped with two 6 DoF arms with parallel jaw grippers and wrist-mounted monocular RGB
cameras, a wheeled holonomic base, and a torso lift mechanism. The state and action spaces for the
base correspond to linear (2D) and angular (1D) velocity, and the torso lift mechanism is either 1D
(up/down) or 2D (up/down and forward/backward). In addition to the two wrist cameras, the robots
have a forward and backward facing camera mounted between the arms. We use all four cameras
for high-level inference, and the wrist and forward cameras for the low-level inference process. The
total dimensionality of the state and action spaces is 18 or 19, depending on the platform.

The control system is very simple: the my 5 model directly commands target poses for the arms,
gripper, and torso lift, and the target base velocities at 50 Hz (with action chunking). These tar-
gets are tracked with simple PD controllers, without any additional trajectory planning or collision
detection. All manipulation and navigation control is fully end-to-end.

C Task evaluation rubric

For a quantitative evaluation of our method we performed rigorous evaluation of a subset of four
tasks that are included in the training dataset (but evaluated in entirely new scenes and configu-
rations). Among these are two kitchen cleanup tasks and two bedroom cleanup tasks. Each task
is evaluated with a consistent set of items for each of the policies within a comparison (but items
varied between locations) in three different homes and three different mock kitchens and mock bed-
rooms respectively (a total of 12 different locations). For each evaluation and each policy, unless
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Figure 13: Robot system overview. We use two mobile manipulator platforms — each has four cameras (for-
ward, backward, and both wrists), two 6 DoF arms with parallel jaw grippers, a mobile base, and a torso lift
mechanism. The 7.5 model controls the joints and grippers of each arm, base velocity, and the lift position,
resulting in 18-19 DoF state and action spaces.

otherwise stated, we perform 10 evaluations per task; note that each of these evaluation episodes
can span multiple minutes and they are thus time intensive. We present results as percent of total
points achieved in each evaluation rubric (as outlined below) and present either per task metrics or
metrics averaged across all tasks in four different locations, that are consistent for all policies in a
comparison, leading to a total of 40 evaluations per policy for our standard evaluations. Evaluations
were carried out by interleaving execution of policies to control for environmental changes. Some
evaluations include cancelled episodes due to robot failures, time limitations or other causes, which
are removed. In all cases we control the sample size to be close and report statistical significance
according to a two-sided t-test assuming variable number of trials within the plots. The language
following evaluations follow a different protocol as described in the main text.

The evaluation metrics for the kitchen cleanup tasks, which include placing dishes into a sink and
storing items in a drawer, are detailed below.

* Dishes in Sink: The task begins with 4 dishes (e.g., plates, bowls, cutting boards, utensils)
placed near a sink. The robot’s goal is to place all of them in the sink.

+1 For each item picked up.
+1 For each item placed in the sink.

Maximum score: 8 points.

* [tems in Drawer: The task begins with an item on a countertop. The robot must place the
item into a drawer beneath the counter.

+1 Picking up the object.

+1 Opening the drawer.

+1 Putting the object into the drawer.

+1 Closing the drawer (if the object is inside).

Maximum score: 4 points.

Next, we outline the evaluation metrics for the bedroom cleanup tasks: putting laundry away and
making a bed.
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* Laundry in Basket: The task begins with an article of clothing lying on the ground. The
robot’s goal is to pick up the laundry and place it in the laundry basket.

+1 Navigating to and picking up the clothing.
+1 Placing the clothing into or on the laundry basket.
+1 Clothing is fully inside the basket.

Maximum score: 3 points.

* Make the Bed: The bed starts unmade. The robot must tidy the blanket and place two
pillows at the head of the bed.

+1 Straightening the blanket so it covers the sheets.
+1 Placing one pillow at the head of the bed.

+1 Placing the second pillow at the head of the bed.
+1 Blanket is straightened very neatly.

+1 Both pillows are placed very neatly.

Maximum score: 5 points.

D Language following experiment setup

The language following experiments use two unseen kitchen scenes to test how well the model
follows more specific user commands, such as “put the scissors in the drawer” or “put the cutting
board into the sink”. Each trial requires the robot to interpret the instruction, identify the correct
object amidst distractors, and perform the task. We evaluate on two scenarios:

1. Items in the drawer: common kitchen items (tongs, wooden serving spoon, can opener,
scissors, and small yellow mustard).

2. Items in the sink: common dining items (cup, bowl, plate, plastic spoon, and cutting
board).

In each trial, the robot is presented with five objects and is instructed to move one of them. To
discourage shortcut behaviors, the target object is placed further away than the distractors, such that
a policy that is unable to interpret the command should achieve only ~20% language following
accuracy. We report two metrics, averaged over both scenarios: language following rate, which
measures whether the correct object was selected, and task success rate, which evaluates whether
the object was successfully placed in the specified location. We further investigate how the number
of distinct training environments influences the model’s ability to generalize to previously unseen
objects. We design a similar Items in the drawer task with novel household items (a funnel, a pill
bottle, a grill lighter, a lighter, and a pair of safety goggles). None of these object categories were
present in the training set, ensuring that this task tests the robot’s performance on out-of-distribution
(OOD) objects. We show the example initial scene of each task in Figure 14.

Along with data ablation experiments in Figure 9 and location scaling experiments in Figure 7, Fig-
ure 15 presents language following results across model classes. We find that 7 5 follows language
at a slightly higher rate than 7y-FAST+Flow, even though the high-level inference mode is not used
for this evaluation, indicating that training with high-level data improves both overall performance
and language following. We also find that g 5 significantly outperforms 7, indicating the impor-
tance of discrete token training on language following abilities.

D.1 How important is high-level inference?

We evaluate the importance of high-level inference, and compare the performance of several alterna-
tive high-level inference methods. The high-level inference mechanism in 7 5 takes in a high-level
command (e.g., “clean the bedroom”) and outputs the subtask to complete (e.g., “pick up pillow”),
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Figure 14: Example initial states of different language Figure 15: Comparing 7.5 with other models on

following experiments.

language following. We evaluate language following
capabilities of 7.5 , 7o, and mo-FAST+Flow, finding
mo.5 outperforms each, and 7o by a wide margin.

which is then used as context for inferring the lower-level actions, analogously to chain of thought in-
ference [69]. While 7 5 uses a unified architecture where the same model performs both high-level
and low-level inference, we can also construct baseline methods that either forego the high-level
inference process and feed the task prompt directly into the low-level system, as is common in stan-
dard VLA models [22, 24], or use another model for high-level inference to ablate the importance
of different dataset components in terms of their impact on the high-level policy. We consider the
following methods and ablations, all of which use the full 7y 5 low-level inference process with

different high-level policies:

. mo.5 model for high-level and low-level inference.

. no WD: an ablation of 7 5 that excludes web data.

1
2
3. no VI: an ablation of 7 5 that excludes the verbal instruction (VI) data.
4

. implicit HL: no high-level inference at runtime but includes high-level data in training,
which may teach the model about subtasks implicitly.

W

. no HL: no high-level inference, and no high-level data in training at all.

6. GPT-4: use GPT-4 as the high-level policy, evaluating the importance of training the high-
level policy on robot data. To align the model with our domain, we prompt GPT-4 with a
description of the task and a list of the most used labels to choose from.

7. human HL: use an expert hu

bound on performance.

The results of these experiments are
shown in Figure 16. The full 7 5
model performs the best, and out-
performs even the human HL “ora-
cle” baseline. Perhaps surprisingly,
the second best model is the implicit
HL ablation, which does not perform
any high-level inference, but includes
the full data mixture, i.e. also subtask
prediction, in training. This strongly
suggests the importance of the co-
training recipe used by our model:
while there is a benefit to explicitly
infer high-level subtasks, a signifi-
cant portion of that benefit is already
obtained simply by including subtask
prediction data in the training mix-
ture. The no HL ablation, excluding
HL task even in training, performs
significantly worse. The results also
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Figure 16: Evaluation of the high-level inference process. While
the full 9.5 model with high-level and low-level inference attains
the best results, using only low-level inference (“implicit HL”) with
the full mo.5 model also benefits from the inclusion of high-level
subtask examples in training. In contrast, excluding verbal instruc-
tions (no VI) or web data (no WD) leads to a significant degrada-
tion in performance, and zero-shot prompting a large API-based
model (GPT-4) performs worse.
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Figure 17: Per-task performance breakdown for training recipe ablations. We evaluate each training mix-
ture variant on four representative household tasks: Items in Drawer, Dishes in Sink, Laundry Basket, and
Make Bed. Removing cross-embodiment data (ME or CE) leads to significant degradation in specific tasks,
particularly Items in Drawer and Dishes in Sink. Web data (WD) shows greater effect on the task (Items in
Drawer) where the broad knowledge of the scene is desired.

show that the relatively small verbal instruction dataset, which only constitutes about 11% of the
high-level mobile manipulation examples, is critical to strong performance as the no VI ablation
is significantly weaker. The no WD ablation is also significantly worse, indicating that much of
the benefit of web data (perhaps unsurprisingly) lies in improving the high-level policy. Finally,
the zero-shot GPT-4 ablation attains the worst performance, indicating the importance of adapting
VLMs with robot data. We provide a detailed breakdown of performance on each task in Ap-
pendix E, Figure 18.

E Per-task performance breakdown

Co-training recipe ablations To better understand the influence of different training data sources
on specific task categories, we provide a per-task performance breakdown (Figure 17). Here we
consider four representative household tasks: Items in Drawer, Dishes in Sink, Laundry Basket,
and Make Bed. In summary, the results indicate that cross-embodiment transfer and diverse data
co-training are critical for generalization across a range of tasks, with varying degrees of reliance
depending on task requirements.

For Items in Drawer, performance drops substantially when cross-embodiment data (ME or CE) or
web data (WD) is removed, with the largest degradation observed when all are excluded. This task
requires recognizing and understanding a very broad class of common objects, and such knowledge
may be learned from diverse data sources. In contrast, Dishes in Sink remains relatively robust to
the removal of web data (WD) but degrades when cross-embodiment data (ME or CE) is excluded,
anchoring the intuition that this task primarily requires general manipulation strategies learned from
robotic data. Laundry Basket and Make Bed also exhibit performance degradation when cross-
embodiment data is removed, but are generally less sensitive to other changes in the data mixture.

High-level model analysis For a more granular view of how different high-level inference meth-
ods affect specific task categories, we again provide a per-task breakdown (Figure 18). We evaluate
the full 7 5 model and all high-level inference baselines across four representative tasks: Items in
Drawer, Dishes in Sink, Laundry Basket, and Make Bed. The results show that explicit high-level
inference improves performance across tasks, with the full mg 5 model achieving the best overall
results.
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Figure 18: Per-task performance breakdown for high-level inference methods. We evaluate the full 7o 5
model and various high-level inference baselines across four representative household tasks.

For Items in Drawer and Dishes in Sink, high-level inference is critical: performance drops sub-
stantially with the no HL variant, indicating the importance of structured subtask prediction and
long-horizon planning. In these two tasks, the 7y 5 model also outperforms GPT-4 HL, showing
the benefit of in-domain fine-tuning and demonstrating that the high-level model learns strategies
that help the low-level policy succeed. In Items in Drawer, performance also declines sharply when
web data is removed — this echos the result from the co-training recipe ablation and highlights the
importance of semantic knowledge for generalizing to less seen objects. For Laundry Basket and
Dishes in Sink, the model is less sensitive to the choice of the high-level policy. These tasks are
either relatively shorter in horizon or require less detailed semantic reasoning.

24



	Introduction
	Related Work
	The 0.5 Model and Training Recipe
	The 0.5 architecture
	Combining discrete & continuous action representations
	Training

	Experimental Evaluation
	Can 0.5 generalize to real homes?
	How does generalization scale with the number of scenes?
	How important is each part of our co-training recipe?
	How does 0.5 compare to other VLAs?

	Conclusions
	Limitations and Future Work
	Preliminaries
	Supplemental for Section 3: 0.5 Model and Training Recipe
	Model technical details
	Pre-training
	Post-training
	Robot system details

	Task evaluation rubric
	Language following experiment setup
	How important is high-level inference?

	Per-task performance breakdown

